
HAL Id: hal-02075618
https://hal.science/hal-02075618

Submitted on 23 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reliability assessment of complex mechatronic systems
using a modified nonparametric belief propagation

algorithm
Xiaopin Zhong, Mohamed Ichchou, Alexandre Saidi

To cite this version:
Xiaopin Zhong, Mohamed Ichchou, Alexandre Saidi. Reliability assessment of complex mechatronic
systems using a modified nonparametric belief propagation algorithm. Reliability Engineering and
System Safety, 2010, 95 (11), pp.1174-1185. �10.1016/j.ress.2010.05.004�. �hal-02075618�

https://hal.science/hal-02075618
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Reliability assessment of complex mechatronic systems using a modified
nonparametric belief propagation algorithm

X. Zhong a, M. Ichchou a,�, A. Saidi b
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Various parametric skewed distributions are widely used to model the time-to-failure (TTF) in the reliability analysis of mechatronic systems, where 

many items are unobservable due to the high cost of testing. Estimating the parameters of those distributions becomes a challenge. Previous research 

has failed to consider this problem due to the difficulty of dependency modeling. Recently the methodology of Bayesian networks (BNs) has greatly 

contributed to the reliability analysis of complex systems. In this paper, the problem of system reliability assessment (SRA) is formulated as a BN 

considering the parameter uncertainty. As the quantitative specification of BN, a normal distribution representing the stochastic nature of TTF 

distribution is learned to capture the interactions between the basic items and their output items. The approximation inference of our continuous BN 

model is performed by a modified version of nonparametric belief propagation (NBP) which can avoid using a junction tree that is inefficient for the 

mechatronic case because of the large treewidth. After reasoning, we obtain the marginal posterior density of each TTF model parameter. Other 

information from diverse sources and expert priors can be easily incorporated in this SRA model to achieve more accurate results. Simulation in simple 

and complex cases of mechatronic systems demonstrates that the posterior of the parameter network fits the data well and the uncertainty passes 

effectively through our BN based SRA model by using the modified NBP.

1. Introduction

Reliability analysis is an essential element during the devel-

opment of mechatronic systems. The attempt to improve system

reliability makes the system reliability assessment (SRA) an

ongoing research topic. A number of methods for SRA have been

developed, most of which estimate the system reliability using

only the data of components since it is much easier and less

expensive to test the components/subsystems than the entire

system. In general, the authors believe that SRA remains a difficult

problem for the following reasons.

� Complexity: Products are built increasingly complex due to

added functionalities. It becomes more difficult to propagate

component information to the system level in those systems

with high complexity.

� Expensiveness: of testing. Testing a whole complex system

tends to be impossible. Reliability assessment at the system

level requires a good tool to efficiently combine the informa-

tion collected from various levels and diverse sources.

� Functional and temporal dependency: A failure might be caused

by more than one mutually-dependent event, such as shared

causes, exclusive events and standby redundancies. The

exploitation of explicit dependence is itself a challenge.

� Uncertainty due to variability of model, also known as

epistemic uncertainty. This arises from a lack of knowledge

about the probability distribution of time-to-failure data.

SRA is clearly a problem of system decision with inherent

ambiguities. The statistical inference provides a promising metho-

dology for such decision problems by finding the ‘‘best guess’’ for the

interesting items given the existing observation. As one of the most

popular approaches over the last decade, Bayesian networks (BNs)

have many advantages over the classical reliability formalisms when

applied to SRA [1,2]. BNs can deal with the problem of dependency

under not only temporal but also functional relations. The BN

formalism can accept and integrate the diverse data from all kind of

sources, such as the prior specifications given by manufacturers, the

historical TTF data and the current testing data. In a BN, we can

easily propagate the uncertainties, which would be difficult and

even impossible with conventional logic models, e.g. fault trees and
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event trees. Moreover, the methodology of BNs has been so well-

studied that we have many options for modeling and reasoning in

various situations.

However, the previous research on BNs has not paid enough

attention to the parameter uncertainty of failure models that are

usually parametric skewed distributions. There are obviously

some unobservable items (e.g. no test data) in a complex

mechatronic system, thus it is a challenge to estimate the model

parameters of those items. The main contribution of this research

is that we propose a continuous BN model to estimate the optimal

configuration of time-to-failure (TTF) model parameters for a

complex mechatronic system using data from diverse sources,

and we develop a modified nonparametric belief propagation

algorithm to obtain the marginal density in non-singly-connected

BNs without the use of a junction tree.

The remainder of this paper is organized as follows. After

reviewing the related works in Section 2, we formulate in Section 3

our basic model of system reliability assessment. In Section 4, the

nonparametric belief propagation is modified and applied to the

inference of the basic model. The simulation results and

discussion shown in Section 5 demonstrate that our model is

effective and efficient. Finally, some conclusions and perspectives

are offered in Section 6.

2. Related works

In this section, the related methods of system reliability

assessment (SRA) are reviewed and classified, especially those

using the BN based approaches. Since there exist various

methodologies for modeling and analyzing system reliability,

the authors also refer the readers to a more detailed classification

by Mihalache [3] and an alternative review by Zio [4].

In the past decades, many methods have been applied to SRA

with the help of specific mathematical tools, such as fault trees

(FTs) [5], reliability block diagrams [6], petri nets [7], method of

moments [8] and so on. Among these approaches, the FT

formalism is undoubtedly the most widely used one due to its

efficiency and the capability of system abstraction. However, it

cannot cope with the temporal or functional dependency among

components. To deal with the temporal interrelation, people

proposed Markov chain (MC) method [9,10] and dynamic fault

trees (DFTs) [11,12]. The problem of combinatorial explosion is

nevertheless intractable when applying those two well-known

methods to highly-complex mechatronic systems. Moreover, they

work only under the assumption that the TTF of components obey

the exponential distribution law. In recent years, Bayesian

reliability analysis has proved to be a powerful tool providing

important methodological advantages over the conventional

techniques [13]. The BN methodology is strongly recommended

[1] as an effective and versatile SRA tool that is capable of

modeling both temporal and functional dependency. Another

important advantage over traditional approaches is the ability to

combine the information from diverse sources [14]. BNs become

attractive due to the ease of building a BN from FT [15] and

directly from existing data [16].

In the authors’ view, the published approaches based on BNs

can be classified into three categories according to the variable

type in the network. (1) Working state based BNs, also known as

event based BNs. The working state usually indicates fail/work

which is inherited from binary decision diagrams (BDD) and FTs.

The node variables are thus defined in discrete space. Most

published research work [17,18,2] falls into this category. For more

flexibility in modeling the working condition, Weber [19]

introduced the multi-state variable to describe the degradative

states of items in dynamic Bayesian networks (DBNs). These

methods calculate the distribution of system state deterministi-

cally by using conditional probability tables (CPTs) established

by experts in advance. However, the temporal dependency might

be time-varying due to the existence of component deterioration

and environment change. An unchangeable CPT may mismatch

the time-varying temporal dependency. Furthermore, the working

state based BNs are not flexible enough to analyze the risk in

continuous time space because the estimation must be re-

executed at each timestamp concerned. (2) TTF model based BNs.

These BNs assign a probabilistic description to the TTF data of

an item, see the simple example of binary distribution discussed

by Langseth [1]. Boudali [20] presented a non-parametric discrete-

time TTF model, and Boudali [21] succeeded in modeling a

continuous-time TTF in close-form without considering the model

uncertainty. However it is still non-trivial to directly model

the TTF because of the complexity of modeling an arbitrary

probability density in continuous space. Johnson [22] and

Anderson-Cook [23] modeled the distribution parameters of TTF

as a continuous unknown variable, such as the scale and the shape

of a 2D Weibull density. This facilitates passing information

through the network and the reliability analysis at system level

based on the characteristics of the skewed distributions, e.g.

Weibull analysis. Therefore, the uncertainty of the model para-

meters must unavoidably be considered. The problem of SRA is

hence regarded as an inference of the continuous model

parameters in a BN. We notice three advantages compared with

the first category: any parametric distribution can be used to

model the TTF model parameters uniformly or differently; no CPT

needs to be completed, the dependency is specified according to

the problems or learned from examples; after statistical inference,

the posterior finds the ‘‘best guess’’ solution and fully describes

the uncertainty relative to the TTF model parameters. (3) Hybrid

state based BNs. Neil [24] and Marquez [25] have successfully

modeled TTF distribution by continuous random variables as well

as by discrete random variables (e.g. working states of items). In

fact, the discrete variables can be directly appended into the BNs of

the second category when the TTF models of items are ready. In all

the research works above, little study was made of parameter

uncertainty in the TTF model for system reliability, though it

has long been investigated in relation to component reliability

[26,27].

On the other hand, a number of statistical inference algorithms

have been proposed to perform reasoning in a graph. Exact

inference in discrete state BNs is possible with some exact

marginalization algorithms for trees, such as variable elimination,

belief propagation [28] and junction trees [29]. However, the

integral in continuous state space still raises some difficulties.

Until recently a number of discretization methods have been

suggested to perform the inference in the continuous graph [30],

such as mixture of truncated exponentials [31] and dynamic

discretization [24,32]. Most of these methods rely on the junction

tree algorithm in the case of non-singly-connected BN. However,

performing an inference in the junction tree with treewidth ktr
will have at least one computation which requires time

exponential in ktr due to the marginalization process over

supernodes. Therefore the junction tree based methods become

less attractive for mechatronic systems because the subsystems in

a mechatronic system, especially the electronic devices, com-

monly have a large number of components (input items), which

leads to a large treewidth in the generated junction tree. We

found that the sampling based nonparametric belief propagation

(NBP) [33] is efficient and applicable to our BN model because of

the flexible uncertainty representation by means of kernel density

estimation (KDE, an open-source toolbox of KDE has been

provided by Ihler [34]). Unlike the other inference methods for

loopy graphs, the NBP does not propagate information in a

2



junction tree, but instead it iterates the message updates in a

loopy graph until convergence.

From the review above, we see that the previous research has

not paid enough attention to the stochastic nature of parametric

TTF models in system reliability. In this paper, we formulate a

new BN model to cope with the parameter uncertainty of the SRA

problem. Our proposed BN model falling into the second category

is an extension of the formalism of Bayesian component reliability

[13], see Section 3 for the basic model. In contrast with

conventional methods, we do not predefine the quantitative part

of BNs, but learn the dependency, which is derived from

probabilistic noisy gates, from some sample testing data. This

model is efficiently solved by a modified version of the NBP

algorithm.

3. A new model for SRA

Unlike the continuous time-to-failure (TTF) models in [21,35],

our method for SRA uses the general BN framework to model the

failure parameters of items in the complex system and their

dependency. This model allows us to estimate the parametric TTF

distributions of all items given the observed failure data as

evidence.

As the qualitative part of a BN model, the directed acyclic

graph (DAG) can be constructed from the fault tree model by

Bobbio’s method [15]. However in our model the network

variables denote neither the working state of items nor the items’

TTF, but the items’ failure parameters which are function outputs

of the noisy gates rather than the deterministic gates. By ‘‘noisy’’

we do not mean the uncertainty of the output event (success/

failure) as do the methods in other published work [15,35], rather

we mean the uncertainty of the model parameters of the output

failure distribution. For example, a simple OR-gate system C is

shown in Fig. 1a with two basic independent components A and B.

A, B and C have exponential failure distributions with the failure

rates la, lb and lc respectively. Their failure times are denoted by

ta, tb and tc respectively. If the OR-gate is deterministic, C fails

when either A or B fails. Then C fails in the time interval (0,t] with

the probability PrðtcrtÞ ¼ Prðtart [ tbrtÞ ¼ PrðtartÞþPrðtbrtÞ�
PrðtartÞPrðtbrtÞ. Notice that for an exponential failure

distribution PrðtÞ ¼ 1�e�lt . Therefore the failure rate of C can be

obtained from the equation above, i.e. ldc ¼ laþlb, where the

superscript d represents the deterministic case. Analogously in the

case of the deterministic AND-gate, PrðtcrtÞ ¼ Prðtar t \ tbrtÞ,
then l

d
c ¼� 1

t ln½e�latþe�lbt�e�ðla þlbÞt�. We say that the gate is

noisy or uncertain, then the failure rate is contaminated by a noise,

such as lc ¼ l
d
c þwc where wc is an additive noise. This parameter

uncertainty can be perceived by the stochastic nature of failure

density in reliability analysis, see Fig. 2. Indeed, this uncertainty is

common in a mechatronic system for at lease the following reasons.

First, not all failure modes can be found because of the large

number of components in the electronic and mechanical

subsystems. The modes not found can have more or less influence

on the gates. Second, the multi-parameter skewed distributions are

widely used for a mechatronic system due to its various failure

modes. For some multi-parameter distributions, the deterministic

output parameters may not have any solution because we have only

one equation (the output failure distribution). Third, the effect of

environment is usually unmeasurable, especially for the electronic

and mechanical subsystems.

None of the previous research has addressed this noise which

is difficult to measure. Fortunately, this uncertainty can generally

be described by a statistical model on the test data acquired from

the basic components as well as from the system. The SRA

problem can then be formulated as a probabilistic reasoning

process for the failure parameter of each item given the test data.

As analyzed above, it is difficult to model the parameter

uncertainty directly. For this reason we turn to the TTF density

that is a function of the parameters. We denote the density by

fiðxi,tÞ, iAIn, where In is the label set of the nodes in the BN and

Xi¼xi is a unified notation for all types of multidimensional

parameters. For brevity the time is hereafter omitted in density

expressions. For instance, the exponential TTF density of Xc in

Fig. 1c is fcðXc ¼ lcÞ ¼ fcðlcÞ ¼ lce�lct , tZ0.

Fig. 2 shows the stochastic nature of failure density in

reliability analysis. Thus a probability distribution is expected to

represent the stochastic nature of fiðXiÞ, iAIn. Notice that a higher

probability should be assigned to an uncertain density that is

closer to the deterministic density. Then some symmetrical

distributions, such as the normal and the triangular distributions,

can be selected when no other prior information is known [26]. In

this paper, the normal distribution is used because of its

flexibility. Further the ‘‘closer’’ is measured based on a distance

FT OR-gate model

A
N

D

FT AND-gate model BN Model

λa
λb

λc

Fig. 1. The simplest OR-gate and AND-gate models described by Fault tree (FT) and Bayesian network (BN). The BN model is converted from the FTs by the method in [15].

(a) FT OR-gate model, (b) FT AND-gate model and (c) BN model.

t1 t2 t

f (t)

Fig. 2. The stochastic nature of failure density in reliability analysis.
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function dð�,�Þ between probability densities. Thus the parameter

uncertainty can be reduced to the distance uncertainty,

dðfiðXiÞ,f di Þ �N ð0,siÞ, iAIn, ð1Þ

where fi
d denotes the deterministic output density function of the

gate going to node i. N ð0,siÞ is a normal distribution with zero

mean and standard deviation si which will be discussed at the

end of this section. Note that a distance cannot be negative. A

one-sided normal distribution is then considered. Then given si,

we have

Pr½dðfiðXiÞ,f di Þjsi� ¼
2
ffiffiffiffiffiffi

2p
p

si

exp �
d2ðfiðXiÞ,f di Þ

2s2
i

( )

, iAIn: ð2Þ

In fact this ‘‘one-sided’’ transformation does not affect the

simulation results of those parameters because of the normal-

ization stage in a probabilistic inference algorithm. The formula-

tion above plays the role of output parameter prediction based on

the parameters of the basic items.

For the gates with more than two basic items, the determi-

nistic output density functions f di can still be derived without

difficulty [13]. For a series structure, the system functions only if

all components function, i.e. for iAIn,

f di ¼
X

jABðiÞ
fjðxjÞ �

Y

kABðiÞ\j
ð1�FkðxkÞÞ, ð3Þ

where BðiÞ denotes the label set of node i’s basic component nodes

and Fk(Xk) is the cumulative probability function of fk(Xk). BðiÞ\j
means the set BðiÞ except j. For a parallel structure, the system

functions if any component functions, i.e. for iAIn,

f di ¼
X

jABðiÞ
fjðxjÞ �

Y

kABðiÞ\j
FkðxkÞ: ð4Þ

Series and parallel structures are special cases of k-of-n systems,

which can be re-structured as Cn
k parallel subsystems of k series

components. Hence any k-of-n system can also be analyzed by a

repeated calculation of Eqs. (3) and (4).

So far we can obtain the dependency between the output

parameter and the parameters of basic items in Eqs. (2)–(4).

Finally the quantitative part of our BN model, i.e. the conditional

probability distribution (CPD), is defined by

PrðXi ¼ xijfXj ¼ xjgjABðiÞÞ ¼ Pr½dðfiðxiÞ,f di Þjsi�, iAIn: ð5Þ

There are many choices for the distance function between

probability densities [36], such as Kullback–Leibler (KL) diver-

gence and Euclidean distance. The following example demon-

strates the effect of the dependency described above.

Example. A simple exponential-distributed series system con-

sists of two components, whose FT model has the same structure

as that of Fig. 1a. The TTF of node A is modeled as exponential

density with failure rate la ¼ 0:68 and that of node B is modeled

as Weibull distribution with shape kb¼1.5 and scale lb ¼ 1. We

discretize the densities (time interval ¼ 10�3s) and take the KL

divergence as distance metric. The distribution of the system

parameter (Xc) given the parameters of the basic items, i.e.

PrðXc ¼ lcjXa ¼ flag,Xb ¼ fkb,lbgÞ, is then calculated from Eq. (5)

and shown in Fig. 3 for different deviation value sc . From Fig. 3 we

observe that the smaller sc is, the sharper the distribution is.

In other words, the gate tends to be deterministic with the

decrease of sc . While sc increases, the information from the basic

items to the system tends to be cut off by the gate because

PrðXcjXa ¼ flag,Xb ¼ fkb,lbgÞ tends to be uniform and no

uncertainty can pass through a uniform CPD.

The remainder of this dependency model is the standard

deviation si in Eq. (2) that encodes the dependency between

the parameters of the basic items and those of the higher level

item. In order to achieve the best distinguishing capacity of

Eq. (2), this standard deviation can be estimated by a parameter

estimation technique. The maximum likelihood estimation (MLE)

approach is selected in our implementation because of its ease of

use. If there exists adequate sample data, MLE yields

s�
i ¼ argmax

s

Y

j

PrðyjjsiÞ, iAIn, ð6Þ

where yj¼d(f i
(j),fi

d) is called pseudo-observation that represents

the distance between a sample candidate density fi
(j) and the

deterministic density fi
d. The above formulation can be converted

to logarithmic interpretation to avoid the trouble of exponential

overflow. In practice, we reuse this parameter s for the same

type of components or subsystems. The readers are referred to

Section 5 for a simulation example of this standard deviation

estimation.

4. Approximate inference

After modeling, the Bayesian network needs a process of

probabilistic reasoning, i.e. an approximate inference in the

continuous networks. The inference task of a BN is to calculate

the posterior marginal probability of each hidden variable given

the observed variables. We have various methods to perform the

approximate inference in a continuous network [30]. As described

in Section 2 the conventional inference methods for non-singly-

connected continuous graphs depends on a junction tree, such as

dynamic discretization in [35,32]. However, the computation of

exponential in treewidth makes the junction tree based methods

less attractive for mechatronic applications. Recently a nonpara-

metric belief propagation (NBP) in Markov random fields (MRFs)

has attracted our attention because of its reasoning capacity and

efficiency in the general loopy graphs. In particular, it is a linear

time algorithm proportional to the number of hidden variables. To

facilitate the inference process of NBP, we need to convert the BN

to a corresponding MRF. Then following a brief introduction of

NBP, a modification on the NBP is made to adapt the NBP to the

newly-generated MRF.

4.1. NBP algorithm in pairwise MRF

According to Weiss’ method [37], arbitrary BN can be con-

verted to an undirected graphical model, i.e. pairwise MRF. An

1 2 3 4
0

1

2

3

4

5

λc of exponential

d
e
n
s
it
y

σc = 0.1

σc = 0.05

σc = 0.02

σc = 0.01

Fig. 3. The distribution of output parameter given the parameters of the basic

items.
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example of this conversion is demonstrated in Fig. 4. The method

is to add a cluster node for the parent nodes that share a common

child in the BN, add the connection between the cluster node and

the parents/child, then replace the directed arcs with undirected

ones. In the example, the variable for the newly-created node is

denoted by X5 which is a compound variable of the parents, i.e.

X5 ¼ fX u

5,2,X
u

5,3,X
u

5,4g. We say X5 and X4 are consistent with each other

if xu5,4 ¼ x4 and inconsistent if xu5,4ax4. For convenience in the

pairwise MRF, we still call node 1 the child of node 5 and node 2 (or

3, 4) a parent of node 5. The child set and the parent set of a cluster

node, say i, are denoted by ChðiÞ and PaðiÞ respectively. Furthermore

Ic refers to the label set of the cluster nodes and di denotes the

corresponding test data (e.g. TTF) of node i, iAIn.

Besides the qualitative specification, the corresponding MRF

and the original BN should have the same joint probability

distribution, which is a quantitative part of the graphical model.

Suppose that all probabilities are positive, the Hammersley–

Clifford theorem [28] guarantees that the joint probability

distribution can be factorized into a product of the compatibility

functions of the cliques over the graph. Thus the joint density of a

pairwise MRF is factorized as follows

PrðX,DÞp
Y

iAI

fiðXiÞ
Y

iAI

Y

jAGðiÞ
cjiðXj,XiÞ, ð7Þ

where I ¼ fIn,Icg. X and D denote the joint variable and joint

observation respectively. GðiÞ denotes the label set of neighbors of

node i. The quantitative specification of a pairwise MRF is then

composed of fið�Þ and cjið�,�Þ, named as first-order potential and

second-order clique potential respectively. They encode the

dependency between nodes and are set in the following way so

that the joint probability distribution of the MRF is identical to

that of the BN: fiðXiÞ ¼ PrðdijXiÞ represents the likelihood of

observed data di with respect to variable Xi, implying the local

evidence; cjiðXj,XiÞ is the child’s conditional probability given the

corresponding cluster variable if it is a potential between a cluster

node and the corresponding child (e.g. node 5 and node 1 in Fig. 4b);

otherwise, cjiðXj,XiÞ is set to one if the compound node is consistent

with the parent node and zero otherwise. For the example in Fig. 4b,

c51ðX5,X1Þ ¼ PrðX1jX5Þ, c25ðX2,X5Þ ¼ 1 if X u

5,2 ¼ X2 (X2 and X4 are

consistent with each other) and 0 when X u

5,2aX2 (inconsistent).

Finally PrðX,DÞ ¼
Q

iPrðdijXiÞ � PrðX1jX2,X3, X4Þ, which is identical to

that of the BN model.

In the belief propagation (BP) algorithm, we use a so-called

‘‘message’’ from a hidden node (say j) to another one (say i) to

describe how likely node i will be in one state given the

knowledge of node j, i.e. mji(Xi), see Fig. 4c for message passing

paths. The belief at node i denotes how likely node i should be in

one state given the information from neighbors and from its local

evidence. It is then proportional to the product of local evidence

and all the messages coming to node i, i.e.

biðXiÞpfiðXiÞ �
Y

jAGðiÞ
mjiðXiÞ: ð8Þ

Accordingly, the estimates of minimum mean square error

(MMSE) and maximum a posterior (MAP) are obtained based on

this belief. Furthermore, the messages are updated iteratively by

the rule

mt
jiðXiÞ ¼ a

X

Xj

cjiðXj,XiÞ � fjðXjÞ �
Y

kAGðjÞ\i
mt�1

kj ðXjÞ, ð9Þ

where t indicates the iteration index and a is a normalization

constant. The summation is replaced by an integral with respect

to Xj for a continuous network. The BP is also known as a sum–

product algorithm. It has been proven [38] that in the case of a

singly-connected graph, the BP in fact converges and gives the

exact marginal probabilities for all the hidden nodes. Although

the BP cannot guarantee the convergence in the loopy case, the BP

has been applied with experimental success [39].

Until recently, the techniques of Monte Carlo sampling and

kernel density estimation has provided an efficient way to

perform BP inference in loopy continuous graphs, named

nonparametric belief propagation (NBP, [33]). It is called non-

parametric because the message is represented by a mixture of

Gaussian which is a sample-based or kernel density estimate

mjiðXiÞ ¼
X

N

n ¼ 1

wðnÞ
ji �N ðXi;m

ðnÞ
ji ,LjiÞ, ð10Þ

where wji
(n) is a weight associated with nth kernel mean mðnÞ

ji
, and

P

nw
ðnÞ
ji

¼ 1. N is the number of kernel means used for density

estimation. Lji is the common bandwidth. The belief (Eq. (8)) and

message updating (Eq. (9)) are implemented by using sampling-

based approximations in two stages: message product and

message propagation.

In the first stage, the product ofmN-component messages yields

a new mixture of Gaussian with Nm components. Each component

and its weight can be obtained by the following equations

N ðX ;m,LÞp
Y

m

i ¼ 1

N ðX ;mi,LiÞ, ð11aÞ

L
�1 ¼

X

m

i ¼ 1

L�1
i , L

�1
m ¼

X

m

i ¼ 1

L�1
i mi, ð11bÞ

w ¼
Y

m

i ¼ 1

wiN ðX ;mi,LiÞ=N ðX ;m,LÞ: ð11cÞ

To avoid the exponentially-large number of mixture components, a

Gibbs sampler [40] is employed to draw N independent samples as

d1

d2 d3 d4

BN model

d1

d2 d3 d4

X5 = {X2,X3,X4}

pairwise MRF model

d1

d2 d3 d4

m45

m54

m25

m15

local message passing in MRF

Fig. 4. An example of the conversion from (a) a BN to (b) the corresponding pairwise MRF and (c) the local message passing in the MRF. The shaded circles represent the

hidden nodes and the white circles denote the observed ones. (a) BN model, (b) pairwise MRF model, and (c) local message passing in MRF.
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kernel means of the message product. In our experience, about one

hundred kernels make it possible to achieve satisfying approxima-

tions of the 2D and 3D densities even for a rare event. It is not

surprising that this approximation is much faster than the other

stochastic simulation methods, such as Markov chain Monte Carlo

(MCMC) which requires many more samples to stochastically

update the density representation.

In the second stage, the NBP propagates each component of a

message by approximating the integral in Eq. (9). Before the

propagation, the product of
R

cjiðXj,XiÞdXi and fjðXjÞ are regarded

as a marginal influence and calculated as xðXjÞ,

xðXjÞ ¼fjðXjÞ
Z

Xi

cjiðXj,XiÞdXi: ð12Þ

For message mji(X
i), each sample xj

(n) drawn from the product

xðXjÞfjðXjÞ
Q

kAGðjÞ\imkjðXjÞ in the first stage is propagated to node i

by sampling Xi from cjiðx
ðnÞ
j ,XiÞ using importance sampling or

MCMC techniques. After obtaining those output samples as kernel

means of the updated message, we can choose a kernel bandwidth

Li by leave-one-out likelihood cross-validation [41]. We refer the

readers to [33] for the detailed generic NBP algorithm.

4.2. Modified NBP

We notice that the generic NBP may encounter two problems

in the newly-generated MRF when propagating the message

between a cluster node and its parents, because of the specifica-

tion of second-order clique potentials generated by the conver-

sion from BN to MRF. Without loss of generality, we suppose node

sAIc is a cluster node and node pAPaðsÞ is one of its parents. Like

the example in Fig. 4b X5 ¼ fX u

5,2,X
u

5,3,X
u

5,4g, we denote by X u
s,p the

corresponding component of node p in compound variable Xs.

Then we discuss the message propagation stage for the construc-

tions of msp(Xp) and mps(Xs) as follows respectively.

First, since the second-order clique potential between Xs and

Xp is a delta function, any common sampling technique for

Xs �cpsðXp,XsÞ or Xp �cspðXs,XpÞ is unfeasible. We suggest making

them consistent with each other instead of sampling. For

example, given a message product sample xs
(n) of Xs we set

xðnÞp ¼ xuðnÞs,p as a new sample of Xp. Vice versa, when given a sample

xp
(n) of Xp we set xuðnÞsp ¼ xðnÞp . For the other components in Xs,

sampling techniques can still be used. However, cpsðXp,XsÞ does
not provide any information about the other components except

that of node p. Any sampling method will sample from a uniform

distribution for the other components.

The second concern is that sampling the other components

from uniform distributions will degenerate the message product
Q

pAPaðsÞmpsðXsÞ. We use a two-component example for further

explication. When a system, say X3, consists of two basic

components, say X1 and X2, we can refer X4 ¼ fX u

4,1,X
u

4,2g to the

compound node. Then the kernel means of message m14(X4) are

sampled as described in the first issue, i.e. xuðnÞ4,1 ¼ xðnÞ1 and X u

4,2

sampled from uniform distribution. The kernels of message

m24(X4) are obtained in the same manner. Before propagating

those messages to node 3, a message product is required. Fig. 5

shows a possible kernel of m14(X4) and two possible kernels

ofm24(X4). According to the rule of message product in Eqs. (11a)–

(11c), their product is also a normal function whose mean is a

linear interpolation of two kernels. Obviously, the important

region for the following message propagation is a small area

where the samples get high probability in both components, such

as the ellipse region in Fig. 5. This is because concentrating the

samples in this area can reduce the estimation variance and

failing to do so leads to a biased estimation of the density [42].

However in this two-component example, most of these product

kernel means (Nm in total) are spread out instead of being

concentrated into the important region. Therefore there will be a

degeneration of the sample set for the message product. It occurs

in the multi-component case in the same way.

Our strategy to overcome this degeneration is to obtain the

samples of the other components from their corresponding beliefs

instead of from uniform distributions. For the above two-

component example, given all the messages of previous time

step i.e. mt�1
ji ðXiÞ, iAI , jAGðiÞ, and the kernel mean set of current

message product for node 1 i.e. {x1
(n)}n¼1

N , the kernel means of

current message mt
14(X4), denoted by xðnÞ4 ¼ fxuðnÞ4,1,x

uðnÞ
42 g where

n¼1,y,N, are sampled as follows: xuðnÞ4,1 ¼ xðnÞ1 ; draw a sample xuðnÞ4,2

from f2ðX2Þ
Q

kAGð2Þ\1m
t�1
k2 ðX2Þ. In fact Gð2Þ\1¼ | for this two-

component example. The multi-component case can be deduced

by analogy. Now the samples of message product are certainly

concentrated into the important region by this means.

In summary, a modified version of NBP is then proposed for

our pairwise MRF and Table 1 shows the steps of the algorithm. In

Fig. 5. The degeneration problem of message product in a two-component case.

Table 1

Algorithm of modified NBP for pairwise MRFs converted from BN by Weiss’

method [37].

1. Initialization :

(1) sample randomly N kernel means for all messages,

(2) initialize the messages m0
ji , iAI ,jAGðiÞ as uniform distributions, i.e.

wji
(n)¼1/N,

(3) initialize the iteration step t¼0 and the maximum iteration number T.

2. Updating the messages and the beliefs for iAI , jAGðiÞ : given input

messages mt
kjðXjÞ ¼ fxðnÞ

kj
,LðnÞ

kj
,wðnÞ

kj
gNn ¼ 1 , where kAGðjÞ\i, construct mt+1

ji (Xi) as

follows

(1) determine the marginal influence of Eq. (12) to get xðXjÞ,
(2) draw N samples {xj

(n)}n¼1
N from the product xðXjÞ

Q

km
t
kjðXjÞ by using Eqs.

(11a)–(11c) and the Gibbs sampler depicted in [33],

(3) for n¼1,y,N, update kernel means :

— if jAIc (or iAIc) and iAChðjÞ (or jAChðiÞ), draw a sample from

xðnÞji �cjiðXj ¼ xðnÞj ,XiÞ by importance sampling or MCMC technique,

— if jAIc and iAPaðjÞ, xðnÞ
ji

¼ xuðnÞj,i ,

— if iAIc and jAPaðiÞ, xuðnÞ
ji,j ¼ xðnÞj , the remaining components are sampled

from previous beliefs by Gibbs sampler, i.e.

xuðnÞ
ji,r �frðXrÞ

Q

uAGðrÞm
t
ur ðXrÞ,rAPaðiÞ\j,

(4) Construct mtþ1
ji ðXiÞ ¼ fxðnÞji ,LðnÞ

ji ,wðnÞ
ji gNn ¼ 1 :

— set wji
(n) as the importance weights (if they exit) generated by sampling

techniques,

— select a bandwidth Lji by using the method in [41].

3. If tþ1oT , set t¼t+1 and go to step 2.

4. Compute the MMSE and MAP estimations, for iAIn:

(1) compute the beliefs and normalize them, biðXiÞpfiðXiÞ
Q

kAGðiÞm
T
kiðXiÞ,

(2) find the optimum, x̂
MAP
i ¼ argmaxxðnÞ

i

biðxðnÞi Þ, x̂MMSE
i ¼

P

nbiðx
ðnÞ
i ÞxðnÞi .
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practice, our simulation demonstrates that one hundred kernels is

enough to achieve good convergence results.

5. Simulation analysis: application to mechatronic systems

In this section, we demonstrate simulations on a hypothetical

mechatronic system: an active vehicle suspension (AVS). We start

by giving a brief description of the complex system. Our model is

then applied to its passive subsystem with/without observation

and the entire system itself. These simulations are all implemen-

ted based on the Kernel Density Estimation (KDE) Matlab

toolbox [34].

The AVS system is intended to support the vehicle body and

reduce body vibration from the road surface. Fig. 6 shows the fault

tree of some important components/subsystems. Apart from the

linkage which is considered to be unfailing, the parallel system is

composed of two subsystems: a passive subsystem and an

actuator subsystem. When the two subsystems both function,

the suspension works in semi-active mode. It fails if none of the

subsystem functions. But then it works in passive mode if only the

actuator subsystem fails and in active mode if only the actuator

subsystem functions. Moreover, the passive subsystem works in a

series structure with the spring and damper components. So does

the actuator subsystem whose failure can be provoked by a series

mechanical part or by a series electronic part.

This FT description (Fig. 6) is then converted to BN representa-

tion (Fig. 7a), by the transition algorithm of Bobbio [15]. For

simplicity, only constant failure rates of the root components are

taken from the reliability data base [43] and given in Table 2,

where the unit of failure rate has been converted to failure-per-

kilometer by assuming a constant velocity. Moreover, their

observations are sampled from the corresponding exponential

distribution of km-to-failure (KTF).

5.1. Passive subsystem

5.1.1. Learning the dependency

The passive subsystem is a simple series case with only three

nodes. The failure rate (FR) of the subsystem is thus

0.785�10�7 F/km when decided deterministically. Given its true

FR we can obtain the optimal deviation parameter s�
2 of node 2 by

O
R

O
R

A
N

D
O

R

O
R

Fig. 6. A fault tree example of an active vehicle suspension.

X12X11X10X9X8

X7X5 X6X4

X3X2

X1

BN model

X12X11X10X9X8

X7X6X5X4

X3X2

X1

X13

X14 X15

X16 X17

pairwise MRF converted from BN model

Fig. 7. The corresponding BN model and pairwise MRF model of an active vehicle suspension. The gray circles represent hidden nodes and the white ones denote cluster

nodes. (a) BN model and (b) pairwise MRF converted from BN model.
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Monte Carlo simulation of Eq. (6). Thanks to the easy manipula-

tion of discretized probability density function (PDF), the density

distance measure in Eq. (2) is defined as a city block difference

between two densities,

dðr,qÞ ¼ st �
X

i

jri�qij, ð13Þ

where ri and qi are discretized values of the two probability

densities r and q. st is the constant interval of the discretization. A

curve of s�
2 with respect to actual FR ltrue2 is illustrated in Fig. 8

after maximum likelihood estimation (MLE). For a series

structure, the FRs greater than the deterministic one (sum of

the components’ FR) are not feasible, thus plotted by a dashed

line. It is also found that the optimal s is monotonically

decreasing with respect to the distance from observed FR to the

deterministic one that is indicated in the figure by dash-dot

straight line. This is sound because the increasing FR implies

decreasing dependency (see in Eq. (2)) when it is less than the

deterministic one.

5.1.2. SRA of unobserved subsystem

Without loss of generality, the KTF data is modeled by a one-

parameter exponential distribution. Using the i.i.d. KTF data

observed in Table 2, the likelihoods of the observation with

respect to FR are calculated as follows:

LiðdijxiÞp
Y

10

n ¼ 1

PrðdðnÞi jxiÞ, i¼ 4,5, ð14Þ

where di
(n) denotes the nth sample KTF in the data set of di. We

show the normalized likelihoods with solid line in Fig. 9a and b

respectively. When the passive subsystem is unobserved and has

no priors, the likelihood curve with respect to FR is assumed to be

uniform in the range of [0.485�10�7 F/Km, 1.085�10�7 F/Km],

shown as a solid straight line in Fig. 9c. After 10 iterations of

inference by our modified NBP, the maximum marginal criteria

yields the marginal posterior (MP) distributions. They are

plotted in Fig. 9a, b and c with dash-dot lines for the spring

(node 4), the damper (node 5) and the passive subsystem (node 2)

respectively. Notice that the posteriors are all sharper than the

normalized likelihoods even when the priors do not exist.

This implies that the network has been correctly driven by

the dependency defined in Eq. (2). To compare more easily, the

actual FRs of the components and the deterministic FR of

the subsystem are all indicated in those figures by dashed

straight lines.

The comparison of those estimates is also reported in Table 3.

The results are identical to the densities in Fig. 9. In this table MLE

comes from normalized likelihood density, while the minimum

mean square estimation (MMSE), maximum a posterior (MAP)

and the quantiles are evaluated by using the posterior

distribution. Notice that the MMSE results are much closer

to the actual values than the MLE results. We also obtain the

MMSE and the MAP of subsystem, which is not feasible for

MLE. These confirm the effectiveness of our model. Furthermore,

Fig. 9d presents the reliability of the subsystem given by

R2(t)¼exp[�x2t] with the mean of the marginal posterior (solid

line) and 90% confidence intervals (dashed lines) respectively.

5.1.3. SRA of observed subsystem

In the following example, we kept the configuration of Section

5.1.2 unchanged except that the subsystem acquired 30KTF data

given as Passive device in Table 2. We use a Weibull distribution

with two parameters for the subsystem node. The likelihood of

the observed data with respect to FR can be estimated in the same

way as done in Section 5.1.2. It is plotted in Fig. 10c by a surface in

the 2DWeibull parameter space: shape and 1/scale (for comparing

the FR because scale¼FR�1 when the shape is set at one). After 10

iterations of our modified NBP, we likewise obtain the FR’s

marginal posteriors (MP) of the components and the Weibull’s

marginal posterior surface of the subsystem in Fig. 10. Notice that

the marginal posteriors in Fig. 10a and b are sharper than those of

Section 5.1.2 because we have received more evidence for the

network. In the same way, the posterior in Fig. 10d has less

covariance than the normalized likelihood does in Fig. 10c.

Moreover, MAP of the posterior is much closer to the actual

value than the MLE, see Fig. 10d and c where the straight solid line

indicates the actual FR (0.785�10�7 F/Km). These results

demonstrate that our model is validated by the inference.

Table 2

Failure rates and observed km-to-failure (KTF) of components.

Item name FR (F/107 km) ObservedKTF ð�107 kmÞ

X4. Spring 0.105 12.29, 3.47, 5.75, 7.80, 18.72, 1.47, 8.95, 42.04, 12.61, 2.60

X5. Damper 0.68 1.76, 0.25, 2.62, 1.21, 1.40, 0.19, 0.84, 1.25, 2.73, 2.97

X8. Pmp & pst. 11.23 0.04, 0.09, 0.06, 0.08, 0.23, 0.13, 0.19, 0.15, 0.13, 0.08

X9. Servovalve 1.51 0.62, 0.94, 0.60, 1.55, 1.34, 0.04, 0.03, 0.37, 1.87, 0.96

X10. Power 0.34 8.83, 0.30, 0.17, 2.09, 2.10, 3.19, 0.31, 2.93, 6.46, 0.73,

X11. Controller 0.091 11.44, 2.17, 45.86, 34.57, 19.53, 4.75, 3.43, 4.77, 8.75, 6.63

X12. Sensors 2.6 0.47, 0.11, 0.64, 0.14, 0.65, 0.38, 0.18, 0.10, 0.97, 0.03,

X2. Passive dev. 0.785 0.43, 5.21, 0.28, 2.48, 0.93, 1.73, 1.26, 0.52, 2.26, 1.62,

2.06, 2.08, 1.42, 0.16, 0.95, 1.15, 2.18, 0.04, 1.14, 0.21,

0.618, 1.24, 0.16, 0.30, 0.97, 0.26, 0.13, 1.07, 1.39, 0.65

failure rate(F/km) x 10-8

o
p
ti
m

a
l 
σ

0.4

0.2

0
4 6 8 10 12

Fig. 8. Monte Carlo simulation of learning s in Eq. (6), where X4¼0.105�10�7

F/km, X5¼0.68�10�7 F/km.
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The goodness-of-fit is discussed based on the statistic of

Bayesian w2 presented in [13] where K ¼ 4	 300:4Þ equal prob-

ability bins are suggested for our case. We draw repeatedly from

the marginal posterior of Weibull parameter space, say (a,b), and

compute the corresponding cumulative probability of observa-

tions’ likelihood, FLikðdijða,bÞÞ. We decide which bin the draw

should be assigned to, and calculate the Bayesian w2 statistic, then

compare it against the 0.95 quantile of w2
3 ðw2

3,0:95 	 7:82Þ. We

observed that 13% of these values exceed the quantile, which

indicates that the marginal posterior fits the subsystem’s data

observed reasonably well.

Notice that in this example the newly-observed data is

successfully combined into the network and this can yield an

up-to-date posterior estimation. In the same way, other types of

new data, such as expert prior and historical data, can also be

integrated to the network without difficulty. More information is

fused, more-accurate estimation can be achieved. This can further

help to identify the system deterioration by sequential updating

after replacing the past observation with the new one.

5.2. The entire mechatronic system

In this example, the new SRA model is tested on the entire

system by the NBP and the modified NBP respectively. In this

system only the root nodes are observed and given in Table 2

(all data except the passive subsystem). As a deterministic

function, a series structure of exponential family still has an

output of exponential distribution, but a parallel structure does

not. Therefore we use a Weibull distribution for the system node

and the exponential family for the subsystems. The actual FR of

the nodes are given in Table 4, where the optimal deviation is

leaned by Eq. (6) with some simulated observation by the density

distance measure in Eq. (13). Note that a loop (formed by node 3,

6, 7, and 10) exists in the actuator subsystem. Hence the inference

algorithm needs more iterations to converge. After 60 iterations in

the modified NBP, we obtain the MMSE and MAP results of the

system as well as those of the subsystems, shown in Table 4.

Notice that the errors of MMSE results are all less than 10% even

without any observation of those nodes. The further reliability

assessment can be accomplished by using the corresponding TTF

distribution model, as done in Fig. 9d.

We also show every-five-iterations the convergence process of

the system’s Weibull parameters in Fig. 11, where the points

indicate the MMSE values by NBP and modified NBP respectively.

Fig. 9. Normalized likelihood and marginal posterior (MP) of FR in the passive subsystem. In (a), (b) and (c) solid lines stand for the likelihoods, dash-dot lines for the

posteriors and dashed lines for the actual values. In (d) the solid line represents the reliability of the subsystem by FR’s posterior mean and the dashed lines for those of 5%

and 95% quantiles of the posterior, indicating the 90% confidence intervals.

Table 3

Comparison of FR estimations in passive unobserved subsystem (F/107 km).

Item name Actual MLE MMSE MAP Quantiles

5% 95%

X4. Spring 0.105 0.086 0.088 0.093 0.064 0.111

X5. Damper 0.68 0.704 0.703 0.679 0.519 0.920

X2. Passive dev. 0.785 — 0.780 0.741 0.561 0.999
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It is clear that our modification makes NBP converge much faster.

All these results demonstrate again that our dependency model is

effective by using the normal distribution in Eq. (2).

6. Conclusion

In this research, the system reliability assessment (SRA) has

been formulated as a statistical inference problem of Bayesian

networks (BNs). In contrast to conventional methods, we model

the time-to-failure of the system/components by the parametric

distributions whose parameters are considered as random

variables in the BN, such as failure rate of exponential family,

shape and scale of 2D Weibull family and so on. Further, the

parameter uncertainty of output function is modeled by a normal

distribution whose standard deviation can be learned from

samples. All of these uncertainties constitute the quantitative

specification of the BN. To avoid the use of junction trees which

are inefficient for the large-treewidth mechatronic systems, a

modified nonparametric belief propagation (NBP) is developed to

perform the inference in the BNs. For reasoning in a continuous

BN, this provides an alternative solution to the other methods,

such as mixture of truncated exponentials (MTE), dynamic

discretization (DD) and Markov chain Monte Carlo (MCMC).

Fig. 10. Likelihood and marginal posterior (MP) of passive subsystem (X2) with respect to Weibull parameters (shape and 1/scale) after 10 iterations of inference.

Table 4

Comparison of FR estimation in the suspension system.

Item name Actual FR s� MMSE MAP

X1. Syst. (Weib.) 0.6�10�7 0.0890 (1.0110, 0.62�10�7) (1.0201, 0.62�10�7)

X2. Passive 0.65�10�7 0.1407 0.70�10�7 0.72�10�7

X3. Actuator 14.0�10�7 0.0705 13.5�10�7 12.9�10�7

X6. Mech. dev. 12.5�10�7 0.0411 13.3�10�7 14.7�10�7

X7. Elec. dev. 2.8�10�7 0.0628 3.0�10�7 3.1�10�7
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Experimental results demonstrate the efficiency of our NBP

modification and the effectiveness of our SRA method: the

posterior fits the observed data well, and the uncertainty is

effectively propagated through our BN based SRA model. Based on

the parametric time-to-failure (TTF) representation, our BN model

can perform further analysis, such as sensitivity analysis,

diagnosis analysis. One future work is to consider model selection

for unobservable items. It is another future work to apply our SRA

method to the reliable active control issue in complex structural

problems [44–46].
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Appendix A. Notation

In label subset of original BN nodes

Ic label subset of cluster nodes in pairwise MRF

I label set of all nodes in pairwise MRF, and

I ¼ fIn,Icg
X joint hidden variable

D joint observation

Nn total number of hidden variables in pairwise MRF

Xi variable of the node i

xi a value of variable Xi

di observation of the node i

X u

i,j
corresponding component of variable Xj in

compound variable Xi

fiðXiÞ potential of unitary clique in a MRF

cijðXi,XjÞ potential of pairwise clique in a MRF

BðiÞ label set of node i’s basic components

PaðiÞ label set of parent nodes of cluster node i in MRF

GðiÞ label set of neighbor nodes of node i

fi(Xi) TTF density of node i

fdi deterministic TTF density of node i

Fið�Þ cumulative probability distribution of node i

s dependency parameter

Cn
k combination: the number of k-combinations from the

set with n elements

mij(Xj) message from node i to node j

xij
(n) the nth kernel mean in message mij(Xj)

xuðnÞ
ij,r

corresponding component of variable Xr in the nth

kernel mean of message mij(Xij)

wij
(n) weight associated with nth kernel mean in message

mij(Xj)

Lij common bandwith of message mij(Xj)
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