
              

City, University of London Institutional Repository

Citation: Bishop, P. G., Bloomfield, R. E., Littlewood, B., Popov, P. T., Povyakalo, A. A. & 

Strigini, L. (2014). A conservative bound for the probability of failure of a 1-out-of-2 
protection system with one hardware-only and one software-based protection train. 
Reliability Engineering & System Safety, 130, pp. 61-68. doi: 10.1016/j.ress.2014.04.002 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/6547/

Link to published version: https://doi.org/10.1016/j.ress.2014.04.002

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


A conservative bound for the 

probability of failure of a 1-out-of-2 

protection system with  

one hardware-only and one 

software-based protection train 

Peter Bishop, Robin Bloomfield, Bev Littlewood*, Peter Popov, Andrey 

Povyakalo, Lorenzo Strigini 

Adelard and Centre for Software Reliability, City University London 

Abstract 

Redundancy and diversity have long been used as means to obtain high reliability in 

critical systems. Whilst it is easy to show that, say, a 1-out-of-2 diverse system will 

be more reliable than each of its two individual “trains”, assessing the actual 

reliability of such systems can be difficult because the trains cannot be assumed to 

fail independently. If we cannot claim independence of train failures, the 

computation of system reliability is difficult, because we would need to know the  

probability of failure on demand (pfd) for every possible demand. These are unlikely 

to be known in the case of software. Claims for software often concern its marginal 

pfd, i.e. average across all possible demands. In this paper we consider the case of a 

1-out-of-2 safety protection system in which one train contains software (and 

hardware), and the other train contains only hardware equipment. We show that a 

useful upper (i.e. conservative) bound can be obtained for the system pfd using only 

the unconditional pfd for software together with information about the variation of 

hardware failure probability across demands, which is likely to be known or 

estimatable. The worst-case result is obtained by “allocating” software failure 

probability among demand “classes” so as to maximise system pfd. 
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1 Introduction 

 

This paper presents an approach for estimating a conservative probability of failure 

on demand (pfd) that is applicable to a 1-out-of-2 diverse protection system where 

one of the protection trains is hardware-based and the other is computer-based. 

The use of a protection system is an accepted strategy for hazardous industrial 

processes. The protection system independently monitors the industrial process and if 

it detects a departure from the safe operational envelope, it initiates some action that 

overrides the normal control system to place the process in a safe state. 

The departure from the safe operational envelope is known as a demand on the 

protection system. Demands typically arise from different failures within the physical 

process and control systems. For example, in the nuclear industry, the underlying 

physical causes of demands on the protection system are known as postulated 

initiating events (PIE[1]), and the overall plant safety analysis will identify a set of 

PIEs that represent credible plant failures (such as loss of electrical grid connection or 

a rupture in the primary coolant circuit). As part of the design process, maximum 

rates are assigned for each PIE and, to reduce the risk of a PIE that occurs frequently, 

diverse means are used to detect the departure from normal operation (like 

temperature and pressure). These are normally implemented in diverse trains of 

equipment using different types of sensors and with different means of achieving a 

safe state for the same PIE. 

To improve its reliability, a protection train typically also has a high level of internal 

redundancy to tolerate hardware failure in the sensors, protection logic, actuators and 

plant components (like valves or pumps). Even so, if sufficient hardware sub-

components fail, the train will be unable to respond to the demand triggered by the 

PIE. Depending on the PIE involved, different sets of hardware components of the 

protection train need to be able to respond successfully to demands initiated by 

different PIEs. Typically the hardware probability of failure on demand for a PIE is 

determined by fault tree analysis [2], where the minimal cutsets of failed sub-

components are identified [3] that result in a demand failure. By quantifying and 

summing the minimal cutsets, the probability of failure per demand for a given PIE 

can be computed. 

Probabilistic analysis of hardware-based systems is well established, but less work 

has been done on including the impact of software failures in a computerized 

protection system. In this paper, we present a method that allows a conservative 

estimate to be made for the probability of failure on demand (pfd) for diverse 1 out-

of-2 protection trains where one train is software based, given the form of claims 

commonly offered for software reliability.  
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2 Terminology and modeling approach 

 

As discussed above, a protection system responds to demands – events that require its 

intervention. Whether the protection system will respond correctly or will fail on the 

demand depends on the characteristics of the demand. The protection system may fail 

– that is, fail to start the required safety action – if, for instance, some hardware 

component (or redundant combination of components) that is needed to respond 

correctly is permanently faulty, or suffers a transient fault, at the time of that demand; 

or due to a design defect in hardware logic or in software. We therefore can also 

identify a specific demand as  a vector of values that together determine the likelihood 

of any of the protection trains failing: 

• since the protection system monitors the values of state variables of the plant 

(e.g. pressures, temperatures, measures of flows) and may fail or not 

depending on their values (especially software bugs may depend on the exact 

values of the data), this vector includes the sequences of values that are read 

during the demand event;1 

• since hardware probabilities of failure are affected by environmental variables  

(e.g. temperature, humidity, atmospheric pressure, level of electromagnetic 

radiation, in the various part of the system), these variables are also parts of 

the vector. Probabilities of hardware failure are usually available for ranges of 

variables. 

The demand is thus a (vector) random variable; processes in the protected plant and 

its environment determine the times of occurrence of each demand as an event and the 

value of the demand vector. In what follows we will use just the term “demand” when 

the meaning “event” or “vector” is clear from the context. 

The demand vector includes all variables that have an effect on the success or failure 

of any part of the system. Thus, for instance, temperature values at a certain sensor in 

the plant are part of the demand even if only one of the protection trains reads them. 

But some components of the demand affect more than one protection train. Thus, for 

instance, an earthquake that affects two protection trains will increase the probability 

of failure of both, possibly (if the shock is way above their design limits) to 1. Thus 

we can model common causes of failure via demands which imply high probability of 

failure for both trains. 

This form of modeling has been used in earlier work [4-6] to model in a consistent 

way failures due both to physical causes and to design, and thus both hardware and 

software failures. The basic idea here is one of variation of the probability of system 

failure between different demands, as an explanation for dependence in failure 

behavior between diverse trains to be used in a fault tolerant system (e.g. a 1-out-of-2 

                                                 
1 With software, one could imagine the protection sytem as realising a deterministic function of the 

values it reads: the probability of demand could only be 0 or 1. In practice, whether it fails may depend 

on the software’s past history. So a specific demand implies a probability of system/train  failure, 

which is not necessarily 0 or 1, rather than deterministic failure or success. 
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system). The idea is a simple one. The probability of a system failing on a demand 

will, in general, vary across demands. Since the component values of the demand 

vector together determine the likelihood of a protection train failing, and if the 

system’s design is such that we can exclude failures of one train directly causing 

failures of the other, the failures of both trains on a specific demand (a specific value 

of the demand vector) can be assumed independent conditionally on the demand 

Interest then centers upon the covariance (across all demands) between the two 

functions (of the demand) that describe the probabilities of failure of the two trains of 

a 1-out-of-2 system. When there is positive covariance – roughly, when the demands 

that associated with a higher probability of failure for one train also tend to to 

assocviate with a higher probability of failure for the other – then it is more likely that 

there will be positive correlation between the trains’ failures on a random demand. In 

such a case, wrongly assuming independence of failures between the two trains will 

give an optimistic estimate of the reliability of the 1-out-of-2 system2. 

An achievement of these conceptual models is their establishment of, and explanation 

for, the inevitability of dependence (positive or negative) of failure behavior between 

redundant, diverse systems, hardware or software. They thus support the empirical 

evidence for such dependence that comes, for example, from experiments: see e.g. [7, 

8]. No longer is it possible to claim that the two diverse protection trains of a 1-out-

of-2 fault tolerant architecture will fail independently of one another, without making 

very strong claims: essentially that there is no variation of failure probability across 

demands for at least one of the trains. This means that the simple arithmetic of 

independence is not applicable for the computation of the system reliability as a 

function of the component reliabilities. Specifically, the pfd of a 1-out-of-2 system 

over all demands cannot simply be assumed to be the product of the pfds of the two 

trains. Informally, it means that we need to know how dependent the failures of the 

trains will be. 

Reliability estimation of such a 1-out-of-2 system is non-trivial as it seems to require 

a complete knowledge of how the probability of failure varies between demands.  

However, we can reason by failure classes, defining a “class” as a set of demands 

such that the estimated pfd is the same for all demands in a class. For simple 

hardware, a “class” means a set of demands such that correct response to any of them 

requires the same set of subsystems to function correctly. If the demand classes for 

two protection trains do not exactly coincide, a demand class is defined as a set of 

demands such that each one of the trains has constant pfd over all the demands in the 

set. This will generally involve more demand classes for the system than would be 

defined for each train alone. If this definition led to too many classes of demands, 

their number can be contained, and kept tractable, by merging classes and using the 

highest pfd among those classes thus merged. It can easily be shown that given 

conditional independence on each demand, and constant pfd across the class for at 

least one of the two trains, failures of the two trains are conditionally independent 

                                                 
2 It is possible to do better than independence if there is negative association between the probabilities 

of failure over the demands.  
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conditionally on the demand class [9]. Thus, the system pfd conditional on a certain 

demand class is obtained by multiplying the pfd values, for that demand class, of the 

two trains. 

For software, things seem much more problematic: software faults are such that 

among two demands that are from all other viewpoints in the same “class”, the 

software may fail on one but not the other depending on the values of the inputs to the 

software. In fact, claims about software reliability are often limited to the marginal 

probability of failure on demand based on arguments of quality of production and 

verification, “proven in use” arguments, or operational testing that is sufficient for 

assessing marginal pfd but insufficient for assessing conditional pfd for each demand 

class. 

Since independence of failures is not plausible, system pfd depends on how the 

software pfd varies across demands, or demand classes: a claim of even very low 

marginal software pfd may not be sufficient to support a claim for satisfactory system 

pfd.  In this paper we derive a worst-case bound on the system pfd given this kind of 

scenario. We present a solution for deriving a conservative estimate for the system 

pfd for a 1-out-of-2 protection system architecture where there is software in one train 

only. The pessimistic (but attainable) bound for the probability of failure on demand 

for such a system requires only the marginal pfd of the software (together with the 

varying hardware pfds across different demand classes). The basic ideas here can be 

generalized to more complex systems than the example we use in the paper.  

 

3 Protection System Reliability Model 

 

The example 1-out-of-2 system we shall use for illustrating our reliability modeling 

approach is a nuclear reactor protection system with two trains: the X-train and the Y-

train. Real-life examples of such systems include the UK Sizewell B reactor’s 

primary and secondary protection systems, and the safety systems of advanced gas-

cooled reactors (AGRs). 

Consider first the simple situation in which each train is built of hardware alone, as in 

Fig 1. We shall classify the demands, as outlined above, into different classes. A 

demand of one class will typically have a different probability of failure from a 

demand of another class. In the case study that prompted this work, a demand class 

could be characterized by the equipment that was needed to function correctly for the 

demand to be successfully met (as discussed in Section 1). Some demand classes, for 

example, required more equipment than others, and thus the chance of failure would 

be greater because there would be more devices able to fail. Within a demand class, 

demands will differ from one another in some respects: for example, the reactor state 

will be different, represented by the readings of sensors for temperature, pressure, etc. 

Nevertheless, all demands within a demand class are assumed to have the same pfd, 

as required by the definition of “demand class”. This assumption is reasonable as the 



Conservative bound for probability of failure in a 1 out of 2 protectionsystem 6 

 

 

 

 

hardware pfd is primarily determined by the minimum equipment requirement for the 

specific demand class rather than the state of the reactor. 

X-train h/w

Y-train h/w

 

Figure 1. Independent trains (hardware based) 

Conditional on each demand class there is conditional independence between failures 

of the X and Y trains. This assumption is justified on the basis of there being effective 

isolation between the trains, to avoid failure propagation between them, and there 

being no variation of pfd for the hardware of a train between demands within a 

demand class. Common stresses (e.g. like elevated temperatures) or shocks are 

modeled as creating specific demand classes where hardware pfds are increased, but 

still failures are independent conditional on this higher pfd (possibly very close to 1, 

for shocks affecting hardware in both trains) [5]. 

With these assumptions, we can see that the (marginal) probability of failure on 

demand of the 1-out-of-2 system, i.e. for a randomly chosen demand, is the 

probability of both X-train hardware and Y-train hardware failure:  

)()()( ifipippfd
hhhh Y

i

XYX ∑=         (1) 

where )(ip
hX  is the probability of X-train hardware failure on demand class i, )(ip

hY  

is the probability of Y-train hardware failure on demand class i, and f (i)  is the 

probability that a randomly chosen demand is of class i.  

Clearly, the pfd is different from the result that would be obtained under an incorrect 

assumption of unconditional independence of failure between the two trains, which is 

















= ∑∑

i

Y

i

XYX ifipifippfdpfd
hhhh

)()()()(.  

The true result will exceed the incorrect result (based on the false assumption of 

independence) so long as there is positive covariance between the X- and Y-train 

demand class pfds, )(ip
hX  and )(ip

hY . This is similar to the result that Eckhardt and 

Lee [6] obtained for software diversity. The positive covariance means that there is a 

tendency for large demand class pfds in the X-train to be associated with large 

demand class pfds in the Y-train. Informally, if we see the X-train fail, we might 

expect that the demand class was likely to be one with a large pfd, and thus might be a 

high-stress demand class such that the Y-train pfd is also probably large, and therefore 

its probability of failure is greater than it would be unconditionally.  
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We now consider the situation that is the subject of this paper, in which one train 

contains software, and the train fails if the software fails: see Fig 2. 

We still classify the demands into classes with constant hardware pfd as before. 

There is still conditional independence, conditional on the demand class, between 

failures of the X-train (hardware and software), on the one hand, and the Y-train 

(hardware only) on the other, for each demand class i. This is because (i) the trains 

fail independently conditional on each demand; and (ii) within each demand class, the 

pfd of train Y is the same for every demand. Thus the probability of failure on 

demand is now: 

( ) )()()()()( ifipipipippfd
hshshhsh Y

i

XXXYX ∑ ++
−+= .     (2) 

where )(ip
sX  is the probability of failure of the X-train software on a demand of 

class i and )(ip
shX +

 is the probability of simultaneous hardware and software failure 

on a demand of class i. 

 

X-train h/w

Y-train h/w

X-train s/w

 

Figure 2. Hardware train plus computerized train 

 

To use expression (2) we need to know, or more plausibly, be able to estimate, the 

parameters on the right hand side. 

In many cases it is likely that estimates  of { })(ip
hX , { })(ip

hY  could be based on 

knowledge of the different subsets of hardware required for each demand class. The 

parameters { })(ip
shX +

 are not likely to be known, nor to be estimatable, but it is clearly 

conservative to set them to 0. 

The major practical difficulty is that the { })(ip
sX  will generally be unknown and not 

estimatable. However, an estimate of 
sXpfd , the marginal pfd of the X-train software, 

will often be available, based on the usual qualitative criteria used for claims about 

software, or possibly on operating experience in other similar contexts. 

The question we ask in the next section, then, is: what is the worst system pfd that 

could arise with these constraints on our knowledge about the model parameters? We 

answer this question in two stages.  
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4 Worst case system pfd   

 

Firstly, it is easy to see that, for given values of the known parameters, the largest 

value of the system pfd, (2), occurs when 0)( =
+

ip
shX  for all i. This conservative 

bound on the system pfd is then  

)()()( ifipippfdpfd
hshhhsh Y

i

XYXYX ∑+=
+

      (3) 

Secondly, we need to know what is the worst allocation of the marginal pfd of the X-

train software to the second term on the right hand side of (3), i.e. the one that makes 

(3) the largest value that this conservative bound on the system pfd can take. That is, 

we need to find which set of numbers { })(ip
sX , satisfying the constraint 

∑=
i

XX ifippfd
ss

)()( , maximizes ∑
i

YX ifipip
hs

)()()( .  

Now 

( ) ( ) ( ))()()(),()()()( ipEipEipipCovifipip
hshshs YXYX

i

YX +=∑  

where ( ))(ipE
sX  is the marginal pfd of the software, i.e. ∑=

i

XX ifippfd
ss

)()( , and 

( ))(ipE
hY  is the marginal pfd of the Y-train hardware, i.e. )()( ifippfd

i

YY hh ∑= . If we 

keep these two probabilities constant, the maximum value of ∑
i

YX ifipip
hs

)()()(  

occurs when ( ))(),( ipipCov
hs YX  takes its maximum value. Clearly this occurs when 

we associate large values of )(ip
sX  with large values of )(ip

hY
. 

We call the allocation process “bin-filling”. Informally, we proceed by first allocating 

as much of 
sXpfd  as we can to the demand “bin” that has maximum Y-train hardware 

pfd; we allocate as much of the remaining 
sXpfd  to the demand bin with the next 

largest Y-train hardware pdf, and so on until we have ‘used up’ all of 
sXpfd . In each 

allocation of part of 
sXpfd  to a demand class, we recall that in this conservative case 

we have assumed that hardware and software failures are disjoint for all demand 

classes: thus only enough of 
sXpfd  is allocated to a demand class to make failure of 

this class certain (i.e. from either a hardware or a software failure). 

Rather more precisely, the procedure to find the maximum value that our conservative 

bound on the system pfd can take is as follows: 
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Without loss of generality, we can order the demand bins, i, by their Y-train pfd, such 

that )1()( +≥ ipip
hh YY

 

We define a term S(i) as the software pfd  that is available for allocation to bin i. So 

we start with: 

sXpfdS =)1(  

Then, starting at i=1, we assign: 









−=

)(

)(
),(1min)(

if

iS
ipip

hs XX
 

The software pfd remaining for the next bin is: 

)()()()1( ipifiSiS
sX−=+          

This process continues up to bin j, say, where the software pfd has been used up, i.e. 

where S(j+1)=0  

The final bin j may, of course, not be completely filled (i.e. the probability of failure 

associated with the bin – from hardware and software – may be less than 1). 

As S(j+1)=0, all remaining bins will be assigned a software failure probability of 

zero. 

The numbers { })(ip
sX  that result from this procedure give the worst case value for the 

conservative system pfd bound (3). A precise statement of this result, and its proof, 

can be found in the Appendix.  

One way of using this result is to compare it with a naïve estimate that ignores 

variations in software pfd across demand classes, i.e. where we assume that the 

marginal software pfd is applied to all demand classes The difference can be 

expressed as a ratio of the pfd obtained using the worst-case { })(ip
sX  values, and 

using 
ss XX pfdip ≡)( . 

 

5 Examples 

 

Informally, the theorem states that the worst case error (i.e. the maximum 

underestimate of the system pfd) will occur when all the X-train software pfd is 

associated “parsimoniously” with those demand classes that have the largest Y-train 

hardware pfds. Consider the (artificial) example in Table 1. 

Here the X-train marginal software pfd is assumed to be 0.001. With the Y-train 

hardware failure probabilities and the demand class probabilities shown in the table, 
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the question is how to allocate the X-train software failure probabilities to maximize 

the underestimate of system pfd, subject only to constraining the X-train marginal 

software pfd to be 0.001. 

In the table, the Y-train hardware pfds have been ranked in descending order of 

magnitude. We assign just sufficient X-train software pfd to each of the largest of the 

Y-train hardware pfds to make X-train failure (from either hardware or software) 

certain for these demand classes.  We can do this for demand classes 1, 2, 3; but there 

is not sufficient X-train software pfd remaining to do it for demand class 4. In fact, 

demand class 4 has a software pfd of 0.0001 in order to satisfy the constraint that the 

marginal X-train software pfd over all demand classes is 0.001. That is: 

001.0)4()4()()(
3

1

=⋅+=∑
=i

XXX fpipifP
sss

 

The overall probability of X-train failure – from hardware or software – for demand 

class 4 is then 0.0031. For the remaining demand classes, 5 and 6, software failure is 

impossible under this assignment – all the X train software pfd has been “used up” on 

the earlier demand classes – although hardware failure is possible: see last two entries 

in final column of Table 1.  

 

i f(i) )(ip
hY  )(ip

hX  Worst case 

allocation of X-

train software 

pfd, 

)(ip
sX  

Resulting total probability 

of failure (hardware and 

software) of X-train, 

)(ip X
 

1 0.00001 0.009 0.006 0.994 1 

2 0.00009 0.008 0.005 0.995 1 

3 0.0009 0.007 0.0004 0.9996 1 

4 0.009 0.006 0.003 0.0001 0.0031 

5 0.09 0.0005 0.0002 0 0.0002 

6 0.9 0.0004 0.0001 0 0.0001 

Table 1. Bin filling example 

 

It can be seen that the binning procedure allocates zero software pfd to demand 

classes 5 and 6. This does not mean we postulate the software will actually be perfect 

for that demand class - it is merely a result of the fact that the conservative allocation 

process is designed to maximize the system pfd over all demands. 

This result generalizes. There will be 1s in all the early entries of the 6
th

 column of 

Table 1, corresponding to the largest Y-train hardware pfds. There will be 0s in all the 
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late entries of the 5
th

 column of the Table, corresponding to the smallest Y-train 

hardware pfds. There will be at most one row that does not have a 0 in the 5
th

 column, 

or a 1 in the 6
th

 column: the values of these two entries will be determined by the need 

to satisfy the constraint. 

The pfd of the 1-out-of-2 system, using the worst-case allocation of the X-train as in 

the fifth column of Table 1, is  

( ) 61032.7)()()()( −×=+∑ ifipipip
hsh Y

i

XX . 

In contrast, the system pfd based on assuming (wrongly) that the marginal X-train 

software pfd, 001.0=
sXp , applies to all demand classes, is  

( ) 71080.6)()(001.0)( −×=+∑ ifipip
hh Y

i

X . 

Therefore the naïve estimate of system pfd ignoring variation in software pfd between 

demand classes and the worst case estimate of the system pfd differ by a factor of 

10.76. 

This simple procedure outlined above for obtaining the worst case bound is easy to 

prove in a case like that in Table 1, where the Y-train hardware pfds are strictly 

ordered. If, on the other hand, some of the Y-train hardware pfds are identical, there is 

a complication: in such cases there may be more than one maximum. This can be seen 

in the example of Table 2 below. 

 

i f(i) )(ip
hY  )(ip

hX  Worst case 

allocation of 

)(ip
sX , first 

case 

Worst case 

allocation of 

)(ip
sX , second 

case 

)(ipX
 in 

first case 

)(ipX
 in 

second case 

1 0.001 0.009 0.006 0.994 0 1 0.006 

2 0.009 0.009 0.005 0.0006667 0.1111111 0.0056667 0.1161111 

3 0.09 0.005 0.003 0 0 0.003 0.003 

4 0.9 0.005 0.004 0 0 0.004 0.004 

Table 2. Example with a non-unique bin-filling sequence 

 

It is easy to see in this case that there are two ways in which the X-train software pfds 

can be allocated, whilst still satisfying the constraint on the marginal pfd. However, it 

is also easy to show that in each case, the worst case 1-out-of-2 system pfd (using (3) 

with the entries from, respectively, the fifth and sixth columns of Table 2) is 

2.88×10
-5

; and the system pfd calculated assuming all demand classes have pfd 0.001 

(the marginal X-train software pfd) is 2.48×10
-5

. In other words, the worst case 
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underestimate of system pfd arising from ignoring variation in X-train software pfd is 

the same – 0.40×10
-5

 – in each case. 

It can be shown that this will always be true: when there are several ways of worst 

case allocation of the X-train software pfds, each will give the same maximum 

underestimate of system pfd.  

 

6 Discussion 

 

The work by Eckhardt and Lee (and later work) introduced a new way of looking at 

the reasons for dependence between the failure behavior of diverse versions of 

software. In these models, everything turns on the variation of the failure probability 

as a function of the specific demand. This earlier work gave novel insights into the 

reasons why claims for independence are rarely supportable. Unfortunately, it also 

introduced some serious difficulties for anyone wishing to exploit the models to 

estimate the actual probabilities of failure of real systems, since this requires 

estimation of how failure probability varies across all demands. 

In this paper we have looked at a particular system: a 1-out-of-2 system in which only 

one train contains software. In the example that motivated this work – a protection 

system for a nuclear reactor – we were able to identify a small number of demand 

classes (<20) for each of which a hardware pfd could be estimated. In fact these had 

been estimated as part of the wider safety case for the reactor.  For software, on the 

other hand, only a marginal pfd was estimated. Our aim, therefore, was to obtain a 

means of computing the worst system pfd that could result for a given software 

marginal pfd. Such a result could be used conservatively as part of a safety case 

claim. 

Our main result, then, is a procedure for finding such a worst case result, based upon 

a conservative bound on the system pfd which assumes that simultaneous hardware 

and software failure in a train is impossible.  

As we have found elsewhere whilst working on these models of diversity, these 

results are quite surprising and subtle: witness, for example, the pivotal role played by 

variation in Y-train hardware pfd when we take into account X-train software 

failures. We do not think that these results could have been obtained without the 

formal model of diversity, although we believe that they are intuitively convincing in 

retrospect. 

Our result here represents a tighter (i.e. less conservative) bound than can be obtained 

with more simplistic assumptions. This lessening of conservatism depends on (i) the 

assumption of failure independence between trains, conditional on each demand class, 

and (ii) some knowledge about the demand classes, specifically their probabilities and 

the hardware pfds conditional on each class for each train. Without these premises, 

the worst case system pfd could only be stated as the smaller of X-train pfd and Y- 
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train pfd, which is at worst min P
Yh

, P
Xh

+ P
Xs

( ). Our tighter result will often be much 

lower than this worst case – informally this is because pYh
(i) << 1 for all i – although 

we can contrive scenarios, with typically implausible values of the parameters, in 

which it approaches or even equals it. 

On the other hand, estimates of software pfd per demand class would allow even 

tighter estimates of system pfd, which could be orders of magnitude lower if all these 

)(ip
sX  are orders of magnitude lower than 1. One way of reading our result is that it 

is far better to bring to the calculation of system pfd some estimate of software pfd per 

demand class, as argued for instance in [10] and exemplified in [9], rather than over 

the whole demand space. But when the latter is the only estimate available for 

software pfd, we offer a way of using other knowledge that is available per demand 

class to avoid extreme overestimation of system pfd. 

These results depend on the ability to state estimates of constant pfd per demand class 

on the Y channel, that is, to trust that the Y channel is free from demand-specific 

variation of pfd within a demand class. If this could not be assumed (for instance if Y 

implemented complex logic - albeit hard-wired - that were not trusted free of design 

faults affecting specific demands in one class), a more conservative method suitable 

for two software-based trains (e.g. as [9]) should be used. 

Note that, if a conservative value of the X-train software pfd over all demand classes 

were available (i.e. a value that is not exceeded by its true pfd on any demand class), 

then the system pfd calculated using this value for all the )(ip
shX +

 terms in expression 

(2)  would be conservative. In fact, it may be very conservative: our result points to a 

way of lessening this conservatism. 
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Appendix: Worst case value for the conservative system pfd bound 

We need to find the set of numbers { })(ip
sX , satisfying the constraints: 

niip

ifippfd

s

ss

X

n

i

XX

..1,1)(0

;)()(
1

=≤≤

=∑
=        (A1) 

that maximizes  

( ) )()()()()(
1

ifipipipippfd
hshshhsh Y

n

i

XXXYX ∑
=

++
−+= ,     (A2)   

where n is the number of demand bins;  )(ip
sX  is the probability of failure of the X-

train software on a demand of class i, and )(ip
shX +

 is the probability of simultaneous 

hardware and software failure on a demand of class i. 

We assume that the X-train software and hardware are reliable enough to satisfy 

,1≤+
hS XX pfdpfd  

i.e. the failures of the X-train software and hardware can be mutually exclusive. 

The conservative bound for (A2) is 

 

( )

)()())(1),(min(

)()())(1),(min()(

1

1

ifipipippfd

ifipipipippfd

hhshh

hhshhsh

Y

n

i

XXYX

Y

n

i

XXXYX

∑

∑

=

=

−+

=−+=
+

 

Thus, we need to find the set of numbers { })(ip
sX , satisfying the constraints (A1), that 

maximizes  

 ∑
=

−=
n

i

YXX ifipipipE
hhs

1

)()())(1),(min( .     (A3)  

Theorem 

If the set of numbers { })(ip
sX  satisfies the constraints (A1) and: 

-  without any loss of generality, the  bins are ordered in the following way: 

)(...)2()1( nppp
hhh YYY ≥≥≥ ; 
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- 1≤+
hS XX pfdpfd , i.e. 
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==
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n

i
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n

i

XX ifippfdifippfd
hhss

11

)())(1(1)()( ;  (A4) 

- integer number k satisfies: 1 ≤ k  ≤ n and   

∑∑
=

−

=

−≤≤−
k

i

XX

k

i

X hsh
pifpfdpif

1

1

1

)1)(()1)(( ,  
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



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=
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=
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1

1

))(1)(()()())(1)((

'

k

i

XXY

k

i

YX ipifpfdkpipipif

EE

hshhh

  (A5) 

Proof 

Our proof of the theorem is based upon two lemmas: 

Lemma 1 

If (A1) and (A4) are satisfied and { })(ip
sX  is a set of numbers maximising (A3), then 

,:1),(1)(0 niipip
hs XX =−≤≤       (A6) 

And 

 ∑
=

=
n

i

YX ifipipE
hs

1

).()()(         (A7) 

 

Proof of Lemma 1 

Reductio ad absurdum: let us assume that Lemma 1 is wrong and that for some bin k:  

)(1)( kpkp
hs XX −> .         (A8) 

The condition (A4) implies that for some other bin l: 

)(1)( lplp
hs XX −< .        (A9) 

Conditions (A8) and (A9) together mean existence of two numbers δ1 >0 and δ2 >0 

such that: 

)()(

);(1)(

);(1)(

21

2

1

lfkf

kplp

kpkp

hs

hs

XX

XX

δδ

δ

δ

=

−<+

−>−

       (A10) 
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If we consider the new set of numbers{ }
sXp * : 
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(A11) 

Then,  (A10) and (A11) implies 

∑

∑
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and 

∑

∑

∑

∑

=
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≠
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=
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δ

δ

 

 

(A13) 

Together, (A12) and (A13) contradict the original premise that the set of probabilities 

{ })(ip
sX  maximises (A3).  

Hence, Lemma 1 is correct. 

QED 

Lemma 2 

If:  

- (A1) and (A4) are satisfied; 

- the set of numbers { })(ip
sX  maximizes (A7); 

- we denote 
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     (A14) 

then the set of numbers { })(' ip
sX  maximises 

∑
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XY ipipifE
sh

0
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given 

∑
=

=

=≤≤

n

i

XX
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pfdipif
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1
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(A16) 

If, in addition, without any loss of generality, the  bins are ordered in the following 

way: 

)(...)2()1( nppp
hhh YYY ≥≥≥  

and integer number  k satisfies 1≤  k ≤ n  and ∑∑
=

−

=

≤≤
k

i

X

k

i

ifpfdif
s

1

1

1

)(')('  then  


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Y ifpfdkpipifEE
shh
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Proof of Lemma 2 

The proof of Lemma 2 essentially involves the solution of the following linear 

programming problem: 

Maximise  E = ∑
=

n

i

YX ifipip
hs

1

)(')()('  

subject to the constraints 

∑
=

=
n

i

XX ifippfd
ss

1

)(')(' ;  niip
sX ..1,0)('1 =≥≥ . 

The proof of Lemma 2 is in three parts. We need to show: 

• that the allocation of X-train software pfd outlined above is necessary; 

• that it is sufficient (i.e. that the different allocations, when these are possible, give 

the same value for the bound); 

• that the maximum of E obtained is the value stated. 
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Proof of necessity 

We need to show that, if nip
sX ,...,11 ),(' = , is an optimal solution of the above 

problem, then 

0)('1)(' =∨=⇒< jpipji
ss XX  

Informally, the statement means that the components of the optimal solution are in 

descending order and only one component may have a value different from 1 or 0. In 

other words, the optimum  solution has the following form: 

  1, ... 1, z, 0, 0, ...,0, 

 where z satisfies 10 ≤≤ z . 

We start by assuming that the opposite statement is true, i. e. niip
sx ..1),(' = ,  is an 

optimal solution of the above problem, but 

0)('  1)('  ≠∧≠∧< jpipji
ss XX . 

Consider the following new solution: 
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The value of E implied by the new solution will be 

∑
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=
n

i

YX ifipipE
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1
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To satisfy the constraints we require 

)(')(' jfif ji ⋅∆=⋅∆  

That is  

0)(')(' =⋅∆−⋅∆ jfif ji  

 

So, we have 
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because 

)()( jpip
hh YY ≥  

due to the initial assumption and problem formulation. This means that ''EE ≤ , i. e. 

the new solution provides a greater value of the objective function and so the initial 

solution is not optimal. This contradicts the initial assumption, and the proof follows. 

 

Proof of sufficiency 

We need to show that a solution of the following kind is an optimal one: 

 

To prove the statement we shall show that the above solution satisfies the optimum 

criteria for the simplex method [1]. 

In the standard form [1] the problem is 

subject to the equality constraints: 

 

Here: niifippfd
hS YX ..1),('),(, =  are the problem parameters we defined earlier in 

equations (A1) and (A14); z(i), i=1..n are the slack variables [1]. For the considered 

solution the variables )(' ip
sX  , i=1..k are basic variables [1]. Expressing these basic 

variables through non-basic ones: 
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The objective function in terms of non-basic variables only is then: 
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We can now write the expression for the reduced cost (i.e. for that part of the 

objective function value which depends upon non-basic variables):  
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it follows that all coefficients of the reduced cost are negative. Thus an increase in 

any non-basic variable will decrease the objective function. Hence, the considered 

solution satisfies the optimum criterion for the simplex method [1]. Hence, the 

considered solution is optimal. 

 

Proof of value of worst case bound  

We now need to show that if 
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We know that the maximum of E occurs with the following choice of { }
sXp'  : 
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Thus, from the constraint on unconditional X-train software pfd: 
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and Lemma 2 follows 

 

The main theorem follows if we apply a substitution inverse to (A14)  to the upper 

bound (A17)  finally obtaining the constrains (A4) and the upper bound (A5). 

QED 
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