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The reliability of consecutive-fc-out-of-n: F repairable systems and (fc-l)-step Markov dependence is 
studied. The model analyzed in this paper is more general than those of previous studies given that 
repair time and component lifetimes are random variables that follow a general distribution. The 
system has one repair service which adopts a priority repair rule based on system failure risk. Since 
crude simulation has proved to be inefficient for highly dependable systems, the RESTART method was 
used for the estimation of steady-state unavailability, MTBF and unreliability. Probabilities up to the 
order of 10~16 have been accurately estimated with little computational effort. In this method, a 
number of simulation retrials are performed when the process enters regions of the state space where 
the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty for 
the application of this method is to find a suitable function, called the importance function, to define the 
regions. Given the simplicity involved in changing some model assumptions with RESTART, the 
importance function used in this paper could be useful for dependability estimation of many systems. 
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1. Introduction 

The reliability of the consecutive-fc-out-of-n: F system (or C(fc, 
n: F) system) has aroused great interest since it was first studied 
by Kontoleon in 1980 [1]. The system consists of a sequence of n 
ordered components along a line such that the system fails if and 
only if at least fc consecutive components in the system have 
failed. A list of typical applications of C(fc, n: F) systems was given 
by Yam et al. [2]. For an extensive review of the topic refer to the 
survey paper by Chao et al. [3] and the books [4,5]. A natural 
extensión of this model is the system of consecutive failures with 
sparse d, introduced by Zhao et al. [6]. For d=0, this system is the 
C(fc, n: F) system. Recently, other extensions of the C(fc, n: F) model 
have appeared in the literature, see e.g., [7-9] and references 
therein. Another type of system closely related to the C(fc, n: F) 
system is the C(fc, n: G) system (see e.g., [10,11]). It consists of a 
sequence of n ordered components along a line such that the 
system succeeds if and only if at least fc consecutive components 
in the system succeed. 

Although in most related research work, all the components of 
the system are assumed to have an equal failure rate, this is not 
always an appropriate assumption, as can be seen in the example 
provided by Fu [12]. Suppose that we want to transport oil from 
place A to place B by an oil pipeline and that there are n pressure 

pumps equally spaced between A and B. Each pump can transport 
the oil no more than a distance of fc pumps. This is obviously a C(fc, 
n: F) system. If pumps (¡-fc+1) to ( ¡ -1) fail and the system still 
functions, then the pump i has to work very hard to raise the oil 
pressure to the fixed level. Therefore, pump i will have a higher 
probability of failure, and the failure rate of a pump would depend 
on the states of the preceding (fc-1) pumps. This dependence is 
called the (fc-l)-step Markov dependence. Reliability properties 
of consecutive fc-out-of-n systems with other types of dependence 
are studied in [13,14]. 

Additionally, there has been increasing interest in the study of 
C(fc, n: F) repairable systems (see e.g., [15,16]). Lam and Zhang [17] 
and Lam et al. [18] studied a model for a C(fc, n: F) repairable 
system with (fc-l)-step Markov dependence. In this model, the 
lifetime of components and repair times were considered 
exponential random variables. A priority repair rule based on 
system failure risk was adopted. Some dependability measures 
were evaluated by a numerical method. However, a large n would 
complícate the use of the method. Moreover, repair time and 
component lifetimes usually do not follow exponential distribu-
tions. Xiao et al. [19] revised the model by assuming that repair 
time is a random variable following a general distribution. In this 
situation, the system is a non-Markov C(fc, n: F) system with 
(fc- l)-step Markov dependence. These authors used Monte Cario 
simulation to estímate the dependability (including reliability, 
transient availability, MTTF and MTBF) of the new model. Since 
crude simulation is inefficient for highly dependable systems, fast 
simulation methods for rare events such as importance sampling, 



conditional expectation and a combination of the two methods 
were used. Xiao and Li [20] studied parameter sensitivity of this 
model for exponential lifetime distributions using conditional 
expectation. 

In this paper, we extend the model in Ref. [19] by assuming 
that not only repair time but also the lifetime distribution of 
components are random variables following a general distribu­
tion. Moreover, we estímate a dependability measure of great 
interest, the steady-state availability, which was not estimated in 
[19]. We use the rare event simulation method RESTART for 
estimating all the measures. This method has a precedent, of 
much more limited scope [21], in the splitting method described 
in [22]. M. Villén-Altamirano and J. Villén-Altamirano [23] coined 
the ñame RESTART and made a theoretical analysis that yields 
the variance of the estimator and the gain obtained with 
one threshold. A detailed analysis with múltiple thresholds is 
made in [24]. 

In this method a more frequent occurrence of a formerly rare 
event is achieved by performing a number of simulation retrials 
when the process enters regions of the state space where the 
importance is greater, i.e., regions where the chance of occurrence 
of the rare event is higher. These importance regions are defined 
by comparing the valué taken by a function of the system state, 
called importance function, with certain thresholds. Optimal 
valúes for thresholds and the number of retrials that maximize 
the gain were derived in [24]. 

The application of this method to particular models requires 
the choice of a suitable importance function. An inefficiency factor 
related to the importance function was analyzed in [21] and 
guidelines for selecting heuristically such a function were 
provided. In [25], an importance function for estimating reliability 
measures that could be valid for many systems is provided. In this 
paper we will use such an importance function to simúlate the 
system. 

A limitation of the RESTART and splitting methodologies for 
simulating highly reliable systems is the difficulty in defining 
sufficient thresholds. For this reason, L'Ecuyer et al. [26] pointed 
out that this methodology is not appropriate for this type of 
system and Xiao et al. [19] suggested that "importance splitting is 
hard to be adopted for dependability estimation of non-Markov 
systems, because thresholds function is hard to be presented 
under this situation". However, as will be shown in the paper, 
probabilities up to the order of 10 ~16 can be accurately estimated 
with little computational effort. 

The paper is organized as follows: the model C(fc, n: F) with 
fe - 1 step Markov dependence is introduced in Section 2. Section 3 
presents the RESTART method and describes some simulation 
features. In Section 4 numerical examples are presented to 
demónstrate the method and, finally, conclusions are stated in 
Section 5. 

distribution, whose density is given by: 

f(t) = Xe-At, t>0 

and the Raleigh distribution (Weibull distribution with shape 
parameter equal to 2), whose density is given by 

/(t) = / ? t e x p ( - | t 2 t > 0 

The failure rates of the previous distributions are X and fít, 
respectively. 

(e) If there are h (h< fe) consecutive failed components that 
precede the component i, and component lifetimes are 
exponentially distributed, the residual lifetime X¡ of compo­
nent i will have an exponential distribution of parameter Xh, 
0 < h < fe, with 0 < X < X-i < ••• < Xk_v If the lifetime of com­
ponents has a Raleigh distribution, the distribution function of 
the residual lifetime X¡ of component i is given by 

P{X i <t+x/X i >t} = l - e x p ( - ^ ( x 2 + 2 x t ) 

and the failure rate at time t+x of the residual distribution is 
given by f¡h{t+x), 0 < h < fe, with: 0 <fí<f¡1 < ••• < f¡k-v This 
assumption represents the effect of (fe-l)-step dependence. 

(f) The repair time of a failed component has a general 
distribution. In the numerical examples we will consider the 
lognormal distribution, whose density is given by 

g(t)--
1 

/2ñfft exp 
(\nt-fiy 

20^ 
t > 0 

where ¡i and er are the mean and variance of ln(T), 
respectively. 

(g) After repair, a failed component will be "as good as new". 
(h) There is one repairman only, so that no more than one 

component can be repaired at the same time. 
(i) The system is closed when it fails, this means that if the 

system has failed, then no more components will fail. 
(j) The following priority repair rule is adopted. A failed 

component has the highest repair priority if the system 
failure risk (defined as the probability that the system will fall 
into failure states on the next state transitions) after repair of 
that component is lower than after repair of any other failed 
component. This implies that the component which, when 
repaired, causes the highest reduction of the system failure 
intensity in this model has the largest repair priority. If two or 
more failed components have the same repair priority, then 
they will be repaired in the order of arrival. 

Our concern is to estímate transient measures, such as system 
unreliability, and steady-state measures, such as steady-state 
unavailability and mean time between failures (MTBF). 

2. Model assumptions 

As mentioned above, the model under study is a C(fe, n: F) 
repairable system with (fe-l)-step Markov dependence, which 
has the following features: 

(a) Each of the n components is either operational or failed. 
(b) The system is either operational or failed. 
(c) The system fails if and only if fe or more consecutive 

components have failed. 
(d) The lifetime of components has a general distribution. In the 

numerical examples, we will consider the exponential 

3. RESTART simulation features in this model 

Crude simulation can be used to estímate the dependability of 
the model given in Section 2. However, as system failure is a rare 
event in highly reliable models, crude Monte Cario requires 
prohibitively long execution times to produce precise estimates. 
For this reason fast simulation methods for rare event simulations 
(importance sampling and conditional expectation) were used in 
[19], but not importance splitting or RESTART because the authors 
thought that "threshold function is hard to be presented under 
this situation". However, we use the RESTART method here 
because it is possible to define a good importance (threshold) 
function for this system and because it has some advantages over 
the other methods mentioned. In contrast with importance 
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sampling or conditional expectation, for example, this method is 
not so dependent on particular features of the system and allows 
general component lifetime distributions and other generaliza-
tions of the model. 

3.1. Description of RESTART 

This method has been described in detail in several papers, e.g., 
[21,24]. Nevertheless it is described here in order to make this 
paper more self-contained. 

Let Q denote the state space of a process X(t) and A the rare set 
whose probability must be estimated. A nested sequence of sets of 
states Q, (QZ1C2D ••• =5CM) is defined, which determines a 
partition of the state space Q into regions Q-Q+i; the higher 
the valué of i, the higher the importance of the región Q—Q+1. 
These sets are defined by means of a function <5:Í2->5R, called the 
importance function. Thresholds T¡ (1 < i < M) of <P are defined so 
that each set Q is associated with <P > T¡. 

An event at which the system is in a state of the set A is 
referred to as an event A. Two additional events, B¡ and D¡, are 
defined as follows: 

B,: event at which <P > T¡ having been <P < T¡ at the previous 
event; 
Di. event at which <P < T¡ having been <P > T¡ at the previous 
event. 

RESTART works as follows: 

• A simulation path, called main trial, is performed in the same 
way as if it were a crude simulation. It lasts until it reaches a 
predefined "end of simulation" condition. 

• Each time an event Bi occurs in the main trial, the system state 
is saved, the main trial is interrupted, and R^ - 1 retrials [By Di) 
are performed. Each of these retrials is a simulation path that 
starts with the state saved at Bi and finishes when an event Di 
occurs. 

• After the R^ - 1 retrials [By Di) have been performed, the main 
trial continúes from the state saved at By Note that the total 
number of simulated paths [By Di), including the portion [By 

Di) of the main trial, is i?!. Each of these R^ paths is called a trial 
[By Di). The main trial, which continúes after Di, leads to new 
sets of retrials [Bi, Di) if new events Bi occur. 

• Events B2 may occur during any trial [By Di). Each time an 
event B2 occurs, an analogous process is set in motion: R2 — \ 
retrials [B2, D2) are performed, leading to a total number of R2 

triáis [B2, D2). The trial [By Di), which continúes after D2, may 
lead to new sets of retrials [B2, D2) if new events B2 occur. 

• In general, R¡ triáis [B¡, D¡) (1 < i < M) are performed each time 
an event B¡ occurs in a trial [B,_i, D,_i). The number R¡ is 
constant for each valué of i. 

• A retrial that starts at B¡ also finishes if it reaches the "end of 
simulation" condition before the occurrence of event D¡. 

Fig. 1 illustrates a RESTART simulation with M=3, Ri=R2=4, 
R3=3, in which the chosen importance function <P also defines set 
A as <P > L. Bold, thin, dashed and dotted lines are used to 
distinguish the main trial and the retrials [Bi, Di), [B2, D2), and [B3, 
D3), respectively. 

Note that for the statistics referring to all the triáis, the weight 
assigned to a trial when it is in the región Q—Q+1 (CM if i=M) 
must be the inverse of the cumulative number of triáis, l/r¡ 

n= t[Rj (1<¡<M). 
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Fig. 1. Simulation with RESTART. 

of visiting set Ch in a 

Some more notations 

• P=PY{A}; C M + I = A ; C0=Q; 

• Ph/,{0<¡<h<M+l): probability 
trajectory, given that the system is in a state of the set Q. For 
h<M, since Ch <= Q, Ph/i= Pr{Ch}/Pr{Q}; 

• NAf total number of events A that occur in the j sample of the 
simulation (in the main trial or in any retrial); 

• X¡ (1<¡<M) : random variable indicating the state of the 
system at an event B¡; 

• Q¡ (1 < i < M): set of possible system states at an event B¡; 
• P*A ,x. (1 < i < M): importance of state X¡, defined as the expected 

number of events A in a trial [B¡, D¡) when the system state at B¡ 
is X¡. Note that P*A/x. is also a random variable since it depends 
on the initial state X¡, which is random; 
P*ñ/i (1 <¡<M): expected importance when the process enters 
set Q. If F(x¡) is the distribution function ofX¡, then: 

1 A/i ~ H^A/Xj] — / ™A/x¡ dF(x¿). 

• V(P%/x¡)(\<i<M) 
process enters set Q: 

variance of the importance when the 

Wl,x) = I Q (P%,Xi)
2 dF(xd - (P%,d2-

3.2. RESTART estimators 

The unreliability of a system at instant t, is defined as the 
probability of a system failure in the interval (0, t). For estimating 
the unreliability at instant t, 1 -R(t), we simúlate / times the 
interval (0, t). In each of the / samples, the triáis finish when 
mission time t is reached or the system fails. The estimator of the 
unreliability is 

i - K ( t ) = E 
J = I 

AJ-

AS the event A is a system failure, NAj is the number of system 
failures that occur in the jth sample of the simulation. Let us 
observe that, in contrast with crude simulation, more than one 
system failure can occur in the same sample. Transient unavail-
ability, defined as the probability of the system being failed at 
instant t, could be calculated in a similar manner, but without 
finishing a trial when the system fails. 

The steady-state unavailability of a system, 1 -A, is defined as 
the proportion of time that the system is failed in the long run. 
The MTBF is defined as the expected amount of time between two 



consecutive failures of the system. To estimate the steady-state 
unavailability and MTBF we simúlate / long periods of time, each 
with a short transient period. That is, we use the independent 
replication method (the batch means method could also be used). 
The stopping condition in each sample is that the end of the long 
period is reached by all the survival triáis (triáis for which event D¡ 
has not occurred). The estimators are 

1 _ A = V 7 ^ , MTBF = ¿ ^ 

where TF¡ is the total time that the system has failed in the jth 
sample, and T is the period of time simulated in each sample. We 
need the results of each sample for constructing the confidence 
intervals. 

3.3. Theoretical speedup 

A measure of the efficiency for computing P is given by CV(Í>), 
where C is the computer cost and V(P) is the variance of the 
estimator. The gain G (also called speedup) obtained can be 
defined as the ratio of CV(P) obtained with crude simulation to the 
same product obtained with RESTART. In [24] it is shown that G is 
given by 

MOÍRÍT P ( - lnP+l ) 2 

The term l / (P(- lnP+l) 2 ) can be considered the ideal gain. 
Factors fv, f0, fR and fT, can be considered inefficiency factors that 
reduce the actual gain with respect to the ideal gain. Each factor 
reflects 

• fR: inefficiency due to the non-optimal choice of the number of 
triáis. 

• ff. inefficiency due to the non-optimal choice of the thresholds. 
• fv'. inefficiency due to the non-optimal choice of the impor-

tance function. 
• fo'. inefficiency due to the computer overhead produced by the 

implementation of RESTART. 

In [24] criteria for minimizing factors fR, fT and f0 were given. A 
valué of the factor fR very cióse to 1 can be achieved if the number 
of triáis is chosen according to: 

R¡= J^ , i = l, ...,M (2) 
V ' i+i/i-i 

Factor fT is minimized by choosing very cióse thresholds, i.e., 
Pi+i/j cióse to one. In reliability simulations it is difficult to choose 
cióse thresholds and fT may be significantly greater than one. It is 
evaluated by 

f ( E f i o ^ - ^ v O / ^ P ^ + i)2 

h = (- lnP+1)2 ( 3 ) 

Factor f0 is due to the overheads involved in the implementa­
tion of RESTART: (1) for each event, an overhead mainly due to the 
need to evalúate the importance function and to compare it with 
the threshold valúes, and (2) for each retrial, an overhead mainly 
due to the restoration of the system state and to the rescheduling 
of the scheduled events. In Section 3.5.2 is explained how to 
reduce this factor by an efficient rescheduling. 

In [21 ] guidelines for choosing the importance function that 
minimizes factor fv were provided. One of the guidelines for 
reducing/vis to reschedule the scheduled events at the beginning 
of each trial. The following upper bound of fv was defined: 
fv <Max^ <¡<M+I(S¡). a n d al s o the exact formula of fv and of 
factors s¡. From their analysis it was concluded that s¡ may be 

approximated by 

The valué of fv can be reduced by an appropriate choice of the 
importance function. 

3.4. Importance function 

The importance function <P is a function of the variables which 
defines the system state X(t) and thus depends on the system 
under study. According to the definition of the factor fv¡ to be 
suitable an importance function should lead to a small valué for 
the variance V(P*ñ/x). This can be achieved if the importance of all 
the system states x¡ at events B¡ is of the same order of magnitude. 
Roughly speaking, it means that the probability of system failure 
in a trial [B¡, D¡) must be similar for all the entry states of each set 
Q. 

In a general system there are minimal cutsets with different 
cardinalities. In a balanced system, where all the components are 
equally probable to fail, it is more probable that system failure 
will be due to the failure of all the components of a minimal cutset 
with the lowest cardinality. The "distance" to the system failure is 
related with the number of components that remain operational 
in the cutset with the lowest number of operational components. 
For this reason, the importance function (at an instant t) is defined 
as 

<2>(t) = el - oc(t) (4) 

where el is the cardinality of the minimal cutset with lowest 
cardinality and oc(t) is the number of components that are 
operational at time t in the cutset with lowest number of 
operational components. Thresholds T¡ are 1,2 c / - l for 
estimating transient measures and 2 c / - l for estimating 
steady-state measures, because in the last case the next event 
when all the component are operational is a failure, and so the 
first threshold would frequently be reached if the threshold were 
defined at T=\. However, for estimating the reliability at an 
instant t, most of the simulations of the interval (0, t) will finish 
without any component failing, and so it is worth defining a 
threshold at T= 1. This importance function was introduced in [25] 
and is valid for simulating many highly dependable systems. 

In our model we have (n-fc+1) minimal cutsets. As all of them 
have the same cardinality (fe), the definition of the importance 
function can be expressed as: "the number of components that are 
down at time t in the cutset with greatest number of failed 
components". The main differences between the importance, P*A/X., 
of the system states x¡ at events B¡ are: (i) whether the failed 
components of the cutset are consecutive or not and (ii) the total 
number of components in the systems that are down when the 
process enters each set Q. The greater is that number, the greater 
is the importance of the system state. The importance is also 
greater if the failed components of the cutset (with greatest 
number of failed components) are consecutive. It seems that the 
difference between the importance of these states could be 
relatively small, and could be of the same order of magnitude in 
most cases. Thus, the variance V(P*A/X) could be small. Simulation 
results will corrobórate this conjecture. 

3.5. Simulation process 

3.5.1. Scheduling lifetimes with exponential distribution 
If lifetime distribution of all the components is exponential, 

the time for the next failure is determined by At= -(l//l)ln(u) 
where u is a random number of the 1/(0,1) distribution and 
A = '}2ie0Xi, where O is the set of operational components. The 



next component that fails is chosen at random with probability 2¡/ 
A, ieO. This rule cannot be applied to other lifetime distributions. 

simulation, being slightly greater than 0.1 in most cases while 
slightly lower than 0.1 in others. 

3.5.2. Rescheduling 
As mentioned above, rescheduling the scheduled events at the 

beginning of each retrial increases the efficiency of RESTART. Due 
to the memory-less property of the exponential distribution, it is 
straightforward to reschedule the residual lifetime (or service 
time) of components that are exponentially distributed. Since only 
the next component failure has to be rescheduled, factor f0 is 
lower with exponential distribution. For the Weibull distribution, 
it is also possible to genérate the residual lifetime (or service time) 
by means of a formula since the inverse of the distribution 
function of the residual lifetime has a closed form. 

For other distributions that have no explicit formula of the 
distribution function, e.g. lognormal distribution, we can use two 
procedures: 

(i) Obtaining a random valué of the whole lifetime (or service 
time) of a component. If that valué is greater than the lifetime 
at the current time, the residual lifetime is obtained as the 
difference between the two amounts. Otherwise a new 
random valué is obtained and so on. This procedure had been 
used in previous studies, e.g., [25]. 

(ii) Calculating the approximate distribution function, F(c), of the 
current lifetime c of a component by looking for the closest 
valué in a table of the distribution function obtained 
numerically. Then obtaining the distribution function of the 
whole lifetime by generating a uniform random number y in 
the interval (F(c), 1). Finally, the residual lifetime is obtained 
as F~^(y)-c. In our experiments, it has been possible to 
reduce the computational time (and thus, factor f0) up to 3.7 
times by applying this procedure for generating residual 
lognormal distributed repair times. 

Slightly better results were obtained in our test cases applying 
procedure (i) a máximum of 3-4 times, and when the residual 
lifetime was not obtained, by applying procedure (ii). 

For distributions that have a closed-form formula of the 
distribution function but not of the inverse of the distribution 
function of the residual lifetime, procedure (ii) is recommended 
but the exact valúes of F(c) and of F_1(y) should be obtained with 
the formula. 

3.5.3. Relative error 
The interval width is evaluated using the independent 

replication method with a non-fixed number of replicas (sam-
ples). After each sample, the half width of the 95% t-Student 
confidence interval divided by the estímate (relative error) is 
calculated. The number of samples is not fixed beforehand and the 
simulation finishes when the relative error is smaller than 0.1. 
Steady-state unavailability and MTBF are estimated at the same 
time, and the stopping condition is applied for unavailability. The 
relative error in the estimation of MTBF is also calculated in the 

4. Test cases 

We simulated models with component lifetimes exponentially 
and Weibull distributed. The repair time of a failed component 
has a lognormal distribution with parameters \i=\2\ and er=0.8 
in all the models. The simulations were run on a Pentium(R) D 
CPU at 3.01 GHz. 

4.1. C(4, 60: F) repairable system 

First, the same example as studied in [19] was simulated. The 
example is a C(4, 60: F) repairable system with three-step Markov 
dependence modelled as in Section 2. If there are / (/=0, 1, 2, 3) 
consecutive failed components that precede the component i, the 
residual lifetime X¡ of component i has an exponential distribution 
with failure rates 2¡=0.001, 0.0012, 0.0017 and 0.0021, respectively 
(called model EL A in Table 1). Simulation was also made 
assuming that component lifetimes follow a Raleigh distribution 
(Weibull distribution with shape parameter equal to 2) with scale 
parameters #=0.00000157, 0.00000226, 0.00000454 and 
0.00000693, respectively (model WL A in Table 1). The mean 
lifetime of the components was the same in both models. In 
model WL A' the components were not new, but were 640 units of 
time oíd at the beginning of the simulation. Unreliability was 
estimated for different small intervals (0, te). The importance 
function is given by Eq. (4) with c/=4. The number of retrials were 
chosen according to Eq. (2), with the valúes of P¡+i/¡_i estimated 
in pilot runs (one or two for each case). We set three thresholds 
and the rare set can be reached in triáis [B3, D3). Results are Usted 
in Table 1 with computing times, speedups and factor estimates. 

Accurate results were obtained with short computational 
times (less than 12min) for estimating probabilities up to the 
order of 10~13. We can observe that much higher reliability is 
obtained with WL A model than with EL A even though the mean 
lifetime of the components is the same in both models. This is due 
to the fact that the Raleigh distribution has an increasing failure 
rate and, for t=l, the constant failure rate of the exponential 
distribution is 640 times the failure rate of the Raleigh distribu­
tion. Reliability of the same order of magnitude is obtained in 
model WL A' because at the beginning of the simulation the 
failure rate is the same in both models. The strong increase in 
reliability obtained using new instead of oíd components is of 
particular note. 

To evalúate the gain in time with respect to a crude simulation, 
the computational time needed to achieve a relative error of 10% 
with crude simulations was measured for the EL A model with 
te=25 and with te=5, and for the WL A' model with te=25. The 
measured valúes were extrapolated to the other cases. For 
example, for the EL A model with te=5 the computational time 
with crude simulation was 12.8 h. As the number of samples for 

Table 1 
Unreliability estimates for C(4, 60: F) system. Relative error=0.1. 

Model 

EL A 
EL A 
EL A 
WLA 
WLA 
WLA 

Interval 

(0, 25) 
(0,5) 
(0,1) 
(0, 25) 
(0, 25) 
(0,1) 

(0, U) i - R ( t ) 

3.4 x l O - 6 

3.8 x l 0 - s 

1.2 x l O - 1 0 

8 . 6 x 1 0 - " 
8.3 x l O " 6 

2.0 x l O - 1 0 

Run-time 

3 
6 

24 
697 

11 
149 

(s) Gain in time 

4 .8x10 2 

7.7 x1o 3 

4 .9x10 5 

2.1 x lO 8 

1.6 x1o 1 

3.8x10 5 

Factor 

2.6 
4.9 

12.5 
28.6 

2.4 
11.0 

h Factors/vx/o 

1.3 
2.1 
2.4 
2.4 
2.0 
2.2 



achieving a given relative error is inversely proportional to the 
probability being estimated, the number of samples for the EL A 
model with te=l is 317 times greater. The measured computa-
tional time of each sample simulated with te=l is 1.24 times lower 
than that with te=5. Thus, the extrapolated computational time 
for simulating the EL A model with te=1 is 3272 h. The gain in time 
shown in Table 1 is obtained by dividing this time by 24 s. This 
extrapolation mode is checked by comparing the measured time 
for te=5 with the time obtained by extrapolating the measured 
time for te=25. 

It is interesting to compare the measured gain with the 
theoretical gain derived from Eq. (1). As the valué of R¡ given by 
Eq. (2) is taken, then/R=l. Factor fT is given by Eq. (3), with the 
valúes of P¡/(¡_i) estimated in the simulation. If we assume/v=l 
and / 0 =l in Eq. (1), we obtain a theoretical gain equal to 612 for 
the EL A model with te = 25. We see that the theoretical gain (for 
fv= 1. fo=1) is 1.3 times the actual gain in time. The ratio 1.3 can be 
taken as an estímate oí fvxf0 for this case. The low valúes of 
fvxfo in all the cases show that the choice of <P(t)=cl-oc(t) is 
appropriate and that the application is efficient for the tested 
models, at least for the cases tested. The low valúes of factor fv 

observed indicates that all the system states at the entry state of 
the same set Q have a similar importance, or at least must be of 
the same order of magnitude. For example if set Q is reached 
when two components of the same cutset fail, the importance is 
greater if the failed components are consecutive and/or there are 
many components in the repair queue. However, if the two failed 
components are not consecutive the importance is not much 
lower, and the number of components in the repair queue is not so 
important due to the way of selecting the component that will be 
repaired. 

The accuracy of the simulation results was validated in two 
ways. First, by checking that similar results are obtained with 
crude and RESTART simulations, in those cases where crude 
simulation is feasible. Second, by simulating a C(4, 5: F) non-
reparable system without Markov dependence (that is, 
li= l2 = l3 = hi) and checking that the analytical results of this 
system, both for exponential and Weibull lifetimes, are within the 
confidence intervals obtained by simulation. 

System steady-state unavailability and MTBF were estimated 
for model EL A and also for exponential lifetime distribution with 
the following failure rates: /l,=0.0003, 0.00036, 0.00051, and 
0.00063 (model EL B) and /l,-=0.0001, 0.00012, 0.00017, and 
0.00021 (model EL C). In models WL A, WL B and WL C, 
component lifetimes follow a Raleigh distribution with the same 
mean lifetime as in the EL A, EL B and EL C models, respectively. In 
all the models the repair time of a failed component has a 
lognormal distribution with parameters /i=1.21 and cr=0.8. 
Results are Usted in Table 2 with computing times, speedups 
and factor estimates. 

The valúes of the gain and of the factors was obtained in the 
same way as those of Table 1. It can be observed that more 
computational time than in the previous case is needed for 

estimating probabilities of the same order of magnitude. Factor/T 

is greater because, as mentioned in Section 3.4, it is only possible 
to set two intermedíate thresholds given that the first threshold is 
reached when two components of the same cutset are failed. 

As expected, factor f0 and thus the p roduc t / v x / 0 is greater 
than in Table 1. However, it is low enough to allow probabilities up 
to the order of 10~10 to be estimated accurately with short 
computational times. The results also corrobórate that the 
importance function <P(t) = cl-oc(t) is appropriate and that the 
application is efficient for the tested models. Factor f0 is lower 
with exponential models because the rescheduling of the lifetimes 
of the components at each retrial is faster with exponential 
distribution and also because of the way the next failed 
component is resheduled, as commented in Section 3.5.2. 

To estímate probabilities lower than, say, 10~20 would require 
much more computational time because factor fT increases as the 
probability to be estimated decreases since it is not possible to set 
more than three intermedíate thresholds. Also the product / v x/ 0 

increases slightly with lower probabilities. The example applica-
tions are not asymptotically efficient for the same reason: it is not 
possible to set a sufficient number of thresholds when the 
probability of the rare set tends to zero [21]. Nevertheless, very 
low probabilities, low enough for most applications, can be 
estimated with reasonable computational effort. 

The accuracy of the simulation results was validated by 
checking that similar results are obtained with crude simulations, 
as well as by simulating a C(4, 4: F) repairable system with 
exponential repair time and without Markov dependence. With 
these assumptions, the repair queue can be modelled as an M/M/l 
queue. The analytical result given by this model was seen to be 
within the confidence interval obtained by RESTART simulation. 

4.2. C(6, 60: F) repairable system 

We also simulated a C(6, 60: F) repairable system with 5-step 
Markov dependence. In cases where / (/ < 6) consecutive failed 
components precede the component i, the residual lifetime X¡ of 
component i has an exponential distribution with failure rates (A¡) 
of 0.001, 0.0012, 0.0017, 0.0021, 0.0025 and 0.0029, respectively 
(called model EL D in Table 3). Simulation was also made 
assuming that component lifetime distributions were Raleigh 
with scale parameters #-=0.0000157, 0.0000226, 0.0000454, 
0.0000693, 0.0000982 and 0.0001149, respectively (model WL D 
in Table 3). Although the mean lifetime of the Raleigh components 
were vTO times lower than that of exponential components, the 
reliability was greater because it was estimated for small intervals 
(0, te) for which the failure rate is smaller with Raleigh lifetimes, 
as commented in Section 4.1. 

System steady-state unavailability and MTBF were estimated 
for an exponential lifetime distribution with failure rates obtained 
as 0.3 and 0.1 times the failure rates of model EL D (models EL E 
and EL F, respectively). In WL E and WL F models, component 

Table 2 
Unavailability and MTBF estimates for C(4, 60: F) system. Relative error=0.1. 

Model 

EL A 
ELB 
ELC 
WLA 
WLB 
WLC 

1 - Á 

1.6x 1(T5 

4.6 x 1(TS 

4.5 x 10 - 1 0 

2.2 x 1(T5 

8.8 x 1(TS 

5.8 x 1(T1 0 

MTBF 

5.8x10 5 

2.8x10 S 

1.7 x lO 1 0 

8.9x10 5 

1.4 x lO 8 

1.4 x lO 1 0 

Run-time 

(s) 

4 
12 
35 
12 
45 

194 

Factor 

ÍT 

2.6 
9.0 

34.9 
2.5 
8.2 

32.8 

Gain in time 

3.8 x 101 

1.3 x1o 3 

1.4 x1o 4 

1.4 x1o 1 

2.6x10 2 

3.0 x1o 3 

Factors 
/ vx /o 

4.4 
5.9 
8.6 
9.4 
5.9 

34.8 



Table 3 
Unreliability estimates for C(6, 60: F) system. Relative error=0.1. 

Model Interval (0, \ _ Rm Run-time Gain in Factor Factors 
te) (s) time fT fvxfo 

ELD (0,25) 1.8 x l O - 9 17 2.0 x l O 5 2.8 2.2 
ELD (0,5) 1.6 x l O " 1 2 32 2.8 x 107 5.6 4.9 
WLD (0,25) 3 . 4 x 1 0 - " 218 1.2 x 10s 5.9 4.8 
WLD (0,12) 2.1 x l 0 ~ 1 6 791 5.0 x lO 1 0 13.3 5.2 

Table 4 
Unavailability and MTBF estimates for C(6, 60: F) system. Relative error=0.1. 

Model 1 — A MTBF Run-time Factor Gain in Factors 
(s) fT time fvxfo 

ELE 4 . 5 x 1 0 - " 2 . 3 x 1 0 " 30 5.2 9.7 x 105 7.1 
ELF 4.6 x lO~ 1 4 2.4 x lO 1 4 84 15.4 1.1 x 10s 12.5 
WLE 4 . 8 x 1 0 - " 3 . 3 x 1 0 " 195 5.4 1.4 x l O 5 44.0 
WLF 3.4 x l O - 1 4 3.5 x lO 1 4 715 17.7 1.8 x lO 7 91.2 

lifetimes follow a Raleigh distribution with the same mean 
lifetime as in the EL E and EL F models, respectively. Results are 
listed in Table 4 with computing times, speedups and factor 
estimates. 

The importance function is given by Eq. (4) with c/=6. In these 
models it is possible to set four intermedíate thresholds to study 
steady-state unavailability and MTBF and five intermedíate 
thresholds to study unreliability. As a consequence, factor fT 

(and, thus, computer time) is significantly reduced. Therefore, the 
gain is greater than in the C(4, 60: F) system for estimating 
probabilities of the same order of magnitude. This fact also allows 
lower probabilities (up to the order of 10~16) to be estimated with 
modérate computational effort. Unlike with importance sampling, 
RESTART works better with higher redundancies because it allows 
more thresholds to be set. 

4.3. Other similar systems 

A great advantage of RESTART compared with importance 
sampling or conditional expectation is the simplicity involved in 
changing some model assumptions, given that no analytical study 
is required in most cases. For example, for simulating the Weibull 
model with this method it is simply necessary to change some 
lines of the computer program used for the exponential model. 
Spare components, other types of dependence or even failure 
propagation (e.g., the failure of a component causes some other 
components to fail with given probabilities) can be easily 
considered in the model, in a similar manner as was done in 
example 2 of [25]. Another possible extensión is to consider 
several repairmen instead of one, as in example 1 of [25]. To 
implement this, we would first have to write one future event for 
each repairman in the list of future events of the simulation 
program (as in crude simulation), and then reschedule several 
repair times instead of one at the beginning of each retrial. So, it 
would not be difficult to implement this extensión. 

It is a straightforward task to study circular systems like those 
considered in [2,27,28]. This system for short consists of a 
sequence of n ordered components along a circle (instead of 
along a line) so that the system fails if, and only if, at least fc 
consecutive components in the system fail. To simúlate this 
system with RESTART it is merely necessary to add fc - 1 cutsets to 
the list of cutsets of the C(fe, n: F) system. The changes in the 
simulation program are just the same as we had to make with 
crude simulation. For the same parameters as in the EL E model of 

Table 4, we obtained an unavailability of 4.9 x 10 _ 1 1 with 29 s of 
computational time and for the EL F model an unavailability of 
5.0 x 10~14 with 81 s of computational time. 

The same importance function could also be applied for 
studying other models such as the consecutive fc-out-of-r-from-n 
system (see e.g., [29,30]). This system has n ordered elements and 
fails if less than fc out of r consecutive elements are in working 
condition. In this model there are more cutsets, all of them with 
cardinality r-fc+1. To simúlate this system with RESTART, we 
would have to make the same changes in the list of cutsets of the 
C(fc, n: F) system as with crude simulation. Another similar system 
is the fc-out-of-r-from-n system with múltiple failure criteria, 
proposed by Levitin [31 ], although in this model the cutsets show 
different cardinality. For example, the (1, 2)-out-of-(3, 5)-from-12 
system with múltiple failure criteria works if at least one of each 
three consecutive components works and 2 of each 5 consecutive 
components. The minimal cutsets are: (1,2,3), 
(2,3,4) (10,11,12), (corresponding to the first criterion) and 
(1,2,4,5), (2,3,5,6) (8,9,11,12) (corresponding to the second 
criterion). The same importance function with c/=3 could be 
applied. The first threshold, for example, is reached if either a 
component of a cutset with cardinality 3 or two components of a 
cutset with cardinality 4 fail. However, the importance function 
used in this paper is not valid for some models, e.g., the 
generalized fc-out-of-n system proposed by Cui and Xie [32] or 
the linear multi-state sliding window system proposed by Levitin 
[33]. Further investigation is required to find a better importance 
function for those models. 

The splitting technique described in [22] could be applied for 
estimating the unreliability but the run-time would be slightly 
greater than with RESTART. However, splitting is useless for 
estimating the steady-state unavailability because it is only valid 
for simulations made by means of short replicas, e.g., short 
transient simulation or regenerative simulation of simple systems 
[21 ]. The two variants of splitting that use resplits, as described in 
[26], might also be appropriate for this problem, given that those 
variants are closer to the RESTART method than to splitting. 

5. Conclusions 

The paper studies dependability estimation for a consecutive-
fc-out-of-n: F repairable system with non-exponential component 
lifetimes and repair time distributions and (fc-l)-step Markov 
dependence. Different measures, including unreliability, MTBF 



and steady-state unavailability of highly dependable systems, are 
estimated by RESTART, a general method for rare event simula-
tion. Probabilities up to the order of 10~16 have been accurately 
estimated with short computational effort. 

The advantage of RESTART over other methods, such as 
importance sampling or conditional expectation, is that it is not 
so dependent on particular features of the system, e.g., component 
lifetime distributions. Only the importance function depends on 
the system being simulated. However, the same importance 
function as used in this paper can be applied to different models 
without additional analytical effort, regardless of the level of 
redundancy or of whether the model is Markovian in nature or 
not. This feature could extend the use of our method for 
dependability estimation to many other systems. In this paper, 
we have extended the model introduced in [19] to the case of non-
exponential component lifetimes, estimating the steady-state 
unavailability that was not estimated therein. We have also 
studied higher redundancy cases and circular systems. Other 
possible extensions suggested in [19], such as considering 
r repairmen, are straightforward with RESTART. The same 
importance function could be applied to other models like 
consecutive fc-out-of-r-from-n system with múltiple failure criter-
ia proposed by Levitin [31]. However, extensión to some models 
like those considered in [32,33] would require further investiga-
tion to improve the importance function used in this paper. 
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