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Abstract

This paper develops new insights into quantitative methods for the validation of compu-

tational model prediction. Four types of methods are investigated, namely classical and

Bayesian hypothesis testing, a reliability-based method, and an area metric-based method.

Traditional Bayesian hypothesis testing is extended based on interval hypotheses on distri-

bution parameters and equality hypotheses on probability distributions, in order to validate

models with deterministic/stochastic output for given inputs. Formulations and imple-

mentation details are outlined for both equality and interval hypotheses. Two types of

validation experiments are considered - fully characterized (all the model/experimental

inputs are measured and reported as point values) and partially characterized (some of

the model/experimental inputs are not measured or are reported as intervals). Bayesian

hypothesis testing can minimize the risk in model selection by properly choosing the model

acceptance threshold, and its results can be used in model averaging to avoid Type I/II

errors. It is shown that Bayesian interval hypothesis testing, the reliability-based method,

and the area metric-based method can account for the existence of directional bias, where

the mean predictions of a numerical model may be consistently below or above the corre-

sponding experimental observations. It is also found that under some specific conditions, the

Bayes factor metric in Bayesian equality hypothesis testing and the reliability-based metric

can both be mathematically related to the p-value metric in classical hypothesis testing.

Numerical studies are conducted to apply the above validation methods to gas damping

prediction for radio frequency (RF) microelectromechanical system (MEMS) switches. The

model of interest is a general polynomial chaos (gPC) surrogate model constructed based on

expensive runs of a physics-based simulation model, and validation data are collected from
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fully characterized experiments.
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1. Introduction

Model validation is defined as the process of determining the degree to which a model is

an accurate representation of the real world from the perspective of the intended use of the

model [1, 2]. Qualitative validation methods such as graphical comparisons between model

predictions and experimental data are widely used in engineering. However, statistics-based

quantitative methods are needed to supplement subjective judgments and to systematically

account for errors and uncertainty in both model prediction and experimental observation [3].

Previous research efforts include the application of statistical hypothesis testing methods

in the context of model validation [4--7], and development of validation metrics as measures of

agreement between model prediction and experimental observation [7--11]. Some discussions

on the pros and cons of these validation methods can be found in [7, 12]. Based on these

existing methods and the related studies, this paper is motivated by several issues which

remain unclear in the practice of model validation: (1) validation with fully characterized

vs. partially characterized experimental data; (2) validation of deterministic vs. stochastic

model predictions; (3) accounting for the existence of directional bias; and (4) choice of

thresholds in different validation metrics.

First, there are two possible types of validation data, resulting from (1) fully characterized

experiments (i.e., all the inputs of the model/experiment are measured and reported as point

values) or (2) partially characterized experiments (i.e., some inputs of the model/experiment

are not measured or are reported as intervals). For instance, some input variables of the

model/experiment may not be measured, but we may have expert opinions about the possible

ranges or probability distributions of these input variables, and thus this experiment is

”partially” characterized. In other words, there will be more uncertainty in the data from
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partially characterized experiments than from fully characterized experiments, due to the

uncertainty in the input variables. Some partially characterized experiments with limited

uncertainty may be considered for validation by practitioners. The term ”input” is referred

to as the variables in a model that can be measured in experiments. We assume that the

same set of variables goes into the model and validation experiments as inputs, and we are

comparing the outputs of the model and experiments during validation. Therefore, the terms

”model inputs” and ” experimental inputs” mean the same thing in this paper. When a

model is developed, the physical quantity Y is postulated to be a function of a set of variables

{x,θ}. This function is not exactly known and hence is approximated using a model with

output Ym. Y is observable through some experiments and x are the measurable inputs

variables to the experiments. Note that θ are the variables that cannot be measured in the

experiments and are called as ”model parameters”. A simple example of the measurable

experimental inputs is the amplitude of loading applied on a cantilever beam, while the

deflection of the beam is the measured quantity. Also note that the diagnostic quality and the

bias in experiments are not considered as ”input”. Instead, they are classified as components

of the measurement uncertainty, which is represented by εD in this paper. While most of

the previous studies only focus on validation with fully characterized experimental data, this

paper explores the use of both types of data in various validation methods.

Second, due to the existence of aleatory and epistemic uncertainty, both the model

prediction (denoted as Ym) and the physical quantity to be predicted (denoted as Y ) can be

uncertain, and this has been the dominant case studied in the literature [5--8, 10, 11, 13].

However, in practice it is possible that either Ym or Y can be considered as deterministic.

Note that Ym is deterministic means that for given values of the model input variables,

the output prediction of the model is deterministic. The application of various validation

methods to these different cases will be covered in this paper.

Third, in this study, we defined two terms to characterize the difference between model

prediction and validation data - bias and directional bias. Bias is defined as the difference

between the mean value of model predictions and the statistical mean value of experiment

observations, and the term ”directional bias” means that the direction of bias remains
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unchanged as one varies the inputs of model and experiment. This paper explores various

validation methods in order to account for the existence of the directional bias.

Fourth, although different validation metrics are usually developed to measure the agree-

ment between model prediction and validation data from different perspectives, this paper

shows that under certain conditions some of the validation metrics can be mathematically

related. These relationships may help decision makers to select appropriate validation metrics

and the corresponding model acceptance/rejection thresholds.

Various quantitative validation metrics, including the p-value in classical hypothesis

testing [14], the Bayes factor in Bayesian hypothesis testing [15], a reliability-based metric [7],

and an area-based metric [10, 11], are investigated in this paper. Based on the original

definition of Bayes factor, we formulate two types of Bayesian hypothesis testing, one on the

accuracy of predicted mean and standard deviation of model prediction, and the other one on

the entire predicted probability distribution of the model prediction. These two formulations

of Bayesian hypothesis testing can be applied to both fully characterized and partially

characterized experiments. The use of these two types of experimental data in the other

validation methods is also investigated. The first formulation of Bayesian hypothesis testing,

along with the modified reliability-based method and the area metric-based method, takes into

account the existence of directional bias. The mathematical relationships among the metrics

used in classical hypothesis testing, Bayesian hypothesis testing, and the reliability-based

method are investigated.

Section 2 presents the general procedure of quantitative model validation in the presence

of uncertainty. Section 3 and 4 investigate the aforementioned model validation methods for

(1) fully characterized and partially characterized experimental data, (2) application to the

case when model prediction and the quantity to be predicted may or may not be uncertain,

(3) sensitivity to the existence of the directional bias, and (4) the mathematical relationships

among some of these validation methods. A numerical example is presented in Section 5 to

illustrate the validation of a MEMS switch damping model, which is a generalized polynomial

chaos (gPC) surrogate model [16] that has been constructed to predict the squeeze-film

damping coefficient. The gPC model is used to replace the expensive micro-scale fluid
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simulation model and thus expedite the probabilistic analysis of the MEMS device.

2. Quantitative validation of model prediction

Suppose a computational model is constructed to predict an unknown physical quantity.

Quantitative model validation methods involve the comparison between model prediction

and experimental observation. In this paper, we use the following notations

- Y represents the ”true value” of the system response

- Ym is the model prediction of this true response Y

- YD is the experimental observation of Y

The development of validation metrics is usually based on assumptions on Y , Ym, and

YD, and these assumptions relate to the various sources of uncertainty and the types of

available validation data. In order to select appropriate validation methods, the first step is

to identity the sources of uncertainty and the type of validation data.

As mentioned earlier, the available validation data can be from fully characterized or

partially characterized experiments. In the case of fully characterized experiments, the

model/experimental inputs x are measured and reported as point values. The true value of

the physical quantity (Y ) and the output of model (Ym) corresponding to these measured

values of x will be deterministic if there are no other uncertainty sources existing in the

physical system and the model. Note that Y and Ym can still be stochastic because of other

uncertainty sources other than the input uncertainty. For example, the Young’s modulus of

a certain material can be stochastic due to variations in the material micro-structure, and

the output of a regression model for given inputs is stochastic because of the random residual

term. If the experiment is partially characterized, some of the inputs x are not measured

or are reported as intervals, and thus the uncertainty in x should be considered. In the

Bayesian approach, the lack of knowledge (epistemic uncertainty) about x is represented

through a probability distribution (subjective probability). Then, since both Y and Ym

are considered as functions of x, they also get treated through probability distributions.

Non-probabilistic approaches have also been proposed to handle the epistemic uncertainty;

in this paper, we only focus on probabilistic methods.
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Note that YD results from the addition of measurement uncertainty to the true value of

the physical quantity Y , i.e., YD = Y + εD, where εD represents measurement uncertainty.

Hence, the uncertainty in the experimental observation (YD) can be split into two parts,

the uncertainty in the physical system response (Y ) and the measurement uncertainty in

experiments (εD). It should be noted that experimental data with poor quality can hardly

provide any useful information on the validity of a model. The discussions in this paper

are restricted to the cases where uncertainty in data (due to the uncertainty in measuring

experimental input and output variables) is limited.

Table 1 summarizes the applicability of the various validation methods investigated in

this paper to the different scenarios discussed above, and more details will be presented in

Sections 3 and 4.

Table 1: Scenarios of validation and the corresponding methods

Experimental data
Quantity Y
(to be predicted)

Prediction Ym
(from model)

Applicable
methods

Fully characterized
Stochastic Deterministic 1,2,4
Deterministic Stochastic 1,2,4,5
Stochastic Stochastic 1,2,3,4,5

Partially characterized Stochastic Stochastic 1,2,3,4,5

Methods considered:
1. Classical hypothesis testing
2. Bayesian interval hypothesis testing
3. Bayesian equality hypothesis testing
4. Reliability-based method
5. Area metric-based method
Note: YD is always treated as a random variable due to measurement uncertainty

After selecting a validation method and computing the corresponding metric, another

important aspect of model validation is to decide if one should accept or reject the model

prediction based on the computed metric and the selected threshold. Section 3 and 4 will

provide some discussions on the decision threshold. The flowchart in Fig. 1 describes a

systematic procedure for quantitative model validation.
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Quantity 
to be predicted

Model 
prediction

Stochastic or
Deterministic

Validation 
experiment

Well-characterized 
or 

Uncharacterized

Accept/reject the 
model prediction

Select validation method 
and calculate metric

Stochastic or
Deterministic

Figure 1: Decision process in quantitative model validation

3. Hypothesis testing-based methods

Statistical binary hypothesis testing involves deciding between the plausibility of two

hypotheses - the null hypothesis (denoted as H0) and the alternative hypothesis (denoted

as H1). H0 is usually something that one believes could be true, whereas H1 may be a

rival of H0 [17]. For example, given a model for damping coefficient prediction, H0 can be

the hypothesis that the model prediction is equal to the actual damping coefficient, and

correspondingly H1 states that the model prediction is not equal to the actual damping

coefficient. The null hypothesis H0 will be rejected if it fails the test, and will not be rejected

if it passes the test. Two types of error can possibly occur from this exercise: rejecting the

correct hypothesis (type I error), or failing to reject the incorrect hypothesis (type II error).

In the context of model validation, it should be noted that the underlying subject matter

domain knowledge is also necessary for the implementation of the hypothesis testing-based

methods, especially in the formulation of test hypotheses (H0 and H1) and the selection

of model acceptance threshold. To formulate appropriate H0 and H1 for the validation

of a model with stochastic output prediction Ym, we need to be clear about the physical

interpretation of ”model being correct”. In other words, we need to decide whether or not

the accurate prediction of certain order moments or the entire PDF of Ym suggests that the

model is correct.

7



3.1. Classical hypothesis testing

Classical hypothesis testing is well established and has been explained in detail in many

statistics textbooks. A brief overview is given here, only to facilitate the development of

mathematical relationships between various validation methods in later sections.

In classical hypothesis testing, a test statistic is first formulated and the probability

distributions of this statistic under the null and alternative hypothesis are derived theoretically

or by approximations. Thereafter, one can compute the value of the test statistic based on

validation data and thus calculate the corresponding p-value, which is the probability that

the test statistic falls outside a range defined by the computed value of the test statistic

under the null hypothesis. The p-value can be considered as an indicator of how good the null

hypothesis is, since a better H0 corresponds to a narrower range defined by the computed

value of the test statistic and thus a higher probability of the test statistic falling outside

the range.

The practical outcome of model validation should be to provide useful information for

decision making in terms of model selection. The decisions whether or not to reject the null

hypothesis can be made based on the acceptable probabilities of making type I and type

II errors (specified by the decision maker). The concept of significance level α defines the

maximum probability of making type I error, and the probability of making type II error β

can be estimated based on α and the probability distribution of the test statistic under H1.

The null hypothesis will be rejected if the computed p-value is less than α, or the computed

β exceeds the acceptable value. Correspondingly, we will reject the model if H0 is rejected,

and accept the model if H0 is not rejected. An alternative approach to comparing p-value

and α is to use confidence intervals. A confidence interval can be constructed based on the

confidence level γ = 1− α, and the null hypothesis will be rejected if the confidence interval

does not include the predicted value from the model.

It should be note that accepting the model (or failing to reject H0) indicates that the

accuracy of the model is acceptable, but it does not prove that the model (or H0) is true.

Also note that the comparison between p-value and significance level α becomes meaningless

when the sample size of experimental data is large. Since almost no null hypothesis H0
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is true, the p-value will decrease as the sample size increases, and thus H0 will tend to

be rejected at a given significance level α as the sample size grows large [17]. In addition,

the over-interpretation of p-values and the corresponding significance testing results can be

misleading and dangerous for model validation. Criticisms on over-stressing p-values and

significance levels can be found in [18, 19].

Various test statistics have been developed corresponding to different types of hypotheses.

The t-test or z-test can be used to test the hypothesis that the mean of a normal random

variable is equal to the model prediction; the chi-square test can be used to test the hypothesis

that the variance of a normal random variable is equal to the model prediction; and the

hypothesis that the observed data come from a specific probability distribution can be

tested using methods such as the chi-square test, the Kolmogorov-Smirnov (K-S) test, the

Anderson-Darling test and the Cramer test [20]. The tests on the variance or the probability

distribution require relatively large amounts of validation data and thus only the tests on

the distribution mean are discussed in this subsection, namely the t-test and the z-test.

The t-test is based on Student’s t-distribution. Suppose the quantity to be predicted Y

is a normal random variable with mean µ and standard deviation σ, and the measurement

noise εD is also a normal random variable with zero mean and standard deviation σD. Thus,

the experimental observation YD = Y + εD ∼ N(µ, σ2 + σ2
D). For the sake of simplicity, let

σYD =
√
σ2 + σ2

D. The validation data is a set of random samples of YD with size n (i.e., yD1,

yD2, ..., yDn) and the corresponding sample mean is ȲD and sample standard deviation is SD.

The variable (ȲD − µ)/(SD/
√
n) is modeled with a t-distribution with (n − 1) degrees of

freedom. Therefore, if one assumes that the model mean prediction µm (if model prediction

is deterministic, µm equals to the prediction value) is the mean of Y , i.e., the null hypothesis

is H0 : µ = µm, then the corresponding test statistic t (follows the same t-distribution) is

t =
ȲD − µm
SD/
√
n

(1)

The p-value for the two-tailed t-test (considering both ends of the distribution) can be
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obtained as

p = 2FT,n−1(−|t|) (2)

where FT,n−1 is the cumulative distribution function (CDF) of a t-distribution with (n− 1)

degrees of freedom. If the chosen significance level is α, then one will reject the null hypothesis

H0 if p < a, or fail to reject H0 if p > a.

The t-test requires a sample size n ≥ 2 in order to estimate the sample standard deviation

SD. If n = 1, the z-test can be used instead by assuming that the standard deviation of Y is

equal to the standard deviation of model prediction Ym, i.e., σ = σm and σYD =
√
σ2
m + σ2

D.

Thus, the variable (ȲD − µ)/(σYD/
√
n) follows the standard normal distribution. Under the

null hypothesis H0 : µ = µm, the test statistic z is

z =
ȲD − µm
σYD/

√
n

(3)

The corresponding p-value for the two-tailed z-test can be computed as

p = 2Φ(−|z|) (4)

where Φ is the CDF of the standard normal variable. Similar to the t-test, one will reject H0

if p < a, or fail to reject H0 if p > a.

To compute the probability of making type II error β, an alternative hypothesis H1

is needed and a commonly seen formulation is H1 : µ = µm + εµ. In t-test, under the

alternative hypothesis H1 : µ = µm + εµ, the t statistic follows a non-central t-distribution

with noncentrality parameter δ =
√
nεµ/σYD [21, 22], the probability of making type II error

β can then be estimated as

β = 1− Pr(|t| > t1−α/2,n−1|δ) (5)

where the term Pr(|t| > tα/2,n−1|δ) is called the power of the test in rejecting H0. Similarly,
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β in the z-test can be estimated as

β = 1− Pr
(
|z − δ| > Φ−1(1− α/2)

)
(6)

Note that the above discussion is for the case that both Y and Ym are stochastic. If Y

is deterministic, the standard deviation σ becomes zero; if Ym is deterministic, σm becomes

zero. However, the computation procedure of p-value remains the same.

Applying classical hypothesis testing to fully characterized experiments is straightforward

as one can directly compare the data with the model predictions for given inputs. For partially

characterized experiments, some of the inputs of the model/experiments are available in the

form of intervals or probability distributions based on measurements or expert opinions. Let

data that have inputs with the same intervals or probability distributions form a sample

set. The aforementioned t-test and z-test can then be conducted by comparing the mean of

the sample set with the mean of the unconditional probability distribution of model output

(”unconditional” means that the probability distribution is not dependent on the point values

of inputs). The unconditional probability distribution of model output can be obtained by

propagating uncertainty from the input variables to the output variable [23].

3.2. Bayesian hypothesis testing

In probability theory, Bayes’ theorem reveals the relation between two conditional

probabilities, e.g., the probability of occurrence of an event A given the occurrence of an

event E (denoted as Pr(A|E)), and the probability of occurrence of the event E given the

occurrence of the event A (denoted as Pr(E|A)). This relation can be written as [24]

Pr(E|A) =
Pr(A|E)Pr(E)

Pr(A)
(7)

Suppose event A is the observation of a single validation data point yD, and event E

can be either the hypothesis H0 is true or the hypothesis H1 is true. Using Bayes’ theorem,

we can calculate the ratio between the posterior probabilities of the two hypotheses given
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validation data yD as
Pr(H0|yD)

Pr(H1|yD)
=
Pr(yD|H0)

Pr(yD|H1)
∗ Pr(H0)

Pr(H1)
(8)

where Pr(H0) and Pr(H1) are the prior probabilities of H0 and H1 respectively, represent-

ing the prior knowledge one has on the validity of these two hypotheses before collecting

experimental data; and Pr(H0|yD) and Pr(H1|yD) are the posterior probabilities of H0

and H1 respectively, representing the updated knowledge one has after analyzing the col-

lected experimental data. The likelihood function Pr(yD|Hi) in Eq. 8 is the conditional

probability of observing the data yD given the hypothesis Hi (i = 0 or 1), and the ratio

Pr(yD|H0)/Pr(yD|H1) is known as the Bayes factor [15, 25] and is used as the validation

metric.

The original intent of the Bayes factor was to compare the data support for two models [26],

and thus the two hypotheses become H0: model Mi is true and H1: model Mj is true. If

θi and θj are the parameters of the two competing models respectively, the Bayes factor is

calculated as

B =
Pr(yD|H0)

Pr(yD|H1)
=

∫
Pr(yD|θi)π(θi)dθi∫
Pr(yD|θj)π(θj)dθj

(9)

where π(θi) and π(θj) are the probability density distributions of θi and θj respectively.

In the context of validating a single model, H0 and H1 need to be formulated differently.

Rebba and Mahadevan [5, 7] proposed the equality-based formulation (H0 : ym = yD, H1 :

ym 6= yD) and the interval-based formulation (H0 : |ym − yD| < ε,H1 : |ym − yD| > ε) for

Bayesian hypothesis testing, where ym is the model prediction for a particular input x.

Consider the case when both the model prediction Ym and the quantity to be predicted

Y are random variables. Two null hypotheses can be formulated: (1) the hypothesis that the

difference between the means of Ym and Y , and the difference between the standard deviations

of Ym and Y , are within desired intervals respectively; (2) the hypothesis that the PDF of

Ym is equal to the PDF of Y . With the first formulation, it is straightforward to derive the

likelihood functions under the null and alternative hypothesis, and the existence of directional

bias can be reflected in the test, as will be shown below. The advantages of the second

formulation are that it avoids the setting of interval width in the first formulation, and leads

12



to a direct test on probability distributions instead of distribution parameters. For the case

that either Y or Ym is deterministic, the first formulation can still be applicable by setting the

standard deviation of the deterministic quantity to be zero; however, the second formulation

only applies to the case when both Y and Ym are stochastic. These two formulations are

applicable to both fully characterized and partially characterized experiments. Note that in

the case where the model output follows a tail-heavy distribution, formulating hypotheses on

higher order moments (instead of the mean and standard deviation) may be necessary in

order to assess the validity of the model. In this paper, the prediction distribution of the

damping model in the application example is close to a Gaussian distribution. Therefore, we

only consider hypotheses on the first two moments (mean and standard deviation) and the

entire PDF for the purpose of illustration.

Interval hypothesis on distribution parameters. The interval hypothesis can be formulated

as H0 : εµ1 ≤ µm − µ ≤ εµ2, εσ1 ≤ σm − σ ≤ εσ2, and H1 : µm − µ > εµ2 or µm − µ <

εµ1, σm − σ > εσ2 or σm − σ < εσ1. µm and µ are the means of Ym and Y respectively, and

σm and σ are the standard deviations of Ym and Y respectively. εµ1, εµ2, εσ1 and εσ2 are

constants which define the width of interval. Note that εµ1 < εµ2, εσ1 < εσ2.

Under the interval hypothesis H0, µ can be any value between [µm − εµ2, µm − εµ1].

So µ ∼ Unif(µm − εµ2, µm − εµ1), and the PDF π0(µ|µm) = 1/(εµ2 − εµ1). Similarly, σ ∼

Unif(σm − εσ2, σm − εσ1), and the PDF π0(σ|σm) = 1/(εσ2 − εσ1). Thus

π0(y|µm, σm) =

∫ ∫
π(y|µ, σ)π0(µ|µm)π0(σ|σm)dµdσ

=
1

(εµ2 − εµ1)(εσ2 − εσ1)

∫ σm−εσ1

σm−εσ2

{∫ µm−εµ1

µm−εµ2
π(y|µ, σ)dµ

}
dσ (10)

In the presence of measurement noise, the experimental observation is a random variable

with conditional probability Pr(yD|y). Hence the likelihood function under the null hypothesis

H0 can be derived as

Pr(yD|H0) =

∫
Pr(yD|y)π0(y|µm, σm)dy (11)
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Under the alternative hypothesis H1, µ can be any value outside [µm − εµ2, µm − εµ1],

but the uniform distribution is not applicable to infinite space in practical cases. To avoid

this issue, we can assume that the possible values of µ are within a finite interval [µl, µu]

based on the underlying physics. Therefore µ ∼ Unif(µl, µm − εµ2) ∪ (µm − εµ1, µu), and the

PDF π1(µ|µm) = 1/(µu − µl + εµ1 − εµ2). Similarly, σ ∼ Unif(σl, σm − εσ2) ∪ (σm − εσ1, σu),

and the PDF π1(σ|σm) = 1/(σu − σl + εσ1 − εσ2). thus

π1(y|µm, σm) =

∫ ∫
π(y|µ, σ)π1(µ|µm)π1(σ|σm)dµdσ

=
A

(µu − µl + εµ1 − εµ2)(σu − σl + εσ1 − εσ2)
(12)

where A is calculated as

A =

∫ σm−εσ2

σl

{∫ µm−εµ2

µl

π(y|µ, σ)dµ+

∫ µu

µm−εµ1
π(y|µ, σ)dµ

}
dσ +∫ σu

σm−εσ1

{∫ µm−εµ2

µl

π(y|µ, σ)dµ+

∫ µu

µm−εµ1
π(y|µ, σ)dµ

}
dσ (13)

The likelihood function under H1 can then be derived as

Pr(yD|H1) =

∫
Pr(yD|y)π1(y|µm, σm)dy (14)

The Bayes factor for the Bayesian interval hypothesis testing can be calculated by dividing

Pr(yD|H0) in Eq. 11 by Pr(yD|H1) in Eq. 14.

It is straightforward to apply this method to the case that Ym is deterministic and the

case that Y is deterministic. For the first case, let σm be zero and the rest of the computation

remains the same. For the second case, the interval assumption will only be made on µ and

µm, since we know σ is zero. The other steps will be the same as above.

The directional bias defined in Section 1 can be captured by conducting two separate

Bayesian interval hypothesis tests. In the first test, we set εµ1 = −εµ and εµ2 = 0, and thus

under the null hypothesis −εµ ≤ µm−µ ≤ 0. In the second test, we set εµ1 = 0 and εµ2 = εµ,

and thus under the null hypothesis 0 ≤ µm − µ ≤ εµ. The model will fail if any of these two

14



null hypotheses fails the corresponding test. Therefore, the existence of directional bias will

increase the chance of a model to fail the combined test. Fig. 2 illustrates this combined test

using the concept of data space. Suppose Z is the overall validation data space, Z1 is the set

of data which does not support the model in the first Bayesian interval hypothesis test, and

Z2 is the set of data which does not support the model in the second test. Then, the union

of Z1 and Z2 is the set of data that does not support the model combining these two tests.

Z1 Z2

Z

Figure 2: Graphical illustration of the combined test

Equality hypothesis on probability density functions. To further validate the entire distribu-

tion of Ym predicted by a probabilistic model, H0 or H1 can be formulated correspondingly

as the predicted distribution π(ym) being or not being the true distribution of the quantity

to be predicted Y , i.e., H0 : π(ym) = π(y), and H1 : π(ym) 6= π(y). The Bayes factor in this

case becomes

B =
Pr(yD|H0)

Pr(yD|H1)
=

∫
Pr(yD|y)π0(y)dy∫
Pr(yD|y)π1(y)dy

(15)

where Pr(yD|y) is the conditional probability of observing noisy data yD given that the

actual value of Y is y; π0(y) is the PDF of Y under the null hypothesis H0 and hence

π0(y) = π(ym); π1(y) is the PDF of Y under the alternative hypothesis H1. If no extra

information about π1(y) is available, it can be assumed as a non-informative uniform PDF.

Note that the bounds of this uniform distribution will affect the value of the estimated Bayes

factor, and thus it should be carefully selected according to the available information.

Note that Pr(yD|y) is proportional to the value of the PDF of YD conditioned on y which
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is evaluated at YD = y, i.e., Pr(yD|y) ∝ π(yD|y). Therefore, Eq. 15 can be rewritten as

B =

∫
π(yD|y)π0(y)dy∫
π(yD|y)π1(y)dy

(16)

Validation data from fully/partially characterized experiments. If the validation data is

from a fully characterized experiment, i.e., all the input parameters x of the experiment

are measured and the point values of x are available, µm and σm used in the Bayesian

interval hypothesis testing are the mean and standard deviation of the model prediction

given the input x, and the PDF of Ym (π(ym)) used in the Bayesian equality hypothesis

testing is conditioned on x. If the experiment is partially characterized, i.e., some of input

x corresponding to observation yD are not measured or are reported as intervals, we can

assume that x have the PDF π(x) based on reported intervals or expert opinions. One can

first calculate the unconditional PDF of model prediction π(ym) via propagating uncertainty

from x to model output Ym

π(ym) =

∫
π(ym|x)π(x)dx (17)

and then calculate µm and σm from π(ym). If data from both fully characterized and partially

characterized experiments are available, we can first calculated Bayes factors corresponding

to these two types of data points separately using different µm and σm (in the Bayesian

interval hypothesis testing), or π(ym) (in the Bayesian equality hypothesis testing) as shown

above, and then multiply these Bayes factors to obtain an overall Bayes factor, as discussed

below.

Bayesian hypothesis testing with multiple data points. If there are N (N > 1) validation

data points available and the corresponding experiments are conducted independently,

i.e., no correlation exists between different data points, according to the basic rule of

probability theory, the probability of observing the whole data set Pr(yD) is the product

of the probabilities of observing individual data points Pr(yDi), i = 1, 2, ..., N . Since the

likelihood functions Pr(yD|H0) and Pr(yD|H1) are essentially probabilities of observing the
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data, after computing the Bayes factor for each data point, these individual Bayes factors can

be multiplied to compute the overall Bayes factor under the assumption that the observations

are independent, as

B =
N∏
i=1

Bi (18)

If the number of data points N is relatively large and most of Bi’s are larger than one,

the product of individual Bayes factors may also be a large number. In such a case it is more

convenient to express Bayes factor on a logarithmic scale as

logB =
N∑
i=1

logBi (19)

Interpretation of Bayesian hypothesis testing results. If the Bayes factor calculated is greater

than 1, it is indicated that the data favors the null hypothesis; if the Bayes factor is less than

1, it is indicated that the data favors the alternative hypothesis. In addition, Jeffreys [27]

gave a heuristic interpretation of Bayes factor in terms of the level of support that the

hypotheses obtain from data. The threshold value of Bayes factor Bth can be related to the

so-called Bayes risk in detection theory [28, 29], which is the sum of costs due to different

decision scenarios - failing to reject the true/wrong hypothesis and rejecting the true/wrong

hypothesis. It has been shown that appropriate selection of Bth can help reduce the Bayes

risk [28]. If one assumes that the cost of making correct decisions (failing to reject the true

hypothesis or rejecting the wrong hypothesis) is zero, the costs of type I and type II error

are the same, and the prior probabilities of the null and alternative hypothesis being true

are equal, then the resulting Bth = 1 [29]. However, It should be noted that as a part of

the decision making process, the choice of thresholds for Bayes factor inevitably contains

subjective elements.

Before collecting validation data, there may be no evidence to support or reject the

model. In that case, it may be reasonable to assume that the prior probabilities of the null

hypothesis and alternative hypothesis are equal (= 0.5). In that case, a simple expression of

the posterior probability of the null hypothesis can be derived in terms of the Bayes factor [5],
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which is a convenient metric to assess the confidence in the model prediction:

Pr(H0|yD) =
Pr(yD|H0)Pr(H0)

Pr(yD|H0)Pr(H0) + Pr(yD|H1)Pr(H1)

=
Pr(yD|H0)

Pr(yD|H0) + Pr(yD|H1)
(20)

=
B

1 +B

An advantage of Bayesian hypothesis testing is that the posterior probabilities of H0

and H1 obtained from the validation exercise can both be used through a Bayesian model-

averaging approach [13, 30, 31] to reflect the effect of the model validation result on the

uncertainty in model output, as shown in Eq. 21

π̄(y) = π0(y)Pr(H0|yD) + π1(y)Pr(H1|yD) (21)

where π̄(y) is the predicted PDF of Y combining the PDFs of Y under the null and alternative

hypothese. Therefore, instead of completely accepting a single model, one can include the

risk of using this model in further calculations. This helps to avoid both Type I and Type II

errors, i.e., accepting a wrong model or rejecting a correct model.

3.3. Relationship between p-value and Bayes factor

Although the p-value in classical hypothesis testing and the Bayes factor B are based

on different philosophical assumptions and formulated differently, it has been shown that

these two metrics can be mathematically related for some special cases [32]. In the discussion

below, the Bayes factor based on the hypothesis of probability density functions for a fully

characterized experiment is found related to the p-value in t-test and z-test, if the model

prediction Ym is a normal random variable with mean µm and standard deviation σm.

Starting from the formula of Bayes factor in Eq. 16, since we assume that the PDF of the

quantity to be predicted Y under the alternative hypothesis H1 is uniform, the integration

term in the denominator is not affected by the target model and thus can be treated as a

constant 1/C. Based on the null hypothesis H0, the quantity to be predicted Y ∼ N(µm, σ
2
m).
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Recall the relationship YD = Y +εD, and εD ∼ N(0, σ2
D), we know that YD ∼ N(µm, σ

2
m+σ2

D).

Thus the numerator of Eq. 16 can be calculated as

∫
π(yD|y)π0(y|x)dy =

1√
σ2
m + σ2

D

φ(
yD − µm√
σ2
m + σ2

D

) (22)

where φ(∗) is the PDF of the standard norm random variable.

If the variance of measurement noise is negligible compared to the variance of Ym, i.e.,

σ2
D � σ2

m, we have σ2
m +σ2

D ≈ σ2
m. Also note that for a single data point ȲD = yD. Therefore

Eq. 16 becomes

B =
C

σm
∗ φ(

ȲD − µm
σm

) (23)

Based on Eqs. 1 and 3, we have

ȲD − µm =

t ∗ SD/
√
n , for t-test

z ∗ σYD/
√
n , for z-test

(24)

Substituting Eq. 24 into Eq. 23, we obtain

B =

C/σm ∗ φ[(t ∗ SD)/(σm
√
n)] , for t-test

C/σm ∗ φ[(z ∗ σYD)/(σm
√
n)] , for z-test

(25)

where φ is the probability density function of a standard normal variable.

From Eq. 25, we can see that the Bayes factor can be related to either the z statistic or

the t statistic, and hence it can be related to the p-value in both z-test and t-test. Combining

Eqs. 4 and 25, we obtain the relation between Bayes factor and the p-value in the z-test as

B =
C

σm
∗ φ[Φ−1(

p

2
)
σYD
σm
√
n

] (26)

where Φ−1 is the inverse standard normal CDF. Similarly, the relation between Bayes factor
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and the p-value in the t-test can be obtained by combining Eqs. 2 and 25 as

B =
C

σm
∗ φ{[SD ∗ F−1

T,n−1(
p

2
)]/(σm

√
n)} (27)

where F−1
T,n−1 is the inverse CDF of a t-distribution with (n− 1) degrees of freedom.

If the chosen significance level in z-test or t-test is α, the corresponding threshold Bayes

factor Bth can be calculated using Eq. 26 or 27 by letting p = α. In that case, the z-test/t-test

with significance level α and Bayesian hypothesis testing with the corresponding threshold

value Bth will both give the same model validation result.

4. Non-hypothesis testing-based methods

Besides the binary hypothesis testing methods discussed above, various other validation

metrics have been developed to quantify the agreement between models and experimental

data from other perspectives, such as the Mahalanobis distance for models with multivariate

output [21], the weighted validation data-based metric [8], the Kullback-Leibler divergence

in the area of signal processing [33] and for the design of validation experiments [34], the

probability bound-based metric [35], the confidence interval-based metric [9], the reliability-

based metric [7], and the area metric [10, 11]. The weighted validation data-based metric

introduced by Hills and Leslie [8] is designed for the case when the importance of different

validation experiments is different. The confidence interval-based validation method proposed

by Oberkampf et al. [9] computes the confidence interval of error, which is defined as the

difference between the model mean prediction and the true mean of the variable to be

predicted. An average absolute error metric and an average absolute confidence indicator

are also computed. However, it is not clear how to apply this method to validation of

a multivariate model with data from discrete test combinations, as the method requires

integration over the space of test inputs. Therefore, only the reliability-based metric and the

area metric are discussed in this paper.
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4.1. Reliability-based metric

The reliability metric r proposed by Rebba and Mahadevan [7] is a direct measure of

model prediction quality and is relatively easy to compute. It is defined as the probability of

the difference d between model prediction and observed data being less than a given quantity

ε

r = Pr(−ε < d < ε) d = YD − Ym (28)

As mentioned in Section 2, experimental observation is random due to measurement

uncertainty and model output may be uncertain in the Bayesian framework. Therefore, as

the difference between two random variables, in the Bayesian framework we interpret d as

a random variable. The probability distribution of d can be obtained from the probability

distributions of YD and Ym. For instance, if the model prediction Ym ∼ N(µm, σ
2
m), and the

corresponding observation YD ∼ N(µ, σ2
YD

) (see discussion in Section 3.1), the difference

d ∼ N(µ− µm, σ2 + σ2
D + σ2

m). For the sake of simplicity, let σd =
√
σ2 + σ2

D + σ2
m. In this

case, the reliability-based metric r can be derived as

r = Φ[
ε− (µ− µm)

σd
]− Φ[

−ε− (µ− µm)

σd
] (29)

In this paper, experimental data are considered as the samples of the random variable YD.

Therefore, if the number of experimental data is relatively large, e.g., n > 30, the sample

variance S2
D can be assumed as a good estimator of σ2

YD
(the true variance of YD), which

is needed to compute the reliability metric. If n is small and no prior information on σ is

available, we can assume that σ = σm, which is the same assumption used in z-test. By

assuming further that the mean of validation data ȲD is equal to µ, Eq. 29 can be re-written

as

r = Φ[
ε− (ȲD − µm)

σd
]− Φ[

−ε− (ȲD − µm)

σd
] (30)

By substituting Eq. 24 into Eq. 30, the relation between the reliability-based metric r
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and the test statistic in the t-test or z-test is obtained as

r =

Φ[(ε− t ∗ SD/
√
n)/σd] + Φ[(ε+ t ∗ SD/

√
n)/σd]− 1 , for t-test

Φ[(ε− z ∗ σYD/
√
n)/σd] + Φ[(ε+ z ∗ σYD/

√
n)/σd]− 1 , for z-test

(31)

By combining Eqs. 2, 4 and 31, the reliability-based metric can be further related to the

p-value in the t-test or z-test as

r =



Φ[(ε− F−1
T,n−1(p/2) ∗ SD/

√
n)/σd]+

Φ[(ε+ F−1
T,n−1(p/2) ∗ SD/

√
n)/σd]− 1 , for t-test

Φ[(ε− Φ−1(p/2) ∗ σYD/
√
n)/σd]+

Φ[(ε+ Φ−1(p/2) ∗ σYD/
√
n)/σd]− 1 , for z-test

(32)

If one chooses to test models based on a threshold reliability value rth calculated by

letting p = α in Eq. 32 above, the result of model validation will be the same as that in the

t-test or z-test with significance level α.

Note that the threshold rth used in the reliability-based method represents the minimum

probability of the difference d falling within an interval [−ε, ε], and the decision of accept-

ing/rejecting a model can be made based on the decision maker’s acceptable level of model

reliability.

Since the reliability-based metric is the probability of d being within a given interval, it

can also reflect the existence of directional bias by modifying the intervals. Similar to the

Bayesian interval hypothesis testing, we can take two different intervals [0, ε] and [−ε, 0],

and calculate the corresponding values of metric r1 and r2 as:

r1 = Φ[
ε− (µ− µm)

σd
]− Φ[

−(µ− µm)

σd
]

r2 = Φ[
−(µ− µm)

σd
]− Φ[

−ε− (µ− µm)

σd
] (33)

By comparing the values of r1 and r2 with the threshold rth/2 (half of the original
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threshold value because the width of intervals considered is half of the original one), the

model will be failed if either r1 or r2 is less than rth/2.

Note that for the case that the quantity to be predicted Y is deterministic, σ becomes

zero, and for the case that the model prediction Ym is deterministic, σm becomes zero.

4.2. Area metric-based method

The area metric proposed by Ferson et al. [10, 11] is attractive due to its capability

to incorporate fully characterized experiments using the so-called ”u-pooling” procedure,

and thus to validate models with sparse data on multiple experimental combinations [12].

For a single experimental combination with input xi, suppose Fm
xi

is the corresponding

cumulative probability function (CDF) of model output Ym and yDi is the observed data,

one can compute a u-value for this experimental combination as

ui = Fm
xi

(yDi) (34)

Based on the probability integral transform theory in statistics [36], if the observed data

yDi is a random sample from the probability distribution of model output, the computed

ui will be a random sample from the standard uniform distribution, and thus the empirical

CDF of all the ui’s (i = 1, 2, ..., N) should match the CDF of the standard uniform random

variable. The difference between these two CDF curves is a measure of the disparity between

model predictions and experimental observations. Hence, a model validation metric can be

developed as [10]

d(Fu, Su) =

∫ 1

0

|Fu − Su|du (35)

where Fu is the empirical CDF of all the ui’s and Su is the CDF of the standard uni-

form random variable. If the value of d(Fu, Su) is small/large, the model predictions are

correspondingly close/not close to experimental observations.

If the model prediction Ym is deterministic, the CDF function Fm
xi

in Eq. 34 cannot

be constructed, and hence the area metric-based method is not applicable to testing a

computational model with deterministic output.
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The area metric can also reflect the existence of directional bias, i.e., the experimental

observations are consistently below or above the corresponding mean predictions of numerical

model. This is due to the use of CDF of model output in Eq. 34. For example, if the model

outputs at different test combinations are Gaussian random variables, the Fm
xi’s in Eq. 34

become Gaussian CDFs. Hence, the values of Fm
xi(yDi) will all be less than 0.5 if yDi’s are

smaller than the mean of the corresponding Gaussian variables. Therefore, instead of being

uniformly distributed between [0,1], ui’s are distributed between [0,0.5], causing a large area

between the empirical CDF of ui and the standard uniform CDF.

Compared to the hypothesis testing methods and the reliability-based method, the area

metric-based method lacks a direct interpretation of model acceptance threshold, i.e., it is

not clear how to set up an appropriate threshold to decide when one should reject/accept a

model. This is a disadvantage for the area metric-based approach.

5. Numerical example

In this section, the aforementioned model validation methods are illustrated via an

application example on damping prediction for MEMS switches. The quantity to be predicted,

the damping coefficient, is considered as a random variable due to the lack of understanding

in physical modeling, in other words, the epistemic uncertainty of damping coefficient is

represented by a subjective probability distribution following the Bayesian way of thinking;

the corresponding computational model is also stochastic as will be shown in Section 5.1.1.

The validation data are obtained from fully characterized experiments, and it is found that

the directional bias defined in Section 1 exists between model prediction and validation data.

5.1. Damping model and experimental data

Despite the superior performance provided in terms of signal loss and isolation compared

with silicon devices [37], the use of RF MEMS switches in applications requiring high

reliability is hindered by significant variations in device lifetime [38]. Rigorous quantification

of the uncertainty sources contributing to the observed life variations is necessary in order to

achieve the design of reliable devices. Within the framework of uncertainty quantification in
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the modeling of RF MEMS switches, the validation of squeeze-film damping model emerges

as a crucial issue due to two factors: (1) damping strongly affects the dynamic behavior

of the MEMS switch and therefore its lifetime [39]; (2) it is difficult to accurately model

micro-scale fluid damping and available models are applicable to limited regimes [40].

5.1.1. Uncertainty quantification in micro-scale squeeze-film damping prediction

For the purpose of illustration, this study considers damping prediction using the Navier-

Stokes slip jump model [41]. Two major sources of uncertainty have been shown to affect

the prediction of gas damping [38]. The first one is epistemic uncertainty related to the lack

of understanding of fundamental failure modes and related physical models. The second

one is aleatory uncertainty in model parameters and inputs due to variability in either the

fabrication process or in the operating environment. Uncertainty quantification approaches

usually require large numbers of deterministic numerical simulations. In order to reduce the

computational cost, a generalized polynomial chaos (gPC) surrogate model [16] is constructed

and trained using solutions of the Navier-Stokes (N-S) equation for a few input points, thus

avoiding repetitively solving the N-S equation. Note that several other surrogate modeling

techniques are also available, including Kriging or Gaussian Process (GP) interpolation [42],

support vector machine (SVM) [43], relevance vector machine [44], etc. The gPC model is

used for the purpose of illustration. This model approximates the target stochastic function

using orthogonal polynomials in terms of the random inputs [38]. A P th order gPC model

ym(x) that approximates a random function y(x) can be written as

y(x) ≈ ym(x) =
M∑
i=1

aiφi(x) + εm M =

nx + P

nx

 (36)

where φi’s are the orthonormal polynomial bases such as Legendre polynomials, Hermite

polynomials, and Wiener-Askey polynomials; nx is the dimension of input x and P is the

order of the polynomial; εm is the error of the gPC model; ai’s are coefficients and can be
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obtained as

ai =

∫
ym(x)φi(x)dx∫
φ2
i (x)dx

=
1

hi

N∑
j=1

wjy(xj)φi(xj) (37)

where hi =
∫
φ2
i (x)dx is constant for a given polynomial basis φi(x), and {xj , wj}Nj=1 is a

set of nodes and weights of the quadrature rule for numerical integration.

Based on the calculated damping coefficient values y(xj) at the quadrature nodes xj by

solving the Navier-Stokes Slip Jump model, the gPC model ym(x) can be constructed using

Eqs. 36 and 37. For any given input xk, µm(xk) =
∑M

i=1 aiφi(xk) is deterministic, while the

residual term εm is random. Under the Gauss-Markov assumption, εm asymptotically follows

a Gaussian distribution with zero mean, and the variance can be estimated as [45, 46]

σ2
m = σ2[1 + φT (xk)(ΦTΦ)−1φ(xk)] (38)

where σ2
m is a function of model input xk; the vector φ(xk) = [φ1(xk),φ2(xk),...,φM(xk)]T ;

the matrix Φ = [φ(x1),φ(x2),...,φ(xN )]T ; and σ2 = 1/(N −M)
∑N

j=1[µm(xj)− y(xj)]
2.

Therefore, for a given input xk, the prediction of damping coefficient based on the gPC

model is a random variable with Gaussian distribution N(µm(xk), σm(xk)). The methods

presented in Sections 3 and 4 will be applied to the validation of this predicted distribution.

The example RF MEMS switch modeled as a membrane is shown in Fig. 3. To construct

a gPC model for the damping coefficient, the input parameters x need to be specified first.

A probabilistic sensitivity analysis shows that the membrane thickness t, the gap height g,

and the frequency ω are the major sources of variability in the damping coefficient, and

hence these three parameters are included in the gPC model, i.e., x = [t, g, ω]. Four different

gas pressures - 18798.45 Pa, 28664.31 Pa, 43596.41 Pa, and 66661.19 Pa - are considered

and correspondingly four gPC models are constructed. This example uses a third order gPC

model with Legendre polynomial bases [38].

It should be noted that the validity of the surrogate model does not guarantee the validity

of the original model. We only have access to the surrogate model and validation experimental

data; therefore in this example we are only assessing the validity of the surrogate model.
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3

Ni membrane (~1‐3 m thick)
Ti layer (~250 A) 

Dielectric
(SiO2/Si3N4 ~200 nm )

Pull‐down electrode 
( Au ~0.5 m thick 
Ti layer ~ 250 A)

• Membrane
– Length ~ 400 m
– Width ~ 100 m
– Thickness ~ 1‐3 m

• N2 or air environment  (~ 1 atm)
• Actuation voltage ~ 40‐100V
• Hold down voltage ~ 5‐15V
• Switching frequency 100 Hz‐10 kHz
• Response time – 3‐10 microseconds

• Contacting capacitive RF MEMS 
switch

• Used for contact actuators and 
capacitive switches

• Metal membrane makes periodic 
contact with thin dielectric layer

Figure 3: Example RF MEMS switch (Courtesy: Purdue PRISM center)

5.1.2. Experimental data for validation

In the experiment, seven devices with different geometric dimensions are considered. For

each of the four pressures mentioned above, 5 repetitive tests are conducted on each of the

seven devices, and hence 140 data points are obtained. Since the input parameters [t, g, ω]

are recorded for each of the data points, these experiments are fully characterized. However,

there is only one data point for each test combination due to the fact that each of the 140

input value combinations is different from others.

Fig. 4(a) shows a graphical comparison between the mean gPC model prediction and

experimental data under the four different pressures by aggregating predictions and data

with respect to the 35 test combinations for each pressure value. The top/bottom points are

correspondingly the maximum/minimum value of model mean predictions and experimental

data, and the square/diamond markers are the average values of predictions/data on the 35

test combinations. A more detailed graphical comparison showing mean prediction of the

gPC model vs. experimental data on each of the individual test combinations is provided in

Figs. 4(b)-(e).

From the graphical comparison, we can see that the gPC model performs better under

the middle two values of pressure. Also note that there is a systematic bias between the

gPC model and experimental observations at the low pressure value (18798.45 Pa), i.e., the

mean predictions of the gPC model are always larger than the experimental data.
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Figure 4: Graphical comparisons between gPC predictions and experimental data
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5.2. Validation based on binary hypothesis testing

5.2.1. Classical hypothesis testing

Because the sample size for each experimental combination is only 1, the t-test is not

applicable and instead z-test is used. The p-values calculated using Eq. 4 are shown in Fig. 5.

The dashed lines in Fig. 5 represent the significance level α = 0.05. The model is considered

to have failed at the experimental combinations where the corresponding p-values fall below

the dashed line. Note that a more rigorous test will need to include the probability of making

type II error (β). The individual numbers of failures of the four gPC models are shown in

Table 2.
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Figure 5: p-value of z-test
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Table 2: Performance of gPC models in z-test with α = 0.05

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

Number of failures 10 5 7 20
Failure percentage 28.6% 14.3% 20.0% 57.1%

5.2.2. Bayesian hypothesis testing

Interval hypothesis on distribution parameters. As discussed in Section 3.2, combination of

two Bayesian hypothesis tests based on the interval null hypotheses H1
0 and H2

0 respectively

can reflect the existence of directional bias. In practical, the parameters εµ, εσ1, and εσ2 that

define the intervals can be determined based on the strictness requirement of validation. For

the purpose of illustration, we set εµ = 0.025, εσ1 = −0.005, and εσ2 = 0.005. µl and µu

that define the possible range of µ are set as 0 and 1 respectively since the MEMS device

considered is under-damped. σl and σu are set to be 0.001 and 0.05 respectively. The results

of Bayesian interval hypothesis testings are calculated using Eq. 10 - 14, and are shown in

Fig. 6 and Table 3.

Table 3: Performance of gPC models in interval-based Bayesian hypothesis testing with logBth = 0

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

H1
0 :

−εµ ≤ µm − µ ≤ 0 Number of failures 10 5 0 10
εσ1 ≤ |σm − σ| ≤ εσ2 Overall Bayes factor 3.1 58.3 92.9 44.1

H2
0 :

0 ≤ µm − µ ≤ εµ Number of failures 5 4 5 14
εσ1 ≤ |σm − σ| ≤ εσ2 Overall Bayes factor 63.9 87.1 74.1 1.4

Combined test
Number of failure 10 5 5 16
Failure percentage 28.6% 14.3% 14.3% 45.7%

Equality hypothesis on probability density functions. In this study, the possible values of

damping coefficient range from 0 to 1 since the system is under-damped. Hence the limit

of integration in the denominator of Eq. 16 is [0, 1], while the limit of integration in the

numerator is [−∞,+∞].
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Figure 6: Bayes factor in interval-based hypothesis testing (on logarithmic scale)

The performance of the gPC models in Bayesian hypothesis testing are shown in Fig. 7

and Table 4. The values of Bayes factor are calculated using Eq. 16, and the threshold

Bayes factor Bth = 1 (this threshold value is chosen based on the discussion in Section 3.2).

Although the performance of the gPC model in terms of failure percentage is different for the

two hypothesis tests as shown in Table 2 and Table 4, if one increases the threshold Bayes

factor Bth to 2.88, which is calculated using Eq. 26 with p = 0.05 in Section 3.3, the result of

Bayesian hypothesis testing in terms of the number of failures becomes the same as in the

z-test in Section 5.2.1. The reason for this coincidence has been explained in Section 3.3.

Note that the performance of the second gPC model (for pressure = 28664.31 Pa) remains

the same when Bth is raised from 1 to 2.88, and this can be easily observed from Fig. 7(b).
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Figure 7: Bayes factor in equality-based hypothesis testing (on logarithmic scale)

Table 4: Performance of gPC models in equality-based hypothesis testing with logBth = 0

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

Number of failures 5 5 3 15
Failure percentage 14.3% 14.3% 8.6% 42.9%
Overall Bayes factor (log-scale) 7.4 57.2 72.3 -10.2

By comparing the results based on interval hypothesis on distribution parameters and

equality hypothesis on probability density functions (Tables 3 and 4), it can be observed that

the performance of the gPC model for pressure 18798.45 Pa in the first test is significantly

worse than in the second test, while the models for the other three pressures have similar

failure percentages in these two tests. As shown in Fig. 4(b), the data are all located below

32



the mean predictions of this gPC model, which indicates the existence of directional bias,

and thus the gPC model for pressure 18798.45 Pa performs worse in the Bayesian interval

hypothesis testing.

5.3. Validation using non-hypothesis testing-based methods

5.3.1. Reliability-based metric

Fig. 8 and Table 5 show the calculated values of the reliability-based metric r, r1 and r2

(Eq. 29 and 33), the failure percentage of models with ε = 0.025 and the decision criterion

rth = 0.2325. This decision criterion is obtained using Eq. 32 with the significance level

α = 0.05, and thus the results of validation (comparing r with rth) in terms of failure

percentage are the same as in the z-test in Section 5.2.1. It can also observed that the failure

percentage of the gPC model for pressure 18798.45 Pa increases significantly in the test that

comparing r1 and r2 with rth/2 due to the existence of directional bias.

Table 5: Performance of gPC models in reliability-based method with rth = 0.69

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

r vs. rth
Number of failures 10 5 7 20
Failure percentage 28.6% 14.3% 20.0% 57.1%

r1 and r2 vs. rth/2
Number of failures 20 7 12 25
Failure percentage 57.1% 20.0% 34.3% 71.4%

5.3.2. Area metric-based method

The area metric for the four gPC models can be computed using Eqs. 34 and 35, and

the results are shown in Fig. 9 and Table 6. Note that the gPC model for pressure 18798.45

Pa has the highest area value and thus performs worst. This is due to the directional bias

between mean predictions and experimental data, and it is reflected in the area metric as

discussed in Section 4.2.

5.4. Discussion

This section demonstrated a numerical example of validating the gPC surrogate model

for the RF switch damping coefficient using the validation methods presented in Sections 3
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Figure 8: Reliability-based metric

Table 6: Area metric for gPC models

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

d(Fu, Su) 0.543 0.146 0.151 0.250

and 4, and 140 fully characterized experimental data points. Based on the performance of the

gPC model in these validation tests, it can be concluded that the prediction of the gPC model

has better agreement with observation under the middle two values of pressure (28664.31 Pa

and 43596.41 Pa), whereas less agreement can be found under the lowest and highest pressure

values (18798.45 Pa and 66661.19 Pa). The decision on model acceptance can be formed

based on the failure percentages with the hypothesis testing methods and the reliability-based
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Figure 9: Empirical CDF of ui and standard uniform CDF

method, and the values of area-based metric, given the desired acceptance threshold. It is

shown that the z-test and the reliability-based metric give the same results in terms of failure

percentage when rth is selected based on the significance level α used in z-test. Similarly,

classical and Bayesian hypothesis testing give the same result by choosing a specific threshold

Bayes factor as shown in Section 3.3. It is also shown that the existence of directional bias

can be reflected in the Bayesian interval hypothesis testing, reliability-based method with

modified intervals, and the area metric-based method. Models that have directional bias will

perform worse in these three validation methods than in classical hypothesis testing and in

Bayesian hypothesis testing with equality hypothesis on probability density functions.
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6. Conclusion

This paper explored various quantitative validation methods, including classical hypothesis

testing, Bayesian hypothesis testing, a reliability-based method, and an area metric-based

method, in order to validate computational model prediction. The numerical example

featured a generalized polynomial chaos (gPC) surrogate model which predicts the micro-

scale squeeze-film damping coefficient for RF MEMS switches.

An Bayesian interval hypothesis testing-based method is formulated, which validates the

accuracy of the predicted mean and standard deviation from a model, taking into account the

existence of directional bias. Further, Bayesian hypothesis testing to validate the entire PDF

of model prediction is formulated. These two formulations of Bayesian hypothesis testing can

be applied to both fully characterized and partially characterized experiments, and the case

when multiple validation points are available. It is shown that while the classical hypothesis

testing is subject to type I and type II error, the Bayesian hypothesis testing can minimize

such risk by (1) selecting a risk-based threshold, and (2) subsequent model averaging using

posterior probabilities. It is observed that under some conditions, the p-value in the z-test

or t-test can be mathematically related to the Bayes factor and the reliability-based metric.

The area metric is also sensitive to the direction of bias between model predictions and

experimental data, and so is the reliability-based method. The Bayesian model validation

result and reliability-based metric can be directly incorporated in long-term failure and

reliability analysis of the device, thus explicitly accounting for model uncertainty, whereas

the area-based metric lacks a direct interpretation for its results. In addition, due to the

use of likelihood function in the Bayesian hypothesis testing, the Bayesian model validation

method can be extended to the case that the validation data is in the form of interval, as

shown in [47, 48].
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