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Abstract

Probabilistic inversion is used to take expert uncertainty assessments about observable
model outputs and build from them a distribution on the model parameters that captures
the uncertainty expressed by the experts. In this paper we look at ways to use minimum
information methods to do this, focussing in particular on the problem of ensuring con-
sistency between expert assessments about differing variables, either as outputs from a
single model, or potentially as outputs along a chain of models. The paper shows how
such a problem can be structured and then illustrates the method with two examples;
one involving failure rates of equipment in series systems and the other atmospheric
dispersion and deposition.

Keywords: Minimum information, coupled models, expert judgement, Probabilistic
Risk Analysis, Gaussian plume.

1. Introduction

An important element of Probabilistic Risk Analysis is assessment of uncertainty in model
outputs. Physical models do not perfectly represent the phenomena they are meant to
describe for many reasons: lack of complete understanding of the physical phenomena,
deliberate simplifications in the model (for example, because of the need to run the model
quickly), inadequate choice of model parameters, and so on.

Bedford and Cooke [1] stress the importance of assessing uncertainties for observable
quantities when using probability. Since it is typically model outputs that are observ-
able quantities, and many model parameters are not directly observable (maybe having
no direct physical interpretation) it is therefore necessary to consider ways of taking
probability distributions that describe the uncertainty in model output quantities and
“back-fitting” these to generate a distribution on the model parameters so that this
matches the uncertainty specified for the output parameters in the following sense: If we
randomly choose a set of model parameters and compute the model outputs then those
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outputs are also random. The distribution of the outputs obtained is called the push-
forward of the distribution on the model parameters and should match the uncertainty
for the observable quantities.

The problem of Probabilistic Inversion (PI) is simply the problem of computing a
distribution on the model parameters with the property that its push forward matches
that specified for the distribution on the observable quantities. See Bedford and Kraan
[2] and Kurowicka and Cooke [3] for different approaches to this problem. Having defined
an uncertainty distribution on the the model parameters, this then allows us to make
predictions, incorporating our uncertainty, on model outputs for any set of model inputs.

The probabilistic inversion problem is typically either under- or over-specified. This
means that the constraints imposed by the output distributions are either not sufficiently
strong to lead to a single solution to the PI problem, or they are mutually contradictory,
and give rise to an infeasible problem.

Previous approaches have used minimally informative distributions to solve the prob-
lem of under-specification, and have either ignored the problem of infeasibility or used
slightly ad-hoc approaches to deal with it. This paper develops the ideas proposed in
Bedford [4] to use minimum information methods [5, 6] to provide guidance in the specifi-
cation of constraints that are not infeasible. It also gives a method to map out the feasible
region for the constraints. Minimum information methods use constraints on expected
values rather than quantile information, though we discuss how quantile information can
be incorporated.

The paper generalizes the context given above to one of “coupled” models, that is,
the situation where we have several models which are sequentially linked in the sense
that the outputs of the first are the inputs of the second, and so on. Hence specifications
may be made of distributions of input and output parameters, and the distributions on
the model parameters are supposed to push forward to these.

The main contribution of this paper is therefore to show how the minimum infor-
mation approach can be used to generate solutions to the PI problem in the context of
coupled models. The rest of the paper is structured as follows. In Section 2 we provide
the mathematical setup to the problem, considering coupled models and minimum in-
formation modelling. In Section 3 we outline the solution to the continuous PI problem
for coupled models and in Section 4 we give the equivalent solution to the discretized
problem. Section 5 investigates the specification of feasible constraints for the coupled
PI problem and considers the effect of fixing the constraints. In Sections 6 and 7 we
provide two examples; the first considering the failure rates of machines located in series
and the second based on the dispersion and deposition problem considered by Kraan in
[7]. Finally, in Section 8, we give some conclusions and a discussion of areas for further
work.

2. Mathematical set up

2.1. Coupled models

We consider models Mi taking input parameters yi and giving output parameters yi+1.
So the output of model 1 is the input for model 2. The models are deterministic models,
but are assumed to have parameters (which may be vectors) that we denote xi. An



Figure 1: A diagram illustrating the form of coupling of models.

illustration of this situation is given in Figure 1.
Some of the parameters may be directly measurable. Some we might be able to

choose. However, often the model parameters are not known directly and we have to
infer them, or infer uncertainty distributions over them. The inputs and outputs of the
models are observable quantities in principle, and we may therefore be able to use expert
judgement to assess distributions or expected values. In probabilistic inversion we try
to find a distribution for the parameters that matches (when propagated through the
model) the distributions specified by the experts for the observable quantities.

As noted above, the PI problem is typically either over- or under-constrained. Over-
constraint happens because the quantities to be assessed are typically functionally related
through the model, so it easy for experts to provide information on observables that is
mutually inconsistent (assuming the model is correct). Under-constraint happens because
there is consistency but there is still not enough information to uniquely determine the
distribution on the parameters. In our approach we use a minimum information property
to solve the problem of under-constraint, and a sequential approach to expert elicitation
to avoid the problem of over-specification.

2.2. Minimum Information Modelling

Suppose we have continuous random variable X, which could be multi-dimensional, and
two densities, f1(·) and f2(·). Then the relative information of f1(·) to f2(·) is a measure
of how similar the two distributions are. It is defined as

I(f1 | f2) =

∫

f1(x) log

(

f1(x)

f2(x)

)

dx.



If f1(·) = f2(·) then the relative information is zero. It then increases as the deviation
between the two distributions becomes greater.

In the problems considered in this paper we wish to find the distribution, f1(·), which
has minimum information, with respect to the background distribution f2(·), subject to
some real valued functions h1 . . . , hk taking expectations α1, . . . , αk. These are known
as the constraints. The choice of background distribution is an important consideration
as this specifies what f1(·) should look like in the absence of more specific information.
Typical choices might be the uniform, log-uniform and Normal distributions (but this
can be subject to sensitivity analysis as we discuss later).

The minimum information distribution is therefore, in some sense, the “simplest” dis-
tribution which satisfies the required criteria. If, relative to the background distribution,
this distribution exists then it is unique and takes the form, Lanford [8],

f(x) =
exp

{

∑k

i=1 λihi(x)
}

Z(λ)
, (1)

for Lagrange multipliers λ = (λ1, . . . , λk) (depending on α1, . . . , αk), where Z(λ) is the
normalising constant. An important contribution of this paper is a procedure which
provides a method of specifying the constraints using expert elicitation which ensures
such a unique minimally informative solution exists. We can approximate this density
arbitrarily well using discrete densities

p(xj) ∝ exp

{

k
∑

i=1

λihi(xj)

}

, (2)

where xj , j = 1, . . . , n is a suitable discretization of x. A derivation of these results is
outlined in Bedford and Wilson [9].

We see that, for minimum information problems, constraints are naturally specified
as expectations on functions of the parameters. We can incorporate quantile assessments
as the expert judgement by specifying the hi’s as indicator functions in terms of the
quantile functions of the parameters. An example is given in Bedford et al [10] and the
technique is used in the failure rates example in Section 6.

We shall now consider how to evaluate the feasible values of constraints when the
specifications of those constraints are made sequentially. Initially we consider the con-
tinuous problem.

3. The Continuous Problem

Consider a collection of parameters from a deterministic model or sequence of models,
denoted X. In general X could have a large number of dimensions. Suppose that expert
elicitation results in the specification of the expectations of some functions, h1, . . . , hp, of
these parameters, denoted α1, . . . , αp. These are the constraints in the problem. We wish
to find the distribution with minimum information which satisfies these expectations.

As we saw in the previous section this minimum information distribution has a density
at x which is proportional to

exp

{

p
∑

i=1

λihi(x)

}

,



for some parameters λ1 . . . , λp. We can define the function φ : Rp → R
p so that φ gives

the expected values obtained from choosing the minimum information distribution with
parameters λ1, . . . , λp. That is,

φ(λ1 . . . , λp) = (α1, . . . , αp).

In particular,

φ(λ1, . . . , λp) =

(
∫

h1(x) exp{
∑

i λihi(x)}dx
∫

exp{
∑

i λihi(x)}dx
, · · · ,

∫

hp(x) exp{
∑

i λihi(x)}dx
∫

exp{
∑

i λihi(x)}dx

)

.

The function φ is invertible and has good analytical properties.
We wish to specify α1 and use this to explore the possible values α2 can take. Having

done this the next step is to find the possible values for α3 having specified α1, α2.
We can continue in this way, evaluating the possible specifications of each expectation
consistent with previously specified values, until all of the required expectations have
been set. Doing this stepwise allows us to guide the expert in making allowable choices
for the constraints.

To see how this can be achieved, initially consider functions ψ1, ψ2, . . . , ψp which are
defined, in terms of φ = (φ1, . . . , φp), as

ψ1(λ1) = φ1(λ1, 0, . . .),

ψ2(λ1, λ2) = (φ1(λ1, λ2, 0, . . .), φ2(λ1, λ2, 0, . . .)),

and so on. Since each φi is monotone, ψ1, ψ2, . . . , ψp are monotone. Therefore ψ1, ψ2, . . . , ψp

are invertible and so we can invert ψ1 to obtain ψ−1
1 . This allows us to calculate λ1 from

a given α1, for example using Newton’s method. We can also use this relationship to
explore the possible values of α1.

Having specified α1 = α∗

1 we would like to find the values of λ1, λ2 for a particular
α2. That is, we are interested in

ψ−1
2 |α1=α∗

1
(α2) = (λ1, λ2). (3)

Thus we are mapping image(ψ2) ∩ {α1 = α∗

1} → R
2. This is a map of one variable.

Initially, having specified α1 = α∗

1, we can identify a value α̃2 so that

ψ−1
2 |α1=α∗

1
(α̃2) =

(

λ
(1)
1 , 0

)

,

by taking α̃2 = E[h2(X)] under the distribution with parameters (λ
(1)
1 , 0). We can use

this as a starting value for exploring the range of possible values for α2. The range can
then be explored using the inverse function in (3). Having found the set of feasible values

we specify the value of α2 = α∗

2 in this range and use ψ−1
2 as above to find (λ

(2)
1 , λ

(2)
2 ).

The general step begins with the specification of α1 = α∗

1, . . . , αn−1 = α∗

n−1 having
been made. The relevant conditional mapping is then

ψ−1
n |α1=α∗

1
,...,αn−1=α∗

n−1
(α̃n) =

(

λ
(n−1)
1 , . . . , λ

(n−1)
n−1 , 0

)

.

This is used to explore the space of possible values for αn. Having specified αn = α∗

n we

use it to calculate (λ
(n)
1 , . . . , λ

(n)
n ). We see that λ

(j)
i = 0 for i > j.



It is clear from the above formulation that the order the specifications are made is
going to have an effect as we are considering expectations one at a time. This is discussed
in Section 7.3. To solve such problems in practice we work with the discrete version of
the problem. This is set out in the next section.

4. The discretized problem

Suppose we have discretized at points x1, . . . , xm. In two dimensions these could be
points on the square. As before we have constraints on some functions h1, . . . , hp in the
form of expected values α1, . . . , αp. The minimum information distribution has mass at
point xj which is proportional to exp(

∑

i λihi(xj)).
We replace integrals by sums in the definition of φ. That is,

φ(λ1, . . . , λp) =

(

∑

j h1(xj) exp {
∑

i λihi(xj)}
∑

j exp {
∑

i λihi(xj)}
, . . . ,

∑

j hp(xj) exp {
∑

i λihi(xj)}
∑

j exp {
∑

i λihi(xj)}

)

.

Now, since we have a simple, analytic formula for φ, we can determine Dφ, the matrix
of derivatives with respect to the λ’s. This is a p× p matrix with elements

∂φk
∂λl

=

∑

j hk(xj)hl(xj)Aj
∑

j Aj

−
[
∑

j hk(xj)Aj ]× [
∑

j hl(xj)Aj ]

[
∑

j Aj ]2
,

where Aj = exp{
∑

i λihi(xj)}. As long as Dφ is of full rank then we can invert it,
numerically, to obtain the matrix of derivatives with respect to the αk’s.

This enables us to work out, to first order, using Newton’s method for example, how
the Lagrange multipliers change when we keep α1, . . . , αk−1 fixed, and change αk slightly.
When we approach the boundary of the convex set of possible αk values, the Lagrange
multipliers go to plus or minus infinity.

This enables us to work out which parameter vector gives a particular constraint
vector. Hence we can systematically map out the ranges of allowed expectations as
follows.

1. With the first function h1 we take λ1 = ±N , where N is some large number, to
obtain upper and lower bounds on α1.

2. The expert chooses α1. We calculate, numerically by inversion, what the corre-
sponding λ1 is, denoted l1.

3. For the next function h2 we take λ1 = l1 and λ2 = 0. This means that our
starting value for α2 is whatever we had for the expectation value with respect to
the minimum information distribution we used in Step 1.

4. Using this as a starting value for α2 we increase α2, keeping α1 fixed, and work out
the corresponding values of λ1 and λ2 using (Dφ)−1. When λ1, λ2 become large
we have reached the largest feasible α2.

5. We repeat Step 4 decreasing α2 from its initial value.

6. We repeat Steps 3-5 with the other functions.



We shall illustrate this methodology by applying it to two examples; the first a model of
atmospheric dispersion and dispersion and the second a model assessing the failure rates
of machines in series. However, first we consider the mapping out of the feasible regions
for multiple constraints.

5. Investigation of the feasible region for the constraints

We can investigate the convex set of possible combinations of different constraints known
as the feasible region. To do so consider the normalising constant from (1). It is

Z(λ) =

∫

exp

{

∑

i

λihi(x)

}

dx,

for vector x and parameters λ = (λ1, . . . , λp). Taking logs and differentiating with respect
to Lagrange multiplier λi recovers the expectations defined previously,

d

dλi
logZ(λ) =

∫

hi(x) exp{
∑

i λihi(x)}dx
∫

exp{
∑

i λihi(x)}dx
= Eλ[hi(x)].

If we differentiate a further time with respect to the same λi we obtain the variance of
the constraint function associated with this expectation,

d2

dλ2i
logZ(λ) =

∫

h2i (x) exp{
∑

i λihi(x)}dx
∫

exp{
∑

i λihi(x)}dx
−

[
∫

hi(x) exp{
∑

i λihi(x)}dx
∫

exp{
∑

i λihi(x)}dx

]2

= Varλ(hi(x)) ≥ 0.

Let us define the function g to be the vector of the constraint functions, so that g =
(h1(x), . . . , hp(x)). Then the expectation of g is simply Eλ[g] = (Eλ[h1(x)], . . . ,Eλ[hp(x)]).

If we make the assumption that g is bounded then Eλ[g] is also bounded. We know
that there is a unique λ associated with any possible α in the convex hull of g. We also
see that each expectation Eλ[hi(x)] is increasing as λ increases. This will allow us to
map out the feasible region of Eλ[g].

Consider λ1 . . . , λp in the sphere of radius 1,

p
∑

i=1

λ2i ≤ 1. (4)

If we take as our starting point the sphere with unit radius defined by (4) this will map
out a region of values, corresponding to this λ, for Eλ[g]. If we then multiply the vector
(λ1, . . . , λp) by some r > 1, so that we have r × (λ1, . . . , λp), we are now in the sphere
defined by

p
∑

i=1

(rλi)
2 ≤ r2.

That is, we are moving outward in a radial direction. From this we obtain a new, larger,
region for Eλ[g]. As r becomes large this region will tend to the overall feasible region
for Eλ[g].

We shall illustrate this with a simple example concerned with coin tossing.



Table 1: The possible outcomes, background distribution and contributions to the MI solution for the
coin tossing example.

{X,Y } 0,0 0,1 1,0 1,1
Background dist. 1/4 1/4 1/4 1/4

eλihi(x,y) 1 1 eλ1 eλ1+λ2

5.1. Coin tossing example

Suppose we have two coins and that we suspect that each is biased. Let X,Y represent
one realisation for each coin of a single toss. That is,

X,Y =

{

1, if heads,

0, if tails,

with probabilities pX , pY . We also suspect that the tosses are not independent. Further
suppose that the functions we are going to ask an expert to specify are h1 = x and h2 =
xy. We know the form of the minimum information distribution in this case. A sensible
measure to take as the background distribution would appear to be (1/4, 1/4, 1/4, 1/4)
on the four different possible outcomes of the two tosses.

Table 1 sets out each of the outcomes, the associated background distribution and
the minimum information terms found analytically. From this we can calculate Z(λ). It
is

Z(λ) =
1

4
(2 + eλ1 + eλ1+λ2).

If we take logarithms then differentiate we obtain the expectations of each of the func-
tions. They are

Eλ[h1(x, y)] =
d

dλ1
logZ(λ) =

eλ1 + eλ1+λ2

2 + eλ1 + eλ1+λ2

,

and

Eλ[h2(x, y)] =
d

dλ2
logZ(λ) =

eλ1+λ2

2 + eλ1 + eλ1+λ2

.

We can use these equations to map out the feasible region for the expectation of g =
(h1(x, y), h2(x, y)). We begin with r = 1 and then increase it gradually up to r = 10.
The results are given in Figure 2 for r = 1, 2, 3, 10. We see that, as r increases, the
region becomes larger until, when r = 10, it is covering the entire feasible region for g.
Some pseudo-code illustrating how to explore the feasible region in this way is given in
Algorithm 1 in the Appendix.

We can also carry out such an investigation in 3 dimensions. Suppose that X,Y are
defined as above but now we are interested in the expectations associated with three
functions, namely

h1(x, y) = x, h2(x, y) = y, h3(x, y) = xy.

We can apply the methodology as above. The function Z(λ) is now given by

Z(λ) =
1

4
(1 + eλ1 + eλ2 + eλ1+λ2+λ3).
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Figure 2: The feasible region for the expectation of g given r = 1, 2, 3, 10.

Taking logarithms and differentiating we can find the expectations of the three functions
of interest. They are

Eλ[h1(x, y)] =
eλ1 + eλ1+λ2+λ3

1 + eλ1 + eλ2 + eλ1+λ2+λ3

,

Eλ[h2(x, y)] =
eλ2 + eλ1+λ2+λ3

1 + eλ1 + eλ2 + eλ1+λ2+λ3

,

and

Eλ[h3(x, y)] =
eλ1+λ2+λ3

1 + eλ1 + eλ2 + eλ1+λ2+λ3

.

We can then use these three expressions to evaluate the convex region associated with
a sphere in (λ1, λ2, λ3) of radius 1 and expand this, moving outwards along the radius,
until we are satisfied we are evaluating the entire feasible region for the three constraints.
A plot of this, for a radius r = 10, is given in Figure 3.

5.2. The discretized case

As, in practice, we usually solve the minimum information problem in a discretized
version of the parameter space we now consider such a discretized space in the context
of exploring the feasible region of Eλ[g]. In this case the quantity Z(λ) is

Z(λ) =
∑

j

exp

{

∑

i

λihi(xj)

}

,

and the expectation of hi(x) is

Eλ[hi(x)] =
d

dλi
logZ(λ) =

∑

j hi(xj) exp {
∑

i λihi(xj)}
∑

j exp {
∑

i λihi(xj)}
.
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Figure 3: The feasible region for the expectation of g in the three dimensional example.

We then proceed, evaluating the feasible region beginning on a sphere of radius 1 and
moving outwards in a radial direction, in the same manner as in the continuous case.

5.3. Fixed constraints

Suppose we have two constraints, α1 and α2. Let us further suppose that we fix α2 for
all time at some value α̃2. What effect does this have? Consider the mapping φ, in terms
of Z(λ1, λ2), as

φ :

(

d

dλ1
logZ(λ1, λ2),

d

dλ2
logZ(λ1, λ2)

)

.

Fixing α2 = α̃2 is equivalent to fixing

d

dλ2
logZ(λ1, λ2) = α̃2. (5)

Now, when we consider α1, which is given by

d

dλ1
logZ(λ1, λ2) = α1,

it is a function of both λ1 and λ2. However, (5) has fixed the relationship between λ1
and λ2 and so λ1 is now an implicit function of λ2. Thus α1 is now a function of one
variable, and any value it takes will be “on the curve” between λ1 and λ2 implied by (5).

An example of such a curve for the dispersion and deposition example is given in
Figure 10.



6. Example: Failure rates of machines in series

Suppose we have two machines, M1,M2, which are physically co-located and, within a
larger process, are to be used in series. In this sense the two machines are then coupled
as the physical outputs of one machine will become the physical inputs of the next
machine. Suppose we are interested in the failure rates of the two machines, λ1(t), λ2(t)
respectively. In particular, we wish to evaluate the uncertainty distributions over the
failure rates of the machines. It would seem reasonable that the failure rates, λ1(t), λ2(t),
would not be statistically independent as a result of the coupled nature of the machines
and their physical co-location. For example, if it were not built into the modelling process
elsewhere, an extreme weather event at the location of the machines would likely cause
both to fail. This would result in the failure rates of the machines being correlated.

A simple model for the failure rate of machines which captures a constant failure rate
due to random failures for a proportion of the lifetime of a machine or component and
an increasing failure rate as a result of degradation beyond a certain age was proposed
by van Gestel [11]. An illustration of the form of the model is given in Figure 4.

Figure 4: A simple model for the failure rate of machine i incorporating three parameters, (Hi, Ti, θi).

In Figure 4 we see that the model contains three parameters, (Hi, Ti, θi). An ad-
vantage of the model is that each of the parameters has an intuitive meaning; Hi is the
failure rate of machine i under purely random failures, Ti is the time at which machine
i moves from the random failures period into the wear out/degradation period and θi is
the angle of the gradient in the failure rate during the wear out phase. It is possible to
extend this model in order to incorporate early life failures by adding a linear section



with a negative gradient prior to the constant random failures section. This would add
two additional parameters to the model, the changepoint time between early life and
random failures and the angle of the gradient in early life. However, for this illustrative
example, we shall consider the simpler three-parameter model.

If we return to the coupled machines we see that we have 6 parameters in total and
so our parameter set is x = (H1, T1, θ1, H2, T2, θ2). The changepoint time parameter of
the first model, T1, is an observable quantity and so an expectation on it can be elicited
directly and will not affect the inference on the other parameters in the model. We
could also ask experts about their expectation on the probability that the first failure of
machine 1 was after T1. This is given by the expectation of Pr(t > T1) = exp{−H1T1}.
We discuss how to elicit such quantities in Section 6.1.

Thus, the first two constraints on machine 1 are given by

h1,1(x) = T1, h1,2(x) = exp{−H1T1}.

We would also like to elicit some information concerning θ1 in order that we can evaluate
the uncertainty on all of the machine 1 parameters. We can do so by asking the expert
to assess the expected probability that machine 1 will have failed in the first year after
it enters the ageing state. That is, we evaluate the expectation of Pr(t < T1 + 1 | t ≥
T1) = [R(T1)−R(T1 + 1)]/R(T1). This gives the third constraint as

h1,3(x) =

exp{−H1T1} − exp

{

−H1T1 −
1

2
(H1 + tan θ1)

}

exp{−H1T1}

=

[

1− exp

{

−
1

2
(H1 + tan θ1)

}]

.

It is clear that the specification of the first constraint will affect the possible values
for the second and third constraints and so it will be important to perform the steps
sequentially as in the previous example. We can also ask the expert to specify the same
values for machine two giving three further constraints;

h2,1(x) = T2, h2,2(x) = exp{−H2T2},

h2,3(x) = exp{−H2T2}

[

1− exp

{

−
1

2
(H2 + tan θ2)

}]

.

As the failure rates of the machines will not, in general, be statistically independent,
we are also interested in the joint behaviour of the different elements of the failure
rates. To consider the correlations between the different elements we shall define a
further constraint function relating parameters of the two machines. This is simply the
probability that the difference between the times the two machines start ageing is less
than one year. To define this probability we set the constraint equal to the indicator
function for the event of interest. That is,

h(1,2),1(x) =

{

1, if |T1 − T2| < 1,

0, otherwise.



6.1. Eliciting failure rate information from experts

The elicitation of expert judgements for probabilistic models should always be carried
out on observable quantities [12, 1]. In the case of the failure rate model for machines
considered here it is not reasonable to elicit information from experts about expectations
on the failure rates directly. When he proposed the model, van Gestel [11] elicited
information for a single machine from experts by asking them for the changepoint time
between random failures and ageing Ti, the percentage of random failures per time period
Hi and the mean time to failure.

Our minimum information approach differs as it is specified in terms of expected
values. Our first proposed constraint for each machine is the expectation of the change-
point time between random failures and the start of ageing. It is felt that engineers with
experience of observing the failure behaviour of large numbers of similar machines over
long time periods would be comfortable with this. The second constraint we have used
for each machine is the expected probability that the first failure of the machine is after
ageing starts. This is observable in the sense that the expert could be asked to specify
this as the average proportion of machines which would not fail in this time over very
large datasets. The third constraint for each machine, the expected probability that the
machine will have failed a year after entering the ageing state given that it had not failed
up to this time, can be elicited in a similar way.

The constraint which considers the relationship between failures in the two models is
of a different form to the other constraints. Rather than asking the expert for an expected
value directly, it instead asks the expert for a probability found as the expectation of an
indicator variable. This probability is that ageing in the two machines begins less than a
year apart. This is an observable quantity as the point at which a machine starts ageing
is observable.

6.2. Simulating from the minimum information distribution

Making specifications on these 7 constraint functions sequentially will uniquely determine
the minimum information distribution over the parameters of the failure rate functions
for the two machines. Let us denote this distribution g(x). We can then simulate from
this distribution which gives us uncertainty distributions on the two failure rates of the
machines. To do so we apply the following steps.

• Sample a uniform random variable u = (u1, . . . , u6), where ui ∼U(0,1).

• A sample from the MI distribution, x̃, can then be found. The first sampled
parameter is x̃1 = G−1

1 (u1), where G
−1
1 (·) is the inverse cumulative distribution

function of x1. The rest of the parameters are then sampled sequentially as

x̃i = G−1
i (ui | x̃1, . . . , x̃i−1),

where G−1
k (· | ·) is the relevant one dimensional, conditional, cumulative distribu-

tion function.

• This gives one realisation of λ1(t) and λ2(t), the failure rates of the two machines.

• Repeat this a large number of times which gives uncertainty distributions on λ1(t)
and λ2(t) representing the epistemic uncertainty of the expert.



Constraint function Constraint Lagrange multiplier Value
h1,1(x) 10.2000 λ1,1 0.0991
h1,2(x) 0.8160 λ1,2 0.5996
h1,3(x) 0.0119 λ1,3 -73.2895
h2,1(x) 7.9600 λ2,1 -0.1346
h2,2(x) 0.7674 λ2,2 -5.1478
h2,3(x) 0.0177 λ2,3 -106.5014
h(1,2),1(x) 0.2000 λ(1,2),1 -10.5432

Table 2: The constraints on the parameters of the failure rates of the two machines.

Some pseudo-code to do this is given in Algorithm 3 in the Appendix. We would also like
to calculate the predictive distribution of the failure rate for each machine. The failure
rate of machine i at time t is given by

λi(t) =

{

Hi, t < Ti,

Hi + tan θi(t− Ti), t ≥ Ti.

We can use this and the relationship that Ri(t) = exp{−
∫ t

0
λi(s)ds} to find the reliability

of machine i at time t. This is

Ri(t) =







exp{−Hit}, t < Ti,

exp

{

−Hit−
1

2
tan θi(t− Ti)

2

}

, t ≥ Ti.

The density of t can be calculated from the reliability as fi(t) = ∂/∂t[1−Ri(t)]. In this
case, again, we can find this analytically. It is

fi(t) =







Hi exp{−Hit}, t < Ti,

[Hi + tan θi(t− Ti)] exp

{

−Hit−
1

2
tan θi(t− Ti)

2

}

, t ≥ Ti.

The predictive distribution of the failure rate can now be calculated, from evaluations
j = 1, . . . , J of the simulation at times tk, k = 1, . . . ,K resulting in reliability Ri,j(tk)
and density fi,j(tk), as

λi(tk) =

∑J

j=1 fi,j(tk)
∑J

j=1Ri,j(tk)
. (6)

6.3. Numerical Illustration

Suppose that we have elicited the expectations of the constraints given in the previous
section for the two machines using the sequential method outlined in the paper and
illustrated explicitly in the next example. The resulting constraints for the minimum
information distribution are given in the left hand side of Table 2.

Using these constraints we can construct the discretized minimum information dis-
tribution of the form of (2). The discretization used in this example takes 50 points in



each dimension. All background distributions are taken to be uniform. The choice of
background distribution will be investigated further later in this example. The resulting
minimum information distribution has Lagrange multipliers as given in the right hand
side of Table 2.

In the previous section we gave a method for sampling from the distribution on the
failure rate over the three parameters for a single machine. A plot of 100 samples of
(H1, T1, θ1) taken from the minimum information distribution with the Lagrange multi-
pliers from Table 2 is given in Figure 5.
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Figure 5: Realisations of the failure rate of machine 1 resulting from 100 samples from the minimum
information distribution.

We see that there is uncertainty evident in all three parameters of the failure rate
function. The height of the constant rate prior to the change point varies in the samples,
though by a relatively small amount. There is also variation in the changepoint time
between the constant and linear sections of the plot which represents the uncertainty on
T1. The greatest uncertainty is in the linear section of the plot. The uncertainty in T1
and θ1 both contribute to this.

It is important to check that the ranges used for the background distributions of the
parameters are sufficiently large. We do not wish for the majority of the density for any
parameter to be close to the boundaries of this background distribution. Doing so would
indicate that the range of the background distribution should be increased. In general
this can be checked by plotting the marginal densities of the parameters. In this case
a simple heuristic is to consider the simulated parameter values in Figure 5. As long
as there aren’t a large number of simulated values close to the background distribution
boundaries then the ranges of the distributions are sufficient. This is the case in this
example.

We can also calculate the predictive distribution of the failure rates using the 100



samples from the minimum information distribution for this example. It is given for
machine 1, for the first 15 years of life, in Figure 6.
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Figure 6: The predictive distribution of the failure rate for machine 1 calculated using the 100 samples.

We see that the predictive distribution is smoother than the individual realisations
from the simulation. In particular the changepoint between random failures and ageing
is fairly smooth This is due to the averaging of the simulations in (6). We also see a
slight non-linear quality to both sections of the failure rate in the predictive distribution.
This is again as a result of averaging over non-linear quantities in (6).

We can also use this example to examine the effect of the assumption of background
distribution on the minimum information solution. In Figure 7 we see the predictive
distribution for the failure rate of machine 1 under uniform, log-uniform and Normal
background distributions for each of the parameters. All three choices of background
distribution give a similar shape in the random failure period of the machine’s life. The
uniform and log-uniform distributions also give very similar solutions in the ageing section
of the plot. The predictive distribution using Normal background distributions is further
from these in this section. This illustrates the way in which a sensitivity assessment can
be made of the degree to which the distribution depends on assumptions made about
the background distribution in the minimum information method. In this case it shows
that the background distribution makes little difference except in the tail.

7. Example: Atmospheric dispersion and deposition

7.1. One-stage dispersion model

Atmospheric dispersion is the process by which gases, which could be harmful or even
radioactive, travel through the atmosphere from a point of origin such as a factory or
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Figure 7: The predictive distribution of the failure rate for machine 1 calculated using the 100 samples
under uniform, log-uniform and Normal background distributions.

power plant. One commonly used model to describe such a process is the Gaussian
plume model. This model is based on simplifying assumptions such as a constant wind
direction, no plume rise and the land over which the contaminant is travelling being fairly
even, [7].

The model is defined in terms of the downwind distance x from the source, the
crosswind displacement y and the vertical displacement z. It then assumes that the
plume concentration is of Gaussian form,

C(x, y, z) =
Q0

2πuσy(x)σz(x)
exp

{

−
y2

2σ2
y(x)

}[

exp

{

−
(z −H)2

2σ2
z(x)

}

+ exp

{

−
(z +H)2

2σ2
z(x)

}]

,

where C(x, y, z) is the time integrated concentration of the contaminant at (x, y, z), Q0

is the initial quantity of contaminant released, u is the windspeed and H is the centreline
of the plume. The two standard deviations, σy(x) and σz(x), are the lateral and vertical
plume spreads at x respectively. They are commonly assumed to follow deterministic
power law models,

σy(x) = ayx
by ,

σz(x) = azx
bz ,

for unknown parameters ay, by, az, bz. That is, both lateral and vertical plume spreads
are functions of the downwind distance.

Let us consider the lateral plume spread. The parameters of the power law model,
ay and by, do not have simple physical interpretations. They can be inferred from tracer
experiments but this is unreliable. As they are unobservable we cannot elicit their values
from experts. However, σy is observable. Having elicited a distribution for σy we can then
use this to define probability distributions over ay, by. This is probabilistic inversion.

By contrast σz is not observable. Harper et al [7] indicate, however, that the centreline



concentration ratio,

C(x, 0, H) =
Q0

2πσyσzu
,

which is the Gaussian plume model evaluated at y = 0, z = H, is. Taking expectations
and rearranging, if we elicit E[C(x, 0, H)] from the expert, then

2πu

Q0
E[C(x, 0, H)] = E

[

1

ayazxby+bz

]

.

Since our notation is slightly different to that used up to now it is worth considering
how this model fits into the framework we have adopted above. The model consists of
three elements (C, σy, σz), so its outputs are the plume concentration and the lateral
and vertical plume spreads. The model inputs are Q0, u and H. The model parameters
are (x, y, z), the place we are interested in plume concentration, which we choose, and
ay, by, az, bz which are unknown, and whose distributions will be inferred through PI.

7.1.1. Numerical illustration

Suppose we are interested in two downwind distances, 1km and 2km from the source.
We could ask the expert for the expected lateral plume spreads and the concentration
ratios at each of these distances. That is, the expert specifies,

E(σy,1) = E(ay) = α1, E(σy,2) = E(ay2
by ) = α2,

E

(

1

ayaz

)

= α3, E

(

1

ayaz2by+bz

)

= α4,

as described above for the plume spreads and ratios at 1km and 2km respectively. How-
ever, the range of possible values for α2 will depend on the chosen α1, the possible values
for α3 depend on α1 and α2 and so on. We shall find the minimum information dis-
tribution satisfying the constraints above using the methodology set out in Section 4.
Some pseudo-code for defining a minimum information distribution in this way is given
in Algorithm 2 in the Appendix.

The background distributions we use to find this minimum information distribution
are taken to be uniform with respect to log(ay) log(az), by, bz. This follows work in Kraan
and Bedford [2]. The discretizations take 50 points in each dimension with suitable ranges
chosen for each parameter. The ranges used for the background distributions are

log ay, log az ∈ (0, 4), by, bz ∈ (0, 2).

Initially, given these ranges for the parameters, the possible ranges the expectations can
take are

α1 ∈ (1, 55), α2 ∈ (1, 218),

α3 ∈ (0, 1), α4 ∈ (0, 1).

All are found by calculating the expectation αi for large positive and negative values of
the relevant λi. Figure 8 indicates the range of possible values of the first constraint α1

and how they relate to the value of λ1. We see that for large positive and negative λ1,
α1 tends to the limits of its range of possible values.
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Figure 8: The possible range of α1 and corresponding values of λ1.

We wish to find an initial value for α2 so we can calculate its range under this
specification for α1. Keeping λ1 = 0.116 and setting λ2 = 0 gives the expectations
α1 = 45, α2 = 97.691. Using this as a starting point we can calculate the range of values
α2 can take given this α1. This is

α2 | α1 = 45 ∈ (45, 180).

We can see that some values which were possible originally are now not.
We can calculate the range of possible values for α2 given different specifications of

α1. Figure 9 shows these as points for 5 chosen values of α1 and compares these to the
feasible region mapped out using the methods described in Section 5. We see that the
two different methods are in agreement. The possible range of α2 is smallest for low
values of α1 and larger for high values. It is always reduced from the original possible
range of (1, 218).

Let us suppose that the expert, on receipt of this information, specifies α2 = 80. The
parameters of the minimum information distribution become

λ1 = 0.1401, λ2 = −0.0128.

Note that λ1 has changed as α1 now depends on both λ1 and λ2. Using these parameter
values and λ3 = 0 leads to an initial expectation of α3 = 0.0082. From this we calculate
the range of possible values for α3. They are

α3 | (α1 = 45, α2 = 80) ∈ (0.00336, 0.186).

Again this is reduced from the original range.
If the expert specifies α3 = 0.0105 then the parameters of the minimum information

distribution are λ1 = 0.1425, λ2 = −0.0128, λ3 = 2.3025. Repeating this process for the
final constraint gives a feasible range of

α4 | (α1 = 45, α2 = 80, α3 = 0.0105) ∈ (0.00214, 0.0781).
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Figure 9: The feasible region of α2 evaluated for different specified values of α1.

This is significantly smaller than the initial possible range of (0, 1). Therefore this process
will be useful in guiding the expert to make a plausible choice for α4. If the expert settles
on α4 = 0.0038 then the final parameter values are λ1 = 0.1315, λ2 = −0.0124, λ3 =
−0.4500, λ4 = 4.8963.

7.2. Two-stage coupled dispersion and deposition model

Another quantity of interest when a contaminant is released into the atmosphere is how
much of it is deposited into the ground at different distances from the source. This is
known as deposition. Two different types are considered generally depending on the
absence or presence of rain; dry and wet deposition.

Dry deposition can be measured in terms of the time integrated surface contamination
at (x, y, 0). This measures how much contaminant is deposited into the ground from the
plume and is given by

Cd(x, y, 0) = vdC(x, y, 0),

= vd
Q0

πσyσz
exp

{

−

(

y2

2σ2
y

+
H2

2σ2
z

)}

where vd is an unknown parameter called the dry deposition velocity. We can elicit
expectations for Cd(x, y, 0) at different downwind distances and crosswind displacements.
We see that the dispersion and deposition models are coupled.

In this two-stage example we shall consider eliciting expectations for the lateral plume
spread and the surface contamination at the two downwind distances considered previ-
ously and a crosswind displacement of 1km. That is, we elicit the means of

σy,1, σy,2, Cd(1, 1, 0), Cd(2, 1, 0).



Thus, the first two constraints, α1 and α2, are the same as in Section 7.1.1. We also have

α3 = E[Cd(1, 1, 0)],

α4 = E[Cd(2, 1, 0)].

We then wish to use these elicited values to define minimum information distributions
over the model parameters

Ω = (ay, by, az, bz, vd).

Background distributions will be as previously for ay, by, az, bz and uniform on the log-
scale for vd as it is multiplicative.

7.2.1. Numerical Illustration

The first two expectations, α1 and α2, will have the same initial possible ranges as
previously. The corresponding initial ranges for α3 and α4 are

α3 ∈ [1× 10−4, 0.1931],

α4 ∈ [1× 10−4, 0.1931].

We will set α1 = 45 and α2 = 80 as previously. However, first suppose that in order
to do so it is decided that no matter what the values of other constraints α2 must be
80. Therefore when we wish to specify α1, this specification for α2 defines an implicit
relationship for λ1, λ2. A plot of the curve representing this relationship is given in Figure
10.
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Figure 10: The curve representing the the implicit relationship between λ1 and λ2 having specified
α2 = 80.

As before this leads to parameter values of λ1 = 0.1401 and λ2 = −0.0128. We now
wish to find the range of possible values for α3 given that α1 and α2 take these values.



This includes a new model parameter vd as well as all of the dispersion model parameters
from the one step example. It also includes the input from the dispersion model, x, as
well as a new input, y.

We proceed as in the one step case. Initially we set λ3 = 0 to find a starting point
for α3 of 6× 10−4. Working from this we find the range of possible specifications for α3

given the two constraints, which is

α3 | (α1 = 45, α2 = 80) ∈ [1× 10−4, 3.9× 10−3].

Suppose that, given this range, the expert specifies α3 = 6.5 × 10−4. The parameter
values which satisfy all three specifications are λ1 = 0.1207, λ2 = −0.0121, λ3 = 0.2459.
We proceed in the same manner for α4. Setting λ4 = 0 gives an initial value for α4 of
2×10−4. This allows us to calculate the admissible range for α4 given these specifications
for the other constraints. It is

α4 | (α1 = 45, α2 = 80, α3 = 6.5× 10−4) ∈ [1× 10−4, 6× 10−4].

Suppose we select α4 = 2.14× 10−4. Then

λ1 = 0.1207, λ2 = −0.0121, λ3 = 0.0403, λ4 = 0.6758.

Thus we have fully defined the minimum information distribution which satisfies the four
constraints for this two-stage example in such a way that ensures the expert always gives
feasible values.

7.3. Discussion

Within the example we have worked with constraints sequentially, one at a time. In doing
so it is clear that the order in which the expectations are specified is of importance. In
some cases the order will be clear. For example, in a chain of models in which the output
of one model is the input of the next, the constraints follow a natural order. However,
this will not always be the case.

In a subjective expert elicitation procedure psychological anchoring occurs when an
expert is given a value for an unknown (the anchor) and is then asked to adjust this in
light of new information. The adjustment the expert makes has been found, Slovic [13],
to be too small in general. Hence the expert is anchored by the original value, whether
or not that value is accurate.

By sequentially specifying the expectation values in this minimum information ap-
proach we are introducing another form of anchoring, which we shall refer to as quan-
titative anchoring. That is, having specified the initial expectation, the expert is then
anchored within the reduced range for the second expectation. They are then anchored
to the new range for the third expectation given the first two, and so on. Clearly the
order in which this takes place could have an effect on the resulting probability distribu-
tions for the model parameters. More work is needed to investigate a suitable procedure
for deciding on the order to specify the constraints in light of this anchoring.

The benefit of the procedure discussed, though, is that experts will provide coherent
specifications, which eliminates the problem of over-specification of the distribution on
the parameters. Clearly one could use the methods developed here interactively to explore
uncertainties on output values and hence negate the possible issue of anchoring.



8. Conclusion

In this paper we have investigated an approach to uncertainty modelling on coupled
models in which an expert specifies the values of expectations of observable model outputs
and these are used to specify probability distributions on unobservable model parameters.
Generally this problem is either over- or under-specified and the methodology developed
deals with both situations.

For under-specified problems we have solved for the distribution on the unobservable
model parameters which has minimum information. This has been achieved numerically
by first discretizing the problem. To avoid over-specification we consider a process of
specifying the constraints sequentially. This is useful as it allows us to guide the expert
in choosing values that do not conflict with previously chosen values.

The extension of this methodology to coupled models has allowed us to examine the
range of possible values constraints can take for a second model, which can have some
model inputs and outputs in common with the first model and others unique to itself.
Again, the specifications of expectations for model outputs in the first model has an
effect on the possible values of constraints in the second model.

The main advantage we see for this approach to modelling is that its flexibility enables
us to build in features that we would qualitatively like to see, such as the onset of ageing
in the second example or the physical models of the first example. The uncertainty
modelling can then be carried out around these qualitative features. Rather than working
with models which are mathematically convenient, we can work with models that possess
the right qualitative properties.

The main difficulties of working with minimum information distributions are that they
require numerical computation. While the curse of dimensionality is applicable here as
in any other approach, there are opportunities to speed up numerical computation, for
example by using variable grid sizes, and interesting opportunities to develop measures
of coherence associated to the Lagrange multipliers.
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Appendix



Algorithm 1 Exploration in a radial direction of the feasible region of a 2 dimensional
minimum information distribution.

Set radius to r
Define background distributions for x1, x2
for i← 1, . . . , p do

ei = hi(x1, x2)
end for

Define λ1 as a discretization on [−1, 1]

λ
(p)
2 =

√

1− λ21
λ
(n)
2 = −

√

1− λ21
λ1 = rλ1
λ
(p)
2 = rλ

(p)
2

λ
(n)
2 = rλ

(n)
2

λi = (λ1,i, λ
(p)
2,i , λ

(n)
2,i )

for i← 1, . . . , length(λ1) do
α1,i = Eλi

[h1(x1, x2)]
α2,i = Eλi

[h2(x1, x2)]
end for

Algorithm 2 Defines the minimum information distribution satisfying
(E[h1(x)], . . . ,E[hp(x)]) = (e1, . . . , ep).

Set background distributions for x1, . . . , xp
α1 = e1
λ
(1)
1 = 0

for i← 2, . . . , n do

λ
(i)
1 = λ

(i−1)
1 − [ψ(λ

(i−1)
1 )− α1]/ψ

′

(λ
(i−1)
1 )

end for

for j ← 2, . . . , p do

αj = (αj−1, ej)

λ
(1)
j = (λ

(n)
j−1, 0)

for i← 2, . . . , n do

λ
(i)
j = λ

(i−1)
j − [ψ(λ

(i−1)
j )− αj ]/ψ

′

(λ
(i−1)
j )

end for

end for



Algorithm 3 Simulation from a minimum information distribution g(x) of a sample of
size N based on discretizations xj,k of each variable xj .

for i← 1, . . . , N do

(u1, . . . , up) sampled from independent uniform distributions on [0, 1]
for k ← 1, . . . ,m do

d1(x1) = g(x1)
D1(x1) = G(x1)
if D1(x1) > u1 then

x̃1 = x1,k
end if

end for

for j ← 2, . . . , p do

for k ← 1, . . . ,m do

dj(xj) = g(xj | x̃1, . . . , x̃j−1)
Dj(xj) = G(xj | x̃1, . . . , x̃j−1)
if Dj(xj,k) > uj then

x̃j = xj,k
Stop

end if

end for

end for

end for
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