
1

Machine and Component Residual Life Estimation through the
Application of Neural Networks

M.A. Herzoga, T. Marwalab & P.S. Heynsa

a
Dynamic Systems Group, University of Pretoria, Pretoria, Republic of South Africa

b
Control and Systems Group, University of Witwatersrand, Johannesburg, Republic of South Africa

This paper concerns the use of neural networks for predicting the residual life of

machines and components. In addition, the advantage of using condition-monitoring data

to enhance the predictive capability of these neural networks was also investigated. A

number of neural network variations were trained and tested with the data of two

different reliability-related datasets. The first dataset represents the renewal case where

the failed unit is repaired and restored to a good-as-new condition. Data was collected in

the laboratory by subjecting a series of similar test pieces to fatigue loading with a

hydraulic actuator. The average prediction error of the various neural networks being

compared varied from 431 to 841 seconds on this dataset, where test pieces had a

characteristic life of 8,971 seconds. The second dataset was collected from a group of

pumps used to circulate a water and magnetite solution within a plant. The data therefore

originated from a repaired system affected by reliability degradation. When optimized,

the multi-layer perceptron neural networks trained with the Levenberg-Marquardt

algorithm and the general regression neural network produced a sum-of-squares error

within 11.1% of each other. The potential for using neural networks for residual life

prediction and the advantage of incorporating condition-based data into the model were

proven for both examples.

Key Words: Neural Networks, Condition Monitoring Data, Residual Life

1 Introduction

The advent of preventive maintenance has increased the need for reliable information,

leading to the development of data analysis techniques for the purpose of estimating

residual life. The traditional approach, described by Coetzee [1], involved the use of

probabilistic models which were fitted to data on failure times but more recently,

researchers such as Pijnenburg [2] have investigated the use of regression models which

allow explanatory variables to be incorporated. Condition-based data is commonly

available and Vlok [3,4] found that its use enhanced the accuracy of the predictions made

by regression models. Accurate residual life estimates have a number of benefits for

tactical maintenance planning, apart from the selection of an optimal replacement

strategy and the flexibility offered to the maintenance manager. Such information allows

the advanced planning of shut-downs, resource allocation and the optimal holding of

spares.

2

A different approach is required for renewal and repaired systems, which are not returned

to a good-as-new condition after failure. In the renewal case, it is assumed that, once

repaired, the system is returned to its original state. If a system is not repaired to its

original condition, this assumption does not hold and system deterioration due to

imperfect repair has to be taken into account. Reinertsen [5] states that a considerable

number of papers have explored the estimation of residual life for renewal systems

through the use of statistical methods, but no corresponding work has been done on

repaired systems that do not conform to the assumption that they have been returned to

their original state. Pijnenburg [2] comments on the extreme rarity, in the literature he

reviewed, of datasets on repaired systems, in which failure times are listed in the original

chronological order. Ascher and Feingold [6] could find only four such datasets.

The research studies using condition-monitoring data for residual life estimation include

the work of Jantunen [7] who fitted a polynomial curve to vibration data, Vlok [3,4] who

used regression curves and vibration data to estimate the residual life of pumps, and

Wang and Zang [8] who used spectrographic oil analysis data to predict the residual life

of aircraft engines. Vlok [3,4] found that regression models offered a significant

advantage over parametric models because of their ability to take into account the

information relating to the failure of a system. Condition-monitoring data could therefore

be used to improve the accuracy of the estimates made with these models.

Research has been done to investigate the use of neural networks in applications related

to maintenance and reliability. A wide variety of methods, network architectures and data

combinations were used in these cases. Amjady and Ehsan [9] evaluated the reliability of

power systems using an expert system based on neural networks. Luxhøj and Shyur [10]

compared the performance of traditional reliability modeling techniques with neural

networks for the fitting of a reliability curve to the data of helicopter components.

Luxhøj [11] researched the prospect of providing FAA safety inspectors with a means to

evaluate and control the appropriate surveillance levels for aircraft operators through the

use, among other things, of neural networks. Liang, Xu and Shun [12] applied MLP

neural networks to the field of condition monitoring, whereas Xu et al. [13] attempted to

forecast reliability by using neural network techniques to analyze the data on past

historical failures. Neural networks have therefore been employed for maintenance-

related applications, but their use has not yet been fully explored in the context of

residual life prediction. As these networks have the capacity to learn about the underlying

relationship between various inputs and outputs, they are ideally suited to making

predictions about complex systems.

This research builds upon the work done by others who employed regression models for

predicting failure. As an alternative to traditional statistical methods, this study

investigates the suitability of neural networks for making reliability predictions in the

cases of both renewal and repair. The incorporation of covariates containing historical

information and condition data into the training process is explored with the aim of

improving the accuracy of the predictions that can be made. The performance of different

neural network types when trained with reliability data is also of interest, and the results

achieved by a selected group of networks are compared. Based on these results,

conclusions can be drawn on the suitability of using neural networks in conjunction with

3

condition-monitoring data for reliability predictions as part of the tactical planning done

by the maintenance practitioner.

2 Problem description

2.1 Renewal dataset

The first dataset represents the renewal case where the system is returned to a good-as-

new condition by replacing the failed component. A series of laboratory tests were

conducted, using a 630kN Schenck Hydropuls hydraulic actuator (see Figure 1), which

simulated an actual maintenance situation encountered in industry. A number of similar

notched test pieces were manufactured with the same cross-sectional shape as a

component which serves as an overload protection in jaw crushers. This toggle plate is

designed to fail when foreign objects become wedged between the crusher jaws, thereby

preventing damage to the machine. The test pieces were placed under a cyclic loading in

the hydraulic test rig until they failed as a result of fatigue. The cyclic loading was

applied according to a sinusoidal pattern, where the mean and amplitude were varied by

means of the actuator’s control system, in this way generating different operating

conditions for the series of test runs and producing a varied dataset. Though the actuator

is capable of exerting a maximum force of 630 kN, the actual applied load pattern was

selected to ensure that the components had a finite fatigue life.

Figure 1: Photograph showing the various elements involved in the lab testing.

4

The actuator of the test rig was set to maintain constant amplitude in the oscillation of its

jaws for the duration of each test run. The amplitude was varied for the different test runs,

thus altering the operating conditions to which each test piece was subjected. A specific

initial load could be applied by increasing the displacement of the jaws at the start of a

test run until the required load cell reading was attained. As the cracking of the test piece

in the notch area caused weakness, the force required to maintain the amplitude was

reduced and this could be observed in the corresponding drop in the magnitude of the

load cell measurements that were taken. The reduction in applied force resulting from the

use of displacement control provides a measurable indication of deterioration in the

condition of the test piece.

The loading pattern was applied at a frequency of 3Hz which was close to the upper limit

of what could be achieved while still allowing the actuator to apply a suitably high load.

Measurements were recorded over periods of three seconds at three-minute intervals. The

testing proved that the time interval between the taking of measurements and the duration

of the recording window were both satisfactory. At a frequency of 3 Hz, the data for a

total of nine complete actuator cycles was captured in each measurement window, in

which a sequence of 1,800 samples was taken during the three-second period.

Four different sensors were selected and used for taking the measurements during each

such measurement window. The choice of sensors was not only aimed at tracking the

deterioration in the test piece deterioration, but also at providing a measure of the

operating conditions that influenced the life of the test piece.

Measurements were taken with the load cell forming part of the test equipment, as well as

with a strain gauge attached to the test piece. These sensors provided information on the

nature of the applied load. An accelerometer was mounted on the opposite side of the

location of the notch. The purpose of this measurement was to measure the movement

due to the deflection of the test piece under loading.

The temperature on the surface of the test piece was measured by means of a

thermocouple mounted on the side of the test piece. For convenience, the thermocouple

was positioned halfway along the cross-section and aligned with the center of the notch.

It was found that the temperature measured at this position rose dramatically once crack

propagation started. The temperature measurement was therefore found to be a useful

indicator of test piece condition and gave a good indication of imminent failure. The

magnitude of the rise in temperature compared with the initial measured temperatures

was dependent on the applied loads and therefore also served as an indicator of the

rapidity with which failure was occurring.

2.2 Repaired system dataset

As an example of a repaired system, a dataset was used which had been obtained by

Vlok [3,4] from the Sasol Twistdraai mine plant. Measurements were taken on eight

identical Warman pumps used to circulate a water and magnetite solution within the

plant. Four main failure modes were identified for these particular pumps, namely

bearing seizure, broken or defective impellers, damaged or severely eroded pump

5

housings, and broken drive shafts. The measurements taken on the pumps were solely

vibration readings, for which a spectral analysis was performed and a number of fault

frequency bands were monitored. The frequency bands 0.4×RPM, 1×RPM, 2×RPM, and

5×RPM were monitored for both the bearings of these pumps. Measurements were

unfortunately only taken sporadically and the dataset is therefore sparse.

During the 791-day window from the initial installation of the eight pumps, pump

operation was suspended eight times due to condition-based warnings, and 11 failures

were recorded. The surprisingly high percentage of failures might be attributed to the

inconsistent application of the condition-based policy and the long measurement

intervals. Although the data was collected from the start of each pump’s life, the vibration

measurements were taken extremely infrequently. Vlok [3,4] does note that some of the

failures occurred suddenly, with deterioration occurring in a matter of hours. Obviously,

it would be difficult to predict such a sudden deterioration with the information that was

available. From the random nature of the measurements, it appears that the final

measurement ahead of the suspension of a pump’s operation may have been prompted by

clearly observable external signs of pump deterioration.

Three of the eight pumps experienced only one failure, two of the pump units failed

twice, and three units each failed four times. On average the pumps lasted 469 days to the

first failure or preventive intervention. This can be compared with an average of 134

days, 103 days and 137 days to the second, third and fourth failures or preventive

interventions, respectively. Reliability therefore deteriorated dramatically after the first

failure, indicating imperfect repair. A further pattern was observed with regard to the

time to the first failure, and this pattern allowed the pumps to be subdivided into two

groups. Pumps which failed for the first time after more than 500 days, tended to fail only

once or twice during the period in question. The remaining units averaged 357 days to

first failure and each failed four times within the time window.

3 Neural network application

The MATLAB neural network toolbox was used to build and train the neural networks

for the purpose of residual life prediction. A number of network variations in terms of

architecture and training algorithms are available in this programming environment.

3.1 Network testing

The usefulness of a neural network in a practical application depends on the degree to

which it can generalize when confronted with data which was not seen during training.

Methods have been developed to test and compare the performance of different networks

with this aim in mind. Schenker and Agarwal [14] identify the three most common

methods for testing the relative performance of neural networks:

6

• A subdivision of the available data into a training and test set, termed a static

split.

• Cross-validation, which can be described as a dynamic split of the data.

• Statistical evaluation without splitting the data.

Testing through the use of statistical methods, according to Schenker and Agarwal [14],

is only meaningful when the data represents a true process. It can therefore be

successfully applied in cases involving reliable physically based models . Schenker and

Agarwal [14] identify the subdivision of the dataset into separate training and test sets as

the approach that is most commonly used, even though only part of the dataset can be

used for training which limits this method’s application to larger datasets. In their

comparison of the performance of the different testing methods, Schenker and Agarwal

[14], in their comparison of the performance of the different testing methods, point out

that a strategy of cross-validation generally outperformed such a static split in the search

for an optimal network for a particular application.

For the purposes of comparing different neural network variations by cross-validation,

the dataset is broken into a number of smaller groups which do not overlap. These groups

are cyclically allocated to the training and the test sets. Each cycle in the cross-validation

process represents a completely independent training run, so that the networks are not

tested with data used for training at a previous stage. The error on the test data is recorded

for each of the network variations at the completion of each cycle. Several partially

overlapping portions of the available data are therefore used for training the neural

networks, but each group of data is used only once for testing. The recorded error values

are added once the process has been completed, and this result is the basis for comparing

the different neural networks.

The greatest advantage of using cross-validation is that the entire dataset can eventually

be used for training the neural network once the optimal neural network layout has been

found. The loss of information due to a static split of data is therefore avoided, which is

important in cases where the dataset is limited in size. Training does unfortunately

become more cost-intensive due to the repetition required for cross-validation.

3.2 Neural network for renewal dataset

The first-order gradient descent learning algorithm serves here as the basis for comparing

the different neural networks due to its historical significance. Adjustments were made to

the learning rate, and a momentum term was introduced that increased the rate of

convergence of this algorithm. The performance of the gradient descent algorithm was

compared with the much faster second-order Levenberg-Marquardt algorithm which,

according to the findings of Hagan and Menhaj [15], outperformed other fast techniques.

Bayesian regularization (see Bishop [16]) was applied in conjunction with the

Levenberg-Marquardt algorithm to investigate the effect of this method which is aimed at

improving generalization. The general regression neural network (GRNN), which was

also used by Luxhøj [11] in his research, has the advantage of rapid unsupervised

7

training. It is also of interest because it is a network with radial basis function (RBF)

architecture, in contrast to the MLP architecture of the networks mentioned so far.

A static split was chosen as the method for comparing network performance on the

renewal dataset. This was feasible because of the simplicity of the simulated maintenance

setup in the laboratory, for which there was only one failure mode. The lab data collected

during testing was split into two groups: nine of the datasets were used for training and

the remaining three comprised the testing set.

Each network was constructed with five inputs and generated a single output which

represented an estimate of remaining life to failure, measured in seconds. The MLP

networks were each constructed with five nodes in the hidden layer, so that the basic

network structure was similar for each of these networks. The size of the hidden layer

was optimized through an empirical process where the number of nodes in the hidden

layer was varied.

The inputs used for network training were the elapsed time of the specific test at the time

of the measurement, initial average load, initial load range, change in load range, and

change in temperature. The network inputs and outputs were normalized and transformed

into values between zero and one.

Elapsed time gives the network an indication of the component’s age and allows the

network to differentiate between new samples, and samples that already show fatigue.

Therefore the network can differentiate between two samples which are subjected to the

same loading but do not yet exhibit measurable signs of deterioration.

The network is given a longer-term predictive capability by providing it with information

about the operating conditions to which the test piece is subjected. The initial load

average and range define the conditions to which the test sample was subjected during

testing. The network is therefore trained to differentiate between test pieces subjected to

higher and lower loading, which is the main factor contributing to the rapidity with which

failure occurs.

The changes from initial load and temperature give an indication of deterioration in the

condition of the test piece and impending failure. Due to the setting of the machine,

displacement remained constant and therefore the load dropped when cracking started.

Temperature increased substantially as fatigue damage worsened and the crack

propagated through the test piece. Therefore the network can make adjustments to its

prediction once overt signs of impending failure become apparent. This adjustability

allows the network to cope more easily with unexpected events and changing conditions.

3.3 Neural network for repaired system

As the sparseness of the pump dataset did not allow for the use of a separate test set, it

was decided that cross-validation should be used to test the performance of different

network designs. To this end, the dataset was divided into eight groups, each representing

the data from one of the pumps. In their work, Schenker and Agarwal [14] assert that

8

individual runs should not be split when using cross-validation, as this would violate the

assumption that the test and training sets are independent. The total life of each pump was

therefore deemed to be one run and the data was grouped accordingly.

On the basis of the performance of the neural networks that were trained with the renewal

dataset, it was decided that the focus should be on the network types that could be trained

more rapidly, as cross-validation involves the time-consuming repetition of network

training. Accordingly, the standard Levenberg-Marquardt algorithm, the Levenberg-

Marquardt algorithm with Bayesian regularization, and the GRNN were chosen for

comparison.

The actual data was pre-processed in a similar way to the renewal dataset. It was found

that the high values measured at an advanced stage of deterioration led to a distortion in

the normalized data inputs used to train the neural networks. The neural networks became

insensitive to the small changes occurring in the initial stages of deterioration. As the aim

of this work is not to prove the usefulness of condition-based maintenance, but to

improve longer-term predictions of expected life, the readings taken during the last week

before the occurrence of failure were discarded. This decision led to an improvement in

the accuracy of predictions at earlier stages of deterioration.

The use of a greater number of network inputs representing condition-based information

is expected to improve the network’s ability to make accurate predictions. To test this

hypothesis, each of the neural network layouts was trained with three, four and five

inputs. The first set of training runs was done by using the elapsed time since installation,

the elapsed time since the last failure, and a covariate that can be described as a risk

variable dependent on the history of the pump. Two further training runs were completed,

first with one and then with two additional inputs, each of which represented the average

value of the vibration response amplitude in a chosen frequency band for the

measurements on the two bearings. Using the findings of Vlok [3,4] as basis, additional

inputs based on condition related measurements should improve the accuracy of failure

predictions.

The dataset originates from a repaired system and its reliability is therefore affected by

previous failures and repair. The influence of these factors has to be taken into account,

even though not much of this information was recorded. Vlok [3,4] states that alarm

levels were used as prescribed by the pump manufacturer, but these values are not given

and the cause of failure or the reason for a condition-based suspension and overhaul was

not indicated. An empirical risk variable was consequently based on the observed pattern

which indicates that pumps that required an early repair tended to fail more frequently.

For the data collected before the occurrence of the first failure, the risk variable R is set

equal to 1. After the first failure, Equation 1 is used to calculate the value of R.

2

1

2
1

=

T

T
R (1)

The risk variable R is therefore reduced to 0.5 immediately after the first failure and its

value decreases at a rate dependent on T1 which is the time to the first failure. T is the

9

elapsed time since the initial installation of the pump unit. A large value of R therefore

corresponds to a low risk of failure, whereas a small value indicates a high risk. It takes

into account the significant reduction in reliability after the first failure and the

characteristic of a high failure rate in cases where an early first failure is recorded.

The hidden nodes of the MLP networks were varied according to the number of inputs

presented to the networks to test the effect of such changes in network structure on

network performance. Training was firstly done for networks with the same number of

inputs and hidden nodes. Then a second training run was done with a hidden layer that

had one node more than the input layer. Due to ill-conditioning, however, MLP networks

with six hidden nodes could not be trained with five inputs. The dataset size used for

cross-validation contained 53 data points. Once this had been subdivided into groups, the

largest group contained 13 data points, which meant that the smallest training set would

contain 40 data points. The maximum number of hidden nodes in an MLP network with

five inputs was therefore limited to five, in order to prevent ill-conditioning as discussed

by McKeown et al. [17], because the number of variables in the network exceeded the

number of inputs. The networks all generated a single output, namely a prediction of the

remaining life until the next failure of the pump.

4 Neural network results

4.1 Neural network results for renewal data

The traditional way of conducting a data analysis on the reliability data originating from a

renewal system is to fit a statistical distribution to such data. This technique, described by

Coetzee [1], was accordingly chosen to form the basis of comparison to illustrate the

advantage of using neural networks.

A Weibull distribution was fitted to the data of the training set and the parameters of the

two-parameter Weibull distribution were found to be β = 1.7522 and η = 8971. The

Weibull parameter η is the scale parameter, which is also referred to as the characteristic

life. Coetzee [1] notes that 63.2% of components fail before this time and 36.8% survive.

The use of a statistical distribution means that no specific prediction can be made about

an individual test piece. The estimated life is therefore taken as the characteristic life of

the whole population of the training set. The actual residual life for the test sets differed

by between 11.2% and 55.4% from the characteristic life of 8,971 seconds, that was

calculated using this statistical method. The results achieved by fitting the Weibull

distribution show the disadvantages of this method when comparing them with the

residual life results obtained by using neural networks, which are discussed in the

following paragraphs. Table 1 shows accuracy of the life predictions on the test set, using

the different methods with the data available at the start of the various test runs.

10

Table 1: Accuracy of predictions for the test data with initial measurements recorded at the start of

the experiments.

Network Test data

Weibull 11.2% – 55.4%

GDBP with M 4.0% - 34.9%

LM 1.9% - 20%

LM with BR 3.1% - 5.1%

GRNN 1.6% - 68.9%

The standard back-propagation algorithm was used to train the same network architecture

with nine different combinations of the learning rate (α), and momentum parameter (β).

Figure 2 illustrates the rate of convergence of the gradient descent back-propagation

algorithm with a different combination of training parameters. Oscillations become much

more pronounced when a higher learning rate is used and training clearly becomes much

more rapid. If the learning rate is increased even more, the training process becomes

unstable, overshoots the target and no convergence on a minimum is achieved. The

training process must therefore balance the rate of convergence with the requirement of

stability.

Figure 2: Comparison of the rate of convergence of the gradient descent back-propagation method,

using a different combination of training parameters.

11

It was found that a learning rate of 0.75 and a momentum constant of 0.9 gave good

results, so these constants were used for the comparison with other network types and

training algorithms. The training algorithm was stopped early and could not

accommodate some of the more isolated data points in the training set. It was therefore

possible to maintain improved properties of generalization.

Training with the Levenberg-Marquardt algorithm proved much more rapid and a far

better fit was achieved after less than 300 training epochs. The neural network’s

estimated residual life for the training data was within 5% of the actual remaining life of

each component, when presented with the first recorded inputs after the start of the test

run. The largest error was 449 seconds, which compares very favorably with the 180-

second interval between measurements, which is the band within which the failure

occurred. The network performance on the training data is therefore a satisfactory result.

The accuracy of the prediction obtained by the neural network on data that had not

previously been seen during training, was similar in two of the cases. The largest error on

the test set was 20%, which indicates some degree of overfit, as the data from this

particular test piece had was least similar to the training data than the three test sets did.

It was expected that the use of Bayesian regularization would address the problem with

overfitting encountered with the network trained with a standard Levenberg-Marquardt

algorithm. The neural network that was trained with Bayesian regularization did not

produce as close a fit for some parts of the training set as the fit achieved with the

standard Levenberg-Marquardt algorithm. In particular, the estimates generated for some

of the isolated data points on the training set displayed a large error. This was expected,

as the regularization technique penalized training in order to maintain the network’s

capability of providing acceptable results for new data. The two test pieces in question

had a significantly shorter life than the other test pieces and were therefore isolated from

the rest of the data. The benefit of this regularization technique regarding improved

generalization becomes clear when examining the results obtained for the test set. The

largest error in a network prediction for the data of the test set was 5.1 %. The prediction

of the neural network in this case was only 513 seconds adrift of the actual recorded life

of 10,102 seconds. The results achieved for all three of the test pieces in the test set were

therefore very satisfactory and indicated a good generalization.

Setting up the GRNN is an almost instantaneous process, due to its adaptation of the

input vectors for the hidden nodes, and the use of the target vectors as weights in the

output layer. No supervised training is required in its construction. Network performance

can therefore be influenced only by changing the value of the bias of the radial basis

function nodes in the hidden layer.

The bias of a radial basis function in MATLAB is set by defining a parameter, called the

spread value. Every bias in the first layer of the network is set to 0.8326 divided by this

spread value. The radial basis functions in these neurons therefore have an output of 0.5

when the absolute value of the distance between the input and weight vectors is equal to

the spread. The area of the input space to which each neuron responds is thereby set

where the spread alters the radius of the basis functions, and therefore determines the

amount of overlap and consequently the smoothness of the fit.

12

When designing an RBF network, it must be ensured that the spread of the RBF neurons

is large enough. If the radial basis function neurons overlap enough, several radial basis

function neurons will generate significant outputs at any time. The resulting network

function is smoother and a better generalization is achieved for new input vectors that fall

between the input vectors used in the design of the network. If the overlap is too large,

however, too many neurons will then react to every input, and accuracy will be forfeited.

A number of different spread values were tested, and the results are tabulated in Table 2.

Table 2: Performance of the GRNN for different spread values.

Spread MSE training MSE test

0.01 9.9 × 10
-7

 0.0030

0.02 3.8 × 10
-6

 0.0027

0.03 8.3 × 10
-5

 0.0022

0.04 8.5 × 10
-4

 0.0026

0.05 2.3 × 10
-3 0.0034

Figure 3 illustrates that the larger the spread chosen for the network, the smoother the fit.

The quality of the fit on the training set is reduced, as a number of hidden layer neurons

start to influence the output for any given input. But an increase in spread improves

network generalization until an optimal balance is reached. Any further increase in spread

is detrimental to network performance.

13

Figure 3: GRNN response when varying the load amplitude input.

The estimated residual life for the training data when using a small spread value was

closer to the actual life than was achieved with any of the other networks, when using the

MLP architecture and supervised training. This can be attributed to the way in which the

GRNN is trained and the insignificant overlapping of nodes with a small radius. An exact

fit is expected in this particular case, as the network should respond with the expected

target vector if provided with a training vector. As was the case with the standard

Levenberg-Marquardt algorithm, overfitting occurred during the design of the GRNN and

a large error in the residual life estimate was observed for one of the test pieces.

Table 3: Comparison of the mean squared error (MSE) on the training and test sets of the different

networks.

Network MSE training MSE test

LM with BR 5.7 × 10
-5

 0.0014

GRNN 8.3 × 10
-5

 0.0022

LM 8.1 × 10
-5

 0.0030

GDBP with M 1.9 × 10
-2

 0.0061

14

When comparing the performance of the different networks, it was found that the MLP

network trained with a Levenberg-Marquardt algorithm using Bayesian regularizations

had a clear advantage over the other models. The gradient descent algorithm was found to

be significantly slower than the Levenberg-Marquardt algorithm. The advantage of an

unsupervised training process, which was mentioned in the literature, was proven by the

speed with which the GRNN could be trained. Network learning in this case proved

instantaneous.

Table 4 shows the average prediction error whereas Table 5 gives the maximum

prediction error of the networks being compared. Though the GRNN has a lower average

error than the other networks, it has the highest maximum error. This may explain why

the MLP network trained with the Levenberg-Marquardt algorithm with Bayesian

regularization outperformed it in terms of the mean squared error. The early stopping of

the gradient descent back-propagation algorithm meant that higher maximum and average

errors were recorded for the training set. This phenomenon can be ascribed to the

sparseness of the dataset, which led to isolated data in the problem space. As the training

algorithm was stopped before it could accommodate this data, the network performed

well on the test data.

Table 4: Comparison of the average error in the predictions made by the networks.

Network Training data Test data

LM with BR 64 sec. 455 sec.

GRNN 87 sec. 431 sec.

LM 84 sec. 616 sec.

GDBP with M 1370 sec. 841 sec.

When considering these results, it should be borne in mind that the measurements were

taken at intervals of 180 seconds, and that the time of first measurement after failure was

used as failure time for training the neural networks. The actual failure took place within

the band spanning the last measurement cycle. All the neural networks performed very

well on the data in the test set that was closest to the training data. The data for the test

piece, showing the greatest variation from anything the network had seen before, proved

to be the greatest test of each network’s ability to generalize. The advantage of using

Bayesian regularization to improve the network’s ability to generalize is clearly

illustrated when comparing the graphs of the results relating to this series of data.

15

Table 5: Largest error in the predictions made by the networks being compared.

Network Training data Test data

LM with BR 513 sec. 1065 sec.

GRNN 411 sec. 3085 sec.

LM 652 sec. 2185 sec.

GDBP with M 3997 sec. 1271 sec.

The results for the GRNN are not as smooth as those obtained with MLP networks. The

jagged shape of the prediction graphs illustrates the “local” nature of RBF networks,

compared with the “global” nature of MLP networks. This property may adversely affect

network performance, if the information for one set of the data points used for training,

are corrupt. A greater overlap of the RBF nodes would counteract this situation by

smoothing the transition between kernels.

The results prove that neural networks can be successfully employed to make reliability

predictions for a renewal system. When presented with the first set of measurements

collected after the start of a test run, all the neural networks generated predictions which

were more accurate than the results obtained through the traditional statistical method of

fitting a Weibull distribution to the failure data. In particular, the accuracy of the

predictions made by the MLP trained with the Levenberg-Marquardt algorithm with

Bayesian regularization would be suitable for making maintenance decisions in the

context of the simulated situation.

4.2 Results for the Repaired System

The neural networks trained with the Levenberg-Marquardt algorithm used nodes with

the log-sigmoid transfer function in both the hidden and output layers. During initial

training with a small mean-squared-error training target of 1×10
-5

, it was found that

overfitting occurred and the neural networks failed to generalize the test data. A series of

training runs with a range of different training targets were consequently performed in

order to improve generalization by terminating the training process at an earlier stage.

The training targets used for this purpose were the values 1×10
-5

, 5×10
-3

, 1×10
-2

, 2.5×10
-2

and 5×10
-2

.

Table 6 shows that the best results obtained with the smallest error on the test data, were

achieved with the larger target values 5×10
-2

 and 2.5×10
-2

. The comparatively small error

on the training data indicates that the training algorithm was stopped before the

16

overfitting characterizing the worst results (shown in Table 7) could occur. The target

values refer to the normalized output values, whereas the sum-of-squares error is

calculated from an error value in days.

Table 6: The best results achieved with the Levenberg-Marquardt training algorithm.

Network

architecture
Inputs Target ΣΣΣΣ (error)²

5 hidden nodes 5 0.05 2.70×10
5

5 hidden nodes 4 0.025 2.85×10
5

4 hidden nodes 4 0.025 2.90×10
5

3 hidden nodes 3 0.05 2.92×10
5

4 hidden nodes 4 0.05 2.92×10
5

Table 7: The network results with the largest error after training with the Levenberg-Marquardt

algorithm.

Network

architecture
Inputs Target ΣΣΣΣ (error)²

3 hidden nodes 3 0.00001 4.32×10
5

4 hidden nodes 3 0.00001 4.45×10
5

4 hidden nodes 3 0.01 4.49×10
5

5 hidden nodes 5 0.01 4.99×10
5

5 hidden nodes 5 0.00001 5.31×10
5

As the network error usually did not reach the smaller target values of 1×10
-2

, 5×10
-3

 and

1×10
-5

, the training process was terminated once the pre-set limit of 100 epochs had been

17

reached. These networks consequently suffered from overfitting and failed to perform

well on the test data.

Changing the size of the hidden layer and the number of inputs was affected by the early

stopping of the training process, so that no clear pattern emerged. Though an additional

node in the hidden layer was beneficial when training towards an error target of 2.5×10
-2

,

it seemed to be detrimental when training with a target value of 5×10
-2

. It did appear that

a greater number of inputs generally improved the performance of these networks, but the

results were not conclusive.

The MLP neural networks trained with the Levenberg-Marquardt algorithm with

Bayesian regularization (LMBR) yielded similar results to the networks trained for the

optimal duration with the standard Levenberg-Marquardt algorithm. In this case the

Bayesian regularization prevented overfitting during training, thereby improving the

network’s ability to generalize.

The log-sigmoid transfer function was used for the nodes in the hidden layer of these

networks, whereas two different transfer functions were utilized in the output layer. Table

8 summarizes the results achieved with the neural networks trained with the Levenberg-

Marquardt algorithm with Bayesian regularization.

Table 8: Levenberg-Marquardt algorithm with Bayesian regularization.

Network architecture Inputs ΣΣΣΣ (error)²

5 hidden nodes, linear output node 5 2.81×10
5

5 hidden nodes, sigmoid output node 5 2.90×10
5

5 hidden nodes, linear output node 4 2.95×10
5

4 hidden nodes, sigmoid output node 4 3.06×10
5

5 hidden nodes, sigmoid output node 4 3.07×10
5

4 hidden nodes, linear output node 4 3.15×10
5

4 hidden nodes, linear output node 3 3.26×10
5

3 hidden nodes, linear output node 3 3.35×10
5

18

Network architecture Inputs ΣΣΣΣ (error)²

3 hidden nodes, sigmoid output node 3 3.52×10
5

4 hidden nodes, sigmoid output node 3 3.52×10
5

The results shown in Table 8 indicate that the choice of transfer function of the output

node had a far greater influence on the performance of the network than the variation in

the number of nodes in the hidden layer. Another observation is that in this case,

additional input information clearly leads to more accurate predictions.

The GRNN networks were trained with RBF neurons with different sensitivities so as to

select an optimal value for this parameter. Table 9 lists the results for the networks with

values of 0.1 and 0.05 for the spread parameter.

In contrast to the other network types, the best results with GRNN were achieved with

four inputs but an increase in input space to five inputs led to overfitting. The

consequence of an increase in the number of inputs into such a network is that the outputs

of the nodes are influenced by a greater number of variables, hence making them more

sensitive to a particular combination of input values. Once this sensitivity becomes too

great, the network starts to lose its ability to generalize. For this reason, the general

regression neural networks did not respond well when presented with five inputs.

Table 9: Cross-validation for GRNN

Network architecture Inputs ΣΣΣΣ (error)²

Spread = 0.1 4 3.00×10
5

Spread = 0.05 4 3.32×10
5

Spread = 0.1 3 3.56×10
5

Spread = 0.05 3 3.72×10
5

Spread = 0.1 5 3.72×10
5

Spread = 0.05 5 4.17×10
5

19

Two different values were used for the spread in the GRNNs. It was found that the less

sensitive networks with a spread of 0.1 generally achieved better results. The decreased

sensitivity achieved with a larger radius for the basis function led to a reduced degree of

overfitting in the network.

The ease of implementation of the GRNN was again illustrated. The construction of this

type of network is instantaneous, as no weight adjustments are made by implementing a

back-propagation algorithm. By varying the sensitivity of the RBF neurons, adjustments

can be made to optimize the network’s ability to generalize. An optimal network can

therefore be rapidly found by employing cross-validation.

In summary, when testing network generalization by means of cross-validation, the best

results obtained with the various neural networks were very similar, once these networks

had been optimized in respect of this particular dataset. Table 10 gives a comparison of

the best results achieved with each network type.

Table 10: Comparison of the best results achieved by the different network types.

Network

architecture
ΣΣΣΣ (error)²

LM 2.70×10
5

LMBR 2.81×10
5

GRNN 3.00×10
5

The comparison of the different networks by cross-validation was based solely on the

relative size of the sum-of-squares error obtained on the test data. If the suitability of the

applied method should be judged, the results should also be viewed in the context of the

practical application. It was found that number of very large prediction errors were made

by the networks on isolated points, which far exceeded the actual remaining time to

failure of a specific pump. When the ten worst predictions were excluded, the average

prediction error of the networks was 39.8% for the LMBR network, 33.2% for the GRNN

and 41.7% for the LM network.

20

The nature of this result indicates that the networks were able to model some but not all

of the significant properties of these complex pump systems. When seen in the context of

the intended application, the results represent a positive point of departure. An average

prediction error of 40% is too large and does not allow these networks to be used in their

current form for making decisions about maintenance. It can therefore be said that the

complexity of the problem requires a larger and more descriptive dataset for training the

neural networks, if more accurate results are to be obtained.

A key element in the successful practical application of neural networks is to find suitable

covariates which will allow the network to distinguish among different scenarios and

failure modes. The smallness of the dataset also has the result that part of the data in the

test set will in some cases differ significantly from the data with which the network was

trained. The network is therefore unable to deal with some of the data correctly, and

produces a spurious result. The dataset used by Vlok [3,4] is not ideal for this purpose

owing to its sparseness, and it is probable that the given data could not achieve much

more regarding failure prediction.

Despite these deficiencies, it was proved that it is possible to combine the advantages of

failure time data analysis and condition monitoring in a neural network platform to make

more accurate predictions.

One should bear in mind the limitations imposed on residual life predictions by the

unpredictability of operations in an actual plant. The covariates chosen as inputs into a

neural network have to reflect the failure modes of the system. If a failure cannot be

traced by one of these inputs, it will be impossible for the network to predict more

accurately when the machine will fail. The results achieved in this study can therefore be

seen as a conditional success in terms of the use of neural networks for this application.

5 Conclusion

The use of neural networks for making failure predictions for both renewal and repaired

cases was investigated. The estimates that the networks made regarding the simulated

renewal system proved highly accurate, with the average error varying between 431

seconds and 841 seconds for the different types of neural networks. This compares well

with the measurement interval of 180 seconds which was used. It was shown that much

greater accuracy could be achieved with neural networks than with the use of the

common probabilistic technique that involves fitting a Weibull distribution to the failure-

time data. The performance of the neural networks was compared with this statistical

method on the basis of the predictions made when the networks were presented with the

first set of values, measured on the test pieces allocated to the test set. The MLP neural

network trained with the Levenberg-Marquardt algorithm using Bayesian regularization

did not exceed a prediction error of 5.1%. By comparison, the error of the residual life

estimates made using the Weibull distribution, ranged between 11.2% and 55.4%.

21

The failure predictions for the repaired systems were hampered by the combination of the

system’s complexity and the sparseness of the dataset, however. The sparseness of the

dataset limits the number of inputs that can be used for MLP networks and also means

that the input space is poorly mapped. Repaired systems have multiple life intervals that

are not independent and are subject to numerous failure modes, posing a severe challenge

to the analyst. The small number of inputs and poorly mapped input space meant that the

explanatory information proved insufficient for the network to model the system

accurately, and large errors were recorded on some of the test data.

With respect to the comparison between different neural network methods, the use of

Bayesian regularization proved very effective in the prevention of overfitting. The use of

a second-order method, such as the Levenberg-Marquardt training algorithm, produced a

significant reduction in training time in comparison to the gradient descent method. It

was found that the optimization of network parameters was an important part of the

training process and that the performance of different network types was very closely

matched once their design had been adjusted to suit a specific application. GRNN are

simple, easily generated neural networks and proved a close match with the MLP

networks, giving a difference of 11.1% on the sum-of-squares error for the repaired

system dataset.

The ease with which neural networks can be trained and the quality of the results

achieved for the two datasets indicate that neural networks should become a useful tool

for the analysis of reliability data in future. Clearly the approach outlined in this paper is

not suitable for every application in the maintenance field, but the results indicate the

potential that neural networks have as a powerful tool for the analysis of reliability data

and the prediction of residual life.

References

[1] Coetzee, J.L. (1997). Maintenance. Hatfield, RSA: Maintenance Publishers

[2] Pijnenburg, M. (1991). Additive hazards models in repairable systems reliability.

Reliability Engineering and System Safety, 31:369-390

[3] Vlok, PJ. (1999). Vibration covariate regression analysis of failure time data with

the Proportional Hazards Model. Master's dissertation. Pretoria: University of

Pretoria.

[4] Vlok, PJ. (2001). Dynamic residual life estimation of industrial equipment based

on failure intensity proportions. PhD dissertation. Pretoria: University of Pretoria,

22

[5] Reinertsen, R. (1996). Residual life of technical systems; diagnosis, prediction

and life extension. Reliability Engineering and System Safety, 54:23-34

[6] Ascher, H.E. & Feingold, H. (1978). Is there repair after failure? Paper presented

at the 1978 Annual Reliability and Maintainability Symposium: Los Angeles, CA.

[7] Jantunen, E. (1994). Prognosis of wear progress based on regression analysis of

condition monitoring parameters. In: Proceedings of the 16th International

Congress of COMADEM. Vaxjo, Sweden: Vaxjo University Press.

[8] Wang, W. & Zhang, W. (1994). A model to predict the residual life of aircraft

engines based upon oil analysis. In: Proceedings of the 16th International

Congress of COMADEM. Vaxjo, Sweden: Vaxjo University Press.

[9] Amjady, N. & Ehsan, M. (1999). Evaluation of power systems reliability by an

artificial neural network. IEEE Transactions on Power Systems, 14(1):287-292

[10] Luxhøj, J.T. & Shyur, H-J. (1995). Reliability curve fitting for aging helicopter

components. Reliability Engineering and System Safety, 48:229-234

[11] Luxhøj, J.T. (1999). Trending of equipment inoperability for commercial aircraft.

Reliability Engineering and System Safety, 64:365-381

[12] Liang, F., Xu, M. & Shun. Q. (2000). Competitive supervised learning algorithms

in machine condition monitoring. International Journal of Comadem. 3(1):39-46

[13] Xu, K., Xie, M., Tang, L.C. & Ho S.L. (2003). Application of neural networks in

forecasting engine systems reliability. Applied Soft Computing, 2:205-268.

[14] Schenker, B. & Agarwal, M. (1996). Cross-validated structure selection for neural

networks. Computers Chem. Engineering, 20(2):175-186.

[15] Hagan, M.T. and Menhaj, M.B. (1994). Training feedforward networks with the

Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6):989-993

[16] Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, UK:

Oxford University Press.

23

[17] McKeown, J. J., Stella, F. & Hall, G. (1997). Some numerical aspects of the

training problem for feed-forward neural nets. Neural Networks, 10(8):1455-1463

