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Abstract

Concurrent and distributed systems are subject to several requirements of different
nature. Among them security and quality of service (QoS) are two fundamental
aspects, which can have a profound impact on the system performability. Unfortu-
nately, the study of the tradeoff between security guarantees and performance needs
is hard to accomplish, because the related analysis activities are usually carried out
separately. In this paper we present an integrated and tool-supported methodol-
ogy encompassing both activities, which can provide insights about how to trade
the QoS delivered by a system with its security guarantees. The methodology is
illustrated by assessing the effectiveness and the efficiency of the securing strategy
implemented in the NRL Pump, a trusted device proposed to secure the replication
of information from a low-security level enclave to a high-security level enclave.

Key words: QoS, security, noninterference, formal methods, process algebra,
tools, case studies

1 Introduction

Security is a critical requirement of dependable systems and networks. In
particular, in the last decades many efforts in the security community have
been done to properly ensure data access control in multilevel secure systems.
In essence, in such systems sensitive information is classified into access levels
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and users are assigned clearances, such that users can only access information
classified at or below their clearances.

The recent trends to open and real-time computing have shown that following
such an approach is not enough to successfully solve the security problem. On
the one hand, distributed systems and mobile code increase the vulnerability
of network systems to attacks and of confidential data to information leaks.
It is well known from real cases that a controlled sharing of information does
not protect against direct and indirect illegal information flows. In particular,
indirect leaks of data, called covert channels, are hard to be revealed and, even
in the case well-established formal techniques can be applied to capture them,
in practice many covert channels cannot be eliminated because of the intrinsic
nature of the system [MK94,R*01,AG02,ABGO03|. The presence of unavoid-
able covert channels is not only critical with respect to the security problem,
because such channels may also indicate the existence of undesired interfer-
ences from the environment that are responsible for compromising properties
related to safety, reliability, and availability [SD9S].

On the other hand, the application of strong strategies aiming at minimizing
each unwanted information flow is sometimes made impractical by hard QoS
constraints. Therefore, trading QoS with information leaks is of paramount
importance in the system design process. This activity involves both security
analysis and performance evaluation, two tasks that — unfortunately — are
usually carried out separately.

In order to achieve a reasonable balance between the expected QoS and the
absence of illegal information flows, in this paper we advocate the adoption of
an integrated view of security verification and performance evaluation. This
is accomplished by proposing a tool-supported methodology that combines
both analyses on the same formal system description. In brief, the integrated
methodology we propose works in two phases as follows.

The first phase requires to provide a functional description of the system at
hand, to which a security check is applied in order to reveal all the poten-
tial nondeterministic covert channels from the high-security level to the low-
security level. Such an analysis is based on the noninterference approach to
information flow theory [GM82] and is essentially carried out through equiva-
lence checking [FG95]. Diagnostic information provided by the security check
can be exploited to remove the unwanted covert channels or to reveal the
causes of the unavoidable information leaks. On the other hand, the nature of
the information flow captured in this phase can be also useful to detect the
impact of the interference causing the information flow on other aspects like,
e.g., system safety and availability. Indeed, applications of the noninterference
approach outside of the original security setting can provide a framework for
verifying properties related to safety, reliability, and availability. As an ex-



ample, the diagnostic information returned by the noninterference check can
be useful to analyze the influence of faults triggered by the environment or
non-trusted components upon the behavior of system components performing
safety-critical applications.

Afterwards, in the second phase of our methodology the bandwidth of the
covert channels detected in the first phase can be quantitatively assessed.
This is carried out by enriching the functional description of the system with
information about the temporal delays and the frequencies of the system ac-
tivities. The second system description considered in the methodology thus
relies on a performance model that can be analyzed through standard numer-
ical techniques or simulation [Ste94,Lav83]. The output of this performance
analysis is given by the value of some relevant efficiency measures of the system
together with the bandwidth of its covert channels, expressed as the amount
of information leaked per unit of time. Such performance figures are then used
as a feedback to properly tune the system configuration parameters in a way
that lowers the covert channel bandwidth under a tolerable threshold without
jeopardizing the QoS delivered by the system.

Although the proposed methodology is independent of the specific description
language and companion tool — provided that the basic ingredients needed
by the methodology itself are supplied — in this paper the application of the
methodology is illustrated using the process-algebraic, performance-oriented,
architectural description language Amilia [BDCO02] and a suitably extended
version of the related software tool TwoTowers [Ber06] that encompasses se-
curity analysis.

In this paper the application of our methodology is exemplified by means of
a case study: the Network NRL Pump [KMMO98|. This is a trusted device
used in multiple single-level security architectures to offer replication of in-
formation from low-security level systems (Low, for short) to high-security
level systems (High, for short) with high-assurance security guarantees. Data
replication is needed in this framework to strengthen both availability and se-
curity. On the one hand, data replication is a proven approach for increasing
the availability for distributed systems [OSS02]. On the other hand, data repli-
cation minimizes multilevel secure accesses to shared resources from processes
at different security levels.

Although at first sight illegal information leaks seem to be absent in a message
exchange from Low to High, some subtle behaviors must be paid attention to
in order to prevent unauthorized users from obtaining access to confidential
information. In fact, in order to offer reliable communications, an acknowledge-
ment (ack) is usually required for each message that is successfully received.
The transmission of an ack from High to Low is more than enough to set up a
covert communication channel if the timing of the ack is under the control of



High. The NRL Pump, which basically acts as a delaying buffer between High
and Low, makes such a timed covert channel negligible (see, e.g., the security
analysis conducted in [LT04]) with a minor impact on the QoS.

However, some information can still be sent from High to Low through the
NRL Pump. This is due to the feedback forwarded by the NRL Pump to notify
Low that a connection is up/down. In fact, High can manipulate the notifi-
cation procedure to set up a 1-bit covert channel related to the connection
status. To mitigate the effect of such an unavoidable covert channel, the NRL
Pump architecture is designed in such a way that a minimum delay is enforced
between connection setup and connection closing/abort and between the con-
nection reestablishment and the auditing of any connection that behaves in a
suspicious way.

Here the question is no longer whether the NRL Pump is secure, but how
much data per unit of time can be leaked by exploiting the backward infor-
mation flow. By applying our methodology, we formally verify that such an
information leakage is the unique functional covert channel suffered by the
NRL Pump. We also emphasize the relation between the output of the secu-
rity check and properties related to safety and availability that the NRL Pump
should satisfy in spite of the interference of non-trusted parties. Afterwards we
provide useful information about the tradeoff between the bandwidth of the
unavoidable covert channel and the NRL Pump configuration parameters. In
particular, we emphasize the impact of the NRL Pump securing strategy both
on the QoS delivered by the system, expressed as the number of connection
requests that are served per unit of time, and on some dependability-related
properties.

The paper, which is an extended and revised version of [AB04a,AB04b], is
organized as follows. In Sect. 2 we describe our methodology, which we illus-
trate throughout the paper by means of the NRL Pump. This mechanism is
presented in Sect. 3 through the support of the Amilia/TwoTowers technol-
ogy, which is introduced in Sect. 4. In Sect. 5 we apply our methodology to
the integrated analysis of the NRL Pump security and QoS. Comparison with
related work and some concluding remarks are finally reported in Sect. 6.

2 Predicting the Tradeoff between Security and QoS

Trading QoS aspects with security requirements is a non-trivial operation in-
volving both the description of the system functional behavior and the defini-
tion of the performance-related configuration parameters. In order to integrate
in a balanced way these different aspects of the system design, we propose a
tool-supported methodology that combines well-known formal techniques from



the security analysis and performance evaluation fields. The objective of our
methodology is to guide the design of a system that should not significantly
suffer from information leaks and that, at the same time, should deliver an
adequate performance.

The methodology is illustrated in Fig. 1. As can be seen, the methodology
requires to build two formal models of the system — a functional one and a
performance one — where the latter is incrementally obtained from the former
by adding further details.
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Fig. 1. Models and phases of the integrated methodology

The model in the first phase — the functional model F' — refers to the formal de-
scription of the functional behavior of the system. A security check is applied to
it in order to capture all the potential nondeterministic information leaks. The
application of formal methods for the analysis of security properties (see, e.g.,
[Mea03] and the references therein) is a well-established approach accepted
by the security community. In particular, our methodology relies on a tech-
nique based on the idea of nondeterministic noninterference [GM82]. Basically,
supposing that low-security level users (Low) observe public operations only
and high-security level users (High) perform confidential operations only, an
interference from High to Low occurs if what High can do is reflected in what
Low can observe. For instance, this approach has been formalized in [FG95],
where noninterference properties such as strong nondeterministic noninter-
ference and strong nondeducibility on composition are defined in a process
algebraic setting. In particular, the first one consists of verifying whether the
view of the system behavior as observed by Low in the absence of High inter-
ferences is the same as that observed when High interacts with the system.
The second one, which is the strongest property described in [FG95], consists
of verifying whether the view of the system behavior as observed by Low is



always the same before and after the execution of any interaction between the
system and High.

The noninterference approach to security analysis can be reused in other areas
in order to analyze, e.g., fault-tolerant systems or strong-partitioning mecha-
nisms [DiV99]. The idea is to ensure that the behavior of the system observable
by an external user, represented by Low, is independent of possible negative
interferences from the environment or from faulty system components, rep-
resented by High. Recent examples (see, e.g., [SWD98,SD98,AT04] and the
references therein) emphasize how different aspects of dependability can be
handled by noninterference.

Formally, in order to apply the noninterference check, we divide the system
activities into high-level and low-level actions, denoted High and Low, respec-
tively, depending on their nature. Then, on the basis of the specific nonin-
terference property, from the functional model F' we derive the models that
express the Low views to be compared. For instance, if the property is strong
nondeterministic noninterference then we derive two models. On the one hand,
the view of F' without High operations, denoted F'\ High, is obtained by pre-
venting F' from executing high-level actions. On the other hand, the low-level
view of F' with High interactions, denoted F'/High, is obtained by turning all
the high-level actions into invisible actions, since Low is not expected to ob-
serve them. Finally, F\ High and F'/High are compared through equivalence
checking. As shown in [FG95], a notion of equivalence relation that can be
used to conduct the comparison is weak bisimulation equivalence [Mil89], as
this captures the ability of two processes to simulate each other behaviors up
to invisible actions. If the equivalence check is satisfied, then Low cannot infer
the behavior of High by observing the public view of the system, which means
that the system does not leak information from High to Low.

Whenever in the first phase a covert channel is revealed that leaks information
from High to Low, the feedback returned by the equivalence check — typically
in the form of a distinguishing modal logic formula — provides diagnostic infor-
mation about the causes of the information flow. Based on this information,
first of all it can be established whether the detected covert channel is avoid-
able or not. Then, if the covert channel can be eliminated with a minor impact
on the functionalities of the system behavior, the same information can be ex-
ploited to suitably modify the functional model. In contrast, for all covert
channels that are either unavoidable or tolerated as they would require a sig-
nificant revision of the functional model, it is necessary to move on to the
second phase of our methodology, in which the functional model F' is refined
into a performance model P by specifying the timing of each system activity.

When applying the methodology in practice, the consistency of the perfor-
mance model P with respect to the functional model F' — which ensures the



same noninterference outcome — depends on the precise way in which the
functional model is extended with temporal information as well as on the ex-
pressive power of the formalism adopted to develop the models. For instance,
if all the activity durations are expressed through exponentially distributed
random variables, the derived performance model P turns out to be a Marko-
vian model yielding a continuous-time Markov chain. This model does not
need to be validated against F', since it is directly obtained from F' by attach-
ing exponential rates to the state transitions. In other words, the Markovian
model is consistent by construction with the corresponding functional model,
in the sense that the state space of the Markovian model is isomorphic (up to
the transition rates) to the state space of the corresponding functional model.
On the other hand, if the performance model contains general distributions to
better characterize the actual system delays, then P may need to be validated
against F. In fact, the use of general distributions no longer having infinite
support may alter the state space of P with respect to the state space of F. In
conclusion, to ensure consistency between the two models, the noninterference
analysis must be repeated in the second phase only if some high-level actions
are characterized through distributions with finite support.

Once the validation succeeds, the performance model can be analyzed through
numerical techniques [Ste94] or simulated via standard techniques [Lav83]. In
this phase, a quantitative estimation of the information leakage revealed dur-
ing the first phase is provided by evaluating the performance metrics that
are directly related to the bandwidth of the information flow from High to
Low. Similarly, QoS-related metrics can be assessed by analyzing the same
performance model. The resulting performance figures should reveal whether
a reasonable tradeoff between security — in terms of bandwidth of each covert
channel — and QoS — in terms of performance measures like system through-
put and response time — is met or not. Such performance figures are then used
as a feedback to guide the choice of the configuration parameters that affect
the metrics of interest. The objective of this tuning activity is to lower the
amount of information leakage under a tolerable threshold without jeopardiz-
ing the QoS delivered by the system. In the case a reasonable tradeoff cannot
be obtained, it is necessary to adjust the functional model and restart the
integrated analysis.

Since the developer may have different design requirements (strict vs. relaxed
security needs and loose vs. tight QoS constraints) the adjustment activity
can follow opposite strategies. If the main objective is to preserve information
confidentiality one can modify the functional behavior of the system until
the resulting model suffers only from unavoidable covert channels that are
quantitatively negligible. In this respect, note that aiming at perfect security
might compromise the service availability, which is one of the most critical
factors for the success of network-based applications. Therefore, tuning the
configuration parameters is needed to keep QoS as high as possible without



significantly altering the security constraints.

In the opposite limiting scenario, if ensuring QoS is more important than con-
fidentiality issues, one can fix a QoS threshold and then modify the (functional
and performance) behavior of the system until the resulting model meets the
desired QoS. In such a case, tuning the configuration parameters is needed to
keep the bandwidth of the potential covert channels as low as possible without
jeopardizing the QoS. In this respect, controlling the kind and the amount of
illegal information flows might be necessary to ensure dependability-related
properties like, e.g., service availability.

Our methodology is adequate to cope with each possible intermediate scenario,
by supporting at each step the kind of adjustment that is needed by the actual
requirements.

3 An Overview of the NRL Pump

The NRL Pump is configured as a single hardware device that interfaces a
high-security level LAN with a low-security level LAN. In essence, the Pump
places a buffer between Low and High, pumps data from Low to High, and
probabilistically modulates the timing of the ack from High to Low on the
basis of the average transmission delay from High to the Pump.

As shown in Fig. 2, the low-level and high-level enclaves communicate with
the Pump through special interfacing software called wrappers, which imple-
ment the pump protocol. Each wrapper is made of an application-dependent
part, which supports the set of functionalities that satisfy application-specific
requirements, and a pump-dependent part, which is a library of routines that
implement the pump protocol. Each message that is received and forwarded
by the wrappers includes 7 bytes of header field, containing information about
the data length, some extra header, and the type of message (data or control).

The Pump should not be considered as a general-purpose network router that
accepts a message from a low-level network and routes that message to a high-
level network. Such an uncontrolled behavior would cause both security and
availability problems. On the availability side, any low-level application may
request to connect to any high-level LAN thus wasting the Pump resources.
On the security side, a low-level Trojan Horse application could ask high-level
Trojan Horse processes to reveal their presence. To avoid these problems,
each process that uses the Pump must register its address with the Pump
administrator, which is responsible for maintaining a configuration file that
contains a connection table with registration information. The Pump provides
both recoverable and non-recoverable services. Recoverability safely assumes
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Fig. 2. Network NRL Pump architecture

that any sent message will be delivered to High, even if connection failures
occur. Here, we concentrate on non-recoverable applications (like, e.g., FTP),
which provide best-effort reliability of connection.

The procedure to establish a connection between Low and High through the
Pump is as follows. Initially, Low sends a connection request message to the
main thread (MT) of the Pump, which identifies the sending process and the
address of the final destination. If both addresses are valid (i.e., they have
been previously registered in the configuration file managed by the Pump
administrator), MT sends back a connection valid message, otherwise it sends
a connection reject message. In the first case, the connection is managed by a
trusted low thread (TLT) and a trusted high thread (THT'), which are created
during the connection setup phase to interact with Low and High, respectively.
Registered High processes are always ready to accept a connection from the
Pump through the same handshake mechanism seen above.

Once the new connection is established, the Pump sends a connection grant
message to both systems with initialization parameters for the communication.
During the connection, TLT receives data messages from Low, then stores
them in the connection buffer. Moreover, it sends back the acks (which are
special data messages with zero data length) in the same order it receives the
related data messages, by introducing an additional stochastic delay computed
on the basis of the average rate at which THT consumes messages. On the
other hand, THT delivers to High any data message contained in the connec-
tion buffer. The pump protocol also requires High to send back to THT the
ack messages related to the received data messages. If High violates this pro-
tocol, THT aborts the connection. In such a case, as soon as TLT detects that
THT is dead, it immediately sends all the remaining acks and a connection
exit message to Low. Another special data message is connection close, which
is sent at the end of a normal connection from Low to the Pump.

In general, the Pump is a reliable, secure, one-way communication device from
Low to High, which minimizes the amount of (covert) communication in the
opposite direction. During the connection, only THT directly communicates
with High and only TLT directly communicates with Low. Moreover, TLT and



THT directly interact only through the connection buffer. However, even if the
Pump minimizes any timed covert channel from High to Low [L.704], it cannot
avoid some data leak in that direction. This is because the Pump notifies Low
when a connection is down. Such a feedback is more than enough to set up a
1-bit covert channel from High to Low. In the following, we apply our method-
ology to formally verify the existence of such an unavoidable covert channel
and we measure its bandwidth and its relation with some dependability and
QoS properties.

4 Supporting the Methodology with Amilia/TwoTowers

The application of our integrated methodology requires a sufficiently expres-
sive specification language, in order to build the functional and performance
models of interest. In addition to that, it requires a software tool equipped
with the necessary analysis routines, so that the tradeoff between covert chan-
nel bandwidth and QoS can be assessed by verifying the properties of the
models written in the language mentioned before.

Although the predictive methodology does not depend on a specific notation,
in order to illustrate it we need to choose one. Here we use the architec-
tural description language Amilia [BDCO02], together with its companion tool
TwoTowers [Ber06], which has recently been extended to encompass security
analysis, as they provide all the ingredients that are necessary to support the
application of the methodology.

In the following, we give a brief overview of AZmilia and TwoTowers.

4.1 Amilia

An AEmilia description represents an architectural type. This is an intermediate
abstraction between a single system and an architectural style. It consists of a
family of systems sharing certain constraints on the observable behavior of the
system components as well as on the system topology. As shown in Table 1,
the description of an architectural type in Amilia starts with the name and the
formal parameters of the architectural type and is composed of three sections.

The first section defines the types of components that characterize the sys-
tem family. In order to include both the computational components and the
connectors among them, these types are called architectural element types
(AETSs). The definition of an AET starts with its name and formal parame-
ters and consists of the specification of its behavior and its interactions. The
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Table 1
Structure of an Amilia description

ARCHI_TYPE Jname and formal parameters>

ARCHI _ELEM_TYPES

ELEM_TYPE <def. of the first architectural element type>

ELEM_TYPE adef. of the last architectural element type>

ARCHI _TOPOLOGY
ARCHI_ELEM_INSTANCES <decl. of the architectural element instances>
ARCHI_INTERACTIONS «decl. of the architectural interactions>

ARCHI_ATTACHMENTS adecl. of the architectural attachments>

[BEHAV_VARIATIONS
[BEHAV_HIDINGS <decl. of the behavioral hidings>]
[BEHAV_RESTRICTIONS <decl. of the behavioral restrictions>]

[BEHAV_RENAMINGS adecl. of the behavioral renamings>|]

END

behavior has to be provided in the form of a list of sequential defining equations
written in a verbose variant of the stochastic process algebra EMPA,, [BB03].
The interactions are those EMPA,, action types occurring in the behavior
that act as interfaces for the AET. Each of them has to be equipped with two
qualifiers, which establish whether it is an input or output interaction and the
multiplicity of the communications in which it can be involved, respectively.
All the other action types occurring in the behavior are assumed to represent
internal activities.

The second section defines the architectural topology. This is specified in three
steps. First we have the declaration of the instances of the AETs (called AEISs)
with their actual parameters, which represent the real system components and
connectors. Then we have the declaration of the architectural (as opposed to
local) interactions, which are some of the interactions of the AEIs that act as
interfaces for the whole system family. Finally we have the declaration of the
directed architectural attachments among the local interactions of the AEIs,
which make the AEIs communicate with each other.

The third section, which is optional, defines some variations of the observable
behavior of the system family. This is accomplished by declaring some action

11
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types occurring in the behavior of certain AEIs to be unobservable, prevented
from occurring, or renamed into other action types.

4.2 TwoTowers 5.1

Amilia is the input language of the software tool TwoTowers, which has re-
cently been extended to cope with security analysis. As shown in Fig. 3, version
5.1 of TwoTowers is equipped with a graphical user interface through which
the user can invoke the analysis routines. Each routine needs input files of cer-
tain types and writes its results onto files of other types. The graphical user
interface takes care of the integrated management of the various file types
needed by the different routines.

The compiler is in charge of parsing system specifications stored in .aem files
and signalling possible lexical, syntax and static semantic errors through a
lis file. If a specification is correct, the compiler can generate its integrated,
functional or performance semantic model, which is written to a .ism, .fsm
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or .psm file; respectively. As a faster option that does not require printing
the state space onto a file, the compiler can show only the size — in terms of
number of states and transitions — of the semantic model, which is written to
a .size file.

The equivalence verifier checks whether two correct specifications are equiv-
alent according to one of several different notions of equivalence. The re-
sult of the check, together with some diagnostic information in case of non-
equivalence expressed through a modal logic formula, is written to a .evr file.

The model checker verifies through the BDD-based routines of the software
tool NuSMV 2.2.5 [CT02] whether a set of functional properties expressed
through verbose LTL formulas, which are stored in a .ltl file, are satisfied by
a correct, finite-state Amilia specification. The result of the check, together
with a counterexample for each property that is not met, is written to a .mcr

file.

The performance evaluator computes the performance characteristics of cor-
rect and performance closed specifications. First, it can calculate the station-
ary /transient state probability distribution of the performance semantic model
of a specification, where the model is either a continuous-time or a discrete-
time Markov chain. The distribution is written to a .dis file. Second, the per-
formance evaluator can calculate a set of instant-of-time, stationary /transient
performance measures specified through state and transition rewards stored
in a .rew file. The values of the measures are written to a .mea file. In the sta-
tionary case the Gaussian elimination method and an adaptive variant of the
symmetric SOR method are available, while in the transient case the method
of uniformization is available. Third, the performance evaluator can estimate
via discrete event simulation the mean, variance or distribution of a set of
performance measures specified through an extension of state and transition
rewards stored in a .sim file. The simulation is based on the method of in-
dependent replications and can be trace-driven, in which case the traces are
stored in .trace files. The outcome of the simulation, which can be applied
also to specifications whose underlying performance semantic model is not
Markovian, is written to a .est file.

Finally, the newly added security analyzer verifies whether a correct specifi-
cation possesses certain security properties establishing the absence of illegal
information flows from high security components to low security components.
Based on the noninterference approach, two security properties can be checked
by the security analyzer of TwoTowers 5.1, i.e. strong nondeterministic non-
interference and strong nondeducibility on composition [FG95]. In order to
verify one of these two security properties, the user is required to specify in
an additional .sec file the action names that are high and the action names
that are low with respect to the security level. The result of the analysis, to-
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gether with some diagnostic information in case of security violation expressed
through a modal logic formula, is written to a .sar file.

5 Integrated Security and Performance Analysis of the NRL Pump

In this section we illustrate the use of our integrated methodology to assess
the security/QoS tradeoff for the NRL Pump. The results we obtained with
Amilia/TwoTowers can be summarized as follows:

e The noninterference-based security analysis reveals the existence of an un-
avoidable covert channel caused by a connect/disconnect strategy. Diagnos-
tic information is also provided to detect the functional behavior of the NRL
Pump that is responsible for the information leakage. The relation between
the detected interference and reliability /availability properties of the NRL
Pump is also emphasized.

e Two metrics that are strictly related to the connect /disconnect strategy are
evaluated. The derived figures constitute an estimation of the covert chan-
nel bandwidth and describe its relation with the NRL Pump configuration
parameters.

In the following, we first present the Amilia functional model of the NRL
Pump. Then we describe the noninterference property we checked and we
formally show that the success/failure of a connection can be coded into a 1-bit
covert channel. Afterwards, we introduce the Amilia performance model of the
NRL Pump, which is obtained from the functional one by adding information
about temporal delays and probabilistic behaviors of the NRL Pump activities.
Finally, we specify the metrics related to the revealed covert channel on the
basis of which we measured the information leakage under certain assumptions.

5.1  Amilia Functional Model of the NRL Pump

The Amilia specification of the functional model of the NRL Pump starts with
its name and the indication that there is a formal parameter, representing the
size of the connection buffer, with its initial value:

ARCHI_TYPE NRL_Pump_Type(const integer buffer_size :=n)
The Amilia specification of the NRL Pump then proceeds with the definition
of the AETSs. In Table 2 we report the description of the low wrapper type,

whose behavior is given by a single defining equation, which is built out of
actions, action prefixes, choices, and behavior invocations. The notation void
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Table 2
Amilia functional specification of the low wrapper type

ARCHI_ELEM_TYPES
ELEM_TYPE LW_Type(void)
BEHAVIOR LW Beh(void;void) =
<send_conn_request, _>.
choice {
<receive_conn_valid,_>.<receive_conn_grant, _>.
<send.msg, _>.<receive_low_ack,_>.
choice {

<receive_conn exit, >.LW Beh(),
<send_conn_close, _>.LW_Beh()

|2

<receive_conn reject, >.LW Beh()
}

INPUT_INTERACTIONS UNI receive_conn_valid;
receive_conn_grant;
receive_conn_reject;
receive_low_ack;
receive_conn exit

OUTPUT_INTERACTIONS UNI send_conn_request;

send_msg;

send_conn_close

in the definition of the architectural type LW_Type denotes the absence of data
parameters, while the notation void;void in the definition of the equation
LW_Beh represents the absence of data parameters and local variables. Actions
are described as pairs of the form <action_name, action_duration>, where the
second element is not specified in the case the Amilia specification is purely
functional.

The low wrapper sends a connection request to the Pump and then is ready
to accept either a connection valid message or a connection reject message. If
a connection is established, the low wrapper receives a grant message, sends
a data message to TLT, and then waits for the related ack. For the sake of
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Table 3
Amilia functional specification of the main thread type

ELEM_TYPE MT_Type(void)
BEHAVIOR MT Beh(void;void) =
<receive_conn _request, _>.
choice {
<conn_is_valid, _>.<wakeup_tht, >.
<send_conn valid, >.MT Beh(),
<conn_not_valid, _>.
<send_conn reject, _>.MT Beh()
}
INPUT_INTERACTIONS UNI receive_conn request
OUTPUT_INTERACTIONS UNI wakeup-tht;

send_conn _valid;

send_conn_reject

simplicity, since the amount of data sent from Low to High does not alter
the kind of communications between Low and High through the Pump, we
considered a system configuration where the low wrapper tries to establish a
connection during which a single message is sent to High. Hence, after the
reception of the ack, the low wrapper can either receive a connection exit
message in the case the connection is aborted by High, or send a connection
close message in the case the connection is correctly terminated. The definition
of the low wrapper type is concluded with the declaration of some of the action
names occurring in its behavior as being input or output interactions, which
act as the interfaces of the low wrapper with the other components of the
system.

Each connection request sent to the Pump is managed by the main thread,
whose type is defined in Table 3. The main thread monitors the port of the
Pump to which Low sends connection request messages. In order not to have
to introduce a definition of the Pump administrator, the verification of an
incoming request is abstractly modeled by means of a nondeterministic choice
between two actions. More precisely, in response to a request, either the main
thread activates the trusted high thread and sends back a connection valid
message, or it sends back a connection reject message.

The initialization of a new connection to High is conducted by THT, which is
spawned by MT during the initial setup phase. The definition of the THT type
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Table 4
Amilia functional specification of the trusted high thread type

ELEM_TYPE THT Type(void)
BEHAVIOR THT Beh(void;void) =
choice {
<receive_high wakeup, >.<init_high_conn, >.
<wakeup_tlt, >.THT Beh(),
<read.msg, _>.<forward.msg, _>.
choice {
<receive_high ack, _>.<deletemsg, _>.
<send_ok_to_tlt, ~>.THT Beh(),
<wait_for_timeout, _>.<comm_timeout, _>.

<deletemsg, >.<send abort_to_tlt,_>.THT Beh()

}

INPUT_INTERACTIONS UNI receive_high wakeup;
read msg;
receive_high_ack

OUTPUT_INTERACTIONS UNI wakeup-tlt;

forward_msg;
delete_msg;
send_ok_to_tlt;
comm_timeout;

send_abort_to_tlt

is reported in Table 4. Upon the initialization of THT, the connection setup
handshaking between THT and the high wrapper is modeled by means of a
single action of type init_high conn. Afterwards, THT awakens the trusted
low thread. When a connection is active, THT checks the buffer for new in-
coming data messages. Upon reading a message from the buffer, THT outputs
it to the high communication channel. Then, THT waits for the reception of
the related ack from High. The arrival of an ack message competes with the
timeout fixed by THT. In particular, if the ack is received before the end of
the timeout, THT removes the message from the buffer and informs TLT in
order to allow the connection to be correctly closed. On the other hand, if
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Table 5
Amilia functional specification of the trusted low thread type

ELEM_TYPE TLT Type(void)
BEHAVIOR TLT_Beh(void;void) =
<receive_low_wakeup, >.<send_conn_grant, >.
<receivemsg, _>.<store.msg,_>.
choice {
<wait_delay,_>.<send_low_ack, _>.
choice {
<receive_abort_from_tht, _>.
<send_conn_exit, >.TLT Beh(),
<receive_ok_from_tht,_>.
<receive_conn _close, >.TLT Beh()
2
<receive_abort_from_tht,_>.<send_low_ack, _>.
<send_conn_exit, >.TLT Beh(),
<receive_ok_from_tht, _>.<wait_delay,_>.
<send_low_ack, _>.<receive_conn_close, _>.TLT_Beh()
}

INPUT_INTERACTIONS UNI receive_low_wakeup;
receive._msg;
receive_abort_from tht;
receive_ok from tht;
receive_conn_close

OUTPUT_INTERACTIONS UNI send_conn_grant;

store_msg;
send_low_ack;

send_conn_exit

the timeout expires before the reception of the ack, THT notifies the timeout
expiration, removes the message from the buffer, and informs TLT about the
aborted connection.
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Table 6
Amilia functional specification of the buffer type

ELEM_TYPE Buffer Type(const integer buffer_size)
BEHAVIOR Buffer Beh(integer(0..buffer_size) msg num := 0;void) =
choice {

cond(msg_num < buffer_size) —>
<accept.msg, >.Buffer Beh(msg num + 1),

cond(msg_num > 0) — >
choice {

<read msg, ->.Buffer Beh(msg num),

<deletemsg, >.Buffer Beh(msg num — 1)

}

INPUT_INTERACTIONS UNI accept_msg;
delete msg

OUTPUT_INTERACTIONS UNI read msg

In turn, the description of TLT is given in Table 5. TLT waits for THT to
awaken it and then establishes the connection from Low to the Pump by
sending a connection grant message to Low. At that moment, TLT is ready to
receive a data message from Low. Upon receiving a data message, TLT stores
it in the connection buffer and then sends the ack to Low after a certain
delay. At any moment, TLT may receive a message from THT concerning the
status of the connection. In particular, in the case of THT failure, TLT must
send a connection exit message to Low. Alternatively, if THT is correctly
working, TLT can accept a connection close message from Low. Note that
if TLT detects the THT failure before sending the ack to Low, then TLT
immediately transmits the ack and the connection exit message to Low.

TLT and THT share the communication buffer, through which the data mes-
sages coming from Low are forwarded to High. The buffer element type is
described in Table 6. Its definition is parameterized with respect to the max-
imum size of the buffer, while its behavior is characterized by the number
of messages that are currently stored, ranging from 0 to the maximum size.
The buffer is initially empty and is accessed by TLT and THT only. When
the buffer is not full, i.e. the condition msg num < buffer_size holds, a new
data message can be accepted from TLT. When the buffer is not empty, i.e.
the condition msg num > 0 holds, a data message can be read (deleted) from
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Table 7
Amilia functional specification of the high channel type

ELEM_TYPE HC_Type(void)
BEHAVIOR HC Beh(void;void) =
<accept._msg, _>.
choice {
<receive_timeout, >.HC_Beh(),
<transmit_msg, >.
choice {
<receive_timeout, >.HC_Beh(),
<accept_high ack, >.
choice {
<receive_timeout, >.HC_Beh(),

<transmit high ack, >.HC Beh()

}

INPUT_INTERACTIONS UNI accept_msg;
receive_timeout;
accept_high ack

OUTPUT_INTERACTIONS UNI transmit_msg;

transmit_high ack

THT. Since we assumed that during a connection Low sends a single message
to High, it is enough to consider a buffer with size n = 1.

The high channel type, described in Table 7, models the communication chan-
nel between THT and High. We need an explicit element type to express the
transmission delay of messages in that link, because the round-trip delay of a
communication between THT and High must compete with the timeout set
by THT. Initially, the channel is ready to accept a data message from THT,
which is then transmitted to High. After the delivery of the message, the chan-
nel waits for the related ack to be transmitted to THT. Such a handshake
competes with the notification of the timeout from THT, which represents a
connection abort. In this case, for the sake of simplicity, the channel loses all
the pending messages.
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Table 8
Amilia functional specification of the high wrapper type

ELEM_TYPE HW_Type(void)
BEHAVIOR HW_Beh(void; void) =
<receive msg, >.<send high ack, >.HW Beh()

INPUT_INTERACTIONS UNI receive._msg

OUTPUT_INTERACTIONS UNI send_high_ack

Table 9
Amilia functional specification of the NRL Pump topology (part I)

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES
LW : LW_Type();
MT : MT_Type();
THT : THT Type();
TLT : TLT_Type();
B : Buffer Type(buffer size);
HC : High Channel Type();

HW : HW_Type()

At the high receiving site, the high wrapper is ready to interact with the
high components of the Pump. The definition of the high wrapper type is
given in Table 8. The high wrapper can accept a data message from the high
channel and, in such a case, must transmit an ack message. Note that the
high wrapper does not perform other operations, as we abstract away from the
communications concerning the high connection initialization/termination.

Finally, the Amilia specification of the NRL Pump contains the description
of the system topology, in accordance with Fig. 2. In particular, as shown
in Table 9, the Pump is composed of a main thread, a TLT, a THT, and
a buffer. It interacts with a single low wrapper and a single high wrapper
through a single high channel. Besides the declaration of all the instances of
the AETSs, the description of the system topology contains the declaration
of the attachments involving the interactions of each instance, as shown in
Table 10.
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Table 10
Amilia functional specification of the NRL Pump topology (part II)

ARCHI_INTERACTIONS void

ARCHI_ATTACHMENTS
FROM LW.send_conn_request TO MT.receive_conn_request;
FROM MT.send_conn_valid TO LW.receive_conn_valid;
FROM MT.send_conn_reject TO LW.receive_conn reject;
FROM MT.wakeup_tht TO THT.receive_high wakeup;
FROM THT.wakeup-tlt TO TLT.receive_low_wakeup;

FROM TLT.send_conn_grant TO LW.receive_conn_grant;

FROM LW.send msg TO TLT.receive_msg;
FROM TLT.store_msg TO B.accept_msg;

FROM TLT.send_low_ack TO LW.receive_low_ack;
FROM B.read_msg TO THT.read_msg;

FROM THT.forward msg TO HC.accept_msg;

FROM HC.transmit_msg TO HW.receive_msg;
FROM THT.comm_timeout TO HC.receive_timeout;
FROM HW.send_high_ack TO HC.accept_high_ack;

FROM HC.transmit_high ack TO THT.receive_high ack;

FROM THT.delete_msg TO B.delete_msg;

FROM THT.send_abort_to_tlt TO TLT.receive_abort_from tht;
FROM THT.send ok _to_tlt TO TLT.receive_ok from tht;
FROM TLT.send_conn_exit TO LW.receive_conn exit;

FROM LW.send_conn_close TO TLT.receive_conn_close

END

5.2 Noninterference-based Security Analysis

According to Sect. 2, the first phase of our methodology consists of applying
the noninterference check to the Amilia functional specification of the NRL
Pump. For this purpose, the security analyzer of TwoTowers 5.1 allows the
designer to describe in an auxiliary specification file (.sec) which actions belong
to High and which belong to Low. All the other actions are simply disregarded
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Table 11
AEmilia specification of the .sec file for the NRL Pump model

HIGH HW.receive_msg;
HW.send_high_ack

LOW LW.receive_conn_valid;
LW.receive_conn_grant;
LW.receive_conn_reject;
LW.receive_low_ack;
LW.receive_conn_exit;
LW.send_conn_request;
LW.send msg;

LW.send_conn_close

by turning them into invisible actions.

As far as the NRL Pump is concerned, the low-level view of the system is
represented by the communication interface between the low wrapper and
the Pump, as they interact through low-level actions. Analogously, all the
actions modeling communications between the high wrapper and the Pump
are high-level actions. All the actions modeling communications among the
internal components of the Pump (like, e.g., the synchronizations between
MT and THT, or between TLT and the buffer) cannot be seen by an external
observer. Therefore, as far as the security check is concerned, it is reasonable
to assume that they are invisible, as they do not represent communications
between the Pump and the wrappers. The content of the .sec file associated
with the Amilia specification of the NRL Pump is described in Table 11.

The security check we applied is based on strong nondeterministic noninter-
ference [FG95]. In particular, the security analyzer of TwoTowers 5.1 auto-
matically derives the two views to be compared from the Amilia specifica-
tion of the NRL Pump, i.e. NRL Pump _Type\ High and NRL Pump Type/High,
and performs the weak bisimulation equivalence check. The obtained result
is that they cannot be weakly bisimulation equivalent. The distinguishing
modal logic formula returned by TwoTowers 5.1 intuitively shows what fol-
lows: NRL_Pump_Type'\ High aborts all the connections (each connection termi-
nates with the occurrence of the low-level action modeling the transmission of
a connection exit message), while NRL_Pump_Type/High is able to close connec-
tions between Low and High (a connection may terminate with the occurrence
of the low-level action modeling the transmission of a connection close mes-
sage). The related covert channel is caused by the unavoidable notification
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feedback from the Pump to Low. Indeed, if we prevent Low from observing
the result of each connection (by hiding the low-level actions modeling the con-
nection close/exit message), we obtain that the system satisfies both strong
nondeterministic noninterference and strong nondeducibility on composition.
That means the covert channel described above is the unique nondeterministic
information leakage that occurs in the NRL Pump.

As far as other dependability related issues are concerned, the noninterfer-
ence check we conducted puts in evidence the reliability of the NRL Pump
in terms of its ability to deliver the required service under intentional faults
caused by High. In this respect, we point out that both NRL_Pump_Type\ High
and NRL Pump Type/High are deadlock free. Therefore, the behavior of High,
which can be either trusted or nontrusted, cannot compromise the Pump func-
tionalities. Moreover, independently of the behavior of the current connection,
the Pump is eventually available to accept new incoming connection requests.
In particular, in the case High cheats by performing a denial-of-service attack,
see NRL_Pump _Type\ High, the Pump is able to abort the connection by exploit-
ing the timeout mechanism, thus becoming ready for new incoming requests.
In other words, the service offered by the NRL Pump satisfies the availability
property, even if the functional analysis conducted in this phase is not suffi-
cient to evaluate efficiency issues. For this purpose, it is necessary to pass to
the second phase of our methodology, which is based on the analysis of the
performance model of the NRL Pump.

5.8  Amilia Performance Model of the NRL Pump

The Amilia performance model of the NRL Pump has two main differences
with respect to the functional specification provided in Sect. 5.1. First, the
description of the architectural type is parameterized with respect to a set of
rates and probabilities concerned with the Pump activities, which are passed
as actual parameters to the AEIs in the architectural topology section. The
header of the NRL Pump architectural type is reported in Table 12. The
formal parameters represent the size of the connection buffer; the rates mod-
eling some exponentially distributed delays, and the probability that a con-
nection request is valid. In particular, conn_gen rate is the Low connection
request generation rate, conn_init_rate is the High connection initialization
rate, data_trans_rate (resp. ack _trans rate) is the data (resp. ack) message
transmission rate, ack_delay rate is the inverse of the stochastic delay added
by the Pump to the transmission of the acks to Low, and timeout _rate is the
inverse of the maximum amount of time that the Pump waits for an expected
ack.

Second, every action can now contain the specification of its duration. This is
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Table 12
AEmilia performance specification of the NRL Pump header

ARCHI_TYPE NRL_Pump_Type(const integer buffer_size :=n,
const rate conn_gen_rate := v,
const rate conn_init _rate : =17,
const rate data_trans_rate := J,
const rate ack_trans_rate := &,
const rate ack_delay rate := 6,
const rate timeout_rate := y,

const weight valid_prob :=p)

given by exp(_) in the case of an exponentially timed action, while it is repre-
sented by inf (_, _) in the case of an immediate action. The two parameters
of an immediate action are its priority level and its weight, whose default value
is 1. All the other actions are called passive and get a duration only if they
are attached to an exponentially timed or immediate action. Actions that are
not passive cannot be attached to each other.

In Tables 13, 14, and 15 we report the behavior of the AETSs of the Amilia
performance specification of the NRL Pump. For instance, consider the main
thread type described in Table 13. With respect to the functional specifi-
cation of Table 3, the verification of an incoming request is modeled by a
probabilistic choice between two immediate actions, which is governed by pa-
rameter valid prob. Then, the activation of the trusted high thread is mod-
eled through an immediate action, while the connection notification that is
sent back to Low is modeled through an exponentially timed action whose du-
ration is quantified by rate data_trans_rate. In general, all the transmission
delays for the messages exchanged by the Pump and Low/High through the
network are modeled as stochastic random variables guided by exponential
distributions, while all the internal communications among the Pump compo-
nents are modeled by immediate actions. This is because the duration of an
activity internally performed by the Pump is negligible with respect to the
transmission delay experienced by a message along the network.

5.4 Performance Evaluation and Tuning

According to the second phase of our methodology, whenever the performance
model is validated against the functional model, the bandwidth of the covert
channels that are not eliminated during the first phase is measured by eval-
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Table 13
Amilia performance specification of the NRL Pump (part I)

ELEM TYPE LW_Type(const rate conn gen rate,const rate data trans rate)
BEHAVIOR LW_Beh(void;void) =
<send_conn request, exp(conn_gen rate)>.
choice {
<receive_conn_valid, _>.<receive_conn_grant, >.
<send msg, exp(data_trans_rate)>.<receive_low_ack, _>.
choice {

<receive_conn_exit, >.LW_Beh(),
<send_conn_close, exp(data_trans_rate)>.LW_Beh()

|2

<receive_conn.reject,_>.LW Beh()

ELEM_TYPE MT_Type(const rate data trans_rate, const weight valid prob)
BEHAVIOR MT_Beh(void;void) =
<receive_conn_request, _>.
choice {
<conn_is_valid, inf(1,valid prob)>.<wakeup_tht, inf>.
<send conn valid, exp(data trans rate)>.MT Beh(),
<conn not_valid, inf(1,1 — valid prob)>.

<send_conn reject, exp(data_trans_rate)>.MT_Beh()

ELEM_TYPE THT Type(const rate conn_init_rate, const rate timeout_rate)
BEHAVIOR THT Beh(void;void) =
choice {
<receive high wakeup, >.<init_high conn, exp(conn_init_rate)>.
<wakeup_tlt, inf>.THT Beh(),

<readmsg, _>.<forward.msg, inf>.
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Table 14
Amilia performance specification of the NRL Pump (part II)

choice {
<receive_high_ack,_>.<deletemsg, inf>.
<send_ok_to_tlt, inf>.THT Beh(),
<wait_for_ timeout, exp(timeout rate)>.<comm timeout, inf>.

<delete.msg, inf>.<send_abort_to_tlt, inf>.THT Beh()

ELEM_TYPE TLT Type(const rate data_trans._rate,
const rate ack_trans_rate,
const rate ack delay rate)
BEHAVIOR TLT_Beh(void;void) =
<receive_low_wakeup, >.<send_conn grant, exp(data trans_rate)>.
<receivemsg, >.<storemsg, inf>.
choice {
<wait_delay, exp(ack.delay. rate)>.
<send_low_ack, exp(ack_trans_rate)>.
choice {
<receive_abort_from_tht, >.
<send conn exit, exp(data trans rate)>.TLT Beh(),
<receive_ok_from_tht, _>.
<receive_conn close, >.TLT Beh()
2
<receive_abort_from_tht, >.
<send_low_ack, exp(ack_trans_rate)>.
<send conn exit, exp(data trans rate)>.TLT Beh(),
<receive_ok_from tht, >.<wait_delay, exp(ack_delay.rate)>.
<send_low_ack, exp(ack_trans_rate)>.

<receive_conn _close, >.TLT Beh()
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Table 15
Amilia performance specification of the NRL Pump (part IIT)

ELEM TYPE Buffer Type(const integer buffer size)
BEHAVIOR Buffer Beh(integer(0..buffer_size) msg num := 0;void) =
choice {

cond(msg num < buffer_size) —>
<accept.msg, >.Buffer Beh(msg num+ 1),

cond(msg-num > 0) — >
choice {

<read.msg, inf>.Buffer Beh(msg _num),

<deletemsg, >.Buffer Beh(msg num — 1)

ELEM_TYPE HC_Type(const rate data trans_rate, const rate ack _trans_rate)
BEHAVIOR HC Beh(void;void) =
<accept._msg, _>.
choice {
<receive_timeout, >.HC Beh(),
<transmit_msg, exp(data trans_rate)>.
choice {
<receive_timeout, >.HC_Beh(),
<accept_high_ack, _>.
choice {
<receive_timeout, >.HC_Beh(),

<transmit_high ack, exp(ack_trans_rate)>.HC_Beh()

ELEM TYPE HW_Type(void)

BEHAVIOR HW_Beh(void;void) =

<receive.msg, >.<send_high ack, inf>.HW_Beh()
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Table 16
AEmilia specification of the .rew file for the NRL Pump model

MEASURE closed_connections_per_time unit IS
ENABLED(LW.send_conn_close) — > TRANS_REWARD(1);
MEASURE aborted_connections_per_time unit IS

ENABLED(TLT.send_conn_exit) — > TRANS REWARD(1)

uating some related efficiency indicators. For this purpose, action durations
have to be taken into consideration.

In the case of the Amilia specification of the NRL Pump, first we observe
that, when going from the functional model to the performance model, the
verification of strong nondeterministic noninterference reveals the same covert
channel described in Sect. 5.2. In particular, the security check revealed that
the unique information leakage from High to Low is given by the occurrence of
a connection exit event (in case High is absent) with respect to the occurrence
of either a connection exit event or a connection close event (in case High
is present). Hence, the number of connections that can be closed/aborted
because of the behavior of High represents an estimate of how many bits High
can pass to Low in a certain period.

Second, some delays of the NRL Pump activities, such as timeouts and trans-
mission times, are modeled as stochastic random variables governed by expo-
nential distributions. Thus, the stochastic model we obtain is a continuous-
time Markov chain. To derive performance measures of interest, such a Markov
chain can be analyzed by the performance evaluator of TwoTowers 5.1 through
standard numerical techniques. To this aim, following [BB03] the designer de-
scribes in an auxiliary specification file (.rew) the rewards to be attached to
specific actions of the Amilia description. These rewards are then exploited to
compute reward-based metrics, such as throughput and utilization measures.

Formally, the number of connections that are closed/aborted by the NRL
Pump is estimated by measuring the throughput of the low-level actions mod-
eling the transmission of the connection close and the connection exit messages
that are observed by Low. As a consequence, the content of the .rew file as-
sociated with the Amilia specification of the NRL Pump is as described in
Table 16.

Before showing the analysis results, we explain some assumptions about the
timing of the actions occurring in the Amilia specification of the NRL Pump.
All the delays are exponentially distributed with a certain rate expressed in
sec™!. The data (resp. ack) transmission rate and the round-trip propagation
rate experienced during the connection setup phase between the Pump and
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Fig. 4. Throughput of closed/aborted connections with and without High

High are § (resp. k) and 1. We assume that the Pump uses two 64 Kbps full-
duplex lines and the (mean) length of data (resp. ack) messages is 512 (resp.
49) bits, so that 0 = 125 (resp. k = 1306.12) and 1 = 62.5. The connection
request generation rate v varies in the range [1,1000], i.e. from 1 request/sec
to 1 request/ms. The rate of the stochastic delay added by the Pump before
sending the ack to Low is #. We assume such a delay to be equal to the
transmission time of three ack messages, so that § = 435.37. This is long
enough to hide the fluctuations of the transmission delays of the ack messages
propagating from High to the Pump. The timeout delay used by the Pump
when waiting for the ack from High varies from 2 sec to 10 ms. Therefore,
the corresponding rate, denoted pu, varies in the range [0.5,100]. Finally, for
each connection request we abstract from the configuration file look-up and
we assume that each incoming request is valid with probability p = 0.99.

Fig. 4 reports the number of connection close/exit messages observed per sec
in the case p = 57.04, corresponding to double the average time needed to
send a data message and to receive the related ack (i.e., about 17 ms). Fig. 4(a)
refers to the scenario in which High correctly executes the protocol. Therefore,
most connections are normally closed, while aborted connections can occur
because of the expiration of the timeout set by the Pump. Fig. 4(b) refers to
the scenario in which High is absent, i.e. all the connections abort. For both
scenarios, we have that as the connection request rate v increases, the number
of closed/aborted connections increases as well. Note that abortions occur
in both figures independently of the behavior of High. As a consequence, a
connection exit message cannot reveal the presence/absence of High. Instead,
Low deduces the presence of High if a connection is correctly closed, which is
an event that occurs in Fig. 4(a) only. In particular, from Fig. 4(a) we derive
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Fig. 5. Tradeoff between timeout duration and throughput of closed/aborted con-
nections

that High succeeds in leaking its presence to Low up to 13 times/sec. Finally,
note that the difference between the curve of Fig. 4(b) and the corresponding
curve of Fig. 4(a) shows that the number of aborted connections observed
per sec is appreciably altered by the absence of High. That means Low can
deduce the presence of High by simply measuring the number of connection
exit messages received per sec.

The number of connections that abort because of the timeout expiration can
be limited by increasing the timeout duration. In Fig. 5 we show the tradeoft
between the timeout duration and the Pump throughput in terms of number
of connections served per sec. In particular, we consider a scenario where
both Low and High correctly execute the protocol, v = 20 (corresponding to
a connection request every 50 ms), and the timeout duration varies in the
interval [10,2000] ms (i.e., u varies from 100 to 0.5). The curves show that as
the timeout duration increases, the number of connection exit messages tends
to zero, while the number of connection close messages rises up to 9 per sec.
The most interesting result is that, whenever the timeout expires after at least
200 ms, it is very likely that an ack sent by High arrives before the expiration
of the timeout. More precisely, for © = 5 we have 0.412051 abortions/sec,
while in the limiting scenario where the timeout duration is 2 sec we observe
0.0425696 abortions/sec, corresponding to 2.554176 abortions/min. In other
words, it is reasonable to predict with good approximation that an aborted
connection occurs because of a misbehavior of High rather than a timeout
expiration. Hence, High may exploit the connection exit message to leak a bit
to Low, i.e. each connection really leaks a bit from High to Low (e.g., 0 if it
succeeds and 1 if it fails).

In order to measure the bandwidth of such a 1-bit covert channel, in Fig. 6 we
report the number of connections served per sec whenever High alternatively
completes and blocks (with equal probabilities) the connections in order to
express a sequence of bits to be sent to Low. As far as the configuration
parameters are concerned, the connection request rate varies from 1 per sec
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Fig. 6. Throughput of closed/aborted connections for different configuration param-
eters

(v = 1) to 1 per ms (y = 1000) and the timeout duration is long enough
to ensure an exact interpretation of the information leakage (u € {0.5,1,5}).
In particular, if the timeout duration is 200 ms, then we observe a number
of closed connections between 0.41382 and 3.23043, and a number of aborted
connections between 0.45022 and 3.51459. That means, if Low interpretes
each connection termination as a leaked bit, in the worst case the maximum
information leakage is 6.77633 bits/sec. However, in Fig. 5 we have seen that
some abortion is not due to the High behavior, but it depends on the timeout
expiration. As a consequence, a certain percentage of the bit sequence deduced
by Low in a sec is wrong. In the scenario above (1 = 5 and ~ € [1,1000])
such a percentage is equal to 4.043% independently of the connection request
frequency.

Obviously, there exists a tradeoff between the number of bits/sec that are
deduced by Low and the accuracy of the deduction. For instance, in the case
p# = 1 the maximum information leakage is 1.82353 bits/sec with an error
percentage equal to 0.862%, while in the case p = 0.5 the maximum infor-
mation leakage is 0.95383 bits/sec with an error percentage equal to 0.435%.
Another remark is in order about the comparison between Fig. 5 and Fig. 6,
which is conducted by observing the curves of Fig. 6 for the value v = 20
and by taking the same timeout duration. When 4 = 5, in Fig. 6 we observe
2.4219 closed connections per sec and 2.63493 aborted connections per sec,
corresponding to 5.05683 bits/sec, which is appreciably less than the number
of closed connections per sec in Fig. 5, i.e. 9.59341. The main difference is
that in the scenario of Fig. 5 High completes all the connections, while in the
scenario of Fig. 6 High alternatively completes and blocks the connections.
Therefore, the bandwidth of the covert channel also depends on the sequence
of bits that are leaked from High to Low.

In general, the Pump designer can quantitatively assess the relation between
the amount of bits leaked from High to Low and the value of each configu-
ration parameter that influences the QoS delivered by the NRL Pump. For
instance, we have seen that covert channel bandwidth and Pump throughput
(in terms of number of connections served per sec) are directly proportional.
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Fig. 7. Throughput of closed/aborted connections with extra delay

Therefore, the availability of the NRL Pump, expressed in terms of efficiency
in responding to the incoming requests, is inversely proportional to the confi-
dentiality degree offered by the NRL Pump. As another example, there exists
an important relation between the timeout duration chosen by the Pump and
the amount of information flowing from High to Low. In particular, the longer
the timeout duration is, the more an aborted connection may be interpreted
as a leaked bit with high accuracy.

A strategy to reduce the covert channel bandwidth consists of enforcing a mini-
mum delay to elapse between subsequent connection establishments. Consider,
e.g., the addition of an extra delay, exponentially distributed with rate A, af-
ter the abortion of a connection and before its reestablishment. In Fig. 7 we
report the effect of this extra delay in the case High alternatively completes
and blocks (with equal probabilities) the connections, v = 200, and p € {1,5}.
The extra delay varies from 500 to 10 ms, i.e. A € [2,100]. As an expected
result, as the artificial delay increases the total number of closed/aborted con-
nections per sec decreases. For instance, in the case p = 5, the covert channel
bandwidth ranges from an upper bound of 6.48454 bits/sec to a lower bound
of 0.84203 bits/sec. We recall that the covert channel bandwidth in the corre-
sponding scenario of Fig. 6 is 6.56608 bits/sec. Hence, the bandwidth reduction
is proportional to the extra delay duration. In the case u = 1, the connections
are equally divided into aborted and closed. The information leakage ranges
from 1.80413 bits/sec to 0.643281 bits/sec.

As a consequence of the obtained results, the covert channel bandwidth can
be reduced under any desired threshold in spite of a reduction of the QoS,
expressed in terms of number of requests served per sec. This is because each
connection served by the NRL Pump leaks one bit. In practice, a tradeoff
exists between the robustness against the 1-bit covert channel and the QoS
delivered by the NRL Pump. To reduce the unfavorable impact of the proposed
strategy on the QoS, which could be unacceptably burdensome, the extra delay
mechanism should be carefully activated, e.g. only in the case of frequent
abortions, which are an evidence of the misbehavior of High. Moreover, if the
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Pump can handle several different connections at the same time, a good quality
degree of the delivered service might be guaranteed by monitoring the kind of
traffic. This can be done by reducing the waiting time for the trusted users
that behave correctly and by adopting the delay mechanism for the suspicious
connections that may try to exploit the 1-bit covert channel. In this way, the
availability and the QoS offered by the NRL Pump are guaranteed in spite of
a tolerable degree of interference causing the information leakage.

6 Conclusion: Related and Future Work

In this paper we have presented an integrated methodology — implemented
through the Amilia/TwoTowers technology — that combines noninterference-
based security analysis and performance evaluation in order to trade QoS with
covert channel bandwidth.

On the one hand, the need for both qualitative and quantitative security as-
sessment stems from the fact that real systems like the NRL Pump suffer
from unavoidable information leaks that have to be quantified. In particular,
through the NRL Pump case study we have shown that the existence of an un-
wanted covert channel has an impact on both reliability- and security-related
properties. Such a covert channel causes an information leakage which we have
quantitatively estimated in terms of the number of bits leaked per unit of time.

On the other hand, performance evaluation allows for a quantitative estima-
tion of the efficiency of the securing strategies implemented to reduce the
covert channel bandwidth. For instance, through the NRL Pump case study
we have shown that a tradeoff exists between the accuracy of the system in
avoiding the information leakage and the QoS /reliability offered to the users.

The application of such a methodology represents an effective support to val-
idating the security guarantees of real systems while preserving the expected
QoS. For instance, audio/video applications based on real-time channels re-
quire both critical QoS constraints and privacy guarantees. Such applications
often offer customized security (choice of the authentication and privacy meth-
ods, tolerance to replay attacks, use of caching and prefetching strategies) to
achieve a customized tradeoff between security and performance, which can
be formally analyzed and supported by the use of our methodology.

Although the methodology is presented by stressing on the security domain,
it can be easily generalized to consider other dependability-related issues. For
instance, in [SD98,SWD98,DiV99] different trace-based models of noninterfer-
ence are used for specifying and verifying safety properties, while in [A104]
an approach similar to the methodology proposed in this paper is employed
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to assess QoS and reliability-related properties. In this respect, by adequately
changing the roles of Low and High in the first phase of our methodology, the
noninterference check may still provide useful results related to, e.g., safety.
Accordingly, the performance analysis of the second phase would allow for an
estimation of the efficiency of the strategies implemented to ensure safety. For
instance, if we interpret Low as the portion of the system performing safety-
critical functions and we interpret High as a set of faulty system components,
the noninterference check can be useful to verify whether the system is tolerant
against accidental rather than deliberate faults.

As far as the quantitative evaluation of covert channels is concerned, several
formal approaches have been proposed to estimate the amount of information
leakage, but none of them are concerned with the relation between security
degree and QoS delivered by the system. For instance, an approach aiming at
quantifying information flow has been proposed in [Lowe02], where the quan-
tity is defined in terms of the number of different high-level behaviors that
establish an information flow. This approach does not consider probabilistic
behaviors and performance metrics. Instead, it relies on a worst-case analysis
based on all possible ways in which the system can interact with the envi-
ronment. As another example, [DHWO04] estimates the leakage of information
in terms of number of statistical tests needed to distinguish the illegal infor-
mation flow. However, such an estimation is not related to information flow
capacity issues.

As future work, we would like to strengthen the integration of security analysis
and performance evaluation, in such a way that the illustrative modal logic
formula returned in case of security violation automatically determines the
performance metrics affecting the bandwidth of the information leakage.

Finally, it would be interesting to extend the methodology to consider not only
nondeterministic covert channels, but also interferences caused, e.g., by tempo-
ral and probabilistic aspects of the system behavior [FGM03,ABG03,LMT05].
In this respect, a further step would be the integrated analysis on the same sys-
tem model of each kind of information flow — nondeterministic, temporal, and
probabilistic — in order to provide for each of them a quantitative estimation
of the amount of information leakage.
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