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Abstract

Global sensitivity analysis (GSA) has the advantage over local sensitivity analysis in that GSA does not require
strong model assumptions such as linearity or monotonicity. As a result, GSA methods such as those based on
variance decomposition are well-suited to multi-physics models, which are often plagued by large nonlinearities.
However, as with many other sampling-based methods, inadequate sample size can badly pollute the result
accuracies. A natural remedy is to adaptively increase the sample size until sufficient accuracy is obtained. This
paper proposes an iterative methodology comprising mechanisms for guiding sample size selection and self-assessing
result accuracy. The elegant features in the the proposed methodology are the adaptive refinement strategies for
stratified designs. We first apply this iterative methodology to the design of a self-validated first-order sensitivity
analysis algorithm. We also extend this methodology to design a self-validated second-order sensitivity analysis
algorithm based on refining replicated orthogonal array designs. Several numerical experiments are given to
demonstrate the effectiveness of these methods.
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1. Introduction

Sensitivity analysis (SA) studies how variations of
a model output describing certain (for example, phys-
ical, biological, or social) processes can be accounted
for by variations in the control or model parameters
(collectively called input factors or input parameters).
In the context of the present discussion, we restrict
ourselves to the sensitivity analysis of deterministic
simulation models, which give identical results when
presented with the same set of parameter values. Sen-
sitivity analysis is increasingly recognized as an impor-
tant tool for model building and validation. In general,
sensitivity analysis is useful for all processes where it
is important to know which input factors contribute
most to output variability.

Email address: Email:chtong@llnl.gov (Charles Tong).
1 This work was performed under the auspices of the U.S. De-
partment of Energy Lawrence Livermore National Laboratory
under Contract No. DE-AC52-07NA27344.

Sensitivity analysis methods are generally classified
as either local or global. Local SA methods compute or
approximate the partial derivatives of model outputs
with respect to individual input factors at some nom-
inal settings. Global SA, on the other hand, studies
the effects of input variations on model outputs in the
entire allowable ranges of the input space. Saltelli et

al. [7,9] have defined global SA methods by two prop-
erties:

(i) The inclusion of influence of scales and shapes of
the probability density functions for all inputs;
and

(ii) The sensitivity estimates of individual inputs are
evaluated while varying all other inputs (multi-
dimensional averaging).

In this paper we are primarily concerned with global
SA methods which can generally be decomposed into
four steps:

(i) Define credible ranges and distributions of input
factors,
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(ii) Create a sample of input factor values,
(iii) Evaluate the model for each sample point, and
(iv) Estimate the effect of each input factor on the

model output.
Global SA methods can further be classified as ei-

ther qualitative or quantitative. For applications with
large number of input factors (tens to hundreds), the
“curse of dimensionality” dictates that the computa-
tional cost for quantitative global SA becomes insur-
mountable. The purpose of qualitative SA studies is
to identify (as opposed to quantify) the most impor-
tant input factors using a relatively inexpensive set of
simulation experiments, a process called “parameter
screening”. The goal is to enable the quantitative SA
studies to focus on the smaller subset of most impor-
tant input factors.

Quantitative SA methods, which apportion the out-
put variability to individual input variabilities, typi-
cally require large number of simulation runs. When
simulation models themselves are computationally in-
tensive, the computational cost of quantitative SA
may become prohibitive. To make quantitative SA
more tractable, response surface modeling (not within
the scope of this paper) is often used to construct inex-
pensive surrogates in place of the original simulation
models.

Among the quantitative SA methods, variance-
based methods have received the most attention. The
main idea of the variance-based methods is to evalu-
ate the variance components for all of the individual
or groups of input factors. By decomposing the model
function into a sum of elementary functions, Sobol’ [8]
has shown that a decomposition of the model output
variance is possible (for independent input factors).
These variance components are called Sobol’ indices,
and can be computed for any complex model func-
tions. When the model is purely linear, the Sobol’
indices are equivalent to the standardized regression
coefficients in classical analysis. For models with K
inputs, the number of Sobol’ indices is 2K − 1. In
practice, only the first and second-order sensitivity
(Sobol’) indices are estimated. For large K, Homma
and Saltelli [3] proposed the the “total sensitivity in-
dices” which can be computed by using Monte Carlo
simulations or the extended Fourier Amplitude Sam-
pling Test (FAST) method.

This paper focuses on efficient and accurate meth-
ods for computing the first- and second-order sensitiv-
ity indices. Specifically, McKay’s [4] main effect analy-
sis is an efficient method for computing the first-order
sensitivity indices. However, a difficulty when applying
this method is the determination of a suitable sample
size to achieve sufficient accuracy. One often resorts to

very large samples to ensure accurate results. In this
paper we first propose an improved McKay main ef-
fect analysis equipped with an adaptive accuracy as-
sessment and improvement capability. We also propose
an efficient method for computing the second-order
sensitivity indices using replicated orthogonal arrays.
Again, an adaptive refinement scheme is incorporated
to facilitate accuracy assessment and improvement.

In Section 2 we provide a brief introduction to
variance-based sensitivity analyses. Section 3 gives
details of McKay’s main effect analysis. Section 4
proposes an improved algorithm to more accurately
compute the first-order sensitivity indices. Section
5 presents an efficient method based on replicated
orthogonal arrays for computing second-order sensi-
tivity indices. Section 6 describes an adaptive strat-
egy similar to the improved main effect analysis for
accurately computing the second-order sensitivity
indices. Numerical results for simple problems are
interspersed in Section 4 and 6. A more elaborative
numerical example is given in Section 7.

2. Variance-based Sensitivity Measures

Let Y = F (X) be a mathematical model that maps
a set of K input parameters X ∈ ℜK to a scalar out-
put Y . Let E(Y ) and V (Y ) denote the mean and vari-
ance of the distribution of Y given probability distri-
butions of X . A sensitivity measure for a given input
Xi can be obtained by assuming a complete knowledge
of the true value of Xi and assessing the effect of this
knowledge on the output variance. To do this, we fix
Xi at Xi = X∗

i and compute the corresponding con-
ditional variance V (Y |Xi = X∗

i ). Since this complete
knowledge of X∗

i is in general not available, we com-
pute, E(V (Y |Xi)), which is the average of the condi-
tional variances given the probability distribution of
Xi. Intuitively, E(V (Y |Xi)) measures the variance of
Y when Xi is known, and so V (Y )−E(V (Y |Xi)) (the
additional variance due to the variability of Xi) is a
reasonable indicator to quantify the importance of in-
put Xi. This indicator is equivalent to the statistical
quantity called variance of conditional expectation (or
VCE) via the following variance decomposition prop-
erty:

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)).

The first term on the right hand side of this relation is
the variance of conditional expectation (VCE), condi-
tioned on Xi; and the second term is the error or resid-
ual term. The residual term represents the variability
in Y not accounted for by the input Xi.
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McKay defined the correlation ratio [4] (or main
effect) by normalizing the VCE’s with V (Y ):

η2(Xi) =
V (E(Y |Xi))

V (Y )
.

A high correlation ratio implies that Xi is important
in influencing the output variability. If all input fac-
tors are uncorrelated and there are no multi-way in-
teractions, the sum of the correlation ratios is 1.

In [8], Sobol’ derived a first-order sensitivity index
and his derivation is based on the decomposition of
Y = F (X) into a sum of terms of increasing dimen-
sionality:

F (X1, X2, · · · , XK) = F0 +
∑

i

Fi(Xi)+

∑

i<j

Fij(Xi, Xj) + · · ·+ F12···,K(X1, X2, · · · , XK)

where the integral of every term over any of its own in-
put variables is zero. Sobol’ showed that, when all in-
puts are orthogonal to each other, this decomposition
is unique and that V (Y ) is the sum of the variances of
each term in the decomposition:

V (Y ) =
∑

i

Vi +
∑

i<j

Vij +
∑

i<j<k

Vijk + · · ·+ V12···K

where Vi is the variance of Fi, Vij is the variance of Fij ,
and so on. The total number of terms for K inputs is
thus 2K−1. The Vi’s can be shown to be equivalent to
McKay’s correlation ratios by the following relation-
ship:

Vi = V (Y )η2(Xi) = V (E(Y |Xi)).

Similarly, Vij ’s are the (pure) two-way interactions
such that

Vij = V (E(Y |Xi, Xj))−V (E(Y |Xi))−V (E(Y |Xj)).

In the event that the inputs are correlated, the above
relationships no longer hold. However, variance-based
measures are still useful sensitivity indicators. Input
correlation will not be covered in this paper.

3. Main Effect Analysis

Main effects (or first-order sensitivity indices) can
be computed by directly evaluating the K integrals
for the K inputs. McKay [4] proposed a more efficient
estimation method based on the use of a single repli-
cated Latin hypercube sampling (r-LHS) design for all
K inputs. It should be noted that even with this ef-
ficiency improvement the main effect analysis is still
very expensive requiring a substantial number (for ex-
ample, thousands) of model evaluations. For models

that are themselves expensive to evaluate, a common
strategy to make main effect analysis feasible is to first
create a response surface model (also called surrogate
model, meta-model, or emulator) and perform subse-
quent analyses on the substantially less expensive ap-
proximate model.

In the r-LHS design, each Xi takes on distinct values
Xij , j = 1, · · · , S where S is the number of levels (or
symbols). These values are to be replicated R times
in total so that the final design has N = SR sample
points.

Based on this design, the mean and variance of Y
can be estimated by, for any i in {1, · · · , K},

Ȳ =
1

SR

S
∑

j=1

R
∑

r=1

Y (r)(Xi = Xij),

and

V (Y ) =
1

SR

S
∑

j=1

R
∑

r=1

[

Y (r)(Xi = Xij)− Ȳ
]2

,

respectively, where Y (r)(Xi = Xij) is the output cor-
responding to Xi = Xij in the r-th replication. (that
is, the R replications amount to keeping input i at some
fixed value and varying all others). The estimator of
the conditional expectation for Xi = Xij is given by

Ȳ (Xi = Xij) =
1

R

R
∑

r=1

Y (r)(Xi = Xij)

Finally, the formula for the variance of conditional ex-
pectation (VCE) is given by:

VCE(Xi) =
1

S

S
∑

j=1

[

Ȳ (Xi = Xij)− Ȳ
]2
−

1

SR2

S
∑

j=1

R
∑

r=1

[

Y (r)(Xi = Xij)− Ȳ (Xi = Xij)
]2

,

and the correlation ratio for input i can be computed
by normalizing VCE(Xi) with the output variance. A
variant of the VCE is the biased VCE which is defined
as:

VCEb(Xi) =
1

S

S
∑

j=1

[

Ȳ (Xi = Xij)− Ȳ
]2

.

The correlation ratio is a useful estimator for input
importance for general models.

4. An Improved Main Effect Analysis

To create a replicated Latin hypercube sample, both
S (number of levels) and R (number of replications)
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have to be specified (such that N = SR) by users. In
[5], McKay investigated the variability of correlation
ratio estimates as a function of sampling variability
and concluded that sufficiency of the sampling design
(specifically, S and R) is very important to achieve the
desired precision. Specifically, large N may be needed
to adequately estimate the correlation ratios. In addi-
tion, if the biased correlation ratio estimator is used,
large bias may result when R is small. Saltelli et al.

[7] recommended that S should be larger than R to
give good accuracy. Despite this recommendation, it
should be noted that the adequacy of a sampling de-
sign is model dependent and thus not generally known
a-priori. In this section we propose a more robust main
effect analysis to address this issue.

Our improved main effect analysis is based on an
iterative methodology consisting of an adaptive sam-
pling scheme and an accuracy assessment tool to moni-
tor the convergence of the correlation ratios. Our adap-
tive sampling scheme borrows from our earlier work
on refinement of stratified designs [11]. Our improved
method currently considers only adaptively increasing
S (by a factor of 2 per refinement) for accuracy im-
provement while keeping R fixed. To offset the effect
of bias [5], we use a moderate sized R and also the
unbiased correlation ratio estimator.

In the rest of this section, we first show how to
adaptively refine a replicated Latin hypercube design.
We will then describe the iterative procedure utilizing
this adaptive sampling scheme. A few examples will
be given to study the effectiveness of this improved
method.

4.1. Refinement for Replicated Latin Hypercube

We first denote a replicated Latin hypercube by an
3-tuple LH(N ,K,S) where N , K and S are the sam-
ple size, number of input parameters, and number of
symbols or levels, respectively. The number of replica-
tions can be recovered by R = N/S. We begin with a
fixed R (for example, R = 50) and an initial S (for ex-
ample, S = 4). The basic idea in the refinement algo-
rithm follows two major steps. The first step involves
refining each occupied grid cell (in a K-dimensional
grid with S partitions in each dimension) into an 2K

subgrid (note that we only need to examine SR grid
cells so the computational cost does not scale with di-
mensionality). Thus, for each already occupied cell, a
LH(2, K, 2) (with size 2, K inputs, and 2 levels) is cre-
ated. The refined sample can be shown to preserve its
original property as a replicated Latin hypercube. A
selective random permutation is then applied to the
newly created sample points to improve the statistical

property of the entire refined sample while leaving the
original sample points unchanged. The detailed refine-
ment algorithm (Algorithm RefineLH) consists of the
following steps (given an initial replicated LH sample
matrix Z):

Pattern reconstruction: Transform the sample
matrix Z (an N ×K matrix) to the corresponding
LH pattern matrix A by (S is the current number
of levels and R is the number of replications)

A(i, j) = ⌈(Z(i, j)− Lj)/ ˆδXj)⌉,

i = 1, · · · , N ; j = 1, · · · , K,

where Lj and Uj are the lower and upper bound of

input j, and ˆδXj = (Uj − Lj)/S.
Replication separation: Partition A into R indi-

vidual Latin hypercube pattern matrices Am, m =
1, · · · , R (each Am is an S × K matrix). Then, for
each Am,

Level refinement: Form another pattern matrix
Bm (called base pattern matrix) from Am by

Bm(i, j) = (⌈Am(i, j)⌉ − 1) ∗ 2.

New sample insertion: Create the new pattern
matrix Ãm: for each row i of B,
(i) Form a new LH pattern matrix Ci of size 2×K.
(ii) Set Ci ← Ci + [1 1]T Bm(i),
(iii) Permute Ci to have one row matching Am(i)

(by first exchanging entries of row 1 of Ci

with entries in the same column so that row 1
matches Am(i)).

(iv) Load Ci into row 2× (i− 1)+ 1 to row 2× i of
Ãm.

Sample randomization: Perform random permu-
tation to each column of Ãm only to the newly cre-
ated rows.

Sample concatenation: Append all Ãm, m =
1, · · · , R matrices to form the final Ã pattern matrix.

Sample Generation: Map the pattern matrix
(which has number of levels = 2S now) to the new
sample matrix Z̃ by scaling and translation with
respect to the input ranges

Z̃(i, j) = Ã(i, j) ∗ δXj + Lj + ǫ(i, j)

where ǫ(i, j) is a small random perturbation and its
value depends on Ã(i, j).
A detailed example of refining a LH sample is given

in [11].

4.2. An Adaptive Algorithm for Main Effect Analysis

The refinement technique can be used in an itera-
tive procedure to improve the accuracy of main effect
analysis. The algorithm is as follow:
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(i) Select an initial replicated LH sample with sam-
ple size N0 = S0R. Prescribe a precision 0 < ǫ <
1. Set Iteration = 0.

(ii) Set Iteration = Iteration + 1. Evaluate the model
using the current sample (sample points evalu-
ated in previous iterations are skipped).

(iii) Use the sample inputs and outputs to compute
the VCE’s.

(iv) If Iteration > 1, do the following: for each
VCE(Xi), compute the error ei by finding the
difference between the current and the last
VCE(Xi); else set ei = ǫ.

(v) If max ei < ǫ, terminate.
(vi) Apply the RefineLH algorithm to create the re-

fined LH sample. Then go back to step 2.
An alternative termination criterion for this proce-

dure may be a prescribed maximum number of model
evaluations. Using this criterion, the main effect anal-
ysis will compute both the VCE(Xi)’s and the cor-
responding estimated error bounds. If inexpensive re-
sponse surfaces are used in this analysis, This algo-
rithm can be executed a number of times (for exam-
ple, 100 as in our numerical examples) to give an even
better estimates of the error bounds for the sensitivity
measures.

4.3. Numerical Results

In this section we demonstrate the effectiveness of
our improved main effect analysis algorithm on two
test examples- a monotonic and a non-monotonic func-
tion.

4.3.1. A Monotonic Test Problem

The first test problem is the monotonic Sobol’ func-
tion [7] given by:

Y = exp





6
∑

j=1

bjXj



− I6

where b1 = 1.5, b2 = b3 = b4 = b5 = b6 = 0.9,

I6 =

6
∏

j=1

ebj − 1

bj

,

and Xj is uniformly distributed in [0, 1]. The true cor-
relation ratios for X1 is 0.287 and 0.1057 for Xj, j =
2, · · · , 6.

We run the adaptive algorithm 100 times, each with
an initial S of 4 and R = 50. Figure 1 shows the con-
vergence history of the 6 correlation ratios as a func-
tion of N = SR. Due to the randomness in the ini-
tial LH design and subsequent refinements, each of the
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Fig. 1. Sobol’ function: convergence history for the η2’s (black
horizontal lines- true values)

100 sets of runs goes through a different convergence
path. The blue ’x’ in the plots are actual correlation
ratios computed at different refinement levels. We ob-
serve firstly the convergence of all sets of runs to the
true values as N is increased through refinement. In
general, the spread of the correlation ratios (the en-
velopes) shrinks as N is increased, demonstrating that
increasing sample sizes also improve the confidence of
the estimates.

4.3.2. A Non-monotonic Test Problem

The second test problem is the Ishigami function [7]:

Y = sin(X1) + 7sin2(X2) + 0.1X4
3sin(X1),

Xi ∈ [−π, π], i = 1, 2, 3,

which has the following statistics

V (Y ) = π4/50 + π8/1800 + 1/2 + 49/8 ≈ 13.8445

Ȳ = 3.5; η(X1) = 0.3139;

η(X2) = 0.4424; η(X3) = 0.0.

Again, We run the adaptive algorithm 100 times,
each with an initial S of 4 and R = 50. Figure 2 shows
the convergence history of the 3 correlation ratios as a
function of N . Again, we observe that the correlation
ratios converge to their true values as N is increased
through refinement.

5. Two-way Interaction Analysis

In this section we extend the idea for main effect
analysis to two-way interaction (or second-order sen-
sitivity) studies for uncorrelated inputs. In this case,
we employ the following relationship

V (Y ) = V (E(Y |Xi, Xk)) + E(V (Y |Xi, Xk))
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where Xi and Xk are two distinct inputs under con-
sideration. The first term on the right hand side is the
variance of the conditional expectation VCE(Xi, Xk)
of Y , conditioned on Xi and Xk. Again, the second
term is the error or residual term measuring the esti-
mated variance of Y by fixing Xi and Xk. In addition,
the correlation ratio for the input pair (Xi, Xk) is

η2(Xi, Xk) = V (E(Y |Xi, Xk))/V (Y ).

A high correlation ratio shows that Xi and Xk taken
together are important contributors to the output vari-
ability. The variance due to the interaction term alone
is defined as

V (Xi, Xk) = V (E(Y |Xi, Xk))−

V (E(Y |Xi))− V (E(Y |Xk)).

V (Xi, Xk) can be computed using many different
techniques, for example, by directly evaluating the cor-
responding integral. Here we illustrate its evaluation
with the use of replicated orthogonal array sampling.
Using orthogonal array designs with a strength of 2, Xi

and Xk take on values Xij , j = 1, · · · , S and Xkl, l =
1, · · · , S where S is the number of symbols (or levels).
Based on this design, the mean and variance of Y can
be estimated by, for any i and k in {1, · · · , K}, i 6= k,

Ȳ =
1

S2R

S
∑

j=1

S
∑

l=1

R
∑

r=1

Y (r)(Xi = Xij , Xk = Xkl)),

and

V (Y ) =

1

SR

S
∑

j=1

S
∑

l=1

R
∑

r=1

[

Y (r)(Xi = Xij , Xk = Xkl)− Ȳ
]2

where Y (r)(Xi = Xij , Xk = Xkl) is the output corre-
sponding to Xi = Xij and Xk = Xkl in the r-th repli-
cation (that is, keeping the two inputs at some fixed
values and varying all others). The variance estima-
tor for the expectation conditioned on Xi = Xij and
Xk = Xkl is

Ȳ (Xi = Xij , Xk = Xkl) =

1

R

R
∑

r=1

Y (r)(Xi = Xij , Xk = Xkl)

To approximate the variance of conditional expecta-
tion VCE(Xi, Xk), we use

VCE(Xi, Xk) =

1

S2

S
∑

j=1

S
∑

l=1

[

Ȳ (Xi = Xij , Xk = Xkl)− Ȳ
]2
−

1

S2R2

S
∑

j=1

S
∑

l=1

R
∑

r=1

[

Y (r)(Xi = Xij , Xk = Xkl)− Ȳjl)
]2

where Ȳjl is the mean of Y at Xi = Xij and Xk = Xkl.
The two-way correlation ratio for input pair (i, k) is
then obtained by normalizing VCE(Xi, Xk) with the
output variance V (Y ). Again, we can also compute the
corresponding biased estimator by ignoring the second
term in the above equation.

Finally, we arrive at the following pure two-way in-
teraction effect

V (Xi, Xk) = VCE(Xi, Xk)−VCE(Xi)−VCE(Xk)

where VCE(Xi) and VCE(Xi) can be obtained from
the main effect analysis or estimated from the same
replicated orthogonal array sample.

This same idea can be applied to the analysis of
higher-order interaction. For example, to analyze 3-
way interaction, replicated orthogonal array designs of
strength 3 can be used together with the correspond-
ing formulas for computing the variance of conditional
expectations.

5.1. An Improved Two-way Interaction Analysis

Our improved two-way interaction analysis is again
based on an iterative methodology consisting of an
adaptive orthogonal array sampling scheme (based on
our earlier work in [11]) and an accuracy assessment
tool (similar to the one in our improved main effect
analysis) to monitor the convergence of the correla-
tion ratios. As opposed to replicated Latin hypercube
designs which have a sample size growth factor of ≈ 2
per refinement, the sample size growth factor for or-
thogonal arrays is O(K2). Therefore, this improved
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algorithm is less practical than the improved main ef-
fect analysis for large K (for example, K > 5) unless
the model evaluations are cheap (for example, through
using response surfaces).

In the rest of this section, we first present the refine-
ment algorithm for orthogonal arrays. We will then
describe how to embed this refinement algorithm in
the iterative procedure. An example will be given to
assess the effectiveness of the improved method.

5.2. Refinement for Replicated Orthogonal Arrays

We first denote a replicated orthogonal array by an
4-tuple OA(N ,K,S,t) where N , K, S and t are the
sample size, number of parameters, number of sym-
bols or levels, and strength, respectively. The number
of replications can be recovered by R = N/(St). We
begin with a fixed R (for example, R = 50) and an
initial S (the minimum S depends on K). The basic
idea in the refinement algorithm is similar to that of
the Latin hypercube and it consists of the following
two steps: (1) refine each grid cell (in a K-dimensional
grid with S partitions in each dimension) into an SK

subgrid; and (2) for each grid cell that already con-
tains a sample point, an OA(S2, K, S, t) including the
existing sample point is created. The refined sample
can be shown to preserve its property as a replicated
orthogonal array. A selective random permutation is
then applied to the newly created sample to improve
the statistical property of the refined sample while
leaving the original sample points unchanged. The re-
finement algorithm (Algorithm RefineOA) consists of
the following steps:

Pattern reconstruction: same as in Algorithm Re-

fineLH.
Replication separation: same as in Algorithm Re-

fineLH.
Level refinement: For each pattern matrix Am, m =

1, · · · , R, for another pattern matrix Bm (called
base pattern matrix) from Am by

Bm(i, j) = (⌈Am(i, j)⌉ − 1) ∗ 2.

New sample insertion: Create the new pattern
matrix Ãm: for each row i of B,
(i) Form a new OA pattern matrix Ci with

OA(S2, K, S, 2).
(ii) Set Ci ← Ci + [1 1]T Bm(i),
(iii) Permute Ci to have one row matching Am(i)

(by first exchanging entries of row 1 of Ci

with entries in the same column so that row 1
matches Am(i)).

(iv) Load Ci into row S2× (i− 1)+1 to row S2× i
of Ãm.

Sample randomization: same as in Algorithm Re-

fineLH.
Sample concatenation: same as in Algorithm Re-

fineLH.
Sample Generation: same as in Algorithm Re-

fineLH.
A detailed example of refining an OA sample is given

in [11].

5.3. An Adaptive Algorithm for Two-way Interaction

Analysis

The OA refinement technique can be used in an iter-
ative procedure to improve the accuracy of interaction
analysis. The algorithm is as follow:

(i) Select an initial replicated OA sample with sam-
ple size N0 = S2

0R. Prescribe a precision 0 < ǫ <
1. Set Iteration = 0.

(ii) Set Iteration = Iteration + 1. Then evaluate the
model using the current sample.

(iii) Use the sample inputs and outputs to compute
the VCE’s.

(iv) If Iteration > 1, do the following: for each
VCE(Xi, Xk), compute the error eik by finding
the difference between the current and the last
VCE(Xi, Xk); else set eik = ǫ..

(v) If max eik < ǫ, terminate.
(vi) Apply the RefineOA algorithm to create a refined

OA sample. Then go back to step 2.

5.4. Numerical Results

We tested the improved interaction analysis algo-
rithm on the non-monotonic function described previ-
ously:

Y = sin(X1) + 7sin2(X2) + 0.1X4
3sin(X1),

Xi ∈ [−π, π], i = 1, 2, 3.

We ran the iterative algorithm 100 times, each with an
initial S of 2 and R = 50. Figure 3 shows the conver-
gence history of the 3 two-way correlation ratios as a
function of sample size N = S2R. Once again, we ob-
serve that the correlation ratios of all 100 simulations
converge to their true values as S is increased through
refinement.

6. An Application

In this section we present the results of applying
the above two iterative algorithms to the study of a
two-dimensional soil-foundation-structure-interaction
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Fig. 4. A 2D soil-foundation-structure-interaction system

(2DSFSI) system (obtained from Professor Conte at
UCSD) subject to earthquake excitation. The struc-
ture is a two-story two-bay reinforced concrete frame.
The foundations consist of reinforced concrete squat
footings at the bottom of each column. The soil is a
layered clay, with stiffness properties varying along the
depth (see Figure 4, Courtesy of Professor Conte and
Dr. Quan Gu at UCSD).

The frame consists of two stories each of height
h = 3.6m and L = 20m across (horizontal direction).
The columns are modeled using displacement-based
Euler-Bernoulli frame elements with distributed plas-
ticity. Foundation footings and soil layers are mod-
eled through isoparametric four-node quadrilateral fi-
nite elements with bilinear displacement interpolation.
The constitutive behavior of the steel reinforcement
is modeled by using a one-dimensional J2 plasticity
model with both kinematic and isotropic linear hard-
ening. The concrete is modeled by using a Kent-Scott-
Park model with zero tension stiffening. Different ma-
terial parameters are used for confined (core) and un-
confined (cover) concrete in the columns. The soil is
modeled by using a pressure-independent multi-yield

surface J2 plasticity material model. Different mate-
rial parameters are used for each of the four layers con-
sidered. The soil under a condition of simple shear has
its bottom nodes fixed and the corresponding bound-
ary nodes at same depth tied together. The node of
the beam (3 degrees of freedom) and the correspond-
ing node on the foundation concrete block (2 degrees
of freedom), at the same location, are tied together in
both the horizontal and vertical directions.

After static application of the gravity loads, the
structure is subjected to a base excitation taken as
three times the recorder data of the 1940 Elcentro
earthquake.

The original model has 19 material parameters
(cover and core concretes, steel, foundation, and soil
layers), 4 of which have been identified as important
after a pre-screening analysis (not reported here).
The ranges and distributions of these 4 parameters
are given in Table 6. The model output of interest is
the roof drift ratio, which is defined as the ratio of the
maximum absolute displacement at the roof to the
building height.

Table 1
Material parameters

Parameter Distribution Mean (µ) range

Cover fc Uniform 27588.5 ±0.2 µ

Steel Sy Uniform 248200 ±0.106 µ

Soil Layer #3 τmax Uniform 35.0 ±0.25 µ

Soil Layer #4 τmax Uniform 44.0 ±0.25 µ

For these 4 parameters,we used a quasi-Monte Carlo
sample of size 800 together with Friedman’s multivari-
ate adaptive regression splines (MARS) [1] interpo-
lation scheme to create an approximate model or re-
sponse surface, which is subsequently probed repeat-
edly to compute the first- and second-order sensitivity
indices.

For the main effect analysis, we ran our iterative
algorithm 100 times, each with an initial S of 4 and
R = 10. Figure 5 shows the convergence history of the
4 correlation ratios as a function of sample size. The
analysis shows that the soil material parameters τ3

and τ4 are key contributors to the output variability.
For two-way interaction analysis, we simulate our

iterative algorithm 100 times, each with an initial S of
3 and R = 10. Figure 7 shows the convergence history
of the 4 two-parameter correlation ratios as a function
of sample size N = S2R. Again, we observe conver-
gence of all the 100 runs toward 0 for most of the pairs
except a small interaction between τ3 and τ4 (≈ 7%).
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Fig. 5. 2D SFSI: convergence history for the η2’s
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Fig. 7. 2D SFSI: convergence history for the two-way η2’s

7. Summary

In this paper we propose iterative schemes to more
accurately compute the first- and second-order sensi-
tivity indices. Specifically, the use of refinement tech-

niques in stratified sampling methods such as Latin
hypercube and orthogonal array together with the cor-
responding convergence analyses has enabled the ac-
curacy assessment and improvement of the computed
sensitivity indices. By running these improved algo-
rithms we obtain not only accurate sensitivity mea-
sures, but also their error bounds. The effectiveness of
the proposed algorithms have been demonstrated on
a few numerical examples.
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