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Abstract

The potential of Local Sensitivity Analysis (LSA) for analysis of uncertainty with respect
to two major risks in river hydrodynamics - flash flood and dam failure - is assessed. LSA,
implemented as an equation-based method, is compared to a Global Uncertainty Analysis
(GUA) consisting in running Monte Carlo simulations with a hydrodynamic model. For a
given statistical distribution of the model input parameters, the mean and standard devi-
ation of the output variables are estimated with the two methods. In all single or multiple
parameter cases investigated, including as much as ±80% relative variation, LSA provides
similar results to GUA, while requiring only one simulation instead of several hundreds or
thousands. Only within a few meters of the shock (flow discontinuity) generated by the
breaking of a dam do the two methods depart. This paper shows that despite the non-
linearity of river flow processes, the first order, local approach remains generally valid for
uncertainty analysis of hydrodynamic risks, even in the case of large parameter uncertainty.
The contrast in importance of the various parameters on both sides of a shock is also high-
lighted.

Keywords: uncertainty analysis, shallow water equations, river flood, dam-break, global
approach, local approach.

1. Introduction

Modelling real-world phenomena, especially when they are extreme, is generally plagued
with errors arising from many approximations. A mathematical model schematizes a phys-
ical process, using equations that are solved approximately by numerical methods; it requires
several input factors to be measured or estimated, and parameters to be calibrated, all opera-
tions that bring substantial uncertainties into the model. Uncertainty analysis is thus needed
to assess the reliability of model predictions, accounting for multiple sources of uncertainty
in model design and implementation. Providing prediction uncertainty concurrently with
model outputs should be considered as an integral part of the modelling job [26], but it is
often disregarded for lack of readily applicable, computer and human resources-parsimonious
procedures.

In the field of water engineering and management, uncertainty and sensitivity analyses
are of high importance, when dealing for instance with resource allocation, water quality [10],
hazards such as flood, tidal wave or dam/dike break(e.g. [8, 15, 24, 23]), or impacts of
climate change on hydrological systems [18, 22, 28]. For instance, uncertainty arising from
model calibration is increasingly handled using the empirical, sampling-based Generalised
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Likelihood Uncertainty Evaluation (GLUE) methodology [2, 3], developed in the hydrological
modelling context.

Sampling-based techniques, that resort to extensive exploration of the space of possible
model inputs with ensuing multiple model runs, are a common approach. An advantage is
that no specific analysis or prior assumption needs to be made on the model itself, seen as a
black box. When inputs uncertainties can be described statistically by means of probability
distribution functions, Monte Carlo simulation yields a statistical description of uncertain
model outputs. However, the combination of commonly encountered input space dimensions
and model run times often makes this approach hardly practicable. Numerical models often
require a large number of input parameters, and inputs may not be scalars but space or
time functions, leading to excessive sample sizes due to the so-called curse of dimensionality.
Substantial research has been devoted over the last decades to reducing computing require-
ments of Monte Carlo techniques, e.g. through better sampling procedures (e.g. [21, 16]) or
meta-model development (e.g. [17, 9]). However computational limits remain an obstacle to
generalizing the method for computationally expensive simulations.

When the model can be considered as nearly linear in the subspace of possible input
values, first-order estimates of uncertainty propagation through the model can be readily
obtained from computation of local sensitivities, i.e., partial derivatives of the model for a
single set of inputs. Estimating local sensitivity is a relatively widespread requirement in
model development and operation, for it is very helpful for model calibration or validation
for instance [11, 20], and can be achieved with limited additionnal computational time. The
empirical, finite-difference approach is frequently used, consisting in computing the differ-
ence in output between two simulations with two slightly different values of the parameter
of interest, normalised by the parameter variation. More powerful and promising is the
equation-based method that consists in deriving the so-called tangent linear model. This
augments the original model with the governing equations for propagation of sensitivities
along the model variables’ trajectory. Using the local sensitivity approach obviously gener-
ates difficulties when the model output becomes discontinuous [1, 14, 13]. However, when
they exist, discontinuities are in many cases limited to very specific locations in the model
space, and many seemingly nonlinear models actually display quasi-linear behaviour over
most of their working space. Other approaches to sensitivity analysis exist for expressing
the relative dependencies of model outputs on uncertain inputs. In particular, quantitat-
ive global sensitivity indices have been devised to inform about the relative shares of the
various inputs in producing the output uncertainty [4]. These include variance-oriented
indices [27, 25] or moment-independent indices [5]. Unfortunately these very informative,
global procedures suffer, to an even greater extent, from the aforementioned difficulties with
sampling-based techniques, let aside the additional algorithmic complexity, which makes
them topics of on-going research and currently limits their diffusion among modellers.

The purpose of this paper is to investigate the suitability of the local sensitivity approach
to uncertainty analysis (referred to as LSA in the following) in the modelling of major,
transient-state hydrodynamic risks such as propagation of flash floods in a watercourse or
failure of a dam. These two major issues for watershed development and risk prevention
can be handled with the one-dimensional Shallow Water model for open channel flow, a
system of partial differential equations that is generally viewed as being largely non linear.
This model requires parameters and forcing inputs that can be either impossible to measure,
hence requiring calibration, or estimated only with high uncertainty. It is thus important to
assess the propagation of these input uncertainties to the model’s output variables, namely
the time-space variations of water depth and velocity (or discharge) of water flow. A direct,
equation-based tangent linear model was developed for the 1-D Shallow Water model to
compute model sensitivities by [12, 7].

The structure of this paper is as follows. Section 2 defines the general methodology used
for uncertainty analysis, using successively a Monte Carlo based Global Uncertainty Analysis
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(GUA), and a Local Sensitivity Analysis (LSA). Section 3 gives the theoretical background
for the flow model and the local equation-based sensitivity approach. Governing equations
for the flow and the sensitivity are introduced as well as the numerical method used to
solve them. Section 4 presents the two application problems, together with corresponding
expressions of the source terms and boundary conditions for the sensitivity model depending
on the parameter of interest. Section 5 is devoted to the application of the LSA and GUA
methods to these problems, and to comparing their results in a one-factor-at-a-time (OAT)
study as well as for the simultaneous variation of the main three parameters in the case of
the dam-break problem.

2. Uncertainty analysis methodology

To apply the one-dimensional shallow water equations of open channel flow, (section 3)
to the study of flash flood and dam failure risks, the space distribution of geometric (bottom
slope) and hydrodynamic (friction coefficient) parameters along a river reach of length L,
as well as the initial and boundary conditions (in particular: initial water depths, discharge
variations at the upstream boundary) are required. The model output is U(x, t) = [h, q] T ,
where the water depth h and the unit discharge q are functions of space and time (see
section 3).

Given a statistical distribution of one or several uncertain model inputs, model output
uncertainty is estimated in this study as the first two statistical moments of the variables, i.e.
their means and standard deviations. These moments are estimated both with the Monte-
Carlo technique (GUA), based on parameter sampling and multiple model runs, and with
the first-order, local sensitivity-based approximation (LSA) of the first output moments
(subscripts G and L are used to denote moments estimated with the GUA and the LSA
methods, respectively). The model output considered here for the analysis is the space-
dependent solution U(x) after a given simulation time Tmax. Symbols and notations are
defined in Appendix A.

2.1. Parameters distribution and global (GUA) estimation of model uncertainty
Parameter uncertainty is modelled using a Beta distribution, which has the following

probability density function

f (φ;α, β) =
φα−1 (1− φ)

β−1

´ 1
0
uα−1 (1− u)

β−1
du

(1)

where φ ∈ [0, 1] and (α, β) are shape parameters taken here as α = β = 5 (symmet-
ric distribution). Unlike the widely used Gaussian distribution, this function has a finite
support, thereby avoiding possible non-physical values of the parameters (such as negative
values for the friction coefficient). The distribution obtained for φ is then centered onto
the nominal value ψ0 of the parameter of interest ψ and rescaled to a min-max interval:[
ψ0 −∆ψ;ψ0 + ∆ψ

]
. Monte Carlo simulations are performed using a sample of the para-

meter ψ generated by a random sample of size N drawn from a Beta distribution.
When several parameters are considered uncertain simultaneously, they are taken inde-

pendent. Model uncertainty is assessed for the global, GUA approach as the sample mean
(µU(x))G and standard deviation (σU(x))G of the N model outputs U(x)n, n = 1 . . . N .

2.2. First-order, local (LSA) estimation of model uncertainty
The parameters distribution being assumed symmetrical, the model output produced

with the mean, i.e. nominal parameter set provides an estimation with first-order accuracy
of the output mean, denoted (µU(x))L. In the case when one parameter ψ is allowed to
vary at a time, the standard deviation σU(x) of the model output at each abscissa x can
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be first-order estimated from the sensitivity solution s = (η, θ)
T obtained with the nominal

parameter set, as (σU(x))L = |s(x)|σψ, i.e.:

(σh(x))L = |ηψ(x)|σψ (2a)
(σq(x))L = |θψ(x)|σψ (2b)

where σψ is the standard deviation of the input distribution of the parameter ψ.
In the case when N parameters vary at the same time and independently, the first-order

estimate of standard deviation writes:

σhL =

(
N∑
i=1

η2ψi
σ2
ψi

)1/2

(3a)

σqL =

(
N∑
i=1

θ2ψi
σ2
ψi

)1/2

(3b)

where ηψi (resp. θψi) is the sensitivity of h (resp. q) with respect to parameter ψi, and σ2
ψi

is the variance of the input distribution for the parameter ψi.

2.3. Comparison of GUA and LSA estimates of moments
The two methods are compared through their estimations of the model output moments,

µ and σ. Taking the global (GUA) estimates µG and σG as the reference, average relative
errors are computed for each moment as:

εµ =
∆x

L

∑ |µG − µL|
µG

(4)

εσ =
∆x

L

∑ |σG − σL|
σG

(5)

where ∆x is a spatial discretization step along the length L of river reach, and the summation
applies to the resulting space steps.

The flow and first-order sensitivity models are briefly recalled in the following section
and applied to the flood propagation and dam-break problems in section 4. Comparison of
the LSA and GUA is performed in section 5.

3. Flow and sensitivity models

3.1. Governing equations
The one-dimensional Shallow Water model of open channel flow can be written in vector

form as the following system of hyperbolic, partial differential equations [6]:

∂U (x, t)

∂t
+
∂F (x, t)

∂x
= S (x, t) (6)

where t is time and x the abscissa along the flow direction, and where the conserved variable
U, the flux vector F and the source term S are defined as

U =

[
h
q

]
, F =

[
q

q2

h + g h
2

2

]
, S =

[
0

gh (S0 − Sf )

]
(7)

with h the water depth, q the unit discharge (i.e., the discharge per unit width), g the
gravitational acceleration, S0 the bottom slope and Sf the friction slope. For the sake of
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conciseness, the friction slope is assumed to obey a classical Manning-Strickler law [6] under
the wide channel approximation:

Sf = q |q|n2Mh−10/3 (8)

where nM is Manning’s friction coefficient. Solving Eq. (6) requires the knowledge of the
space-dependent initial condition U(x, t = 0), as well as two scalar, time-dependent bound-
ary conditions fb(U(xb, t), t) = 0, where subscript b refers to the upstream or the downstream
boundary.

The governing equations for sensitivity are obtained by differentiating the flow equations
(6) with respect to a given parameter ψ(x, t), where ψ represents any one of the S0 or
Sf parameters or of the prescribed inputs in the initial or boundary conditions (see for
example [? 12] for a detailed description of the method):

∂s (x, t)

∂t
+
∂G (x, t)

∂x
= Q (x, t) (9a)

s =

[
η
θ

]
≡
[
∂h/∂ψ
∂q/∂ψ

]
(9b)

G =
∂F

∂U
s =

[
0 1

c2 − u2 2u

]
s =

[
θ(

c2 − u2
)
η + 2uθ

]
(9c)

Q =
∂S

∂U
s +

∂S

∂ψ
ε− ∂

∂x

(
∂F

∂ψ
ε

)
(9d)

where c = (gh)1/2 is the propagation speed of the waves in the fluid at rest, u is the flow
velocity and ε(x, t) is the so-called perturbation indicator, with ε = 0 in the regions where
the parameter remains unchanged and ε = 1 in the regions where ψ is perturbed for the
sensitivity analysis. Eqs. (9) are the conservation form of the Shallow Water Sensitivity
Equations. The source term Q defined in Eq. (9d) is the only one in Eq (9) that depends
on the nature of the parameter ψ and will be explicited in section 4 for each application
presented. Also varying with parameter ψ and developed in section 4 are the expressions of
the initial and boundary conditions, which are paired with those of the flow model.

3.2. Numerical method
In the general case, for which no analytical solution can be found, the flow and sensitivity

equations are discretized using a finite volume formulation [12]:

Un+1
i = Un

i −
∆t

∆xi

(
F
n+1/2
i−1/2 − F

n+1/2
i+1/2

)
+ ∆tS

n+1/2
i (10a)

sn+1
i = sni −

∆t

∆xi

(
G
n+1/2
i−1/2 −G

n+1/2
i+1/2

)
+ ∆tQ

n+1/2
i (10b)

where ∆t is the computational time step, ∆xi is the width of the cell i, Un
i and sni are

respectively the average value of U and s over the cell i at the time level n, Fn+
1/2

i−1/2 and

G
n+1/2
i−1/2 are the average values of the fluxes F and G through the interface i− 1/2 (between

the cells i− 1 and i) between the time levels n and n+ 1, Sn+
1/2

i and Q
n+1/2
i are the average

values of S and Q over the cell i between the time levels n and n+ 1.
The fluxes F andG in Eqs (10) are computed by solving the following Riemann problems

using the HLLC solver (see e.g. [? ] for more details):

∂U

∂t
+
∂F

∂x
= 0 (11a)
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∂s

∂t
+
∂G

∂x
= 0 (11b)

(U, s) (x, 0) =

{
(UL, sL) for x < xi+1/2

(UR, sR) for x ≥ xi+1/2

(11c)

where xi+1/2 is the abscissa of the interface.

4. Investigated problems

Two different types of fluvial risk situations are analysed. The first is the frequently
encountered case of propagation of a transient flood discharge signal from the upstream
catchment along a channel reach. The second is the more challenging, extreme case of the
sudden collapsing of a dam. Simplified configurations are considered to investigate these
two problems.

4.1. Flood propagation

To investigate this problem, a triangular flood hydrograph is prescribed at the upstream
boundary of a uniform channel reach (see Figure 1). The discharge is first taken constant at
qmin, during a time t1 sufficient for the simulation from an initial condition at rest to reach
the steady state. Then, the flood rises to its maximum qmax at t2 and decreases to recover
its initial value qmin at t3. The prescribed unit discharge qup at the upstream boundary thus
writes:

qup(t) =


qmin t < t1

qmin + qmax−qmin

t2−t1 (t− t1) t ∈ [t1; t2]

qmax + qmin−qmax

t3−t2 (t− t2) t ∈ [t2; t3]

qmin t > t3

(12)

It is assumed that a sill at the downstream boundary imposes a nearly critical regime,
leading to the following height-discharge relationship:(

u√
gh

)
ds

= Fds (13)

where Fds is the Froude number chosen close to but smaller than unity so that the flow
regime remains subcritical.

The sensitivity analysis is performed with respect to the maximum input discharge qmax.
Hence, the prescribed input sensitivity θ at the upstream boundary is also a triangular
function, with a maximum of one when the peak discharge enters the domain (see Figure1):

θup(t) =


0 t < t1
t−t1
t2−t1 t ∈ [t1; t2]
t3−t
t3−t2 t ∈ [t2; t3]

0 t > t3

(14)

At the downstream boundary, the sensitivity relationship is obtained by differentiating
equation (13) with respect to the investigated parameter:[

1√
gh

(
θ

h
− 3q

2h2
η

)]
ds

= 0 (15)
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4.2. Dam-break problem
The dam-break problem [29] has been widely used as a validation test case for Shallow

Water Equations solvers. It is a simplified representation of the breaking of a dam as the
sudden release of the reservoir water consecutive to instantaneous, total dam collapse. In
the initial system considered here (Figure 2), the water is at rest inside the reservoir whereas
a uniform flow is assumed in the downstream river, without loss of generality.

The dam-break problem is an initial value problem the initial conditions of which can
be written as:

z (x, 0) =

{
zL = hL + zb forx < x0

zR = hR + zb forx > x0
(16a)

q (x, 0) =

{
0 forx < x0

uRhR forx > x0
(16b)

where z is the water elevation, zb is the bottom elevation, x0 is the abscissa of the dam and
uR is the initial flow velocity prescribed downstream in the river. In the following, the initial
water depth hR in the river will be taken either as any prescribed arbitrary value, or as the
so-called normal depth hN defined by considering the friction slope Sf equal to the bottom
slope S0 in Eq. (8), leading to:

hN =

(
uRnM√
S0

)3/2

(17)

As shown in Appendix B, an analytical solution for the flow (6) and sensitivity (9) equa-
tions can be obtained for the dam-break problem when no friction and bottom slope are
considered.

The sensitivity analysis of the dam-break problem will be performed with respect to
the main three parameters: the initial water elevation zL in the reservoir, the Manning’s
friction coefficient n and the bottom slope S0. The expression of the sensitivity source
term Q (Eq. 9d) and initial and boundary conditions are given in the following paragraphs
depending on the parameter of interest.

1. Considering the sensitivity to an initial condition, such as the initial water elevation
in the reservoir hL, yields

ε (x, t) = 0 ∀ t > 0 (18)

The expression of Q then reduces to the term (∂S/∂U) s which writes

∂S

∂U
s =

(
0

g (S0 + 7/3Sf ) η − 2gn2M |q|h−
7/3θ

)
(19)

The initial conditions in sensitivity for ψ = hL are given by

η (x, 0) =

{
1 forx < x0

0 forx > x0
(20a)

θ (x, 0) = 0 ∀ x (20b)

Sensitivity to hL will be tested both in the theoretical case of zero friction and bottom
slope, taking advantage of the analytical solution availability, and in a more realistic
case with friction and bottom slope, using the numerical model.

2. The expression of Q is now derived for the case where the parameter ψ is the friction
coefficient n: since F is not a function of n, ∂F/∂ψ = 0 and

Q =
∂S

∂U
s +

∂S

∂n
εn (21)
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with (∂S/∂U) s defined by Eq. (19) and

∂S

∂nM
εn =

(
0

−2gh
Sf

nM
εn

)
(22)

where εn = 0 in regions where the friction coefficient is unchanged and εn = 1 in the
regions where it contributes to the sensitivity (in the following, εn will be taken equal
to one over the whole domain). In this case, the initial condition on the water depth
sensitivity η will be nil if the initial water depth in the river hR is prescribed to any
value different from the normal height hN , but non zero if hR = hN , because hN (Eq.
17) depends on the friction coefficient:

if hR 6= hN : η (x, 0) = 0 ∀ x (23a)

if hR = hN : η (x, 0) =

{
0 forx < x0
3εnhN

2nM
forx > x0

(23b)

θ (x, 0) =

{
0 forx < x0

uRη (x, 0) forx > x0
(23c)

3. The sensitivity with respect to the bottom slope leads to:

Q =
∂S

∂U
s +

∂S

∂S0
εS0 (24)

The derivative of S with respect to U remains the same as given in Eq.(19), and

∂S

∂S0
εS0 =

(
0

ghεS0

)
(25)

with εS0 = 1 where S0 contributes to the sensitivity. The initial conditions for the
water depth sensitivity are non zero because, for a prescribed initial water elevation,
a variation in the bottom slope will yield a variation in the water depth. Moreover,
since the normal height depends on the bottom slope, an additional term appears when
hR = hN :

if hR 6= hN : η (x, 0) = εS0
(x− x0) ∀ x (26a)

if hR = hN : η (x, 0) =

{
εS0

(x− x0) forx < x0

εS0 (x− x0)− 3εS0
hN

4S0
forx > x0

(26b)

θ (x, 0) =

{
0 forx < x0

uRη (x, 0) forx > x0
(26c)

5. Numerical application and results comparison

5.1. Flood propagation: sensitivity to the maximum flood discharge
For this simplified representation of flood propagation in a river reach, parameters values

given in Table 1 are used. After sufficient time for the steady state to be reached (Eq. 12),
the input unit discharge rises by a factor 4 within ten minutes and then recedes to its initial
value within 20 minutes.

Figure 3 shows the flow and sensitivity solution at 4 different simulation times. The
standard deviations computed from both approaches for the water depth are plotted in
figure 4 for a maximum input discharge qmax that follows a Beta law (Eq. 1) between 3.6
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and 4.4 m2 s−1 in figure 4a (i.e. for a possible relative variation of ±10%) and between 2.8
and 5.2 m2 s−1 in figure 4b (i.e. for a possible relative variation of ±30%). It can be seen
that standard deviation obtained from LSA and GUA are quite similar. To confirm this
result, a convergence analysis is performed on the first two statistical moments (mean and
standard deviation).

The relative error of µL to µG (resp. σL to σG) computed from Eq. 4 (resp. 5) is shown
in Figure 5 for the outputs h and q as a function of the possible percentage of variation
of the maximum input discharge (from 10% to 80%). Because the local approach assumes
linearity around a nominal value of the parameter of interest, µL, σL gets closer to µG, σG
as the standard deviation of the input parameter distribution decreases, i.e. as the min-max
interval is narrowed. Figure 5a shows that the relative difference between the two means
estimates (µL, µG) remains smaller than 1.8% of GUA estimates for both water depth and
unit discharge, even if the maximum input discharge parameter is allowed to vary by as
much as ±80%, i.e. from 0.8 m2 s−1 to 7.2 m2 s−1. It can be seen in Figure 5b that the
estimation error of the standard deviation σL obtained with LSA is always less than 5%
of GUA results. This convergence analysis demonstrates that, even if the maximum input
discharge is highly uncertain, the LSA approach enables an excellent reproduction of the
output mean and standard deviation as obtained from 1000 Monte Carlo simulations. This
was achieved in 80 s by LSA, compared to more than 12 hours for GUA in this test case.

5.2. Dam-break problem: One-factor-at-a-time analysis

5.2.1. Theoretical case of no bottom slope and friction – sensitivity to initial reservoir water
depth

With the analytical solution for zero bottom slope and friction (Appendix B), the sens-
itivity analysis is performed with respect to the initial water depth in the reservoir hL. The
flow and sensitivity solutions are computed for the parameters given in Table 2 with the wa-
ter initially at rest (zero velocity) on both sides of the dam. A fixed value of hR is prescribed
for initial river water depth.

The initial water depth distribution is generated from N = 1000 repetitions of the Beta
law (Eq. 1), centered on the nominal value h0L = 20 and rescaled from [0; 1] to the interval
[15; 25] (i.e. ∆ψ/ψ0 = 25%). Figure 6 shows the input distribution of the initial water
depth hL and the deciles of the output water depth and unit discharge obtained from the
N computations of the analytical solution at time Tmax = 5 s.

Figure 7 shows the comparison between the two estimates of the output standard devi-
ation σG for the Monte Carlo simulations and σL for the local method, using the analytical
sensitivity solution for η Eq. (B.10) and θ Eq (B.11) and Eq. (2). Results obtained with
the local method shows steeper fronts than the Monte Carlo standard deviation and do not
reproduce the strong dispersion near the shock. Indeed, the analytical solution of the sens-
itivity equations does not account for the sensitivity of the shock location. Consequently,
the shock of the analytical solution is a Dirac, i.e. with a nil width and infinite amplitude.
On the contrary, it can be seen in Figures 6b and 6c (decile profiles) that the discontinuity
location depends on the initial water depth in the reservoir, leading to a smoothed spike.
Except for the difference in behavior across the shock, the standard deviation obtained by
LSA is quite similar to GUA result everywhere else, while obtained after only one simulation
instead of N = 1000.

5.2.2. Real-world test case
A more realistic test case is built, that consists in a dam-break problem with bottom

slope, friction and initial flow velocity in the river (see subsection 4.2). The initial water
depth in the river hR is taken as the normal depth hN . The parameters used in this test case
are given in Table 3. The uncertainty analysis is performed successively with respect to the
main three parameters: the initial water depth in the reservoir hL, the bottom slope S0 and
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the Manning’s friction coefficient nM . The local sensitivity is computed by solving Eqs (9)
around nominal values of the parameters, which are given in Table 3 with superscript 0 and
which are taken as reference values in the following. The samples used in the global method
are generated by N repetitions of the Beta law defined by Eq. (1), which are centered and
rescaled with the parameters given in Table 4. Computation time for N = 1000 simulations
is about 500 s compared to less than 1 s for the local method.

Output deciles obtained from the Monte Carlo simulations with respect to the initial
reservoir water depth hL are given in Figure 8. The local sensitivity solution (η, θ) is shown
in Figure 9. Figure 10 compares the resulting standard deviation estimates from the GUA
and LSA methods for uncertainty in the initial water depth in the dam (Figure 10a), the
bottom slope (Figure 10b) and for the Manning’s friction coefficient (Figure 10c). In all
cases, we can see proper reproduction of the global standard deviation output using the
local sensitivity in conjunction with Eq.(2), over the whole domain but the shock area
where the spike is always sharper with the local approach.

These results were obtained for a given magnitude of relative variation in each input
parameter: from ∆ψ = 0.2ψ0 for water depth to ∆ψ = 0.5ψ0 for bottom slope (see Table 4).
A convergence analysis was performed to investigate how the difference between the two
methods behaves as a function of ∆ψ/ψ0. This analysis is shown for the output water depth
mean and standard deviation in the case of an uncertain initial water depth in the reservoir
(Figure 11), but conclusions remain valid for the the unit discharge q and/or with respect
to other parameters. The relative error in mean and standard deviation of output h(x)
estimated from LSA with respect to GUA is calculated by equations (5) and (4).

As expected (µL, σL) converges to (µG, σG) as the standard deviation of the input para-
meter distribution gets smaller, i.e. as the min-max interval is narrower. The relative
discrepancy between output means from the two methods remains smaller than 5 % (Fig-
ure 11a) even for ∆ψ/ψ0 = 80 %, which corresponds to a standard deviation of the initial
water elevation in the reservoir of σzL = 2.42 m. Because of the strong over-estimation of
the spike amplitude across the discontinuity, the relative error in output standard deviation
can reach more than 30 % when ∆ψ/ψ0 = 80 % (Figure 11b). However, when excluding
a 4 m interval centered on the shock from the domain over which the error is computed,
the relative difference between LSA and GUA remains smaller than 9%. This illustrates
that uncertainty is properly estimated by the local method over the whole domain but the
immediate vicinity of the shock.

5.3. Dam-break problem: three-factors-at-a-time

The simultaneous, independant variation of the main three parameters: zL, S0 and
nM was considered. The number of simulations was set to N = 10000, corresponding to a
computational time of about one hour. For each simulation, each of the three parameters was
generated independently using a beta law centered on the nominal values ψ0 and bounded
by a min-max interval

[
ψ0 −∆ψ;ψ0 + ∆ψ

]
where ∆ψ is chosen as a given percentage of ψ0,

identical for the three parameters.
Figure 12 compares the standard deviation estimates by the global and local approaches

for water depth along the river reach, when the parameters are allowed to vary from their
nominal value by a percentage in the range ±0.1%, ±20% or ±40%, successively. In the first
case (Figure 12a), the reproduction by the LSA approach is nearly identical to the GUA
standard deviation. However, when the standard deviation in the input parameter increases
(Figure 12b and 12c), while the two approaches remain very similar over most of the domain,
they behave differently around the flow discontinuity: the spike amplitude from the local
approach increases with the input variance but remains narrow; on the contrary, the standard
deviation of the global approach decreases in amplitude across the discontinuity but becomes
wider. Despite this difference, the spike integral remains rather similar between the two
methods. Indeed, the relative difference between the standard deviation integral from the
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local approach AL and the one from the global approach AG, calculated as |AL −AG| /AG,
remains smaller than 0.13 even for the maximum variation of the three parameters (±40%).

As in previous cases, a convergence analysis was performed, for the water depth. Fig-
ure 11 shows the relative errors in the first statistical moments computed from LSA with
respect to GUA (Eqs.5 and4) as a function of ∆ψ/ψ0. In Figure 11c and d, the relative
error, computed over the whole domain reaches 3% for the mean and 18% for the standard
deviation when the three parameters are allowed to vary from their nominal value by ±0.1%
to ±40%. The relative error obtained after excluding the same 4 m across the shock as
previously remains smaller than 1.6% and 4.5% of GUA estimates even when the min-max
interval of the input distribution reaches as much as ±0.4ψ0 for each parameter simultan-
eously.

An interesting feature of the local sensitivity approach, in the ubiquitous case of mul-
tiple uncertain parameters, is that it directly provides for first-order estimation of each
parameter’s importance in the generation of the overall model output uncertainty. Indeed,
Eqs (3), expressing the output variance as a sum of contributions from each uncertain para-
meter, immediately translates into relative shares of each of them in the resulting total
uncertainty, through division of each contribution by their sum.

Applying this rule to the above numerical case, shows that the area of predominance is
different for each parameter (Figure 13): water elevation hL is the most important parameter
upstream of the shock (but, not unexpectedly, has no effect downstream), while the friction
coefficient n is the most important one downstream of the shock.

Finally, should the uncertain parameters not be considered independent, a similar ana-
lysis, including additionnal, covariance terms in Eqs (3), could be further developed.

6. Conclusion

The main advantage of the proposed equation-based, local approach (LSA) is that it
requires only a single simulation instead of many hundreds or thousands for the global
method (GUA), leading to a considerable gain in computational time. This study shows
that the local sensitivity can be successfully used in place of a large number of Monte Carlo
simulations for some complex, nonlinear hydrodynamic problems, wherever the flow remains
continuous.

This is the case for instance of the propagation of flash floods, or of the dam-break prob-
lem outside a very small area around the shock that propagates downstream. For this latter
problem, estimating the spike in variance around the flow discontinuity remains a problem.
This was to be expected because the local and global estimations of the output standard-
deviation can be identical only if (i) the output function is a continuous function of the
parameters, and (ii) the function can be assumed quasi-linear within the range of variation
of the parameters. The accuracy of the local method anywhere the flow is continuous sug-
gests the interesting finding that hydrodynamics of river flow is generally only very mildly
non-linear, even for such abrupt processes as flash floods or dam failure. However, where
and when the flow becomes discontinuous, both assumptions above are obviously violated.

A treatment of the moving shock has been proposed [8, 13] to eliminate the spike in the
local sensitivity solution. However, this approach is not appropriate for the applications
considered in this paper because it misses the mode in variance observed in the GUA output
standard deviation across the discontinuity. Further research should thus be devoted to
designing methods that allow for better approximation by the local approach of the out-
put standard deviation near flow discontinuities. Despite this difficulty, the relative error
produced by LSA compared to Monte Carlo simulations including the shock area remains
smaller than 18 % when all three parameters vary concurrently by as much as ±40%. Local
sensitivity analysis thus appears as a suitable approach to uncertainty analysis in the range
of parameter variation classically experienced for the shallow water equations. Moreover,
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that the standard deviation integral is largely preserved between the local and the global
approach suggests that reliable estimation of the spike could possibly be obtained. Finally,
beyond the computing performance advantage of the local approach, an additional benefit
lies in the valuable information that it readily brings with respect to the relative importance
of multiple uncertain parameters in total model uncertainty.

12



Symbol Definition Value
g Gravitational acceleration 9.81 m s−2

L Length of the simulation domain 3000 m
S0 Bottom slope 10−3

nM Manning’s friction coefficient 0.025 m−1/3 s
qup Unit discharge prescribed at the upstream boundary see Fig. 1 and Eq. (12)
qmax Maximum discharge prescribed at the upstream boundary 4 m2 s−1

qmin Minimum discharge prescribed at the upstream boundary 1 m2 s−1

t1 Time of flood beginning 0 min
t2 Time of maximum input discharge (qb = qmax) 10 min
t3 End of flood (qb = qmin) 30 min
θup Unit discharge sensitivity prescribed at the upstream boundary see Fig. 1
Fds Froude number prescribed at the downstream boundary 0.8
Tmax Final simulation time for methods comparison 15 min
∆x Cells width used for the discretization 1 m
N Number of Monte Carlo simulations 1000

Table 1: Parameters for the flood propagation test case.

Symbol Definition Value
g Gravitational acceleration 9.81 m s−2

L Length of the simulation domain 200 m
x0 Initial location of the dam 100 m
hL Initial water depth in the reservoir, on the left-hand side of the dam 20 m
ηL Initial sensitivity of the water depth in the reservoir 1
hR Initial water depth in the river, on the right-hand side of the dam 2 m
ηR Initial sensitivity of the water depth in the river 0
qL,R Initial unit discharge on the left- and right-hand sides of the dam 0 m2 s−1

θL,R Initial sensitivity of unit discharge on the left- and right-hand sides of the dam 0 m2 s−1

S0 Bottom slope 0
nM Manning’s friction coefficient 0 m−1/3 s
Tmax Final simulation time 5 s
(∆x)r Cells width used for the discretization 0.1 m
N Number of Monte Carlo simulations 1000

Table 2: Parameters for the dam-break problem without friction and slope.

t (s)

qb (m2/s)

qmin 

qmax 

t1 t2 t3
θb

0

1
t (s)

t1 t2 t3

Figure 1: Flood propagation test case. Unit discharge and sensitivity prescribed at the
upstream boundary.
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Symbol Definition Value
g Gravitational acceleration 9.81 m s−2

L Length of the simulation domain 200 m
x0 Initial position of the dam 100 m
Tmax Final simulation time 3 s
hR Initial water depth in the river (right side of the dam) hN Eq. (17)
uR Initial flow velocity in the river 1 m s−1

∆x Cells width used for the discretization 0.1 m
z0L Initial water elevation in the reservoir 10 m
S0
0 Bottom slope 1 · 10−2

n0M Manning’s friction coefficient 0.025 m−1/3 s
∆ψ Defines the possible parameter variation ψ ∈

[
ψ0 −∆ψ,ψ0 + ∆ψ

]
N Number of Monte Carlo simulations 1000

Table 3: Problem parameters for the “real-world” dam-break problem. The super-
script 0 denotes the nominal values for the local sensitivity approach, which are also used
as the distribution means in the Monte Carlo simulations (see Table 4).

Parameter Mean Minimum Maximum ∆ψ Standard deviation σ
zL (m) z0L = 10 8 12 0.2z0L 0.598
nM

(
m−1/3 s

)
n0M = 0.025 0.015 0.035 0.4n0M 2.96 · 10−3

S0 (−) S0
0 = 1 · 10−2 0.5 · 10−2 1.5 · 10−2 0.5S0

0 1.49 · 10−3

Table 4: Dam-break problem, one-factor-at-a-time: Characteristics of the parameter
distributions for the Monte Carlo analysis. Each distribution is centered on the nominal
value (0 superscript) of Table 3.

Reservoir

River

Dam

Reservoir

Dam

River

Figure 2: Schematic view of the dam. Left: view from above; right: longitudinal cross-
section.
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Figure 3: Flood propagation: water depth, unit discharge and their sensitivity with
respect to the maximum input discharge at four times.
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Figure 4: Flood propagation test case. Estimation of the standard deviation σh(x) of
the output water depth at time Tmax using the local approach σhL and the global approach
σhG; with a maximum relative variation of maximum input discharge ∆qmax/qmax = 10%
(left) and 30% (right).
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Figure 5: Convergence analysis for the flood propagation test case. Relative depar-
tures from the local to the global approach (Eqs (4)(5)) for the water depth h and discharge
q means (left) and standard deviations (right), depending on relative parameter variability
∆ψ/ψ0. Differences remain smaller than 1.8% (resp. 5%) even when the maximum input
discharge is allowed to vary by 80% (i.e. from 0.8 m2s−1 to 7.2 m2s−1).
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Figure 6: Monte Carlo simulations: a) distribution of parameter hL obtained from
random sampling within a Beta distribution (Eq. 1); b) and c) deciles of the output water
depth and unit discharge at time Tmax.
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Figure 7: Analytical solution at time Tmax. Estimation of the standard deviation σ(x)
of the output: water depth (left) and unit discharge (right). σG is estimated from 1000 sim-
ulations of the analytical flow solution (B.4) and σL from the analytical sensitivity solutions
(B.10)-(B.11) using Eq. (2). The analytical solution for the sensitivity does not account for
the sensitivity of the shock location.
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Figure 8: Dam-break problem, one-factor-at-a-time: initial water depth in the
reservoir zL. Deciles of the output distributions of h and q obtained from the Monte Carlo
simulations with an input distribution of the initial water elevation in the reservoir, zL.
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Figure 10: Dam-break problem, one-factor-at-a-time. Comparison between the stand-
ard deviations of the outputs h (left) and q (right), estimated from the global σG and local
σL approaches for parameters: a) initial water depth in the reservoir zL, b) bottom slope
S0 and c) friction coefficient nM .
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Figure 11: Dam-break problem, one (up) or three (down) factor(s)-at-a-time:
convergence analysis for initial water elevation in reservoir zL. Relative errors
(Eqs (4)(5)) on estimates of first statistical moments of water depth h by LSA compared to
GUA, as a function of relative parameter variability ∆ψ/ψ0: a, c) for the output mean; b,
d) for the output standard deviation including the whole domain or excluding 4 m across
the shock.
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Figure 12: Dam-break problem, three-factors-at-a-time. Estimated standard devi-
ations in output h as a function of x (zoom near the shock location), from global and local
methods, for three different magnitudes of variation in the three parameters ψ = zL, S0, nM

.
Parameters ψ are taken from a distribution of 10000 repetitions of three Beta laws centered
on ψ0 and included in ψ0±X% with X =0.1, 20 and 40. When the input variance increases,
the output variance remains correctly reproduced by the local approach in the whole domain
except around the discontinuity where the spike amplitude is highly overestimated.
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Appendix A. Notations

h : Water depth
hL : Water depth in the reservoir for the dam-break problem
hR : Water depth in the river downstream of the reservoir for the dam-break problem
nM : Manning’s friction coefficient
q : Unit discharge (i.e., discharge per unit width of river reach)

qmax : Maximum upstream unit discharge for the flood propagation problem
s : Vector of sensitivity variables = [η, θ]

T

S0 : Bottom slope
Sf : Friction slope
U : Vector of flow variables = [h, q]

T

ε : Relative error on estimate of output moment by local sensitivity method (LSA), using
global sampling approach (GUA) estimate as reference

η : sensitivity of the water depth with respect to the parameter of interest
θ : sensitivity of the unit discharge with respect to the parameter of interest
ψ : Parameter perturbed for the sensitivity analysis (can be in this paper: hL, n, S0, qmax)

∆ψ : Possible range of variation for distribution of parameter ψ
σG : Estimate of standard deviation by global (GUA) approach
σL : First-order estimation of σG by local sensitivity (LSA) approach

Appendix B. Analytical solution of the dam-break problem without source term

The analytical solution for the flow (6) and sensitivity (9) equations can be obtained for
the dam-break problem when no friction and bottom slope are considered, by solving the
following Riemann problem:

∂U (x, t)

∂t
+
∂F (x, t)

∂x
= 0

∂s (x, t)

∂t
+
∂G (x, t)

∂x
= 0 (B.1)

(U, s) (x, 0) =

{
(UL, sL) for x < x0

(UR, sR) for x > x0

where x0 is the abscissa of the dam.
The general solution of this Riemann problem is known to be made of two waves with

opposite directions separated by an intermediate region of constant state. The first one is a
rarefaction wave while the second one is a shock wave (see Figure B.14). The waves celerities
are given by (

λ−

λ+

)
=

(
u− c
u+ c

)
(B.2)

The comprehensive development of the analytical solution can be found for example in [8, 13].
The solution is self-similar [19], that is, it depends only on the variable ξ = (x− x0) /t. The
flow solution is given by:

h =


hL if ξ < (u− c)L
hr(ξ) if (u− c)L < ξ < (u− c)∗
h∗ if (u− c)∗ < ξ < cs
hR if cs < ξ

(B.3)
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q =


qL if ξ < (u− c)L
hrur(ξ) if (u− c)L < ξ < (u− c)∗
h∗u∗ if (u− c)∗ < ξ < cs
qR if cs < ξ

(B.4)

where cr, hr,ur are the expressions of c, h and u across the rarefaction wave:

cr =
1

3
(uL + 2cL − ξ) (B.5a)

hr = c2r/g (B.5b)

ur =
1

3
(uL + 2cL + 2ξ) (B.5c)

c∗ and u∗ are the expressions of c and u in the internal region of constant state:

c∗ =
√
gh∗ (B.6)

u∗ = (uL + 2cL − 2c∗) (B.7)

The shock speed cs and the water depth in the internal region of constant state h∗ are
obtained by solving the jump relationships (2× 2 system of non-linear equations) across the
shock:

F∗ − FR = (U∗ −UR) cs (B.8)

The first equation of (B.8) yields

cs =
h∗u∗ − qR
h∗ − hR

(B.9)

and h∗ is obtained by solving iteratively the second equation of (B.8).
The sensitivity solution is obtained by differentiating (B.3) and (B.4) with respect to ψ:

η =


ηL if ξ < (u− c)L
ηr = 2

g crχr if (u− c)L < ξ < (u− c)∗
η∗ if (u− c)∗ < ξ < cs
ηR if cs < ξ

(B.10)

θ =


θL if ξ < (u− c)L
(ηu+ hν)r if (u− c)L < ξ < (u− c)∗
θ∗ if (u− c)∗ < ξ < cs
θR if cs < ξ

(B.11)

where χ and ν are the sensitivities of c and u with respect to the parameter ψ. Across the
rarefaction wave, these sensitivities are identical and given by:

χr = νr =

[
1

3h
(θ − uη + cη)

]
L

(B.12)

The sensitivities η∗ and θ∗ in the internal region of constant state are found by solving the
generalisation of the jump relationships to the sensitivity:

G∗ −GR = (s∗ − sR) cs + (U∗ −UR)
∂cs
∂hL

(B.13)
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Figure B.14: Structure of the flow and sensitivity solutions for the dam-break problem. Left:
water depth h and its sensitivity η. Right: unit discharge q and its sensitivity θ.
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