

City, University of London Institutional Repository

Citation: Bishop, P. G., Bloomfield, R. E., Littlewood, B., Popov, P. T., Povyakalo, A. A. &

Strigini, L. (2014). A conservative bound for the probability of failure of a 1-out-of-2
protection system with one hardware-only and one software-based protection train.
Reliability Engineering & System Safety, 130, pp. 61-68. doi: 10.1016/j.ress.2014.04.002

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/6547/

Link to published version: https://doi.org/10.1016/j.ress.2014.04.002

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A conservative bound for the

probability of failure of a 1-out-of-2

protection system with

one hardware-only and one

software-based protection train

Peter Bishop, Robin Bloomfield, Bev Littlewood*, Peter Popov, Andrey

Povyakalo, Lorenzo Strigini

Adelard and Centre for Software Reliability, City University London

Abstract

Redundancy and diversity have long been used as means to obtain high reliability in

critical systems. Whilst it is easy to show that, say, a 1-out-of-2 diverse system will

be more reliable than each of its two individual “trains”, assessing the actual

reliability of such systems can be difficult because the trains cannot be assumed to

fail independently. If we cannot claim independence of train failures, the

computation of system reliability is difficult, because we would need to know the

probability of failure on demand (pfd) for every possible demand. These are unlikely

to be known in the case of software. Claims for software often concern its marginal

pfd, i.e. average across all possible demands. In this paper we consider the case of a

1-out-of-2 safety protection system in which one train contains software (and

hardware), and the other train contains only hardware equipment. We show that a

useful upper (i.e. conservative) bound can be obtained for the system pfd using only

the unconditional pfd for software together with information about the variation of

hardware failure probability across demands, which is likely to be known or

estimatable. The worst-case result is obtained by “allocating” software failure

probability among demand “classes” so as to maximise system pfd.

Keywords: Software reliability; redundancy and diversity; probability of failure on

demand; 1-out-of-2 system; protection system

26.07.2013

* Corresponding author. Address: Centre for Software Reliability, City University London,

Northampton Square, London EC1V 0HB, UK. Phone +44 (0)20 7040 8420. Fax +44 (0)20 7040

8585. Email b.littlewood@csr.city.ac.uk

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 2

1 Introduction

This paper presents an approach for estimating a conservative probability of failure

on demand (pfd) that is applicable to a 1-out-of-2 diverse protection system where

one of the protection trains is hardware-based and the other is computer-based.

The use of a protection system is an accepted strategy for hazardous industrial

processes. The protection system independently monitors the industrial process and if

it detects a departure from the safe operational envelope, it initiates some action that

overrides the normal control system to place the process in a safe state.

The departure from the safe operational envelope is known as a demand on the

protection system. Demands typically arise from different failures within the physical

process and control systems. For example, in the nuclear industry, the underlying

physical causes of demands on the protection system are known as postulated

initiating events (PIE[1]), and the overall plant safety analysis will identify a set of

PIEs that represent credible plant failures (such as loss of electrical grid connection or

a rupture in the primary coolant circuit). As part of the design process, maximum

rates are assigned for each PIE and, to reduce the risk of a PIE that occurs frequently,

diverse means are used to detect the departure from normal operation (like

temperature and pressure). These are normally implemented in diverse trains of

equipment using different types of sensors and with different means of achieving a

safe state for the same PIE.

To improve its reliability, a protection train typically also has a high level of internal

redundancy to tolerate hardware failure in the sensors, protection logic, actuators and

plant components (like valves or pumps). Even so, if sufficient hardware sub-

components fail, the train will be unable to respond to the demand triggered by the

PIE. Depending on the PIE involved, different sets of hardware components of the

protection train need to be able to respond successfully to demands initiated by

different PIEs. Typically the hardware probability of failure on demand for a PIE is

determined by fault tree analysis [2], where the minimal cutsets of failed sub-

components are identified [3] that result in a demand failure. By quantifying and

summing the minimal cutsets, the probability of failure per demand for a given PIE

can be computed.

Probabilistic analysis of hardware-based systems is well established, but less work

has been done on including the impact of software failures in a computerized

protection system. In this paper, we present a method that allows a conservative

estimate to be made for the probability of failure on demand (pfd) for diverse 1 out-

of-2 protection trains where one train is software based, given the form of claims

commonly offered for software reliability.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 3

2 Terminology and modeling approach

As discussed above, a protection system responds to demands – events that require its

intervention. Whether the protection system will respond correctly or will fail on the

demand depends on the characteristics of the demand. The protection system may fail

– that is, fail to start the required safety action – if, for instance, some hardware

component (or redundant combination of components) that is needed to respond

correctly is permanently faulty, or suffers a transient fault, at the time of that demand;

or due to a design defect in hardware logic or in software. We therefore can also

identify a specific demand as a vector of values that together determine the likelihood

of any of the protection trains failing:

• since the protection system monitors the values of state variables of the plant

(e.g. pressures, temperatures, measures of flows) and may fail or not

depending on their values (especially software bugs may depend on the exact

values of the data), this vector includes the sequences of values that are read

during the demand event;1

• since hardware probabilities of failure are affected by environmental variables

(e.g. temperature, humidity, atmospheric pressure, level of electromagnetic

radiation, in the various part of the system), these variables are also parts of

the vector. Probabilities of hardware failure are usually available for ranges of

variables.

The demand is thus a (vector) random variable; processes in the protected plant and

its environment determine the times of occurrence of each demand as an event and the

value of the demand vector. In what follows we will use just the term “demand” when

the meaning “event” or “vector” is clear from the context.

The demand vector includes all variables that have an effect on the success or failure

of any part of the system. Thus, for instance, temperature values at a certain sensor in

the plant are part of the demand even if only one of the protection trains reads them.

But some components of the demand affect more than one protection train. Thus, for

instance, an earthquake that affects two protection trains will increase the probability

of failure of both, possibly (if the shock is way above their design limits) to 1. Thus

we can model common causes of failure via demands which imply high probability of

failure for both trains.

This form of modeling has been used in earlier work [4-6] to model in a consistent

way failures due both to physical causes and to design, and thus both hardware and

software failures. The basic idea here is one of variation of the probability of system

failure between different demands, as an explanation for dependence in failure

behavior between diverse trains to be used in a fault tolerant system (e.g. a 1-out-of-2

1 With software, one could imagine the protection sytem as realising a deterministic function of the

values it reads: the probability of demand could only be 0 or 1. In practice, whether it fails may depend

on the software’s past history. So a specific demand implies a probability of system/train failure,

which is not necessarily 0 or 1, rather than deterministic failure or success.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 4

system). The idea is a simple one. The probability of a system failing on a demand

will, in general, vary across demands. Since the component values of the demand

vector together determine the likelihood of a protection train failing, and if the

system’s design is such that we can exclude failures of one train directly causing

failures of the other, the failures of both trains on a specific demand (a specific value

of the demand vector) can be assumed independent conditionally on the demand

Interest then centers upon the covariance (across all demands) between the two

functions (of the demand) that describe the probabilities of failure of the two trains of

a 1-out-of-2 system. When there is positive covariance – roughly, when the demands

that associated with a higher probability of failure for one train also tend to to

assocviate with a higher probability of failure for the other – then it is more likely that

there will be positive correlation between the trains’ failures on a random demand. In

such a case, wrongly assuming independence of failures between the two trains will

give an optimistic estimate of the reliability of the 1-out-of-2 system2.

An achievement of these conceptual models is their establishment of, and explanation

for, the inevitability of dependence (positive or negative) of failure behavior between

redundant, diverse systems, hardware or software. They thus support the empirical

evidence for such dependence that comes, for example, from experiments: see e.g. [7,

8]. No longer is it possible to claim that the two diverse protection trains of a 1-out-

of-2 fault tolerant architecture will fail independently of one another, without making

very strong claims: essentially that there is no variation of failure probability across

demands for at least one of the trains. This means that the simple arithmetic of

independence is not applicable for the computation of the system reliability as a

function of the component reliabilities. Specifically, the pfd of a 1-out-of-2 system

over all demands cannot simply be assumed to be the product of the pfds of the two

trains. Informally, it means that we need to know how dependent the failures of the

trains will be.

Reliability estimation of such a 1-out-of-2 system is non-trivial as it seems to require

a complete knowledge of how the probability of failure varies between demands.

However, we can reason by failure classes, defining a “class” as a set of demands

such that the estimated pfd is the same for all demands in a class. For simple

hardware, a “class” means a set of demands such that correct response to any of them

requires the same set of subsystems to function correctly. If the demand classes for

two protection trains do not exactly coincide, a demand class is defined as a set of

demands such that each one of the trains has constant pfd over all the demands in the

set. This will generally involve more demand classes for the system than would be

defined for each train alone. If this definition led to too many classes of demands,

their number can be contained, and kept tractable, by merging classes and using the

highest pfd among those classes thus merged. It can easily be shown that given

conditional independence on each demand, and constant pfd across the class for at

least one of the two trains, failures of the two trains are conditionally independent

2 It is possible to do better than independence if there is negative association between the probabilities

of failure over the demands.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 5

conditionally on the demand class [9]. Thus, the system pfd conditional on a certain

demand class is obtained by multiplying the pfd values, for that demand class, of the

two trains.

For software, things seem much more problematic: software faults are such that

among two demands that are from all other viewpoints in the same “class”, the

software may fail on one but not the other depending on the values of the inputs to the

software. In fact, claims about software reliability are often limited to the marginal

probability of failure on demand based on arguments of quality of production and

verification, “proven in use” arguments, or operational testing that is sufficient for

assessing marginal pfd but insufficient for assessing conditional pfd for each demand

class.

Since independence of failures is not plausible, system pfd depends on how the

software pfd varies across demands, or demand classes: a claim of even very low

marginal software pfd may not be sufficient to support a claim for satisfactory system

pfd. In this paper we derive a worst-case bound on the system pfd given this kind of

scenario. We present a solution for deriving a conservative estimate for the system

pfd for a 1-out-of-2 protection system architecture where there is software in one train

only. The pessimistic (but attainable) bound for the probability of failure on demand

for such a system requires only the marginal pfd of the software (together with the

varying hardware pfds across different demand classes). The basic ideas here can be

generalized to more complex systems than the example we use in the paper.

3 Protection System Reliability Model

The example 1-out-of-2 system we shall use for illustrating our reliability modeling

approach is a nuclear reactor protection system with two trains: the X-train and the Y-

train. Real-life examples of such systems include the UK Sizewell B reactor’s

primary and secondary protection systems, and the safety systems of advanced gas-

cooled reactors (AGRs).

Consider first the simple situation in which each train is built of hardware alone, as in

Fig 1. We shall classify the demands, as outlined above, into different classes. A

demand of one class will typically have a different probability of failure from a

demand of another class. In the case study that prompted this work, a demand class

could be characterized by the equipment that was needed to function correctly for the

demand to be successfully met (as discussed in Section 1). Some demand classes, for

example, required more equipment than others, and thus the chance of failure would

be greater because there would be more devices able to fail. Within a demand class,

demands will differ from one another in some respects: for example, the reactor state

will be different, represented by the readings of sensors for temperature, pressure, etc.

Nevertheless, all demands within a demand class are assumed to have the same pfd,

as required by the definition of “demand class”. This assumption is reasonable as the

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 6

hardware pfd is primarily determined by the minimum equipment requirement for the

specific demand class rather than the state of the reactor.

X-train h/w

Y-train h/w

Figure 1. Independent trains (hardware based)

Conditional on each demand class there is conditional independence between failures

of the X and Y trains. This assumption is justified on the basis of there being effective

isolation between the trains, to avoid failure propagation between them, and there

being no variation of pfd for the hardware of a train between demands within a

demand class. Common stresses (e.g. like elevated temperatures) or shocks are

modeled as creating specific demand classes where hardware pfds are increased, but

still failures are independent conditional on this higher pfd (possibly very close to 1,

for shocks affecting hardware in both trains) [5].

With these assumptions, we can see that the (marginal) probability of failure on

demand of the 1-out-of-2 system, i.e. for a randomly chosen demand, is the

probability of both X-train hardware and Y-train hardware failure:

)()()(ifipippfd
hhhh Y

i

XYX ∑= (1)

where)(ip
hX is the probability of X-train hardware failure on demand class i,)(ip

hY

is the probability of Y-train hardware failure on demand class i, and f (i) is the

probability that a randomly chosen demand is of class i.

Clearly, the pfd is different from the result that would be obtained under an incorrect

assumption of unconditional independence of failure between the two trains, which is

















= ∑∑

i

Y

i

XYX ifipifippfdpfd
hhhh

)()()()(.

The true result will exceed the incorrect result (based on the false assumption of

independence) so long as there is positive covariance between the X- and Y-train

demand class pfds,)(ip
hX and)(ip

hY . This is similar to the result that Eckhardt and

Lee [6] obtained for software diversity. The positive covariance means that there is a

tendency for large demand class pfds in the X-train to be associated with large

demand class pfds in the Y-train. Informally, if we see the X-train fail, we might

expect that the demand class was likely to be one with a large pfd, and thus might be a

high-stress demand class such that the Y-train pfd is also probably large, and therefore

its probability of failure is greater than it would be unconditionally.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 7

We now consider the situation that is the subject of this paper, in which one train

contains software, and the train fails if the software fails: see Fig 2.

We still classify the demands into classes with constant hardware pfd as before.

There is still conditional independence, conditional on the demand class, between

failures of the X-train (hardware and software), on the one hand, and the Y-train

(hardware only) on the other, for each demand class i. This is because (i) the trains

fail independently conditional on each demand; and (ii) within each demand class, the

pfd of train Y is the same for every demand. Thus the probability of failure on

demand is now:

())()()()()(ifipipipippfd
hshshhsh Y

i

XXXYX ∑ ++
−+= . (2)

where)(ip
sX is the probability of failure of the X-train software on a demand of

class i and)(ip
shX +

 is the probability of simultaneous hardware and software failure

on a demand of class i.

X-train h/w

Y-train h/w

X-train s/w

Figure 2. Hardware train plus computerized train

To use expression (2) we need to know, or more plausibly, be able to estimate, the

parameters on the right hand side.

In many cases it is likely that estimates of { })(ip
hX , { })(ip

hY could be based on

knowledge of the different subsets of hardware required for each demand class. The

parameters { })(ip
shX +

 are not likely to be known, nor to be estimatable, but it is clearly

conservative to set them to 0.

The major practical difficulty is that the { })(ip
sX will generally be unknown and not

estimatable. However, an estimate of
sXpfd , the marginal pfd of the X-train software,

will often be available, based on the usual qualitative criteria used for claims about

software, or possibly on operating experience in other similar contexts.

The question we ask in the next section, then, is: what is the worst system pfd that

could arise with these constraints on our knowledge about the model parameters? We

answer this question in two stages.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 8

4 Worst case system pfd

Firstly, it is easy to see that, for given values of the known parameters, the largest

value of the system pfd, (2), occurs when 0)(=
+

ip
shX for all i. This conservative

bound on the system pfd is then

)()()(ifipippfdpfd
hshhhsh Y

i

XYXYX ∑+=
+

 (3)

Secondly, we need to know what is the worst allocation of the marginal pfd of the X-

train software to the second term on the right hand side of (3), i.e. the one that makes

(3) the largest value that this conservative bound on the system pfd can take. That is,

we need to find which set of numbers { })(ip
sX , satisfying the constraint

∑=
i

XX ifippfd
ss

)()(, maximizes ∑
i

YX ifipip
hs

)()()(.

Now

() () ())()()(),()()()(ipEipEipipCovifipip
hshshs YXYX

i

YX +=∑

where ())(ipE
sX is the marginal pfd of the software, i.e. ∑=

i

XX ifippfd
ss

)()(, and

())(ipE
hY is the marginal pfd of the Y-train hardware, i.e.)()(ifippfd

i

YY hh ∑= . If we

keep these two probabilities constant, the maximum value of ∑
i

YX ifipip
hs

)()()(

occurs when ())(),(ipipCov
hs YX takes its maximum value. Clearly this occurs when

we associate large values of)(ip
sX with large values of)(ip

hY
.

We call the allocation process “bin-filling”. Informally, we proceed by first allocating

as much of
sXpfd as we can to the demand “bin” that has maximum Y-train hardware

pfd; we allocate as much of the remaining
sXpfd to the demand bin with the next

largest Y-train hardware pdf, and so on until we have ‘used up’ all of
sXpfd . In each

allocation of part of
sXpfd to a demand class, we recall that in this conservative case

we have assumed that hardware and software failures are disjoint for all demand

classes: thus only enough of
sXpfd is allocated to a demand class to make failure of

this class certain (i.e. from either a hardware or a software failure).

Rather more precisely, the procedure to find the maximum value that our conservative

bound on the system pfd can take is as follows:

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 9

Without loss of generality, we can order the demand bins, i, by their Y-train pfd, such

that)1()(+≥ ipip
hh YY

We define a term S(i) as the software pfd that is available for allocation to bin i. So

we start with:

sXpfdS =)1(

Then, starting at i=1, we assign:









−=

)(

)(
),(1min)(

if

iS
ipip

hs XX

The software pfd remaining for the next bin is:

)()()()1(ipifiSiS
sX−=+

This process continues up to bin j, say, where the software pfd has been used up, i.e.

where S(j+1)=0

The final bin j may, of course, not be completely filled (i.e. the probability of failure

associated with the bin – from hardware and software – may be less than 1).

As S(j+1)=0, all remaining bins will be assigned a software failure probability of

zero.

The numbers { })(ip
sX that result from this procedure give the worst case value for the

conservative system pfd bound (3). A precise statement of this result, and its proof,

can be found in the Appendix.

One way of using this result is to compare it with a naïve estimate that ignores

variations in software pfd across demand classes, i.e. where we assume that the

marginal software pfd is applied to all demand classes The difference can be

expressed as a ratio of the pfd obtained using the worst-case { })(ip
sX values, and

using
ss XX pfdip ≡)(.

5 Examples

Informally, the theorem states that the worst case error (i.e. the maximum

underestimate of the system pfd) will occur when all the X-train software pfd is

associated “parsimoniously” with those demand classes that have the largest Y-train

hardware pfds. Consider the (artificial) example in Table 1.

Here the X-train marginal software pfd is assumed to be 0.001. With the Y-train

hardware failure probabilities and the demand class probabilities shown in the table,

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 10

the question is how to allocate the X-train software failure probabilities to maximize

the underestimate of system pfd, subject only to constraining the X-train marginal

software pfd to be 0.001.

In the table, the Y-train hardware pfds have been ranked in descending order of

magnitude. We assign just sufficient X-train software pfd to each of the largest of the

Y-train hardware pfds to make X-train failure (from either hardware or software)

certain for these demand classes. We can do this for demand classes 1, 2, 3; but there

is not sufficient X-train software pfd remaining to do it for demand class 4. In fact,

demand class 4 has a software pfd of 0.0001 in order to satisfy the constraint that the

marginal X-train software pfd over all demand classes is 0.001. That is:

001.0)4()4()()(
3

1

=⋅+=∑
=i

XXX fpipifP
sss

The overall probability of X-train failure – from hardware or software – for demand

class 4 is then 0.0031. For the remaining demand classes, 5 and 6, software failure is

impossible under this assignment – all the X train software pfd has been “used up” on

the earlier demand classes – although hardware failure is possible: see last two entries

in final column of Table 1.

i f(i))(ip
hY)(ip

hX Worst case

allocation of X-

train software

pfd,

)(ip
sX

Resulting total probability

of failure (hardware and

software) of X-train,

)(ip X

1 0.00001 0.009 0.006 0.994 1

2 0.00009 0.008 0.005 0.995 1

3 0.0009 0.007 0.0004 0.9996 1

4 0.009 0.006 0.003 0.0001 0.0031

5 0.09 0.0005 0.0002 0 0.0002

6 0.9 0.0004 0.0001 0 0.0001

Table 1. Bin filling example

It can be seen that the binning procedure allocates zero software pfd to demand

classes 5 and 6. This does not mean we postulate the software will actually be perfect

for that demand class - it is merely a result of the fact that the conservative allocation

process is designed to maximize the system pfd over all demands.

This result generalizes. There will be 1s in all the early entries of the 6
th

 column of

Table 1, corresponding to the largest Y-train hardware pfds. There will be 0s in all the

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 11

late entries of the 5
th

 column of the Table, corresponding to the smallest Y-train

hardware pfds. There will be at most one row that does not have a 0 in the 5
th

 column,

or a 1 in the 6
th

 column: the values of these two entries will be determined by the need

to satisfy the constraint.

The pfd of the 1-out-of-2 system, using the worst-case allocation of the X-train as in

the fifth column of Table 1, is

() 61032.7)()()()(−×=+∑ ifipipip
hsh Y

i

XX .

In contrast, the system pfd based on assuming (wrongly) that the marginal X-train

software pfd, 001.0=
sXp , applies to all demand classes, is

() 71080.6)()(001.0)(−×=+∑ ifipip
hh Y

i

X .

Therefore the naïve estimate of system pfd ignoring variation in software pfd between

demand classes and the worst case estimate of the system pfd differ by a factor of

10.76.

This simple procedure outlined above for obtaining the worst case bound is easy to

prove in a case like that in Table 1, where the Y-train hardware pfds are strictly

ordered. If, on the other hand, some of the Y-train hardware pfds are identical, there is

a complication: in such cases there may be more than one maximum. This can be seen

in the example of Table 2 below.

i f(i))(ip
hY)(ip

hX Worst case

allocation of

)(ip
sX , first

case

Worst case

allocation of

)(ip
sX , second

case

)(ipX
 in

first case

)(ipX
 in

second case

1 0.001 0.009 0.006 0.994 0 1 0.006

2 0.009 0.009 0.005 0.0006667 0.1111111 0.0056667 0.1161111

3 0.09 0.005 0.003 0 0 0.003 0.003

4 0.9 0.005 0.004 0 0 0.004 0.004

Table 2. Example with a non-unique bin-filling sequence

It is easy to see in this case that there are two ways in which the X-train software pfds

can be allocated, whilst still satisfying the constraint on the marginal pfd. However, it

is also easy to show that in each case, the worst case 1-out-of-2 system pfd (using (3)

with the entries from, respectively, the fifth and sixth columns of Table 2) is

2.88×10
-5

; and the system pfd calculated assuming all demand classes have pfd 0.001

(the marginal X-train software pfd) is 2.48×10
-5

. In other words, the worst case

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 12

underestimate of system pfd arising from ignoring variation in X-train software pfd is

the same – 0.40×10
-5

 – in each case.

It can be shown that this will always be true: when there are several ways of worst

case allocation of the X-train software pfds, each will give the same maximum

underestimate of system pfd.

6 Discussion

The work by Eckhardt and Lee (and later work) introduced a new way of looking at

the reasons for dependence between the failure behavior of diverse versions of

software. In these models, everything turns on the variation of the failure probability

as a function of the specific demand. This earlier work gave novel insights into the

reasons why claims for independence are rarely supportable. Unfortunately, it also

introduced some serious difficulties for anyone wishing to exploit the models to

estimate the actual probabilities of failure of real systems, since this requires

estimation of how failure probability varies across all demands.

In this paper we have looked at a particular system: a 1-out-of-2 system in which only

one train contains software. In the example that motivated this work – a protection

system for a nuclear reactor – we were able to identify a small number of demand

classes (<20) for each of which a hardware pfd could be estimated. In fact these had

been estimated as part of the wider safety case for the reactor. For software, on the

other hand, only a marginal pfd was estimated. Our aim, therefore, was to obtain a

means of computing the worst system pfd that could result for a given software

marginal pfd. Such a result could be used conservatively as part of a safety case

claim.

Our main result, then, is a procedure for finding such a worst case result, based upon

a conservative bound on the system pfd which assumes that simultaneous hardware

and software failure in a train is impossible.

As we have found elsewhere whilst working on these models of diversity, these

results are quite surprising and subtle: witness, for example, the pivotal role played by

variation in Y-train hardware pfd when we take into account X-train software

failures. We do not think that these results could have been obtained without the

formal model of diversity, although we believe that they are intuitively convincing in

retrospect.

Our result here represents a tighter (i.e. less conservative) bound than can be obtained

with more simplistic assumptions. This lessening of conservatism depends on (i) the

assumption of failure independence between trains, conditional on each demand class,

and (ii) some knowledge about the demand classes, specifically their probabilities and

the hardware pfds conditional on each class for each train. Without these premises,

the worst case system pfd could only be stated as the smaller of X-train pfd and Y-

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 13

train pfd, which is at worst min P
Yh

, P
Xh

+ P
Xs

(). Our tighter result will often be much

lower than this worst case – informally this is because pYh
(i) << 1 for all i – although

we can contrive scenarios, with typically implausible values of the parameters, in

which it approaches or even equals it.

On the other hand, estimates of software pfd per demand class would allow even

tighter estimates of system pfd, which could be orders of magnitude lower if all these

)(ip
sX are orders of magnitude lower than 1. One way of reading our result is that it

is far better to bring to the calculation of system pfd some estimate of software pfd per

demand class, as argued for instance in [10] and exemplified in [9], rather than over

the whole demand space. But when the latter is the only estimate available for

software pfd, we offer a way of using other knowledge that is available per demand

class to avoid extreme overestimation of system pfd.

These results depend on the ability to state estimates of constant pfd per demand class

on the Y channel, that is, to trust that the Y channel is free from demand-specific

variation of pfd within a demand class. If this could not be assumed (for instance if Y

implemented complex logic - albeit hard-wired - that were not trusted free of design

faults affecting specific demands in one class), a more conservative method suitable

for two software-based trains (e.g. as [9]) should be used.

Note that, if a conservative value of the X-train software pfd over all demand classes

were available (i.e. a value that is not exceeded by its true pfd on any demand class),

then the system pfd calculated using this value for all the)(ip
shX +

 terms in expression

(2) would be conservative. In fact, it may be very conservative: our result points to a

way of lessening this conservatism.

Acknowledgement

Support for the work reported here came from:

• the UnCoDe (Uncertainty and confidence in safety arguments) project, funded by

the Leverhulme Trust;

• The DISPO project - funded under the C&I Nuclear Industry Forum (CINIF)

Nuclear Research Programme by EDF Energy Limited, Nuclear

Decommissioning Authority (Sellafield Ltd, Magnox Ltd), AWE plc, Urenco UK

Ltd and Horizon Nuclear Power. The views expressed in this paper are those of

the author(s) and do not necessarily represent the views of CINIF members.

CINIF does not accept liability for any damage or loss incurred as a result of the

information contained in this paper.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 14

References

[1] Introduction to the Safety, Security and Environmental Report (SSER).Documernt

reference UKEPR-0001-001 Issue 06. UK Office for Nuclear Regulation.

[2] Lee W, Grosh D, Tillman F, Lie C. Fault Tree Analysis, Methods, and

Applications - A Review. IEEE Trans Reliability. 1985;R-34 194-203.

[3] Nakashima K, Hattori Y. An efficient bottom-up algorithm for enumerating

minimal cut sets of fault trees. IEEE Trans Reliability. 1979:353 -7

[4] Littlewood B, Miller DR. Conceptual Modelling of Coincident Failures in Multi-

Version Software. IEEE Trans on Software Engineering. 1989;15:1596-614.

[5] Hughes RP. A new approach to common cause failure. Reliability Engineering.

1987;17:211-36.

[6] Eckhardt DE, Lee LD. A Theoretical Basis of Multiversion Software Subject to

Coincident Errors. IEEE Trans on Software Engineering. 1985;11:1511-7.

[7] Eckhardt DE, Caglayan AK, Knight JC, Lee LD, McAllister DF, Vouk MA, et al.

An experimental evaluation of software redundancy as a strategy for improving

reliability. IEEE Trans Software Eng. 1991;17:692-702.

[8] Knight JC, Leveson NG. Experimental evaluation of the assumption of

independence in multiversion software. IEEE Trans Software Engineering.

1986;12:96-109.

[9] Popov P, Strigini L, May J, Kuball S. Estimating Bounds on the Reliability of

Diverse Systems. IEEE TSE. 2003;SE-29:345-59.

[10] Garrett C, Apostolakis G. Context in the risk assessment of digital systems. Risk

Analysis. 1999;19:23-32.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 15

Appendix: Worst case value for the conservative system pfd bound

We need to find the set of numbers { })(ip
sX , satisfying the constraints:

niip

ifippfd

s

ss

X

n

i

XX

..1,1)(0

;)()(
1

=≤≤

=∑
= (A1)

that maximizes

())()()()()(
1

ifipipipippfd
hshshhsh Y

n

i

XXXYX ∑
=

++
−+= , (A2)

where n is the number of demand bins;)(ip
sX is the probability of failure of the X-

train software on a demand of class i, and)(ip
shX +

 is the probability of simultaneous

hardware and software failure on a demand of class i.

We assume that the X-train software and hardware are reliable enough to satisfy

,1≤+
hS XX pfdpfd

i.e. the failures of the X-train software and hardware can be mutually exclusive.

The conservative bound for (A2) is

()

)()())(1),(min(

)()())(1),(min()(

1

1

ifipipippfd

ifipipipippfd

hhshh

hhshhsh

Y

n

i

XXYX

Y

n

i

XXXYX

∑

∑

=

=

−+

=−+=
+

Thus, we need to find the set of numbers { })(ip
sX , satisfying the constraints (A1), that

maximizes

 ∑
=

−=
n

i

YXX ifipipipE
hhs

1

)()())(1),(min(. (A3)

Theorem

If the set of numbers { })(ip
sX satisfies the constraints (A1) and:

- without any loss of generality, the bins are ordered in the following way:

)(...)2()1(nppp
hhh YYY ≥≥≥ ;

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 16

- 1≤+
hS XX pfdpfd , i.e.

∑∑
==

−=−≤=
n

i

XX

n

i

XX ifippfdifippfd
hhss

11

)())(1(1)()(; (A4)

- integer number k satisfies: 1 ≤ k ≤ n and

∑∑
=

−

=

−≤≤−
k

i

XX

k

i

X hsh
pifpfdpif

1

1

1

)1)(()1)((,

then









−−+−

=≤

∑∑
−

=

−

=

1

1

1

1

))(1)(()()())(1)((

'

k

i

XXY

k

i

YX ipifpfdkpipipif

EE

hshhh

 (A5)

Proof

Our proof of the theorem is based upon two lemmas:

Lemma 1

If (A1) and (A4) are satisfied and { })(ip
sX is a set of numbers maximising (A3), then

,:1),(1)(0 niipip
hs XX =−≤≤ (A6)

And

 ∑
=

=
n

i

YX ifipipE
hs

1

).()()((A7)

Proof of Lemma 1

Reductio ad absurdum: let us assume that Lemma 1 is wrong and that for some bin k:

)(1)(kpkp
hs XX −> . (A8)

The condition (A4) implies that for some other bin l:

)(1)(lplp
hs XX −< . (A9)

Conditions (A8) and (A9) together mean existence of two numbers δ1 >0 and δ2 >0

such that:

)()(

);(1)(

);(1)(

21

2

1

lfkf

kplp

kpkp

hs

hs

XX

XX

δδ

δ

δ

=

−<+

−>−

 (A10)

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 17

If we consider the new set of numbers{ }
sXp * :

.)()(*

;)()(*

; and),()(*

2

1

δ

δ

+=

−=

≠≠=

lplp

kpkp

likiipip

ss

ss

ss

XX

XX

XX

(A11)

Then, (A10) and (A11) implies

∑

∑

∑

=

≠
≠

=

=

=+++−

=

n

i

XX

n

li
ki

XXX

n

i

X

ss

Sss

s

pfdipif

ipiflflplfkfkpkf

ipif

1

21

1

*

)()(

)()()()()()()()(

)()(

δδ

(A12)

and

∑

∑

∑

∑

=

=

≠
≠

=

−=

>+−

=−++

+−=−=

n

i

XXY

Y

n

i

XXY

n

li
ki

XXYXY

XY

n

i

XXY

ipipipifE

lplfipipipif

ipipipiflplplf

kpkpkfippipifE

shh

hshh

shhsh

hhshh

1

2

1

2

1

))(),(1min()()(

)()())(),(1min()()(

))(),(1min()()())()(()(

))(1)(()())(*,1min()()(*

δ

δ

(A13)

Together, (A12) and (A13) contradict the original premise that the set of probabilities

{ })(ip
sX maximises (A3).

Hence, Lemma 1 is correct.

QED

Lemma 2

If:

- (A1) and (A4) are satisfied;

- the set of numbers { })(ip
sX maximizes (A7);

- we denote

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 18

,:1)),(1/()()('

;:1)),(1)(()('

niipipip

niipifif

hss

h

XXX

X

=−=

=−=
 (A14)

then the set of numbers { })(' ip
sX maximises

∑
=

=
n

i

XY ipipifE
sh

0

),(')()(' (A15)

given

∑
=

=

=≤≤

n

i

XX

X

ss

s

pfdipif

niip

1

)(')('

:1,1)('0

(A16)

If, in addition, without any loss of generality, the bins are ordered in the following

way:

)(...)2()1(nppp
hhh YYY ≥≥≥

and integer number k satisfies 1≤ k ≤ n and ∑∑
=

−

=

≤≤
k

i

X

k

i

ifpfdif
s

1

1

1

)(')(' then









−+=≤ ∑∑

−

=

−

=

1

1

1

1

)(')()()(''
k

i

XY

k

i

Y ifpfdkpipifEE
shh

. (A17)

Proof of Lemma 2

The proof of Lemma 2 essentially involves the solution of the following linear

programming problem:

Maximise E = ∑
=

n

i

YX ifipip
hs

1

)(')()('

subject to the constraints

∑
=

=
n

i

XX ifippfd
ss

1

)(')(' ; niip
sX ..1,0)('1 =≥≥ .

The proof of Lemma 2 is in three parts. We need to show:

• that the allocation of X-train software pfd outlined above is necessary;

• that it is sufficient (i.e. that the different allocations, when these are possible, give

the same value for the bound);

• that the maximum of E obtained is the value stated.

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 19

Proof of necessity

We need to show that, if nip
sX ,...,11),(' = , is an optimal solution of the above

problem, then

0)('1)(' =∨=⇒< jpipji
ss XX

Informally, the statement means that the components of the optimal solution are in

descending order and only one component may have a value different from 1 or 0. In

other words, the optimum solution has the following form:

 1, ... 1, z, 0, 0, ...,0,

 where z satisfies 10 ≤≤ z .

We start by assuming that the opposite statement is true, i. e. niip
sx ..1),(' = , is an

optimal solution of the above problem, but

0)(' 1)(' ≠∧≠∧< jpipji
ss XX .

Consider the following new solution:

.0

;0

;0)(')(''

;1)(')(''

;),(')(''

;..1),(''

≥∆

≥∆

≥∆−=

≤∆+=

≠∧≠=

=

j

i

jXX

iXX

XX

X

jpjp

ipip

jlillplp

nkkp

ss

ss

ss

s

The value of E implied by the new solution will be

∑
=

=
n

i

YX ifipipE
hs

1

).(')()(''''

To satisfy the constraints we require

)(')(' jfif ji ⋅∆=⋅∆

That is

0)(')(' =⋅∆−⋅∆ jfif ji

So, we have

.0))()()((')(')()(')(

)(')())('')('()(')())('')('(

)(')()('')(')()('''
11

≤−∆−=∆+∆−=

=−+−=

=−=− ∑∑
==

jpipifjfjpifip

jfjpjpjpifipipip

kfkpkpkfkpkpEE

hhhh

hsshss

hshs

YYiYjYi

YXXYXX

n

k

YX

n

k

YX

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 20

because

)()(jpip
hh YY ≥

due to the initial assumption and problem formulation. This means that ''EE ≤ , i. e.

the new solution provides a greater value of the objective function and so the initial

solution is not optimal. This contradicts the initial assumption, and the proof follows.

Proof of sufficiency

We need to show that a solution of the following kind is an optimal one:

To prove the statement we shall show that the above solution satisfies the optimum

criteria for the simplex method [1].

In the standard form [1] the problem is

subject to the equality constraints:

Here: niifippfd
hS YX ..1),('),(, = are the problem parameters we defined earlier in

equations (A1) and (A14); z(i), i=1..n are the slack variables [1]. For the considered

solution the variables)(' ip
sX , i=1..k are basic variables [1]. Expressing these basic

variables through non-basic ones:

∑
=

n

i

YX ifipip
hS

1

),(')()(' Maximise

.0)(

;0)('

;..1,1)()('

;)(')('
1

≥

≥

==+

=∑
=

iz

ip

niizip

pfdifip

s

s

ss

X

X

n

i

XX

...)1(,0)('

;
)('

)('

)('

);1..(1,1)('

;1

)(

1

1

nkiip

kf

ifpfd

kp

kiip

nk

k

S

s

S

S

X

k

i

X

X

X

+==

−

=

−==

≤≤

∃

∑
−

=

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 21

,
)('

)(')(')('))(1(

)('

);1..(1),(1)('

1

1 1

kf

ifipifizpfd

kp

kiizip

k

i

n

ki

XX

X

X

ss

s

s

∑ ∑
−

= +=

−−−

=

−=−=

The objective function in terms of non-basic variables only is then:

∑ ∑

∑

∑ ∑ ∑

−

= +=

+=

−

=

−

= +=

−+−−+=

+

−−−+−

1

1 1

1

1

1

1

1 1

))()()((')('))()()(('))(1()(

)(')()('

)()](')(')('))(1([)(')())(1(

k

i

n

ki

YYXYYYX

n

ki

YX

k

i

k

i

n

ki

YXXY

kpipifipkpipifizkppfd

ifipip

kpifipifizpfdifipiz

hhshhhs

hs

hssh

We can now write the expression for the reduced cost (i.e. for that part of the

objective function value which depends upon non-basic variables):

∑ ∑
−

= +=

−+−
1

1 1

))()()((')('))()()((')(
k

i

n

ki

YYXYY kpipifipipkpifiz
hhshh

Since

,)..1(),()(

);1..(1),()(

;..1,0)('

nkikpip

kikpip

niif

hh

hh

YY

YY

+=≤

−=≥

=≥

it follows that all coefficients of the reduced cost are negative. Thus an increase in

any non-basic variable will decrease the objective function. Hence, the considered

solution satisfies the optimum criterion for the simplex method [1]. Hence, the

considered solution is optimal.

Proof of value of worst case bound

We now need to show that if

0)(...)2()1(1 ≥≥≥≥≥ nppp
hhh YYY

and

∑ ∑
−

= =

≤≤∧≤≤∃
1

1 1

),(')('1)(
k

i

k

i

X ifpfdifnkk
s

then

∑ ∑
−

=

−

=

−+=
1

1

1

1

).())('()(')(= ' of Maximum
k

i

k

i

YXY kpifpfdifipEE
hsh

Conservative bound for probability of failure in a 1 out of 2 protectionsystem 22

We know that the maximum of E occurs with the following choice of { }
sXp' :

.)..1(,0)('

;10)('

);1..(1,1)('

)(

nkiip

zzkp

kiip

k

s

s

s

X

X

X

+==

≤≤∧=

−==

∃

Thus, from the constraint on unconditional X-train software pfd:

.10

),(')(')(')('
1

1

1

≤≤

+==∑ ∑
=

−

=

z

kzfififippfd
n

i

k

i

XX ss

This implies

).())('()(')()(')(.
)('

)('

)(')(

)(')()(')()(')()(''E

;
)('

)('

;)(')('

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

kpifpfdifipkfkp
kf

ifpfd

ifip

kfkzpifipifipip

kf

ifpfd

z

ifpfdif

hshh

s

h

hhhs

s

s

Y

k

i

X

k

i

YY

k

i

k

i

X

Y

n

i

k

i

YYYX

k

i

X

k

i

k

i

X

∑∑∑
∑

∑ ∑

∑

∑ ∑

−

=

−

=

−

=

−

=

=

−

=

−

=

−

= =

−+=

−

+=

=+==

−

=

≤≤

and Lemma 2 follows

The main theorem follows if we apply a substitution inverse to (A14) to the upper

bound (A17) finally obtaining the constrains (A4) and the upper bound (A5).

QED

Reference

[1] NEOS Server: Optimisation Guide: Algorithms: Simplex Method. University of

Wisconsin – Madison. http://www.neos-guide.org/content/simplex-method Last

accessed on 26 July, 2013.

