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Abstract

Computational models are intensively used in engineering for risk analysis

or prediction of future outcomes. Uncertainty and sensitivity analyses are

of great help in these purposes. Although several methods exist to perform

variance-based sensitivity analysis of model output with independent inputs

only a few are proposed in the literature in the case of dependent inputs. This

is explained by the fact that the theoretical framework for the independent

case is set and an univocal set of variance-based sensitivity indices is defined.

In the present work, we propose a set of variance-based sensitivity indices to

perform sensitivity analysis of models with dependent inputs. These mea-

sures allow us to distinguish between the mutual dependent contribution

and the independent contribution of an input to the model response vari-

ance. Their definition relies on a specific orthogonalisation of the inputs and

ANOVA-representations of the model output. In the applications, we show

the interest of the new sensitivity indices for model simplification setting.
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1. Introduction

Simulation models are becoming more and more popular nowadays for

forecasting, process control or systems characterization. Whatever the issue

the computer model is required to answer, one needs to feed some input values

into it. Such inputs are necessarily known at some degree of uncertainty, and

they are treated as random variables. It is then an issue to investigate the in-

puts mainly responsible for the response variance (here assumed as represen-

tative of the uncertainty). Affordable model-free computational methods for

evaluating the relative importance of independent inputs on the output vari-

ance are now available (Sudret 2008, Saltelli et al. 1999, Rabitz et al. 1999,

Morris 1991, Saltelli 2002, Mara 2009, Tarantola et al. 2006). Yet, only a

few methods and applications are proposed in the literature to tackle models

with dependent inputs (for instance, McKay 1996, Saltelli & Tarantola 2002,

Xu & Gertner 2008a-2008b, Borgonovo & Tarantola 2008, Bedford 1998, Li et al.

2010). In McKay (1996), the author derived the so-called replicated latin

hypercube sampling technique (r-LHS) to compute marginal contribution of

input factors to the output variance, that is,

Si = V [E[y|xi]]/Vy, (1)

where y denotes the model response and x = {x1, . . . , xn} is a set of depen-

dent inputs characterized by a joint probability density function p(x), Vy is

the total variance of y, Si is the marginal sensitivity index of the input xi, V [·]

stands for variance operator and E[·|·] for the conditional expectation oper-

ator. The sensitivity index defined by equation (1) represents the amount

of the response variance due to the factor xi. If xi and the other inputs

are dependent, then the value of Si can be influenced by this dependence.

Saltelli & Tarantola (2002) applied r-LHS sampling with McKay’s method
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to the Level E model with dependent inputs in a variance reduction setting

(the readers are referred to the cited paper for more details about settings in

sensitivity analysis).

In Xu & Gertner (2008a), the authors extended the original procedure of

Iman & Conover (1982), for generating correlated LHS samples to the Ran-

dom Balance Design technique proposed by Tarantola et al. (2006) in order

to compute all the Si’s. They showed that the method outperformed r-LHS

in terms of computational cost since it only requires one single sample set.

Then, in a second article, the same authors Xu & Gertner (2008b) proposed

a computational approach to estimate the correlated Sc
i and the uncorrelated

Su
i contribution of xi on the model response y, namely,

Si = Su
i + Sc

i .

This allows the investigation of spurious inputs that have an impact on the

model response only because of their strong correlations with the other signif-

icant ones. Indeed, a large Si with a low Su
i indicates that the contribution of

xi to the response variance is only due to its correlation with the other inputs.

The drawback of their approach is that only linear models with correlations

(linear dependences) are supported.

In Li et al. (2010), the authors propose to build a random sampling high

dimensional model representation (RS-HDMR) of the original model in order

to be able to evaluate the correlative and the structural contribution of an

input to the response variance. This allows to investigate whether the model

is structurally a function of all the inputs or only of some of them. They

defined new sensitivity indices that are different of those of Xu & Gertner

(2008a). According to their results, it seems that the method performs well

for linear models.

Our objective in this work is to derive a set of variance-based sensitivity
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indices that can support non-linear models and non-linear dependences. The

new sensitivity indices are more related to those of Xu & Gertner (2008a)

than those of Li et al. (2010). This is achieved by performing the ANOVA-

HDMR after decorrelating the inputs. To this aim, we preliminarily decorre-

late the inputs with the Gram-Schmidt procedure . The computation of the

sensitivity indices of the independent variables is then straightforward. We

show that the variance-based sensitivity indices, so obtained, can be inter-

preted as the fully, partially correlated and independent contributions of the

inputs to the ouput variance.

The rest of the paper is organized as follows; in § 2 we recall the basic con-

cept of the ANOVA decomposition and the definition of the variance-based

sensitivity indices. In § 3, we describe an algorithm to generate independent

variables from a set of dependent inputs. We also discuss the link between

the sensitivity indices of the new variables and those of the original inputs.

In § 4, two numerical examples are treated in which the sensitivity indices

are computed analytically and numerically before concluding (§ 5).

2. Sensitivity analysis of model output with independent inputs

2.1. The ANOVA-representation

Let y = f(x) be a square-integrable function of n independent random

variables x = {x1, . . . , xn}. Variance-based sensitivity indices result from the

ANOVA decomposition of Sobol (1993). This decomposition can be summed

up as follows: f(x) can always be expanded into summands of different

dimensions, that is,

f(x) = f0 +

n∑

i=1

fi (xi) +

n∑

j>i

fij (xi, xj) + . . .+ f1...n(x1, . . . , xn), (2)
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with E[fi1...is(xi1 , . . . , xis)] = 0, iq = i1, . . . , is and x−iq = x\{xiq}. Hence,

the functions are pairwise orthogonal, that is,

E
[
fir ...is(xir , . . . , xis)× fiq...it(xiq , . . . , xit)

]
= 0, ∀(ir, . . . , is) 6= (iq, . . . , it).

(3)

Expansion (2) is unique only if the inputs are independent. Then, it can be

easily deduced that,

Vy =

n∑

i=1

Vi +

n∑

j>i

Vij + . . .+ V1...n, (4)

where Vy is the total variance of f(x), Vi is the marginal variance of xi and

Vi1...is is the cooperative fractional variance of {xi1 , . . . , xis} which quantifies

the interactions between {xi1 , . . . , xis}.

2.2. The variance-based sensitivity indices

Eq.(4) leads to the definition of variance-based sensitivity indices,

Si1...is = Vi1...is/Vy, (5)

where Si = Vi/Vy is the first-order sensitivity index, which measures the

amount of the variance of y explained by xi alone. Sij = Vij/Vy is the second-

order sensitivity index that measures the amount of the variance explained

by the interaction between xi and xj and so on. In practice, two variance-

based sensitivity indices are investigated, the first-order sensitivity index Si

defined earlier and the total sensitivity index defined as,

STi = Si +
n∑

j 6=i

Sij + . . .+ S1...i...n. (6)

Indeed, while Si only measures the marginal contribution of xi to the vari-

ance of the outcome, STi also includes its cooperative contribution with all

the other inputs. These sensitivity indices allow to classify f(x) as additive
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(
∑n

1 Si = 1) or non-additive with interactions (
∑n

1 Si ≪ 1). Consequently, in

the case of independent inputs, the ANOVA–HDMR (2) reflects the model

structure. In the case of dependent variables, an expansion such as equa-

tion (2) does not reflect the model structure anymore (Oakley & O’Hagan

2004).

3. Sensitivity analysis of model output with dependent inputs

3.1. Dependences among random variables

Pearson and Spearman correlation coefficients are often employed to char-

acterize the linear relationship between two random variables. In particular,

the correlation matrix, a symmetric positive-definite matrix composed of

Pearson correlation coefficients, uniquely defines the dependence of normally

distributed variables. Moreover, if x is a set of normal correlated variables,

E[xi|xj ] defines the marginal relationship between the two random variables.

Hence, if xi and xj are independent, E[xi|xj ] = E[xi]. In the same man-

ner, E[xi|xj, xk] characterizes the dependence of xi to both xj and xk. For

non-normal distributions, higher conditional moments are required to char-

acterize the relationship between the random variables. In the sequel, we

assume that only the first-order conditional moment characterizes depen-

dencies between the random variables. In this case, pairwise dependencies

are monotonic and homoscedastic. These assumptions are satisfied, for in-

stance, if the dependence structure is defined by a correlation matrix or a

rank correlation matrix.

Let us recall the following relationship for three dependent inputs,

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x1, x2), (7)

where p(x1, x2, x3) is the joint probability density function (pdf), p(x1) is the

marginal distribution of x1, p(x2|x1) the marginal pdf of x2 conditioned on
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x1 and p(x3|x1, x2) the marginal pdf of x3 conditioned on {x1, x2}. Under

the previous assumption, x2 is dependent of x1 because E [x2|x1] 6= E[x2].

Similarly, x3 depends on {x1, x2} if E [x3|x1, x2] 6= E[x3]. As a consequence,

if we set,

x2−1 = x2 −E[x2|x1], x3−12 = x3 − E[x3|x1, x2],

then,

p(x1, x2−1, x3−12) = p(x1)p(x2−1)p(x3−12). (8)

This transformation is nothing else but the one of Rosenblatt (1952) for

normal variables (as defined in Lebrun & Dutfoy 2009, regardless the stan-

dardisation) and {x1, x2−1, x3−12} is a set of independent variables.

3.2. Orthogonalisation of the dependent inputs

We discuss in this subsection how to generate an independent sample set

from a dependent one. Let us assume, without loss of generality, a set of

standardised dependent random variables x. A procedure to derive a set of

orthogonal variables is the following,

x̄1 = x1, (9)

x̄i = xi − E[xi|x̄1, . . . , x̄i−1], ∀i = 2, . . . , n. (10)

Under the assumption that only the first-order conditional moment char-

acterizes the dependences between the inputs, the new variables are orthog-

onal and independent. A particular case, although common, is when the

dependent sample has been generated from a correlation matrix or rank cor-

relation matrix (e.g. with the technique of Iman & Conover 1982). Then,

the correlated variables are pairwise dependent, that is,

E[xi|x−i] =
n∑

j 6=i

E[xi|xj]. (11)

8



As a consequence, E[xi|x̄1, . . . , x̄i−1] can be approximated by one-dimensional

regressions (Lewandowski et al. 2007, Storlie & Helton 2008, Mara & Rakoto Joseph

2008). Figure 1 depicts the results of the decorrelation procedure for sev-

eral dependence structures between two random variables. If equation (11)

is not satisfied, then E[xi|x̄1, . . . , x̄i−1] shall be approximated by a complex

multidimensional function similar to equation (2).

Finally, one can perform the ANOVA-HDMR of the model and define the

sensitivity indices of the new variables {S̄i, S̄ij, · · · , S̄1···n}. The orthogonal

set so obtained is not unique as it depends on the order of the inputs in the

original set. Actually, n! orthogonal sets can be generated in this manner

and a huge number of sensitivity indices can be defined.

Applying the procedure given in (Equations 9-10) does not in general

provide a set of independent variables, especially when the inputs are not

normally distributed. An alternative is then to use Nataf isoprobabilistic

transformation which consists in generating orthogonal normal random vari-

ables from any set of dependent variables (Nataf 1962). In Lebrun & Dutfoy

2009, it is proved that Rosenblatt and Nataf transformations are equivalent

for joint normal distributions (i.e. to the procedure given in Equations 9-

10). However, Nataf transformation could make the relationship between the

model response and the new variables more complex than using equations

(9-10).

3.3. Interpretation of the sensitivity indices

The new sensitivity indices are interpreted as follows,

• S̄1 =
V

[
E[f(x)|x̄1]

]

V [f(x)]
, is the well-known main effect of x̄1. But since x1 =

x̄1, S̄1 = S1 is the full marginal contribution of x1 to the variance of

f(x).
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• S̄2 =
V

[
E[f(x)|x̄2]

]

V [f(x)]
= S2−1, is the marginal contribution of x2 to the

variance of f(x) without its correlative contribution with x1, since x̄2

is not correlated to x1,

• S̄3 =
V

[
E[f(x)|x̄3]

]

V [f(x)]
= S3−12, is the marginal contribution of x3 to the

variance of f(x) without its correlative contribution with {x1, x2},

• · · ·,

• S̄n =
V

[
E[f(x)|x̄n]

]

V [f(x)]
= Su

n, is the uncorrelated marginal contribution of

xn to the variance of f(x).

Indeed, x̄1 keeps all information concerning x1 including its common part

with the other variables. While x̄n, the last factor in the iterative procedure,

only contains the proper information of xn excluding its dependent part. For

convenience, in the sequel, we also note x̄2 = x2−1, x̄3 = x3−12 and so on.

It can also be infered that,

• S̄c
12 =

V
[

E[f(x)|x̄1,x̄2]
]

V [f(x)]
=

V
[

E[f(x)|x1,x2]
]

V [f(x)]
= Sc

12, since to derive {x̄1, x̄2}

only {x1, x2} are required.

• S̄c
123 =

V
[

E[f(x)|x̄1,x̄2,x̄3]
]

V [f(x)]
= Sc

123, since to derive {x̄1, x̄2, x̄3} only {x1, x2, x3}

are necessary, and so on,

• · · ·,

• ST u
n = 1−

V
[

E[f(x)|x̄
−n]

]

V [f(x)]
, is the uncorrelated total contribution of xn to

the variance of f(x).

Besides, according to the law of total variance, that is,

V [f(x)] = V [E[f(x)|x−n]] + E[V [f(x)|x−n]], (12)
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[Insert Figure 1 about here]

we can also infer that,

ST u
n =

E[V [f(x)|x̄−n]]

V [f(x)]
=

E[V [f(x)|x−n]]

V [f(x)]
. (13)

3.4. Computational issues

In order to numerically compute the new sensitivity indices, one has to: (i)

generate a sample set of correlated inputs, (ii) deduce from the original depen-

dent sample, a set of independent samples accordingly with equations (9-10),

(iii) compute the variance-based sensitivity indices of interest. We achieve

the first step using the procedure of Iman & Conover (1982), which allows us

to generate LHS correlated samples by imposing a given rank correlation ma-

trix. In alternative, the theory of copulas provides computational methods

to generate dependent samples (see Nelsen 2006). Once a correlated sample

has been obtained, step (ii) is achieved by approximating E[xi|x̄1, . . . , x̄i−1].

This is easily achieved if the inputs are pairwise dependent as discussed pre-

viously. In step (ii), the estimation of the new sensitivity indices can be made

using RS-HDMR (Li et al. 2008) which consists in performing an ANOVA

decomposition of the model of interest. Polynomial regressions are other pos-

sible approximations of the model (these approximations are called surrogate

models) and in the case of orthogonal polynomials (e.g. Legendre, Hermite

polynomials) the surrogate modelling approach is called polynomial chaos

expansion (Sudret 2008).

4. Numerical test cases

In the following two examples we are interested in the reduction of the

dimensionality of the input space for the analysed model for the subsequent
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development of a surrogate model with the smallest possible number of in-

puts. To identify the inputs that could be fixed we look at the unconditional

total indices ŜT
u

i , which have to be as small as possible. In the case of un-

correlated inputs, this procedure coincides with the factors fixing setting of

Saltelli et al. 2006. However, in the presence of correlation between inputs,

we have to test n different orderings of the inputs and the ŜT
u

i can be es-

timated for each of these orders (see Table 3 for a non-linear model). More

simply, the first case study is a linear model, therefore the same investigation

can be done using only first order sensitivity indices (see Table 1).

4.1. Analytical test: a linear model

In the first case, we consider the linear simple model y = x1 + x2 +

x3, where the xi’s are standard normal random variables with the following

correlation matrix,

C =




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 .

In this case, the new independent random variables x̄ are also normally

distributed and it can be proved that (see in appendix):

Vy = 3 + 2(ρ12 + ρ13 + ρ23),

Vi = Vxi
(E(y|xi)) =

(
1 + ρij + ρik

)2

,

V u
i = E(V (y|xj, xk)) = 1 +

(
2ρ12ρ13ρ23 − ρ2ij − ρ2ik

)/
(1− ρ2jk),

with i 6= j 6= k and Si = Vi/Vy, S
u
i = V u

i /Vy. We investigate the behaviour

of such estimates for some different correlation scenarios. Since the model is

linear, we only focus on the marginal sensitivity indices Si and the uncorre-
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lated part Su
i for different sets of correlation coefficient (ρ12, ρ13, ρ23) (indeed,

Si = STi, S
u
i = ST u

i ). The results are gathered in Table 1.

For the case (ρ12, ρ13, ρ23) = (0.5, 0.8, 0), we find that the original three-

dimensional function can be reduced to a one-dimensional model that only

depends on x1. x1 explains 94% of the output variance, while the remaining

contribution due to {x2−1, x3−12} is about 6% (see Table 1). Indeed, six

(i.e. 3!) equivalent polynomial expansions can be derived with the proposed

method. In particular, with the set {x1, x2, x3}, the following surrogate model

is obtained (see in appendix for details):

y =
23

10
x1 +

7

15
x2−1 + x3−12 ≃

23

10
x1,

where x1 ∼ N (0, 1), x2−1 ∼ N (0, 3
4
), x3−12 ∼ N (0, 11

75
).

For the set {x2, x3, x1} ({x3, x1, x2} resp.) a two dimensional first-order

polynomial function of {x2, x3−2} ({x3, x1−3} resp.) is necessary. The ex-

pressions of the surrogate models are respectively,

y =
3

2
x2 +

9

5
x3−2 + x1−23 ≃

3

2
x2 +

9

5
x3−2,

with x2 ∼ N (0, 1), x3−2 ∼ N (0, 1), x1−23 ∼ N (0,
11

100
),

y =
9

5
x3 +

43

18
x1−3 + x2−13 ≃

9

5
x3 +

43

18
x1−3,

with x3 ∼ N (0, 1), x1−3 ∼ N (0,
9

25
), x2−13 ∼ N (0,

11

36
).

These three approximations are possible ANOVA-representations of the

original model. But the first one has the lowest dimension. This means that

y only depends on x1 in the form given above (i.e. y ≃ 23
10
x1) instead of

the original one. This means that, in order to improve the knowledge on

y, one should reduce the uncertainty of x1. But, if the analyst is only able

to improve its knowledge on x2 and x3 then the second polynomial is to be

employed.
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[Insert Table 1 about here]

In the next case we investigate negative correlations: (ρ12, ρ13, ρ23) =

(−0.5, 0.2,−0.7). As expected (also shown in Xu & Gertner 2008b), the

particularity of such a correlation structure is that the uncorrelated marginal

contributions are larger than the full marginal contribution. Besides, S1 +

S3−1 = S3+S1−3 = 0.97 means that the variance of y is controlled by {x1, x3}

and their correlation.

Finally, let us examine a symmetric case (ρ12, ρ13, ρ23) = (−0.49,−0.49,−0.49)

(we do not use ρij = −0.5 because it would correspond to a non-positive def-

inite matrix, which cannot represent a true correlation matrix). Here the

output uncertainty is very low since the uncertainties of the inputs compen-

sate each other in the model (Vy = 0.06). Indeed, the full sensitivity index

is zero (Si = STi ≃ 0) while the uncorrelated contribution of an input al-

most explains the whole response variance (Su
i = ST u

i ≃ 0.98). A possible

ANOVA-representation of the original model is,

y = 0.02x1 + 0.04x2−1 + x3−12 ≃ x3−12,

with x1 ∼ N (0, 1), x2−1 ∼ N (0, 0.76), x3−12 ∼ N (0, 0.058). Obviously, all

the inputs are equally relevant for the model and it is not possible to further

reduce the input dimension. Although y mainly depends on x3−12 in the

previous equation, the determination of x3−12 requires the knowledge of x1

and x2.

4.2. Computational test : a non-linear model

The function we analyse in this example was introduced in Jacques et al.

(2006), y = x1x2 + x3x4 + x5x6 where the six variables are standard normal

and identically distributed with the correlation matrix,
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C =




1.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.3 0.0 0.0

0.0 0.0 0.3 1.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.8

0.0 0.0 0.0 0.0 0.8 1.0




{x1, x2} is a set of independent inputs, {x3, x4} are slightly correlated and

{x5, x6} are strongly correlated. In their paper, the authors proposed to

treat this problem with the classical Sobol’ method by computing the closed

second-order sensitivity indices, Sc
12, S

c
34, S

c
56 given that here Sc

12+Sc
34+Sc

56 =

1. With our proposed methodology one can investigate the correlated and

uncorrelated variance-based sensitivity indices as well as the closed-order

sensitivity indices. Contrarily to the previous case, the sensitivity indices

are investigated numerically. Indeed, after generating a correlated LHS sam-

ple of size N = 4096 and evaluating the function, the decorrelated samples

are deduced thanks to the set of equations (9-10) by a least-square regression

method (Mara & Rakoto Joseph 2008). Then, a polynomial chaos expansion

is built from the decorrelated sample. For this purpose, we use the multi-

dimensional Hermite polynomials since the inputs are normally distributed.

The estimated variance-based sensitivity indices are then computed. The

procedure is repeated six times by circularly permuting the original input set

in order to estimate all the desired sensitivity indices.

The marginal sensitivity indices are gathered in Table 2. Most of the

marginal contributions are null due to the preponderance of interactions

within the function. Only the marginal contributions of x5 and x6 are non

negligible: this is due to the combined effect of non-linearities and strong
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correlation between these two inputs. Moreover, we can note that, as long

as x5 precedes x6 in the input set, x5 contains the full marginal effect while

the uncorrelated marginal contribution of x6 is null and conversely when x6

is positioned before x5 (last row in the table).

The uncorrelated total sensitivity indices indicate that all the inputs are

important (cf. Table 3). The first noticeable result is that the total effects

of x1 and x2 are identical and remain unchanged whatever the input order.

This is explained by the fact that they are not correlated with the other

ones and that they just both interact. For {x3, x4} and {x5, x6} we find the

same behaviour in the results: the total sensitivity indices of x5 is equal to

0.45 as long as it precedes x6 in the set, otherwise its effect is 0.10 (the gap

equals the uncorrelated marginal effect 0.35). This is easily explained since,

as long as x5 precedes x6 in the set, only x6−5 is provided by the decorrelation

procedure. So, the sensitivity indices estimated are the full sensitivity indices

of x5 and the uncorrelated sensitivity indices of x6. Finally, let us note

that {0.27, 0.28, 0.45} which are the total sensitivity indices of {x1, x3, x5}

(equivalently of {x2, x4, x6}) sum up to 1 and are the estimated values of

{Sc
12, S

c
34, S

c
56}. Actually the analytical values are {0.2681, 0.2922, 0.4397}

respectively.

It can be concluded that the model cannot be further reduced. All the

inputs are relevant for the output variance (ST u
i > 0.1, ∀i = 1, 2, 3). The

significant gap between the marginal effects and the total effects means that

interactions are preponderant. Since Sc
12+Sc

34+Sc
56 = 1, fixing both {x5, x6}

to any values within their range of uncertainty will reduce the response vari-

ance by an amount of Sc
56 = 44% given that the model is additive in the pairs

{x1, x2}, {x3, x4}, {x5, x6}.
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[Insert Table 2 about here]

[Insert Table 3 about here]

5. Conclusion

In this work we have described a computational method to perform sensi-

tivity analysis of pairwise dependent inputs that relies on the Gram-Schmidt

decorrelation procedure and the subsequent use of polynomial chaos expan-

sion (PCE). This procedure generalizes the Xu & Gertner 2008b approach,

which was proposed for linearly dependent inputs, to the case of condition-

ally dependent inputs. The PCE is an ANOVA decomposition of the original

model and provides accurate estimates of variance-based sensitivity indices.

Nevertheless, such an ANOVA representation is not unique in the case of

dependent variables and in our approach it is directly linked to the decorre-

lation procedure. Indeed, several independent variable sets can be generated

depending on the input ordering in the set and several variance-based sen-

sitivity indices can be computed. In practice, according to the SA setting

addressed, only a few indices are of interest. In particular, in the model sim-

plification setting, small values for the total sensitivity indices ST u
i identify

non important inputs, and allow the analyst to build a metamodel with less

inputs than the original model. We have tested the method on two numerical

case study. The estimation of all the sensitivity indices has only required one

sample of input-output points of size N= 4,096.

Acknowledgment: The authors are indebted to the anonymous referees

for their insightful comments.
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6. Appendix

Let us consider the linear model y = x1 + x2 + x3, where the xi’s are

dependent standard normal random variables characterized by the following

product moment correlation matrix,

C =




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 .

In the following, we derive the possible ANOVA-representations of this

model from which the new variance-based sensitivity indices can be com-

puted.

Let us note W the inverse correlation matrix. In the sequel i 6= j 6= k

and Wij = Wji (W is symmetric). Then, we find,

Wii =
ρ2jk − 1

−2ρijρikρjk + ρ2ij + ρ2ik + ρ2jk − 1
, (14)

Wij =
ρij − ρikρjk

−2ρijρikρkj + ρ2ij + ρ2jk + ρ2kj − 1
. (15)

Besides, it is straightforward to prove that,

y ∼ N (0, Vy), (16)

Vy = 3 + 2 (ρ12 + ρ13 + ρ23) , (17)

while the conditional expectations are,

E [y|xi] = (1 + ρij + ρik)xi, (18)

E [xi|xj] = ρijxj. (19)

So, the first decorrelated random variable writes,

xi−j = xi − ρijxj , (20)

xi−j ∼ N (0, 1− ρ2ij). (21)
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It is less easy to prove that,

xk|xi, xj ∼ N (Ek|i,j, Vk|i,j), (22)

Ek|i,j = −
Wkixi +Wkjxj

Wkk

, (23)

Vk|i,j =
1

Wkk

. (24)

But, from this latter result, we infer that,

E [y|xi, xj ] = xi + xj + E [xk|xi, xj ] , (25)

⇔ E [y|xi, xj] = xi + xj −
Wkixi +Wkjxj

Wkk

, (26)

⇔ E [y|xi, xj] =

(
1−

Wki

Wkk

)
xi +

(
1−

Wkj

Wkk

)
xj . (27)

Since the model is linear as well as the dependence amongst the original

random variables, it is expected that,

E [y|xi, xj] = E [y|xi] + E [y|xj−i] . (28)

Indeed, if we calculate E [y|xi, xj] − E [y|xi] by accounting for equations

(14-15,23,20), after some developments, we find that,

E [y|xi, xj ]− E [y|xi] =

(
1 +

ρjk
1− ρ2ij

−
ρijρik
1− ρ2ij

)
xj−i, (29)

⇔ E [y|xi, xj ] = (1 + ρij + ρik)xi +

(
1 +

ρjk
1− ρ2ij

−
ρijρik
1− ρ2ij

)
xj−i. (30)

The last result is obtained thanks to equation (18).

Finally, since E [y|x1, x2, x3] − E [y|xi, xj ] = xk − E [y|xi, xj ] = xk−ij by

definition (see equation (10)), we prove that, y = E [y|x1, x2, x3] = x1 + x2 +

x3 = xk−ij +E [y|xi, xj ] = (1+ ρij + ρik)xi +
(
1 +

ρjk
1−ρ2ij

− ρijρik
1−ρ2ij

)
xj−i+ xk−ij.

Only the last equality is an ANOVA-HDMR as defined by Sobol (2001).
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8. Tables

Table 1: Test case 1 analytical first-order sensitivity indices for different correlation struc-

tures.

(ρ12, ρ13, ρ23) Input Si Su
i

x1 0.94 0.02

(0.5, 0.8, 0) x2 0.40 0.05

x3 0.58 0.03

x1 0.49 0.72

(−0.5, 0.2,−0.7) x2 0.04 0.37

x3 0.25 0.48

x1 0.00 0.98

(−0.49,−0.49,−0.49) x2 0.00 0.98

x3 0.00 0.98
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Table 2: Marginal sensitivity indices of the non-linear polynomial model with a sparse cor-

relation matrix. Although the original polynomial is of the form f12(x1, x2)+f34(x3, x4)+

f56(x5, x6) the marginal contribution of x5 and x6 are about 35% due to their high corre-

lation coefficient.

x1 x2 x3 x4 x5 x6

0.00 0.00 0.02 0.00 0.35 0.00

(Ŝ1) (Ŝ2−1) (Ŝ3−12) (Ŝ4−123) (Ŝ5−1234) (Ŝu
6 )

0.00 0.00 0.02 0.00 0.35 0.00

(Ŝu
1 ) (Ŝ2) (Ŝ3−2) (Ŝ4−23) (Ŝ5−234) (Ŝ6−2345)

0.00 0.00 0.02 0.00 0.35 0.00

(Ŝ1−3456) (Ŝu
2 ) (Ŝ3) (Ŝ4−3) (Ŝ5−34) (Ŝ6−345)

0.00 0.00 0.00 0.02 0.35 0.00

(Ŝ1−456) (Ŝ2−4561) (Ŝu
3 ) (Ŝ4) (Ŝ5−4) (Ŝ6−45)

0.00 0.00 0.02 0.00 0.35 0.00

(Ŝ1−56) (Ŝ2−561) (Ŝ3−5612) (Ŝu
4 ) (Ŝ5) (Ŝ6−5)

0.00 0.00 0.02 0.00 0.00 0.35

(Ŝ1−6) (Ŝ2−61) (Ŝ3−612) (Ŝ4−6123) (Ŝu
5 ) (Ŝ6)
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Table 3: Total sensitivity indices of the non-linear polynomial model with a sparse corre-

lation matrix. All the inputs are important as all the sensitivity indices are greater than

10%. The fact that the sensitivity indices of x1 (x2 resp.) remain unchanged indicates

that they are not correlated with the other inputs.

x1 x2 x3 x4 x5 x6

0.27 0.27 0.28 0.26 0.45 0.10

(ŜT 1) (ŜT 2−1) (ŜT 3−12) (ŜT 4−123) (ŜT 5−1234) (ŜT
u

6)

0.27 0.27 0.28 0.26 0.45 0.10

(ŜT
u

1) (ŜT 2) (ŜT 3−2) (ŜT 4−23) (ŜT 5−234) (ŜT 6−2345)

0.27 0.27 0.28 0.26 0.45 0.10

(ŜT 1−3456) (ŜT
u

2) (ŜT 3) (ŜT 4−3) (ŜT 5−34) (ŜT 6−345)

0.27 0.27 0.26 0.28 0.45 0.10

(ŜT 1−456) (ŜT 2−4561) (ŜT
u

3) (ŜT 4) (ŜT 5−4) (ŜT 6−45)

0.27 0.27 0.28 0.26 0.45 0.10

(ŜT 1−56) (ŜT 2−561) (ŜT 3−5612) (ŜT
u

4) (ŜT 5) (ŜT 6−5)

0.27 0.27 0.28 0.26 0.10 0.45

(ŜT 1−6) (ŜT 2−61) (ŜT 3−612) (ŜT 4−6123) (ŜT
u

5) (ŜT 6)
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9. Figures
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Figure 1: Scatterplots of x2 versus x1 for several joint distributions (on the left). Scatter-

plots of x2−1, the sample of x2 decorrelated from x1, versus x1 (on the right).
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