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Abstract

The nonparametric predictive inference (NPI) approach for competing risks data has re-
cently been presented, in particular addressing the question due to which of the competing
risks the next unit will fail, and also considering the effects of unobserved, re-defined, un-
known or removed competing risks. In this paper, we introduce how the NPI approach
can be used to deal with situations where units are not all at risk from all competing
risks. This may typically occur if one combines information from multiple samples, which
can e.g. be related to further aspects of units that define the samples or groups to which
the units belong or to different applications where the circumstances under which the
units operate can vary. We study the effect of combining the additional information from
these multiple samples, so effectively borrowing information on specific competing risks
from other units, on the inferences. Such combination of information can be relevant
to competing risks scenarios in a variety of application areas, including engineering and
medical studies.

Keywords: Imprecise probability, lower and upper probability, nonparametric
predictive inference, competing risks, right-censored data, combined data.

1. Introduction

Nonparametric predictive inference (NPI) is a statistical method based on Hill’s as-
sumption A(n) (Hill, 1968), which gives a direct conditional probability for a future ob-
servable random quantity, conditional on observed values of related random quantities
(Augustin and Coolen, 2004; Coolen, 2006). A(n) does not assume anything else, and can
be interpreted as a post-data assumption related to exchangeability (De Finetti, 1974).
Inferences based on A(n) are predictive and nonparametric, and can be considered suit-
able if there is hardly any knowledge about the random quantity of interest, other than
the n observations, or if one does not want to use such information, e.g. to study effects
of additional assumptions underlying other statistical methods. A(n) is not sufficient to
derive precise probabilities for many events of interest, but it provides bounds for prob-
abilities via the ‘fundamental theorem of probability’ (De Finetti, 1974). These bounds
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are lower and upper probabilities in imprecise probability theory (Augustin and Coolen,
2004; Walley, 1991; Weichselberger, 2001). A suitable, albeit informal, interpretation for
lower and upper probabilities, is that a lower probability reflects the evidence in favour of
the event of interest while an upper probability, or more accurately the difference between
one and an upper probability, reflects the evidence against the event of interest. Short
introductions to NPI, imprecise probability and its use in reliability have recently been
presented (Coolen, 2011; Coolen et al., 2011; Coolen and Utkin, 2011).

In reliability and survival analysis, data on event times are often affected by right-
censoring, where for a specific unit or individual it is only known that the event of interest
has not yet taken place at a specific time. Coolen and Yan (2004) presented a general-
ization of A(n), called rc-A(n), which is suitable for right-censored data. In comparison
to A(n), rc-A(n) uses the additional assumption that, at the moment of censoring, the
residual lifetime of a right-censored unit is exchangeable with the residual lifetimes of all
other units that have not yet failed or been censored. The assumption rc-A(n) underlies
the inferences in this paper, for more details we refer to (Coolen and Yan, 2004; Yan,
2002).

Coolen et al. (2002) introduced NPI for some reliability applications, including lower
and upper survival functions for the next future observation, illustrated with an applica-
tion with competing risks data. They illustrated the lower and upper marginal survival
functions, so each restricted to a single failure mode. Competing risks have been the topic
of many research papers over recent decades. As examples of applications, Jiang (2010)
applied a discrete competing risk model to bus motor failure data, Bunea et al. (2008)
used competing risk methods to analyse military systems data, and Bocchetti et al. (2009)
applied such methods for study of reliability of marine diesel engines. Sarhan et al. (2010)
discussed and illustrated likelihood and classical statistical approaches to competing risks
data, Coolen et al. (1992) presented a Bayesian competing risk approach to reliability
for heat exchangers based on expert judgements. Maturi et al. (2010) presented NPI for
competing risks data, in particular addressing the question due to which of the competing
risks the next unit will fail. Related to this approach, Coolen-Maturi and Coolen (2011)
considered the effects of unobserved, re-defined, unknown or removed competing risks.
Recently, Coolen-Maturi (2014) introduced NPI to compare two groups under (observed
or unobserved) competing risks.

In NPI for competing risks (Maturi et al., 2010), it is assumed that there are K failure
modes and a unit fails due to the first occurrence of a failure mode, which is identified
with certainty. We should point out that, in this paper, we will use the terms ‘failure
mode’ and ‘competing risk’ interchangeably with the same meaning. Let Xn+1 denote
the failure time of a future unit, based on n observations, and let the corresponding
notation for the failure time including indication of the actual failure mode k be Xk,n+1.
It is important to emphasize that Xk,n+1 is interpreted as the random failure time of a
future unit which is only at risk from failure mode k. Different failure modes are assumed
to occur independently. The competing risk data per failure mode consist of a number
of observed times of failures caused by the specific failure mode considered, and right-
censoring times caused by other failure modes or other reasons for right-censoring. Hence
rc-A(n) can be applied per failure mode k for inference on Xk,n+1.

Suppose that, in the available data, uk failures are caused by failure mode k, at times
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Figure 1: NPI data representation, considering failure mode k

xk,1 < xk,2 < . . . < xk,uk
, and let n−uk be the number of the right-censored observations,

ck,1 < ck,2 < . . . < ck,n−uk
, corresponding to failure mode k; these may be failure times

due to other (independent) failure modes, or observations that are right-censored for other
reasons, where it is assumed throughout that such censoring processes are independent
of Xk,n+1. For notational convenience, let xk,0 = 0 and xk,uk+1 = ∞. Suppose further
that there are sk,ik right-censored observations in the interval (xk,ik , xk,ik+1), denoted by
cikk,1 < cikk,2 < . . . < cikk,sk,ik

, so
∑uk

ik=0 sk,ik = n − uk. It should be emphasized that we do

not assume that each unit considered must actually fail, if a unit does not fail then there
will be a right-censored observation recorded for this unit for each failure mode, as we
assume that the unit will then be withdrawn from the study, or the study ends, at some
point. The random quantity representing the failure time of the next unit, with all K
failure modes considered, is Xn+1 = min

1≤k≤K
Xk,n+1.

For ik = 0, 1, . . . , uk, let tikk,i∗k
= cikk,i∗k

(i.e. censoring time) for i∗k = 1, 2, . . . , sk,ik and

tikk,i∗k
= xk,ik (i.e. failure time or time 0) for i∗k = 0. For notational convenience, let

tikk,sk,ik+1 = tik+1
k,0 = xk,ik+1 for ik = 0, 1, . . . , uk − 1. Let ñck,r and ñ

t
ik
k,i∗

k

be the number

of units in the risk set just prior to time ck,r and tikk,i∗k
, respectively, with the definition

ñ0 = n + 1 for ease of notation. The risk set at a certain time contains all units that
have not failed or been right-censored before that time, and hence are indeed still at risk.
Figure 1 represents the data and notation considering failure mode k.

The NPI lower and upper survival functions for the failure time of the next unit due
to failure mode k, so if the unit were only at risk from this failure mode, are denoted
by SXk,n+1

(t) and SXk,n+1
(t), respectively, and are as follows (Maturi et al., 2010; Coolen

et al., 2002). For t ∈ (tikk,ak , t
ik
k,ak+1] with ik = 0, 1, . . . , uk and ak = 0, 1, . . . , sk,ik ,

SXk,n+1
(t) =

1

n + 1
ñ
t
ik
k,ak+1

∏
{r:ck,r<t

ik
k,ak+1}

ñck,r + 1

ñck,r

(1)

and for t ∈ [xk,ik , xk,ik+1) with ik = 0, 1, . . . , uk,

SXk,n+1
(t) =

1

n + 1
ñxk,ik

∏
{r:ck,r<xk,ik

}

ñck,r + 1

ñck,r

(2)

While predictive inference, as considered in this approach, is different to estimation,
as it explicitly considers a single future unit instead of estimating characteristics of a
population distribution, it is interesting to mention that these NPI lower and upper sur-
vival functions bound the well-known Kaplan-Meier estimator (Kaplan and Meier, 1958),
which is the nonparametric maximum likelihood estimator for the population survival
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function in case of lifetime data with right-censored observations, for more details we
refer to (Coolen and Yan, 2004; Coolen-Maturi et al., 2012).

If all the units are censored with regard to failure mode k (e.g. if all units failed due
to other failure modes, where in this case ik = uk = 0), then the lower and upper survival
functions in (1) and (2) are equal to (Coolen-Maturi and Coolen, 2011)

SXn+1
(t) =

ñ
t
ik
k,ak+1

ñ
t
ik
k,ak+1

+ 1
and SXn+1(t) = 1 (3)

If the next unit considered is at risk from K independent failure modes, so with
its failure time given by Xn+1 = min

1≤k≤K
Xk,n+1, then the NPI lower and upper survival

functions for its failure time are denoted by SXn+1
(t) and SXn+1(t), respectively, and are

equal to

SXn+1
(t) =

K∏
k=1

SXk,n+1
(t) and SXn+1(t) =

K∏
k=1

SXk,n+1
(t) (4)

In Section 2 the main results of this paper are presented, considering combination of
information from different groups for several scenarios. This is an important contribution
to the literature on competing risks from the perspective of NPI, as in practice one may
often have data from a variety of competing risks scenarios which are closely related in the
sense that several competing risks occur in all scenarios but there is no full exchangeability
(which would allow grouping of all data without further complications) due to some com-
peting risks not applying in all scenarios. Such situations occur frequently in practice. In
engineering contexts, the same systems may function in different locations under slightly
different circumstances, with several failure modes occurring everywhere but some failure
modes specific to one or a few locations. In medical contexts, some diseases may affect
both males and females, while other diseases may be gender-specific. This paper presents
a general theory of NPI for such circumstances. Section 3 presents an extensive example
to illustrate the results, followed by some concluding remarks in Section 4.

2. NPI for Combined Competing Risks Data

We now present a generalization of the NPI approach to competing risks, by consid-
ering the important situation of different groups of units, such that units from the same
group are at risk from the same set of competing risks, but these sets differ for the differ-
ent groups. Of course, it is typically assumed that there is at least some overlap between
the sets of competing risks for different groups. In this case, the information in data from
different groups about a specific failure mode, that applied to these groups, can be used
to enhance inferences for a unit at risk from this failure mode. To enable such learning
from information about other groups, we make the important assumption, throughout
this paper, that a failure mode affects all units that are at risk from it in the same way,
no matter which group the unit belongs to. And, as mentioned before but crucial to the
approach, we assume throughout this paper that all failure modes that affect a unit do
so independently. Section 2.1 introduces further notation and presents the main setting
considered in this paper. This is followed by different scenarios. In Section 2.2 we consider
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inference about a specific failure mode, using data from all groups of units that were at
risk from this failure mode. Section 2.3 combines such inferences to NPI lower and upper
survival functions for a future unit from a particular group, so taking all failure modes
that affect such a unit into account. Section 2.4 also considers a future unit, but now
without perfect knowledge of the group this unit belongs to. Finally, Section 2.5 briefly
presents results for three other scenarios of possible interest.

2.1. Notation and setting

In addition to notation introduced above, suppose we have M groups to which in-
dividual units can belong, denoted by G1, . . . , Gm, . . . , GM . The sets of failure modes
that affect units are different per group. In medical survival analysis, such groups can
be defined, for example, by covariates indicating sex or aspects of lifestyle. In reliability
analyses, one can think about units that are used in different production processes or at
different sites. We suppose that we have failure time data from each group, with sample
size nm > 0 for group m ∈ {1, . . . ,M}. We assume that in total there are K competing
risks, denoted by R1, . . . , RK . Let dmk be an indicator function defined as

dmk =

{
1 if units in group Gm can fail due to risk Rk

0 if not

We should emphasize that for dmk = 1 we may actually have observed failures in group
Gm due to risk Rk or this may not be the case; we assume in this paper that the values
dmk are known with certainty. With regard to the data, let

d∗mk =

{
1 if at least one failure due to Rk has been observed for group Gm

0 if no failure due to Rk has been observed for group Gm

So dmk = 0 logically implies d∗mk = 0, but if dmk = 1 the corresponding d∗mk can be either
1 or 0.

For an index set J ⊆ {1, 2, . . . , K} we will be interested in the NPI lower and upper
survival functions for units at risk from all failure modes Rk for k ∈ J (and no other
failure modes); these are denoted by SJ and SJ . Let Jm be such an index set referring to
the set of failure modes due to which units in group Gm can fail, so Jm = {k : dmk = 1}.
We further define the index set of observed risks in the data for group Gm by J∗m = {k :
dmk = 1 and d∗mk = 1}.

Similarly, we define the index set of groups whose units can fail due to failure mode
Rk as Ik = {m : dmk = 1}, so Ik ⊆ {1, 2, . . . ,M}. We will consider the information about
failure mode Rk in the data sets for the groups Gm with m ∈ Ik. Based on these combined
data, we consider inference on a future unit under the assumption that it is only at risk
from failure mode Rk; to emphasize that such an inference will be based on the data from
all groups Gm with m ∈ Ik, we will denote the NPI lower and upper survival functions
for such a future unit by SIk

and SIk . This notation can again be extended to indicate
if we only take information into account from groups for which this specific failure mode
Rk has actually been observed; we then denote the index set corresponding to the groups
for which this failure mode has been observed by I∗k = {m : dmk = 1 and d∗mk = 1},
with similar extension of the notation for the corresponding NPI lower and upper survival
functions.
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2.2. Failure mode Rk

It is interesting to consider inference about a failure mode Rk, that is inference about
the failure time of a future unit which is only at risk from failure mode Rk. This is
of interest in its own right, to learn about this failure mode, but also for its use in the
competing risks scenario for a future unit which is at risk from several failure modes,
which will be presented in Section 2.3. We use all data from all the groups whose units
could have failed due to this failure mode, so groups Gm with m ∈ Ik = {m : dmk = 1}.
With interest only in failures due to Rk, all failure times in the data for these groups
that were caused by other failure modes are considered as right-censored observations.
Note that it is irrelevant here, due to the assumptions of independent failure modes, that
units from different groups which are included in the data for this inference on Rk will
not all have been at risk from the same failure modes; it is of no relevance which specific
other failure modes caused the failures at times which are treated here as right-censored
observations. The lower and upper survival functions for a future unit which is only at
risk from failure mode Rk, and based on all data from groups Gm with m ∈ Ik, are (as
mentioned in Section 2.1) denoted by SIk

and SIk , these are straightforwardly derived
from Equations (1) and (2), respectively, using all the data from groups Gm with m ∈ Ik
as explained here. This predictive inference is based on information from

∑M
m=1(nm×dmk)

units in the data set.
If we consider only the observed failure modes, when interested in failures due to Rk,

we use the data from all groups in which at least one unit has failed due to this failure
mode, so groups Gm with m ∈ I∗k = {m : dmk = 1 and d∗mk = 1}. The NPI lower and
upper survival functions for a future unit which is only at risk from failure mode Rk,
and based on data from groups Gm with m ∈ I∗k , are denoted by SI∗k

and SI∗k
; these are

straightforwardly derived from Equations (1) and (2). This predictive inference is based
on information from

∑M
m=1(nm × dmk × d∗mk) units in the data set.

2.3. Unit from a specific group

We now consider inference about the failure time of the next unit from a specific group
Gm, which can fail due to all failure modes that can affect units from this group, so failure
modes Rk with dmk = 1, hence with k ∈ Jm. The NPI lower and upper survival functions
for the failure time of this future unit from group Gm are given by

SJm(t) =
∏
k∈Jm

SIk
(t) and SJm(t) =

∏
k∈Jm

SIk(t) (5)

where SIk
and SIk are as presented in Section 2.2. Hence, this inference combines, for

each failure mode that is being considered, all the data from different groups as described
in Section 2.2.

We can also consider inference about the next unit from group Gm but using only data
from groups for which the relevant failure modes actually have been observed. Then the
NPI lower and upper survival functions are

SJ∗
m

(t) =
∏
k∈J∗

m

SI∗k
(t) and SJ∗

m
(t) =

∏
k∈J∗

m

SI∗k
(t) (6)
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where SI∗k
and SI∗k

are as presented in Section 2.2.
This inference for the failure time of a future unit from group Gm, using combined

information from other groups for individual competing risks, is the main novel result
presented in this paper. Such use of information from other groups is also known as
‘borrowing information’ from other groups in order to derive stronger inferences. Note
that such borrowing of information from other groups is done separately for each relevant
failure mode, and that the assumption that different risks affect the units independently
is required to combine the NPI lower and upper survival functions for the different failure
modes in this way.

2.4. Unit from an unspecified group

In the previous section, we derived the NPI lower and upper survival functions for the
next unit from a specific group Gm, using data on specific competing risks from other
groups as well. Suppose now that we are interested in inference about a future unit
from an unspecified group, so, at the time of the inference, we do not have the perfect
information to which group the unit belongs. Out of the many possible scenarios for this
situation, corresponding to different possible assumptions, we consider the following two.
First, we will assume that we know that the unit belongs to a particular subset of the
groups, say groups Gm with m ∈ I for index set I ⊆ {1, . . . ,M}, and that the specific
group it belongs to can be inferred from the numbers of units observed in these groups
thus far, based on an exchangeability assumption. Secondly, we will also assume that the
unit belongs to a particular subset of the groups, but that no further assumptions are
made and no further information is used.

For the first scenario, we start with the special case where we know that the next
unit belongs to one of two groups from the groups Gm, m = 1, . . . ,M , without loss of
generality say group G1 or G2, so I = {1, 2}. We assume that the group this unit belongs
to can be inferred from the numbers of units in these two groups observed in the data
thus far, so that its membership of either group is exchangeable with such memberships
of previously observed units in these two groups. For example, in medical studies one
may wish to make a prediction for the next patient without knowing, beforehand, the sex
of this patient, and assume exchangeability with the sexes of the previous patients. The
well-known Theorem of Total Probability can now be applied, with P (Gm) denoting the
probability that the next unit belongs to group Gm, and therefore P (G2) = 1 − P (G1),
to derive the following lower and upper survival functions

S(t) = SJ1
(t)P (G1) + SJ2

(t)P (G2) (7)

S(t) = SJ1(t)P (G1) + SJ2(t)P (G2) (8)

where SJ1
and SJ1 (SJ2

and SJ2), as defined in Section 2.3, are the NPI lower and upper
survival functions given that the next unit is from group G1 (group G2) and considering
the relevant risks per group, taking into account also the corresponding data per failure
mode in other groups. We can use NPI for Bernoulli data (Coolen, 1998) for inference
about P (G1) and P (G2), which gives NPI lower and upper probabilities which we present
explicitly as bounds of intervals (both to limit further notation and to emphasize that
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optimisation over these intervals takes place), as follows

P (G1) ∈
[

n1

N + 1
,
n1 + 1

N + 1

]
and P (G2) ∈

[
n2

N + 1
,
n2 + 1

N + 1

]
where N = n1 + n2

with the constraint P (G1)+P (G2) = 1. In order to derive the NPI lower survival function
S(t) for this scenario, we must minimise the expression in Equation (7) for P (G1) in this
specified interval, doing so of course immediately leads to the corresponding optimal value
for P (G2) in the related interval, through the constraint between these two probabilities.
We can do this optimisation point-wise, so for each value of t separately, in order to
reflect the information available with regard to survival at specific times. Clearly, if
SJ1

(t) < SJ2
(t) the minimum is achieved for P (G1) = n1+1

N+1
, while if SJ1

(t) > SJ2
(t) it

is achieved for P (G1) = n1

N+1
(in case of equality the value of P (G1) is irrelevant). The

corresponding NPI upper survival function S(t) is derived by similar maximisation, which
is also straightforward to implement.

Still for this first scenario, we now consider the case that the next unit belongs to a
known subset consisting of M ≥ 3 groups. The reasoning for this case is similar to that
for two groups, but instead of NPI for Bernoulli data (Coolen, 1998) we now learn from
the data about group membership using NPI for multinomial data Coolen and Augustin
(2009). This is based on a different underlying latent variable representation than the NPI
method for Bernoulli data; it could also be used for the case with two groups, but then it
would lead to slightly larger imprecision and the assumed latent variable representation
would probably be less reasonable for most practical situations (for more details on the
underlying aspects of these two NPI approaches we refer to Coolen (1998); Coolen and
Augustin (2009)). Applying, as before, the Theorem of Total Probability leads to

S(t) =
∑
m∈I

SJm(t)P (Gm) (9)

S(t) =
∑
m∈I

SJm(t)P (Gm) (10)

where SJm and SJm are again as presented in Section 2.3. NPI for multinomial data
(Coolen and Augustin, 2009) leads to lower and upper probabilities represented by the
corresponding intervals for P (Gm),

P (Gm) ∈
[
nm − 1

N
,
nm + 1

N

]
subject to

∑
m∈I

P (Gm) = 1 where N =
∑
m∈I

nm

In order to obtain the NPI lower and upper survival functions, S(t) and S(t), we must
solve two simple constraint optimisation problems. To derive the lower survival function
S(t) we need to minimise Equation (9) over P (Gm) with the constraints above. It is easily
seen that this is achieved by the following procedure. Let N =

∑
m∈I nm and let qI be the

number of groups I. If qI is even we assign the maximum possible value nm+1
N

to P (Gm)
for the groups Gm whose corresponding lower survival function values SJm(t) are the qI/2
smallest values of all these lower survival function values at t, and to the remaining qI/2
groups we assign the minimum value nm−1

N
to P (Gm). If qI is odd then we follow the same
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principle, but the maximum possible value for P (Gm) is then assigned to the (qI − 1)/2
groups with the smallest corresponding values of SJm(t), the minimum possible value for
P (Gm) is then assigned to the (qI − 1)/2 groups with the largest corresponding values of
SJm(t), while the group Gm corresponding to the medium value of SJm(t) will be assigned
the probability nm

N
. To derive the corresponding NPI upper survival function the same

reasoning leads to just the minima and maxima being interchanged, as the reader can
easily verify.

The second scenario considered here is that we do not know to which group in a
given subset of groups the next unit belongs, and we do not want to make a further
exchangeability assumption with previously observed units in order to learn about the
probability that it belongs to a specific group (as was done in the scenario above). In
this case, the NPI lower and upper survival functions for this next unit are simply the
envelopes of the NPI lower and upper survival functions of all the groups in the subset,
so

S(t) = min
m∈I
{SJm(t)} and S(t) = max

m∈I
{SJm(t)}

where SJm and SJm are again as presented in Section 2.3.

2.5. Three other scenarios of possible interest

There are many more possible scenarios with regard to the information and assump-
tions on competing risks that could be of practical interest. To illustrate this, we briefly
consider three further scenarios. We do not illustrate these in the example in Section 3,
but include them here to show that dealing with such variations is relatively straight-
forward and follows similar steps as the main methods presented in this paper. First,
suppose that we are not sure if units can fail due to failure modes which have not been
observed for this group. Then the lower and upper survival functions for the next unit
from group Gm are

S(t) =
∏

k∈Jm1

SIk
(t)

∏
k∈Jm0

SIk
(t) = SJm(t) and S(t) =

∏
k∈Jm1

SIk(t) = SJm1(t) (11)

where Jm1 = J∗m = {k : dmk = 1 and d∗mk = 1} and Jm0 = {k : dmk = 1 and d∗mk = 0}.
This lower survival function is based on the pessimistic assumption that the unit can
indeed fail due to unobserved failure modes, while the upper survival function is based
on the assumption that it can only fail due to observed failure modes.

Secondly, units from group Gm have failed due to one or more failure modes Rk∗

(k∗ ∈ {1, . . . , K}) in the past, but assume now that the units will not be at risk from
these failure modes in the future, so these failure modes have been removed (Coolen-
Maturi and Coolen, 2011). Then the lower and upper survival functions for the next unit
from group Gm are

S(t) =
∏

k∈J∗
m1

SIk
(t)

∏
k∈Jm0

SIk
(t) and S(t) =

∏
k∈J∗

m1

SIk(t)
∏

k∈Jm0

SIk(t) (12)

where J∗m1 is defined as J∗m1 = Jm1\{k∗}, where Jm1 = {k : dmk = 1 and d∗mk = 1}.
These lower and upper survival functions follow straightforwardly due to the removal of
the specific failure modes.
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Thirdly, consider the situation where units from group Gm could not fail due to failure
modes Rk∗ (k∗ ∈ {1, . . . , K}) in the past, but these failure modes can cause such units
to fail in the future. Then the lower and upper survival functions for the next unit from
group Gm are

S(t) = SJm(t)
∏
k∗

SIk∗
(t) and S(t) = SJm(t)

∏
k∗

SIk∗ (t) (13)

where SJm(t) and SJm(t) are obtained as in Section 2.3, and SIk∗
and SIk∗

are the lower
and upper survival function for the next unit assuming that this can fail only due to
failure mode Rk∗ , which can be obtained using (1) and (2) presented in Section 2.2.

3. Example

We illustrate the NPI methods presented in this paper via an extensive example based
on a well-known data set from the literature (Lawless, 2003). The data contain information
about 36 units of a new model of a small electrical appliance which were tested, and where
the lifetime observation per unit consists of the number of completed cycles of use until
the unit failed (we interpret this number as a continuous quantity). To illustrate our
method, we have divided this data set into three groups, G1, G2 and G3, as presented
in Table 1, which also includes the specific failure mode (R) that caused the unit to fail.
In the study, there were 18 different ways in which an appliance could fail, so 18 failure
modes, but only 7 of them have been observed. Failure modes R9 and R6 caused 17 units
and 7 units to fail, respectively, while failure modes R2, R5, R10 and R15 each caused
two units to fail, and failure mode R1 caused one unit to fail. Three units in the test
did not fail before the end of the experiment, so for these units we have right-censored
observations (2565, 6367 and 13403) for all failure modes considered, indicated by ‘0’ for
the failure mode in Table 1. With this grouping of the data, there are 4 observed failure
modes per group: failure modes R1, R6, R9 and R10 have been observed in group G1,
failure modes R2, R9, R10 and R15 have been observed in group G2, and failure modes
R5, R6, R9 and R15 have been observed in group G3.

G1 G2 G3

# cycles R # cycles R # cycles R
11 1 35 15 49 15
381 6 958 10 170 6
708 6 1167 9 329 6
1925 9 1594 2 1062 5
2223 9 1990 9 2400 9
2327 6 2471 9 2451 5
2702 10 2551 9 2761 6
3035 9 2565 0 3034 9
3059 6 2568 9 3112 9
3504 9 2831 2 3478 9
6976 9 3214 9 6367 0
7846 9 4329 9 13403 0

Table 1: Failure data for electrical appliance test
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3.1. Failure mode Rk

We start by considering inference about a specific failure mode Rk, as described in
Section 2.2. We discuss the following two options. First, we assume that the units in
all groups could have failed due to Rk, so we use the data for all groups. Secondly, we
assume that only units in groups in which Rk has actually been observed, were at risk
from Rk, so only data from such groups are included for the inferences. This inference is
in terms of the failure time of a future unit that is at risk from Rk only, and based on the
data according to the specific assumption under these two possible scenarios.

Figures 2-5 present the NPI lower and upper survival functions for the next unit which
is at risk from Rk only, for k = 2, 3, 6, 9, under the assumption that all units in the three
groups of the data set had been at risk from Rk, so based on all 36 observations. In these
figures we denote the NPI lower and upper survival functions by SRk

and SRk
, k = 2, 3, 6, 9,

respectively. Note that we only observed, in total, two failures due to failure mode R2,
and we did not observe any failure due to failure mode R3. This is reflected in Figures
2 and 3, respectively, as the NPI upper survival function only decreases at an observed
failure time caused by the specific Rk, while the NPI lower survival function decreases
at every observation, so both at failure times and right-censoring times with regard to
Rk, the latter being failure times caused by other failure modes as well as actually right-
censored observations. The NPI upper survival functions remain quite large for Figures
2-4, of course particularly in Figure 3 where it remains at value 1. This reflects that these
data provide little evidence (or none at all for R3) against the possibility that units may
actually not fail due to the failure mode that is being considered. The corresponding
NPI lower survival function reflects the evidence in the data in favour of survival past
time t, which decreases at every observation because the number of items in the data
that were at risk at time t decreases. Beyond the largest observation, t = 13403, the NPI
lower survival function is equal to zero, reflecting that the data do not contain evidence
in favour of further survival.

We now consider the same inference, so failure time of a future unit which is assumed to
be only at risk from failure mode Rk, but we assume explicitly that this failure mode only
affected units in the groups in which it was actually observed. It should be emphasized
that the decision on whether this is appropriate use of the data, or data from all groups can
be used as presented above, is up to the topic expert and necessarily based on detailed
information about the actual setting, clearly the data do not provide information to
distinguish between these two scenarios or indeed between other possible scenarios, some
of which are discussed in this paper and illustrated below. One may have an intermediate
case where it was known that the failure mode did affect units in some groups where it
was not observed, but not all such groups.

For the data in this example, separated in three groups as given in Table 1, the NPI
lower and upper survival functions for some failure modes are presented in Figures 6-9,
under the assumption that a specific failure mode only affected units in groups where
it has actually been observed. This implies that inference for failure mode R9 is based
on data from all the groups, as this failure mode was observed to cause failures in each
group. Hence, the NPI lower and upper survival functions for R9 in this case, as presented
in Figure 8, are identical to those presented in Figure 5, because both cases take the
observations from all groups into account. As another extreme situation, for any non-
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Figure 2: Lower and upper survival functions for R2 (data: all groups)
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Figure 3: Lower and upper survival functions for R3 (data: all groups)
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Figure 4: Lower and upper survival functions for R6 (data: all groups)
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Figure 5: Lower and upper survival functions for R9 (data: all groups)
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Figure 6: Lower and upper survival functions for R2 (data: only groups for which R2 has been observed)

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
ur

vi
va

l f
un

ct
io

n

SR6 SR6

Figure 7: Lower and upper survival functions for R6 (data: only groups for which R6 has been observed)
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Figure 8: Lower and upper survival functions for R9 (data: only groups for which R9 has been observed)
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Figure 9: Lower and upper survival functions for R10 (data: only groups for which R10 has been observed)
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observed failure mode there is now no meaningful inference, as no data are available to
base inferences on. For example, using the data from all groups, we did get a non-trivial
inference for R3, due to the fact that all items had functioned for some time without failing
due to this failure mode. But no such information is available under the assumption
considered now. In the first situation, the information was reflected through the NPI
lower survival function in Figure 3, which decreased at each right-censored observation.
In this case with no data we can only provide the vacuous inference that the NPI lower
survival function is equal to 0 and the NPI upper survival function is equal to 1 for all
t > 0. Note that this upper survival function is identical to the one for the situation
above, which indeed reflects that there was no strong information in the data against the
possibility failure mode R3 might never lead to failures.

Figures 6-9 also present the NPI lower and upper survival functions for failure mode
R2, using data from group G2 only, failure mode R6, using data from groups G1 and G3,
and failure mode R10, using data from groups G1 and G2. Of course, similar plots could
be presented for the NPI lower and upper survival functions for the other failure modes.
It is interesting to compare the NPI lower and upper survival functions for R6 in Figure
4 and Figure 7, as these are based on different information. To emphasize the differences,
these functions are presented together in Figure 10. The two NPI upper survival functions
decrease only at the 7 observed failure times due to R6. However, using all data (indicated
by (A) in Figure 10) implies that more units did not fail due to R6, hence the data contain
less evidence against survival at any time t past the first time of a failure due to R6 than
for the situation where only data from groups G1 and G3 is used (indicated by (B) in
Figure 10). This is reflected by the fact that the NPI upper survival function for the first
situation is greater than for the second situation, beyond the first failure time caused by
R6 (up to that time both are equal to 1). The NPI lower survival functions for R6 in
these two scenarios differ more, due to the fact that these functions decrease at every
observation in the data set, so also at right-censored observations, and the use of the data
from G2 in the first case discussed above (indicated by (A) in Figure 10) but not in the
second case (indicated by (B) in Figure 10) implies that with more data used the lower
survival function decreases at more time points. The lower survival function when all
data are used here is greater than the one based on data from G1 and G3 only, for all
t up to the largest observation. This is because the additional information only consists
of right-censoring times and hence provides some more information in favour of survival
at any time until the largest observation, after which both these lower survival functions
are equal to 0, reflecting that the data do not contain strong information in favour of
surviving beyond the largest observation.

The same properties hold for the NPI lower and upper survival functions for failure
mode R2 in Figure 2 and Figure 6, with the former based on the observations from all
groups, so from 36 units, but the latter only on the data from the 12 units in group G2.
These lower and upper survival functions are also presented together in Figure 11, to show
the differences more clearly. In this latter case (indicated by (B) in Figure 11), the NPI
lower survival function decreases only at 12 time points, the last one at t = 4329 from
which moment on the lower survival function is equal to 0. With the largest observation in
all combined data being at t = 13403, the lower survival function based on all combined
data (indicated by (A) in Figure 11) only becomes 0 at that time point, so there is a
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Figure 10: Lower and upper survival functions for R6: (A) using all data, (B) only data from G1 and G3.
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Figure 11: Lower and upper survival functions for R2: (A) using all data, (B) only data from G2.
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substantial difference between these two lower survival functions. While the two NPI
upper survival functions for these cases both decrease only at the two observed failure
times due to R2, the inclusion of many more right-censored observations (with regard to
this failure mode) in the first case leads to a substantial difference between these two
upper survival functions.

3.2. Unit from a specific group

Next we illustrate the methods presented in Section 2.3, so we consider the failure
time of the next unit from group Gm, where again assumptions are required about which
failure modes can affect this unit. There are several possible assumptions, we present
those which we consider to be of most interest.

First, we assume that all failure modes that have been observed at least once affected
the units from all three groups, so these are Rk for k = {1, 2, 5, 6, 9, 10, 15}. We are
interested in the failure time of a future unit which is at risk from precisely these 7 failure
modes, so this could be a unit from any of the groups G1, G2 or G3. The NPI lower and
upper survival functions for such a future unit from any group, in this case, are presented
in Figure 12, and they are derived by (for all m = 1, 2, 3)

SJm(t) =
∏

k∈{1,2,5,6,9,10,15}

SIk
(t) and SJm(t) =

∏
k∈{1,2,5,6,9,10,15}

SIk(t)

It should be emphasized that here we combine the NPI lower and upper survival
functions for the individual failure modes that can affect the unit of interest, while we
have used all available data to first derive these lower and upper survival functions along
the lines as presented in Section 2.2 and illustrated earlier in this example. We could
have added one or more of the identified but unobserved failure modes to this approach,
if we wished to assume that these could indeed also affect such a future unit. Due to the
NPI upper survival functions for such a failure mode being equal to 1 for all t, the upper
survival function SJm would not be affected. However, the lower survival function SJm

would be multiplied by the lower survival function(s) for such additional failure mode(s),
which under the assumptions that they could have affected all data observations would
(all) be equal to the lower survival function for R3 in Figure 3. This latter lower survival
function decreases at the same 36 time points as SJm , namely all observation times in the
data, and hence the resulting lower survival function for the next unit would be less than
the SJm given in Figure 12. This would show the effect of the unit being possibly affected
by more failure modes (leading to the decrease of the lower survival function), but not
necessarily so as these failure modes have not yet been observed so there is no strong
evidence that they will actually have an effect (shown by the unchanged upper survival
function).

Secondly, we assume that a future unit of group Gm is only affected by failure modes
already observed for that group. In addition, we assume that, for as far as the data are
concerned, only units in groups for which a particular failure mode has been observed were
actually affected by it and hence only data from these groups are used for the inference
about a specific failure mode; this means using the NPI lower and upper survival functions
shown in Figures 6-9 (and the corresponding ones for failure modes not shown in that
figure). The resulting NPI lower and upper survival functions for units from groups G1,
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Figure 12: Lower and upper survival functions for Gm, m = 1, 2, 3, using all data
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Figure 13: Lower and upper survival functions for G1, using data where failure modes are observed
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Figure 14: Lower and upper survival functions for G2, using data where failure modes are observed
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Figure 15: Lower and upper survival functions for G3, using data where failure modes are observed
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G2 and G3 are presented in Figures 13, 14 and 15. The three upper survival functions
in this figure are quite similar, except the one for G2 does not decrease as quickly for
smaller values of t. The similarity is mostly due to failure mode R9, which is included for
each group and for which most failure observations were available. The early difference is
mostly due to failure mode R6, which here affects units of groups G1 and G3, but not units
of group G2, and this failure mode caused several early failures. The main similarities
and differences in these lower survival functions are due to the same effects. It is also
interesting to consider when these three lower survival functions become equal to 0. For
G1, we have SJ∗

1
(t) = 0 for t ≥ 7846, because at this point the lower survival function

for R1 becomes 0, as for this failure mode only the data from group G1 are used. For
G2, SJ∗

2
(t) = 0 for t ≥ 4329, because at this point the lower survival function for R2

becomes 0, as for this failure mode only the data from group G2 are used. For G3, we
have SJ∗

3
(t) = 0 for t ≥ 13403, because for this group the lower survival functions for

R5, R6, R9, R15 are used and these all only become 0 at this largest observation, as they
were all observed for group G3 so the data for this group are included.

It is also of interest to compare all NPI lower and upper survival functions in Figures
12- 15, as this shows the effect of the different assumptions made, both with regard to
the failure modes that will affect the future unit of interest and with regard to the data
used for each failure mode, which is based on the assumption about which failure modes
affected the units in the data groups.

3.3. Unit from an unspecified group

Finally, we briefly illustrate the NPI lower and upper survival functions for the main
scenario presented in Section 2.4. Suppose we are interested in inference about the next
unit, of which we only know that it belongs to a specified set of groups. We consider
the three cases where we know that this unit belongs to one of two groups, and we only
consider the observed competing risks per group only (so we assume that, per group,
unobserved failure modes cannot affect the next unit). We make the assumption that we
can learn about the membership of these groups from the data, where in this case each
group had 12 observations. For example, if it is only known that the next unit belongs to
group G1 or G3, then the lower and upper survival functions are

S(t) = SJ1
(t)P (G1) + SJ3

(t)P (G3)

S(t) = SJ1(t)P (G1) + SJ3(t)P (G3)

where P (G1) ∈ (12/25, 13/25) and P (G3) = 1 − P (G1). After optimization, these lower
and upper survival functions are given in Figures 16-18. These lower and upper survival
functions are quite similar but of course still reflect some of the aspects of failure data in
the individual groups as discussed before in this example.

4. Concluding remarks

This paper has presented the combination from different groups of data about shared
failure modes, within the NPI framework of statistics. Such borrowing of strength by using
data from other groups can be particularly important if there are only few observations,
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Figure 16: Lower and upper survival functions for a future unit only known to belong to G1 or G2
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Figure 17: Lower and upper survival functions for a future unit only known to belong to G1 or G3
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Figure 18: Lower and upper survival functions for a future unit only known to belong to G2 or G3

or even none, for a specific failure mode in a group. It is important to emphasize that
the decision on whether this is appropriate use of the data is up to the topic expert
and is necessarily based on detailed information about the actual setting. The data
themselves do not provide clear information about whether or not this is justified. The
crucial assumptions are that failure modes affect units independently, and that a specific
failure mode affects each unit that can be affected by it in the same manner. If one has
a large number of data then these assumptions could be tested statistically, we do not
consider this further in this paper as we mostly suggest this NPI method for small to
medium size data sets. Indeed, for large data sets the NPI method effectively gives the
empirical survival functions as imprecision becomes very small. Several main scenarios
were presented, together with a few further ones that are also of practical interest. In the
same way the method can be adapted to many further scenarios, following similar steps
as presented for the main scenarios.

A clear challenge for research is to develop corresponding methods with weakening
of the assumptions mentioned above. Theory of NPI for dependent data is being devel-
oped and this may lead to opportunities for methods for dealing with dependent failure
modes, but this would require data that go beyond the standard competing risk scenario
considered in this paper, because if units are not used beyond their (first) failure then it
is well known that the data do not contain information about dependence of the failure
modes. One may also wish to link the methods presented in this paper with decision
support, for example to consider optimal investment if one has a budget available to re-
solve some failure modes. A further challenge is consideration of more than one future
unit, whose failure times are not independent in the NPI approach. Whilst such NPI
methods have been developed for real-valued data without right-censoring, and they are
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quite straightforward to implement (Coolen, 2011), NPI for multiple future observations
with right-censored data (as used in this paper) is a challenging topic for future research.
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