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a b s t r a c t

The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates
its validation within the context of the overall spacecraft system. Current validation methods are labor-
intensive as they rely on manual analysis, review and inspection. For future space missions, we
developed – with challenging requirements from the European space industry – a novel modeling
language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of
AADL and enables engineers to express the system, the software, and their reliability aspects. The
COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic,
for the analysis of requirements related to functional correctness, safety, dependability and performance.
Several pilot projects have been performed by industry, with two of them having focused on the system-
level of a satellite platform in development. Our efforts resulted in a significant advancement of
validating spacecraft designs from several perspectives, using a single integrated system model. The
associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4
(laboratory-tested).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A spacecraft is a machine that fulfills mission objectives outside
of Earth. Spacecraft design involves a vast body of natural sciences
and many engineering fields, including, but not completely cover-
ing, materials, optics, power, propulsion, performance, reliability
and security engineering. These disciplines are integrated into an
interdisciplinary field known as systems engineering that addresses
the design of systems and the management of complex engineer-
ing projects over their life-cycle. Space systems engineering [1] is
an evolving field and its current state of practice is strongly
influenced by a relatively new engineering discipline, namely that
of software development.

Spacecraft in the early space age included software whose size
was at most a few dozens of lines of code. The advent of digital
interfaces of parts and equipment, and the flexibility of software-
based control over analogue interfaces and electrical/mechanical

control led to an exponential growth of the size of the deployed
software [2]. Nowadays, the latter is compiled from millions lines
of code. Hence, software dictates the overall spacecraft behavior to
an ever-increasing degree. This is also reflected within the space
systems engineering life-cycle. More emphasis is now given to the
system–software perspective that encompasses the interaction
between the software and the remainder of the system, typically
perceived by the software engineers as hardware.

The COMPASS project [3] advances the system–software per-
spective by providing means for its validation in the early design
phases, such that system architecture, software architecture, and
their interfacing requirements are aligned with the overall func-
tional intents and risk tolerances. Validation in the current practice
is labor-intensive and consists mostly of manual analysis, review
and inspection. We improve upon this by adopting a model-based
approach using formal methods. In COMPASS, the system, the
software and its reliability models are expressed in a single
modeling language. This language originated from the need for a
language with a rigorous formal semantics, and it is a dialect of the
Architecture Analysis & Design Language (AADL). Models
expressed in our AADL dialect are processed by the COMPASS
toolset that automates analyses which are currently done manu-
ally. The automated analyses allow studying functional correctness
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of discrete, real-time and hybrid aspects under degraded modes of
operation, generating safety and dependability validation artifacts,
performing probabilistic risk assessments, and evaluating effec-
tiveness of fault management. The analyses are mapped onto
discrete, symbolic and probabilistic model checkers, but all of
them are completely hidden away from the user by appropriate
model-transformations. The COMPASS toolset is thus providing an
easy-to-use push-button analysis technology.

The first ideas and concepts for the development of the
COMPASS toolset emerged in 2007, due to a series of significant
advances in model checking [4], and especially in its probabilistic
counterpart [5]. These advances opened prospects for an inte-
grated model-based approach towards system–software correct-
ness validation, safety and dependability assessment and
performance evaluation during the design phase. Its technology
readiness level was estimated at level 1, i.e. basic principles were
observed and reported. The European Space Agency (ESA) issued a
statement of work to improve system–software co-engineering
and this was commissioned to the COMPASS consortium consist-
ing of RWTH Aachen University, Fondazione Bruno Kessler and
Thales Alenia Space. Development started soon after, and in 2009 a
COMPASS toolset prototype was delivered to the European space
industry. Maturation was followed by subsystem-level case studies
performed by Thales Alenia Space [6]. As of 2012, two large pilot
projects took place in ESA for a spacecraft in development. This
marked the maturation of the COMPASS toolset to early level 4,
namely laboratory-tested. The novel contribution of this paper is
the report on the second pilot project. This paper furthermore
summarizes the background work and the first pilot project,
whose results were published elsewhere [7]. Altogether, it
describes the current state of the art in system–software space-
craft co-engineering, ranging from the used techniques, to the
tools and the conducted industrial projects.

This paper is organized as follows. A brief overview of space
systems engineering is given in Section 2, which is followed by an
introduction to the developed modeling language (Section 3), the
toolset (Section 4) and its analyses. The spacecraft platform is
described in Section 5, and the pilot projects are presented in

Sections 6 and 7. The paper wraps up with the related work
(Section 8) and the conclusions (Section 9).

2. Space systems engineering

The European tradition and practice of spacecraft engineering is
codified in the ECSS standards [9] issued by the European Space
Agency. The spacecraft system life-cycle is depicted in Fig. 1. It starts
with mission analysis in phase 0. In phase A, management and
engineering plans are set up and functional aspects and feasibility
are investigated. During phase B, a preliminary system design is
drafted and reviewed. In the phases that follow, the system design is
refined to its implementation and the system is verified, launched and
operated. In the early phases and most notably in phase B, the system
is decomposed into its constituent parts, including the thermal, power,
attitude control subsystems and the software. Experts on the respec-
tive engineering discipline further refine the subsystems, while system
engineers ensure coherency among them.

Increasing software functionality. Software plays an increasing
and vital role in the overall system that is evident from the
exponential growth of the source code sizes in modern spacecraft
[2]. Today, software accompanies modern microprocessors in
order to provide unprecedented functionality for an ever increas-
ing range of mission demands. For example, navigation systems
are equipped with software that delivers strict orbit control for
improved precision. Also, on-board software handles enormous
mission data sets generated by the high-resolution sensors used in
Earth observation satellites. Dedicated software implements func-
tionality that addresses key reliability and autonomy require-
ments. Especially for deep space missions, where communication
windows are short and delays are long, autonomy in terms of
survivability is essential to mission success. This is mainly
achieved by a fault management system [10], the major part of
which is realized through software. Supported functions include
monitoring, detection, isolation and mitigation of spacecraft faults
that may occur due to the harsh space conditions (mechanical
stress, wear and radiation). Functional correctness, safety, and
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Fig. 1. Space systems engineering life-cycle of European missions. Source: ECSS Standard on Project Planning and Implementation [8].
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dependability of the overall system have to be ensured under the
presence of all known space hazards.

Quality assurance. Verification and validation take place con-
tinuously throughout the ECSS life-cycle [11,12]. Verification
examines whether the various requirements (e.g. for a subsystem
or an equipment) are met, whereas validation typically focuses on
whether higher-level requirements (e.g. mission objectives, sys-
tem requirements) are met by a constituent system or software.
Verification and validation activities are systematically planned
based on the drafted requirements and the lessons learned from
earlier activities in the engineering life-cycle. The activities' out-
comes include justifications, utilities, trade-offs, sizing, feasibility
assessments, compliance matrices, source code, mission diagrams
and other artifacts. Typical examples are the journals of test suite
executions, as well as a radiation analysis from data of similar
previous missions. Two analyses are typically conducted for the
safety and dependability aspects, namely fault tree analysis (FTA)
and failure mode and effects analysis (FMEA). FTA can be visua-
lized as a tree that describes how lower-level failures, or their
combination by Boolean AND/OR gates, result in a top-level event,
e.g. a system failure. FMEA tables describe the (observable) effect
of failure occurrences on the system. Fault trees and FMEA tables
are essential input in the development of a fault management
system, which may be subject to failures as well, and thus
deserves further analysis to ensure its correctness, safety and
dependability. Additionally, probabilistic risk assessments are
conducted by computing, from the failure rates of lower-level
failures, the rates or probabilities of higher-level failures. This can
be done using the fault tree as a behavioral structure, or alter-
natively by a dedicated reliability model such as a Markov chain.
Both are typically crafted manually and this involves a labor-
intensive activity that requires a broad and deep understanding of
the overall spacecraft behavior under degraded conditions. In any
phase, verification and validation enhance the understanding of
the system under development and eventually attain informed
decisions for the subsequent phases. Validation outcomes may
justify design alterations, or the need for additional requirements.
Also, they can be used to revise or refine budgets, schedules and
resource allocation (e.g. manpower, test laboratories), since critical
behaviors are better understood and their correctness can be
verified in subsequent phases. Verification outcomes can be used
to fine-tune spacecraft operation scenarios and manuals. The
overall result of continuous verification and validation is a reduc-
tion of the technical and program risk and a process improvement
in the engineering life-cycle.

Engineering challenges. The development, verification and vali-
dation activities are supported by a plethora of methods and tools.
Models are analysis artifacts representing (parts of) the system
behavior, but they cannot replace the system to be deployed. They
can be physical (e.g. structural models, material models), virtual (e.
g. software models, thermal models) or a combination of both (e.g.
hardware-in-the-loop simulation). Models typically abstract from
detail and emphasize a particular aspect, typically one that
pragmatically supports particular design or verification/validation
activities. For example, reliability block diagrams and fault trees focus
heavily on failure events, thereby abstracting from the nominal
behavior. Matlab/Simulink models are often used to model and
simulate continuous processes, like temperature, power and propul-
sion control and omit architectural aspects. Likewise, for system
software and especially fault management, dedicated modeling
approaches and formalisms exist, like for example UML or variants
thereof. These approaches by themselves do not highlight the soft-
ware's interoperation with the remainder of the system, especially
the software's impact on the overall system safety and dependability
aspects and vice versa. Therefore, an integrated and coherent view is
required. In this paper, we address this need with a methodology

that captures both the system, the software and their erroneous
behavior in isolation, yet providing a technique to automatically
merge them into an overall system–software model covering nom-
inal and degraded operations. On this model, we defined automated
analysis methods that support common-practice validation objec-
tives in industry. Our methods have been implemented in a formal
methods toolset called the COMPASS toolset [13].

3. The AADL dialect

The Architecture Analysis and Design Language (AADL) [14,15]
is an industry standard for modeling safety-critical system archi-
tectures and it is developed and governed by the Society of
Automotive Engineers (SAE). Although standardized by the SAE,
it is backed by the aerospace community as well. AADL provides a
cohesive and uniform approach to model heterogeneous systems,
consisting of software (e.g., processes and threads) and hardware
(e.g., processors and buses) components, and their interactions.
Our variant of AADL was designed to meet the needs of the
European space industry. It extends a core fragment of AADL 1.0
[14] by supporting the following essential features:

� Modeling both the system's nominal and faulty behavior. To this
aim, AADL provides primitives to describe software and hard-
ware faults, error propagation (i.e., turning fault occurrences
into failure events), sporadic (transient) and permanent faults,
and degraded operation modes (by mapping failures from
architectural to service level).

� Modeling (partial) observability and the associated observability
requirements. These notions are essential to deal with diagnosa-
bility and Fault Detection, Isolation and Recovery (FDIR) analyses.

� Specifying timed and hybrid behavior. In particular, to analyze
continuous physical systems such as mechanics and hydraulics,
our modeling language supports continuous real-valued vari-
ables with (linear) time-dependent dynamics.

� Modeling probabilistic aspects. These are important to specify
random faults and systems repairs with stochastic timing.

In the following, we present the capabilities of our AADL dialect
using a running example. A complete AADL specification consists
of three parts, namely a description of the nominal behavior, a
description of the error behavior and a fault injection specification
that describes how the error behavior influences the nominal
behavior. These three parts are discussed below. Due to space
constraints, we refer the interested reader to [13] for a description
of the formal semantics.

3.1. Nominal behavior

An AADL model is hierarchically organized into components,
distinguished into software (processes, threads, data), hardware
(processors, memories, devices, buses), and composite components
(called systems). Components are defined by their type (specifying
the functional interfaces as seen by the environment) and their
implementation (representing the internal structure). An example of
a component's type and implementation for a simple battery device
[16] is shown in Fig. 2.

The component type describes the ports through which the
component communicates. For example, the type interface of
Fig. 2 features three ports, namely an outgoing event port empty
which indicates that the battery is about to become discharged, an
incoming data port tryReset which indicates that the battery
device should (attempt to) reset, and an outgoing data port
voltage which makes its current voltage level accessible to the
environment.

M. Bozzano et al. / Reliability Engineering and System Safety 132 (2014) 20–3522



A component implementation defines its subcomponents, their
interaction through (event and data) port connections, the (physical)
bindings at runtime, the operational behavior via modes, the transi-
tions between them, which are spontaneous or triggered by events
arriving at the ports, and the timing and hybrid behavior of the
component. For example, the implementation of Fig. 2 specifies the
battery to be in the charged mode whenever activated, with an
energy level of 100% as indicated by the default value of 1.0. This
level is continuously decreased by 2% (of the initial amount) per time
unit (energy' denotes the first derivative of energy) until a threshold
value of 20% is reached, upon which the battery changes to the
depleted mode. This mode transition triggers the empty output
event, and the loss rate of energy is increased to 3%. Moreover, the
voltage value is regularly computed from the energy level (ranging
between 6.0 and 4.0 [volts]) and made accessible to the environment
via the corresponding outgoing data port. In addition, the battery
reacts to the tryReset port to decide when a reset operation
should be performed in reaction to faulty behavior (see the description
of error models below).

In general, the mode transition system – basically a finite-state
automaton – describes how the component evolves from mode to
mode while performing events. Invariants on the values of data
components (such as “energy4 ¼ 0:2” in mode charged)
restrict the residence time in a mode. Trajectory equations (such
as those associated with energy') specify how continuous vari-
ables evolve while residing in a mode. This is akin to timed and
hybrid automata [17]. Here we assume that all invariants are
linear. Moreover we constrain the derivatives occurring in trajec-
tory equations to real constants, i.e., the evolution of continuous
variables is described by simple linear functions.

A mode transition is given by m�½e when g then f �-m0. It
asserts that the component can evolve from mode m to mode m0

upon occurrence of event e (the trigger event) provided that guard
g, a Boolean expression that may depend on the component's
(discrete and continuous) data elements, holds. Here “data ele-
ments” refers to (both incoming and outgoing) data ports and data
subcomponents of the respective component. On transiting, the
effect f which may update data subcomponents or outgoing data
ports (like voltage) is applied. The presence of event e, guard

when g and effect then f is optional. If absent, e defaults to an
internal event, g to true, and f to the empty effect.

Mode transitions may give rise to modifications of a compo-
nent's configuration: subcomponents can become (de-)activated
and port connections can be (de-)established. This depends on the
in modes clause, which can be declared along with port connec-
tions and subcomponents. This is demonstrated by the specifica-
tion in Fig. 3, which shows the usage of the battery component in
the context of a redundant power system. It contains two
instances of the battery device, namely batt1 and batt2, being
respectively active in the primary and the backup mode. The
mode switch that initiates reconfiguration is triggered by an
empty event arriving from the battery that is currently active.
The data ports are reconfigured too in this example. The voltage

port of batt2 is connected to the overall power system once
switched to the backup mode.

A similar reconfiguration is also performed for the alerts from
the monitor component, which checks the current voltage level
and raises an alarm if it falls below a critical threshold of 4.5
[volts]. Its specification is shown in Fig. 4; it employs another

Fig. 2. Specification of a battery component.

Fig. 3. The complete power system.

Fig. 4. Specification of the monitor.

M. Bozzano et al. / Reliability Engineering and System Safety 132 (2014) 20–35 23



modeling concept, a so-called flow. A flow establishes a direct
dependency between an outgoing data port of a component and
(some of) its incoming data ports, meaning that a value update of
one of the given incoming data ports immediately causes a
corresponding update of the outgoing data port.

3.2. Error behavior

Error models are an extension to the specification of nominal
models [18] and are used to conduct safety and dependability
analyses. For modularity, they are defined separately from nominal
specifications. Akin to nominal models, an error model is defined
by its type and its associated implementation.

An error model type defines an interface in terms of error states
and (incoming and outgoing) error propagations. Error states are
employed to represent the current configuration of the component
with respect to the occurrence of errors. Error propagations are
used to exchange error information between components. They
are similar to input and output event ports, but differ in that error
events are matched by identifier rather than by an explicit
declaration of an event port connection.

An error model implementation provides the structural details
of the error model. It is defined by a (probabilistic) machine over
the error states declared in the error model type. Transitions
between states can be triggered by error events, reset events, and
error propagations.

Fig. 5 presents a basic error model for the battery device. It
defines a probabilistic error event, fault, which occurs once
every 1000 time units on average. Whenever this happens, the
error model changes into the dead state. In the latter, the battery
failure is signaled to the environment by means of the outgoing
error propagation batteryDied. Moreover, the battery is enabled
to receive a reset event from the nominal model to which the
error behavior is attached. It causes a transition to the resetting

state, from which the battery recovers with a probability of 1
5 , and

returns to the dead state otherwise.

3.3. Fault injection

As error models bear no relation with nominal models, an error
model does not influence the nominal model unless they are
linked through fault injection.

A fault injection describes the effect of the occurrence of an
error on the nominal behavior of the system. More concretely, it
specifies the value update that a data element of a component
implementation undergoes when its associated error model enters
a specific error state. To this aim, each fault injection has to be
given by the user by specifying three parts: a state s in the error
model (such as dead in Fig. 5), an outgoing data port or
subcomponent d in the nominal model (such as voltage in
Fig. 2), and the fault effect given by the expression a (such as
the value 0, indicating the collapse of power). Multiple fault
injections between error models and nominal models are possible.

The automatic procedure that integrates both models and the
given fault injections, the so-called model extension, works as
follows. The principal idea is that the nominal and error models
are running concurrently. That is, the state space of the extended
model consists of pairs of nominal modes and error states, and
each transition in the extended model is due to a nominal mode
transition, an error state transition, or a combination of both (in
case of a reset operation). The aforementioned fault injection
becomes enabled whenever the error model enters state s. In this
case the assignment d≔a is carried out, i.e., the data subcompo-
nent d is assigned with the fault effect a. This error effect is
maintained as long as the error model stays in state s, overriding
possible assignments to d in the nominal model. When s is left, the
fault injection is disabled (though another one may be enabled).
An example of an extended model can be found in [13].

4. The COMPASS toolset

The COMPASS toolset is the result of a significant implementa-
tion effort carried out by the COMPASS Consortium. The GUI and
most subcomponents are implemented in Python, using the
PyGTK library. Pre-existing components, such as the NuSMV and
MRMC model checker, are instead written in C. Overall, the core of
the toolset consists of about 100,000 lines of Python code.

Fig. 6 shows the functionality of the toolset. COMPASS takes as
input one or more AADL models, and a set of properties. The latter
are provided in the form of instantiated property patterns [19,20],
which are templates containing placeholders that have to be filled
in by the user. The COMPASS toolset provides templates for the
most frequently used patterns that ease property specifications by
non-experts through hiding the details of the underlying temporal
logic. The tool generates several outputs, such as traces, fault trees
and FMEA tables, diagnosability and performability measures.

The toolset builds upon the following main components. NuSMV
[21,22] (New Symbolic Model Verifier) is a symbolic model checker
that supports state-of-the-art verification techniques such as BDD-
based and SAT-based verification for CTL and LTL [4]. MRMC [23,24]
(Markov Reward Model Checker) is a probabilistic model checker that
supports the analysis of discrete-time and continuous-time Markov
reward models. Specifications are written in PCTL (Probabilistic
Computation Tree Logic) and CSL (Continuous Stochastic Logic [5], a
probabilistic real-time version of CTL). SigRef [25] is used to minimize,
amongst others, Interactive Markov Chains (IMC) [26] based on
various notions of bisimulation. It is a symbolic tool using multi-
terminal BDD representations of IMCs and applies signature-based
minimization algorithms. A walkthrough of the toolset in terms of its
screenshots is shown in Fig. 7.

The tool also supports a graphical notation of our AADL dialect,
that is a derivation of the AADL graphical notation [18]. We
developed a graphical drawing editor enabling engineers to con-
struct models visually using the adopted graphical notation. The
editor is called the COMPASS Graphical Modeler and is part of the
COMPASS toolset.

Fig. 5. Specification of the Battery error model.
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4.1. Functional correctness

COMPASS supports random and guided model-based simulation
of AADL models. Guided simulation can be performed by choosing
either the next transition to be taken or a target value for one or
more variables. The generated traces can be inspected using a
trace manager that displays the values of the model variables of
interest (filtering is possible) for each step.

Property verification is based on model checking [4], an automated
technique that verifies whether a property expressed in temporal
logic, holds for a given model. Symbolic techniques [27–29] are used
to tackle the problem of state space explosion. COMPASS relies on the
NuSMV model checker, which supports both BDD-based and SAT-
based verification for finite-state systems, and SMT-based verification
techniques for timed and hybrid systems, based on the MathSAT
solver [30,31]. On refutation of a property, a counterexample is
generated, showing an execution trace of the model violating the
property. An example of this is shown in Fig. 7d. Finally, it is possible
to run deadlock checking, in order to pinpoint deadlocks (i.e., states
with no outgoing transitions) in the model.

4.2. Safety assessment

COMPASS implements model-based safety assessment techniques,
based on symbolic model checking [32–35], and supports traditional
techniques such as Failure Mode and Effects Analysis (FMEA) [36] and
Fault Tree Analysis (FTA) [37]. FMEA is an inductive technique that
starts by identifying a set of (combinations of) failure modes and, using
forward reasoning, assesses their impact on a set of system properties.
The results are summarized in an FMEA table. It is also possible to
generate dynamic FMEA tables, namely to enforce an order of
occurrence between failure modes. FTA is a deductive technique,
which, given a top-level event (TLE), i.e., the specification of an
undesired condition, constructs all possible chains of basic faults that

contribute to its occurrence. Pictorially, these chains are organized in a
fault tree with a two-layer logical structure, corresponding to the
disjunction of its minimal cut sets [35] (MCSs), where each MCS is a
conjunction of basic faults. COMPASS also supports the generation of
dynamic fault trees [38], where ordering constraints between
basic faults are represented using priority AND (PAND) gates. Fig. 7c
depicts a simple fault tree for the power system model of Section 3,
where the top level event is “batt1:voltageo4:0 and

batt2:voltage o4:0”. The tree shows that the only cause that
can lead to the occurrence of TLE is when both batteries die.

4.3. Diagnosability and FDIR analysis

The COMPASS toolset supports diagnosability and FDIR (Fault
Detection, Isolation and Recovery) effectiveness analysis. These
analyses work under the hypothesis of partial observability. Vari-
ables and ports in our AADL dialect can be declared to be
observable (see, e.g., the data port alert in Fig. 3).

Diagnosability analysis investigates the possibility for an ideal
diagnosis system to infer accurate and sufficient run-time informa-
tion on the behavior of the observed system. The COMPASS toolset
follows the approach described in [39], where the violation of a
diagnosability condition is reduced to the search of critical pairs in
the so-called twin plant model, i.e., a pair of executions that are
observationally indistinguishable but hide conditions that should be
distinguished. As an example, property “batt1:voltageo
4:0 and batt2:voltageo4:0” is not diagnosable, as the alert

observable does not allow to distinguish the case where the
batteries' voltages are low from the case where they are depleted
through use. If we add the observable “alert2≔ ðvoltageo4:0Þ”,
then the property becomes diagnosable. Using techniques similar to
those used for computing MCSs, it is also possible to automatically
synthesize a set of observables that ensure diagnosability of a given
model [40].

Nominal 
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Extended 
Model
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Fig. 6. Functional view of the COMPASS platform.
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FDIR effectiveness analysis is a set of analyses carried out on
an existing fault management subsystem. Fault detection is
concerned with detecting whether a given system is malfunc-
tioning, namely searching for observable signals such that
every occurrence of the fault will eventually make them true.

As an example, observable alert is a detection means for
property “batt1:voltageo4:0 and batt2:voltageo4:0”.
Fault isolation analysis aims at identifying the specific cause
of malfunctioning. It generates a fault tree that contains
the minimal explanations that are compatible with the obser-
vable being true. As an example, observable alert has two
possible failure explanations: either batt1 has died or batt2

has died. The latter failure, that batt2 has died, is not
dependent on the death of batt1, since the switch-over
to the second battery can also occur by natural depletion
of the first battery. Finally, fault recovery analysis is used
to check whether a user-specified recoverability property
holds. For instance, property “always ðbatt1:voltageo4:4

implies eventually batt1:voltage4 5:5Þ” is true in the
nominal model, but it is false when error behavior is taken into
account, as a battery may die.

4.4. Performability analysis

We use probabilistic model checking techniques [4, Ch. 10] for
analyzing a model on its performance. The COMPASS toolset in
particular supports performance properties expressed in the

Fig. 7. Walkthrough of the COMPASS toolset using the battery model (cf. Section 3) as an example. (a) Adding a fault injection, (b) adding a property, (c) a generated fault
tree, and (d) a counterexample from model checking.
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probabilistic pattern system by [20]. It allows for the formal
specification of steady-state, transient probabilities, timed reach-
ability probabilities and more intricate performance measures
such as combinations thereof. Examples of typical performance
parameters are “the probability that the first battery dies within
100 hours” or “the probability that both batteries die within the
mission duration”. These properties have a direct mapping to
Continuous Stochastic Logic (CSL) [5] and are input to the under-
lying probabilistic model checker.

The probabilistic model checker furthermore requires a Markov
model as input. This is obtained from the extended model through
several steps. First, the extended model's reachable state space is
generated through an exhaustive symbolic exploration. Second,
the probabilistic rates as specified in the error models (cf. Section 3.2)
are interwoven through the state space by replacing the transition
label with the associated probabilistic rate. The resulting state space
is a symbolic representation of an Interactive Markov Chain, i.e., a
Continuous-Time Markov Chain (CTMC) that may exhibit non-
determinism [26]. This IMC is passed through the third phase, in
which its size is reduced using weak bisimulation minimization
[41,42]. In this last step, the IMC may turn into a CTMC. In the final
phase the CSL formulae are extracted from the performance require-
ments and then together with the CTMC are fed to the MRMC
probabilistic model checker, to compute the desired probabilities.
The result is a graph showing the cumulative distribution function
over the time horizon specified in the performance requirement. In
case the resulting IMC from the model does not yield a CTMC after
bisimulation minimization, new analysis techniques using real-time
stochastic games can be used [43]. These techniques are planned to
be integrated into the toolset. Similar techniques are also used for
fault tree evaluation, i.e., computing the probability of the top-level
event in dynamic fault trees [38].

5. The satellite platform

Evaluations of the COMPASS toolset have been conducted
during its development on subsystem case studies. More about
this is reported in Section 8. Afterwards, we wanted to scale up
and see how well the technology handles a system-level design. At
the European Space Agency, we initiated a pilot where we
modeled the full satellite platform in development during its early
design stage. This pilot was received well, resulting in a successor
pilot project where we modeled the same satellite platform in a
later design stage. These pilot projects are subsequently referred to
as respectively the phase B and phase C pilot projects. This section
will elaborate the satellite itself.

5.1. Platform, payload and subsystems

At the highest conceptual level, the satellite is composed of the
payload and the platform. The payload comprises mission-specific
subsystems and the platform contains all subsystems needed to
keep the satellite orbiting in space. The payload is usually designed
and tailored from scratch with the mission needs (e.g., weather or
telecommunication satellite), whereas for the platform lots of
design heritage applies. For this reason, our pilot project focuses
on the platform, as this might benefit future projects too.

The platform is composed of several subsystems. It contains for
example the control & data unit (CDU) which can be viewed as the
main computer. It furthermore comes with an electric power
system (EPS), which is typically a combination of solar arrays
and batteries. The attitude & orbit control system (AOCS) is
equipped with several kinds of sensors, like Sun sensors, Earth
sensors and star trackers, as well as actuators, like magnetic torque
rods, thrusters (OCS) and reactionwheels for orienting and

positioning the satellite. There is also a radio system called the
telemetry, tracking & control (TT&C). It is the interface to ground
control stations located on Earth (Fig. 8).

5.2. Fault management

The majority of these subsystems are designed with certain
degrees of fault tolerance, depending on the criticality of the
subsystem. Hot and cold redundancies with reconfigurations,
voting algorithms, correcting codes and compensation procedures
are part of comprehensive strategies for achieving fault tolerance.
In the extreme case, the satellite should survive a certain number
of days without ground intervention assuming no additional
failure occurs. As faults could occur at any level in the system's
hierarchy (system, subsystem, equipment), the fault management
system obeys a cross-cutting design according to the FDIR para-
digm. This paradigm separates fault management into three
functions. The function of fault detection continuously monitors
the system and in case of anomalous values, emits appropriate
events to react upon them. Monitoring is decentralized and
performed at all levels of the system's hierarchy. After emitting
fault detection events, fault isolation kicks in. This function is
responsible for identifying the affected system's scope by deter-
mining the cause of the fault events. The function of fault recovery
then takes appropriate actions to mitigate the fault events, and if
possible, restores the subject to a nominal state. As faults can occur
at all levels, and as their effects can propagate throughout the
system horizontally (same level) and vertically (across levels), the
fault management system is partitioned into five levels depending
on the complexity of the respective FDIR functions:

Level 0 Failures are associated to a single unit and recovery
can be performed by the unit itself.

Level 1 Failures are associated to a single subsystem, and an
external subsystem. The on-board software is
responsible for their mitigation.

Level 2 Failures are associated to multiple subsystems, and an
external subsystem. The on-board software is
responsible for their mitigation.

Level 3 Failures are occurring in the on-board software or in
the processor modules. Dedicated reconfiguration
modules are responsible for their mitigation.

Level 4 Failures that are not covered by lower levels and that
are completely managed by hardware.

Failures are mitigated at their appropriate level. As with most
Earth orbiting satellites, this satellite is required to be single-fault
tolerant. If a fault is detected, all fault monitoring is disabled and
the isolation and recovery of the detected fault is prioritized. As
such, it is designed to handle one fault at a time.

6. Phase B pilot project

The first pilot project was conducted in parallel to the satellite's
early design, which is phase B in Fig. 1. The total duration of the
pilot was six months including the learning curve of becoming
acquainted with AADL, COMPASS and the space systems engineer-
ing domain. The modeler was Master-level educated with basic
knowledge of model checking but without prior knowledge of the
COMPASS toolset nor of space systems engineering. Due to the
confidential nature of the case, the model is not publicly available.

6.1. Objectives

We started our pilot at the preliminary design review stage
(PDR) of the satellite project, where the details of design started to

M. Bozzano et al. / Reliability Engineering and System Safety 132 (2014) 20–35 27



mature. In the spacecraft engineering lifecycle, several objectives
have to be met in order to proceed to the critical design stage.
A selection of these objectives is of interest to us. Foremost, we
wanted to check the compliance of the preliminary design with
the functional and operational requirements and their justifica-
tions. Second, we wanted to check this too for the reliability,
availability, maintainability and safety (RAMS) recommendations.
And third, we paid particular attention to the consistency of the
hardware/software redundancies and fault management concepts.
For the scope of this pilot, we investigated the suitability of our
toolset to support these verification and validation objectives. We
aimed to develop best modeling practices, discover strengths and
weaknesses of the theory and techniques underlying the toolset
and understand how the toolset supplements and/or replaces
existing practices in the spacecraft design phase.

The satellite's development team was on a strict schedule, and
hence it would have been unwise to inject novel development
approaches – like our initiative – into the production process.
Instead, we ran our pilot project in parallel with the actual develop-
ment as an experimental side-track. This benefited us, because we
were not presented with fully crystallized and matured design
documentations, but with volatile design information that was
undergoing improvement and refinement. Findings in our pilot
were therefore directly relevant and could be provided as feedback
to the satellite development team. Furthermore, we had to learn to
cope with the constant influx of updated design details and how to
continually adapt our own model to that. If our pilot had run after
the system's design, the effort would have become an afterthought
in which design information has fully crystallized and matured.

6.2. Modeling phase B

Behavior-wise, the overall composite system is described by
two important modes of satellite operation: nominal and safe.
While being in the nominal mode, the system is functioning in
nominal conditions. Upon faults, recoveries are initiated for
resuming nominal operation. If these recoveries fail, the satellite
then transits into safe mode for which the system reconfigures
itself for survival until ground can perform an intervention. This
important transition has system-level effects and hence it is
critical. During modeling, we focused on one subsystem/equip-
ment at a time as the design of each of them corresponds more or
less to a specific (section of a) design and a requirements docu-
ment. We progressively increased coverage by adding more
detailed subsystems to the overall model, while keeping high-
level abstractions or stubs for the remaining subsystems. The
result is a model containing 86 components, 937 ports, 244 modes,
20 error models, 16 recovery procedures, 3831 lines without
comments and a state space of the nominal behavior counting
48,421,100 states. In the following paragraphs, we highlight
selected lessons from our modeling effort.

Discretization. Various design aspects are often specified in
terms of ranges. Thus, for the Sun sensors, ranges are used in
degrees of Sun ray impact to determine exposure to the Sun. To
avoid a combinatorial explosion of the state space, these ranges
have been abstracted with respect to the desired functionality, e.g.,
a Boolean indicating Sun exposure (or not). Enumerations are used
when there are gradations within the ranges.

Errors and fault injections. Our primary source for error model-
ing is the preliminary Failure Mode and Effects Analysis (FMEA). It
lists the possible detectable failures as an event and relates it to
the effect on the system. This mapping is nearly equal to the fault
injections. It also provides the information for constructing the
error models. We found that in all cases, the probabilistic behavior
was either shaped as a single step from an error-free state to an
error state (so-called permanent errors), or that they follow a

fault-repair loop-structure on the error-free/error states (so-called
transient errors). The FMEA also lists the failure rates. They are
expressed in failures in time, indicating the expected number of
failures in 109 hours.

Assumptions. At first sight, the amount of design information is
so overwhelming that it is inconceivable to comprehend the whole
system at once, especially if one is not familiar with the system
under development. Information might be perceived as incom-
plete, unclear, or wrong due to this, and this delays the modeling
process. We developed a practice of quickly continuing modeling
using assumptive modeling decisions. Model elements were
marked as Abstracted, along with a justification in case the
abstraction was not obvious. The annotation Assumption was used
to express an assumptive understanding of the peculiar design.
Model elements were annotated with Underspecifiedwhen parts of
the design documents did not provide sufficient information to
have them reflected in the model. Assumptive and underspecified
parts could be checked later in review meetings, where we had the
opportunity to address them.

6.3. Requirements

Not all requirements at our disposal were amenable to formal
analysis. There are several reasons for this fact.

Higher-level requirements, like those from the mission defini-
tion, lack the detail needed for formal validation. This can be seen
in their form, which is typically prose-like, e.g., “FDIR functions
must be active in all AOCS modes”. We focus on the more refined
system- and subsystem level requirements instead.

A significant part of the requirements do not capture behaviors,
but reflect the system's organization. They for example state which
components should be present and which functions should be
available, but do not detail how the functions should behave.
These requirements are typically subject to refinement in detailed
design, and hence are cases of intended underspecification.

Requirements could also be out of scope for our objectives. For
example, those about the payload were left out intentionally from
our pilot because we focused on the satellite platform. Behaviors
covering these requirements are typically abstracted in the model.

Consequently, from many thousands of requirements, a selec-
tion of 24 relevant requirements was made. They were mapped to
the specification patterns from [19,20], which showed that 92% of
them could be phrased into eight patterns. These patterns have an
underlying temporal logic form, which can be processed by the
COMPASS toolset.

6.4. Analyses

Modeling is highly intertwined with analysis, since the output
from analysis provides valuable information for possible refine-
ments of the model. The most widely used analysis method during
modeling is model simulation, as inspection of traces is a fast
sanity check before running a resource-consuming analysis.

During all analyses, particular sets of fault injections were
disabled/enabled depending on the aim. This was necessary for
this pilot, as we observed that fault injections lead to a significant
increase of the state space (see Fig. 9). The figure shows the state
space increase as a multiplication of the nominal state space,
which is 48 million states. The explanation is that a fault injection
basically yields the cross-product of the subsystem to which the
error is injected, and the error model. There is no direct correlation
between the amount of fault injections and the increase, although
there is a relation between the severity of fault injections and the
observed increase. Fault injections that have system-level impact
(e.g., processor module failures) add more behavior than fault
injections with lower-level impact (e.g., Earth sensor failures), as
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the former affect a larger fragment of the state space. The figure in
general indicates the degree of scalability that can be expected
with the computing resources typical in 2010.

All analyses were performed on a set of identical computers
running 64-bit Linux, each with a 2.1 GHz AMD Opteron CPU and
192 GB of RAM. A more comprehensive report on this can be found
in [7].

Functional verification. We separated this task into two activ-
ities: discrete and real-time/hybrid verification. Sixteen properties
were verified on the discrete part, taking between 224 and 677 s
and on average 126 MB, depending on the injected failures. The
real-time/hybrid verification activities are more elaborate and are
discussed in more depth in [7].

Safety and dependability. The platform's most critical event that
affects safety and dependability is the transition to safe mode. This
transition is triggered upon the occurrence of severe failures. The
design documents give a manually developed (static) fault tree of
66 nodes explaining this behavior. Our toolset can produce the
same fault tree, but in a fully automated manner within 2 h and
using 239 MB of memory. The algorithm behind this generation is
described in [35].

A FMEA table was generated in the same manner as fault trees
for associating the sensor failures with three system effects:
detection of failures, the setting of the fail-operational flag and
the transition to safe mode. The generated table did not provide
additional value to the fault tree, as it directly maps failures to the
user-provided effects. We learned here that it is more interesting
to have the toolset synthesize a mapping from failures to a chain of
effects, showing how the first effect directly caused by the failure
propagates through the system to subsequent effects and even-
tually becomes a system-level failure [44].

Fault management effectiveness. For fault detection, we checked
which observables are triggered when the transition to safe mode
is made. This can trigger 129 observables. This takes 19 min and
142 MB. Subsequently, fault isolation on these observables takes
6 h and 136 MB. Diagnosability analysis was performed to see
whether a double Earth sensor failure is diagnosable (for the
satellite operator) when the transition to safe mode occurs.
Without any result, we had to stop the analysis after 7 days and

consuming nearly 1400 MB at its peak. The algorithm computing
diagnosability has a much higher time-complexity than model
checking, thus explaining this result.

Performability. Reliability requirements are usually defined as a
cumulative distribution function and state that the foreseen
reliability must be at least as good. Their probabilistic nature fits
performability analysis. On our model, we wanted to determine
the reliability of the satellite in the presence of a sensor failure.
Performability analysis however ran out of allocatable memory
after 9 h. Here, the weak bisimulation algorithm that transforms
the state space to a Markov chain is the bottleneck. Even though
the space and time-complexities are polynomial, the state space is
simply too large to handle with our current systems.

Another approach to verifying the reliability requirements is by
computing the probabilities of the transition-to-safe-mode fault tree
which was generated during safety and dependability analysis. This
computation occurs in a split second. This approach, and its result, is
coarser than the one using performability. Fault trees are essentially
abstract state spaces where the relations between the top-level-events
and the failures are conservatively over-approximated by AND-, OR-
and PAND-gates (Priority AND). With performability on the other
hand, these relations are precisely preserved, which however comes
with increased complexity when the underlying Markov chain needs
to be determined.

6.5. Discussion

With regard to supporting the verification and validation
objectives of the preliminary design review, we encountered
several inconsistencies in the design documents. Most of them
were found during modeling, due to the critical interpretation of
the design documents. They were reported to the satellite devel-
opment manager and were subsequently corrected. This results
from the benefit of having a formally coherent modeling language
that captures and covers the system, software and safety aspects in
a single model.

As with the suitability of the toolset, not being exposed to the
underlying logic and model checking tools was found to be
pleasant. For safety and dependability analyses, the performance
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and the features are sufficient. The usefulness of FMEA however
can be improved (as stated in Section 6.4). The pilot also showed
that theoretical improvements to the algorithms underlying per-
formability and diagnosability are needed to make them tractable
for larger models.

The pilot also delivered a deeper insight into best formal modeling
practices. We found that assumptive modeling as well as maintaining
traceability data are key to keep the pace. We furthermore drafted a
set of abstraction guidelines as well as commonly occurring modeling
patterns to aid beginning modelers. At the moment, they are tailored
to this pilot, but could be further developed to become more generic.
These guidelines, and the satellite model itself, can be used to kickstart
subsequent formal modeling activities.

7. Phase C pilot project

The second pilot was conducted in a time frame of one year,
during the Critical Design Review stage (CDR) of the satellite
project, and consequently the design details were much more
mature than in the previous pilot. The modeler had a PhD-level
education in software engineering and prior experience with using
model checkers.

7.1. Objectives

Due to the increase of maturity, the specifications at phase C
were roughly twice as detailed as their counterpart descriptions in
phase B. Our main objectives are summarized as the following
two: firstly, we wanted to investigate strategies for modeling
satellites with twice the amount of design detail; and second,
we wanted to focus on diagnosability analyses for determining the
sufficiency of the sensor configuration. The latter was not possible
in the previous pilot, due to the size of the obtained state space.

The main source of information for the satellite system behavior
was the Critical Design Review (CDR) documents that refine the
documents used for the phase B pilot project. The fault management
design in this phase was still undergoing changes. Error modeling was
based on CDR's requirements baseline for the FDIR routines, and was
subject to changes for the duration of the pilot.

7.2. Modeling phase C

The developed model focused on the platform of the satellite
system, as in the previous pilot and for the same reasons. The
organization of components in the model was slightly altered.
More specifically, the Control and Data Unit (CDU) was logically
modeled as a component embedded in the Attitude and Orbit
Control System (AOCS). Physically however, the AOCS runs on a
processor module inside the CDU. The latter interfaces with
sensors and actuators used by the AOCS through I/O boards.
Modeling this organization causes all sensor and actuator inter-
faces being forwarded by port connections inside the CDU,
increasing the model's size. This is avoided by modeling the CDU
inside AOCS, such that the sensors and actuators used by the AOCS
are its direct subcomponents. Most components were modeled
from scratch using the PDR model (from Section 6) as an inspira-
tional reference. Changes and additional details (e.g., Course Earth
and Sun Sensors, and Ground commands) of the refined satellite
platform design were reflected in the new model.

A bottom-up design approach was followed to model the
subsystems of the satellite. Each subsystem was then top-down
refined by breaking it down into its equipment. The equipment
were verified individually. This approach enables a preliminary
analyses of each subsystem model. Also, we could model more
detail of the functionality per subsystem, without dealing with the

state space explosion of the overall system model. And most
important, the satellite fault management design documents at
this phase were grouped and organized per subsystem.

The remainder of this section surveys the full satellite model and
provides more detail for one of the subsystems, namely the Electric
Power System (EPS). Further detail of this model is confined to
confidentiality restrictions, as in the previous pilot project.

7.2.1. Full platform
The overall system can be in three different modes: a nominal, an

intermediate safe and an ultimate safe mode. The purpose of the
nominal mode is the same as the one considered in the phase B pilot.
The safe modes have a slightly refined meaning. Depending on the
mission scenario, a transition to the intermediate safe mode means
that ground systems continue supplying commands without platform
service warranty. The ultimate safe mode is for handling critical
failures while ensuring the satellite's safety. In the remainder of this
section the term non-nominal mode refers to the two safe modes.

Table 1 illustrates the size of the developed satellite model in terms
of the number of components that comprise it, the lines of code and
other aspects. This model resulted in a state space of 2341 states for
the nominal behavior, which is many orders of magnitude smaller
than the model state space of the previous pilot. The difference is
attributed to three main factors, namely the experience gained in the
previous pilot, the longer time frame and the given emphasis on
model efficiency. However, the model encompassing erroneous beha-
viors still has a considerable state space size. We designed 173 error
models for a series of transient and permanent errors, whose
combinations correspond to a pile of fault configurations. From the
many requirements, 59 were behavioral and within the scope of our
model. The selected requirements were mapped to the specification
patterns shown in the lower part of Table 1.

7.2.2. Power subsystem
For spacecraft systems in general, the Electrical Power Sub-

system (EPS) is a major driver towards the overall system relia-
bility [45]. We focus on it in this section. It is responsible for
generating, storing, conditioning and the provision of electric
power to all on-board satellite units. Its decomposition is shown
in Fig. 10 and it consists of the following main subunits:

Power Conditioning and Distribution Unit (PCDU) receives the
electric power from the solar array and/or battery and distributes
it to the satellite subsystems through the Latching Current Limiter
(LCL) and the resettable variants of it, called R-LCL.

Battery stores the electric power provided by the solar array
during Sun visibility periods and provides power to the satellite
subsystems during eclipse phases. It is charged and discharged
respectively by the Battery Charge Regulator (BCR) and Battery
Discharge Regulator (BDR).

Table 1
Metrics of the full satellite phase C platform model and requirements.

Scope Metric Count

Model Components 246
Ports 1565
Modes 242
Error models 173
Recoveries 162
Nominal state space 2341
LOC (without comments) 6357

Requirements Propositional 28
Absence 7
Universality 5
Response 19
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Main Error Amplifier (MEA) stabilizes the power to the default
voltage.

Solar Array delivers power to the satellite subsystems through
the PCDU. It supplies the satellite during Sun exposure and in
parallel charges the battery after the eclipse phases.

PCDU Telemetry and Telecommand (TMTC) controls the PCDU
with commands external to the subsystem, e.g., power on and off,
charging and discharging from the AOCS and ground control. It is
designed to be redundant (i.e., “a” equipment and “b” equipment).

The FI components and the containers in Fig. 10 are used
respectively for fault injection and packaging of subsystems with
common behavior. All these are further discussed in the next section.
The size of EPS was close to 15% of the overall size of the full model
(i.e., 38 components, 245 ports, 21 modes and 15 errors models).

The electric power subsystem is susceptible to failures at all
fault management levels (see also Section 6.2). From the 15 error
models, four are handled as level 0 failures, one is handled as a
level 1 failure, five are handled as level 2 failures and five are
handled as level 3 and 4 failures. Apart from level 0 and level
1 failures, all other failures result in critical system-level effects
and hence a transition is made into non-nominal mode.

7.3. Modeling effectiveness

Key to an effective model is balancing the detail to be taken
into account against the resulting complexity. A very detailed
model captures more useful behaviors of the satellite, while
reduction of the model's complexity is typically achieved by
abstracting (parts of) the system's behavior. Apart from the
existing modeling strategies developed for the phase B pilot (cf.
Section 6.2), we developed two additional strategies to cope with
the increased detail of the phase C design.

The foremost modeling strategy is the use of dedicated fault
injection components in the nominal model, in order to separate
erroneous data effects from nominal data effects. This strategy
came initially from model behavior observations, due to the
experienced language limitations (fault injections could only be
expressed based on the mode state of a component or based on

logical constraints of its supercomponent). More precisely, we
observed that upon injecting failures directly on the nominal
model, we were actually introducing additional unspecified beha-
vior to the system (e.g., discharging the battery, while the satellite
system was powered off).

Fig. 11 shows an example with the behavior of the Battery
component, using the AADL graphical notation of the COMPASS
toolset. It uses rounded boxes to represent system components, circles
to represent modes, arrows to represent transitions and (filled/open)
triangles to represent (data/event) ports. The battery voltage output is
affected by nominal data effects such as charge and discharge if, and
only if, a logical constraint is fulfilled (e.g., subsystem is powered on
and no fault is detected). These constraints initially limit the state
space explosion. Furthermore, the battery voltage output is affected by
erroneous data effects if, and only if: (i) it is attached to the
Battery_fi fault injection subcomponent and (ii) there is a transition
due to additional logic constraints (e.g., fault is detected). Extra
constraints in model design like the aforementioned one further limit
the state space explosion.

The Battery component is represented as a container responsible
for the fault injection interface, while at the same time detecting faults
using the fault detected observable. In case of an injected error on the
energy output port of the Battery_fi subcomponent (e.g.,
“Battery_fi:energy≔25”), the following operations are executed:

1. Battery_fi.energy takes a new value, different from the one
specified by Battery.voltage and updates the Battery.

tmp_power. At this point, the Battery.voltage is still
unaffected, since it is updated through a transition from
Battery.tmp_power;

2. the Battery.fault_detected observable becomes true and
the system executes only error behavior operations;

3. the Battery_fi.b_reset event is then triggered and simulta-
neously the Battery_fi changes from the initial idle mode to
the can_reset mode, while Battery.voltage is updated
with the injected faulty value;

4. if the injected error is a transient one, then a reset event is
triggered and Battery_fi changes from the can_reset mode
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to the idle one. Otherwise, Battery_fi mode stays in can_-
reset, and no further fault injection is allowed (permanent
error);

5. the Battery.fault_detected observable turns to false and
the system executes only nominal behavior operations.

In Fig. 11, the b_reset event updates the values of the shown
component and consequently resets the value of the Battery.

fault_detected observable to false, while the reset event resets
the state of the fault injection component to its initial idle mode.

The second modeling strategy adopted in this pilot is packaging
functionality in containers. A rule of thumb towards this direction is
that the time required for analysis increases along with the number
of components. By packaging coupled functionality in a supercom-
ponent, the state space can be reduced when specifying additional
erroneous behavior at the supercomponent level. Consider for
example what is shown in Fig. 10. The Latching Current Limiters
(LCLs) and the Resettable LCLs are packaged in a single container
respectively, instead of separate containers for each subcomponent.

We also realized that the number of transition events in the
model increased the analysis time significantly. It was possible to
avoid this cost by refactoring these events into flows and data
ports. However, since the discussed performance degradation was
a result of the way the COMPASS toolset transforms AADL events
into NuSMV language constructs, this model improvement cannot
be considered as a general modeling strategy.

The model's efficiency was determined by computing the reach-
able states. These computations took place on a workstation with
two 2.7 GHz Intel Xeon processors and 48 GB RAM running 64-bit
Linux. The results are shown in Table 2. The diameter is the depth of
the state space given as number of transitions. Noteworthy here is
the difference in execution time between the scenarios without fault
injections and those with one permanent fault injection in the solar
arrays. The latter has a system-level impact and opens up new
behaviors compared to the nominal scenario. However, as BDD
methods are used to compute the reachable states, the needed time

depends heavily on BDD variable reordering strategies, which may
turn out better for particular models.

7.4. Diagnosability efficiency

In the Phase B pilot, diagnosability analysis was deemed
intractable as it needed more computing resources than we had
available. In this pilot, we investigated methods to overcome this
by a more efficient model.

Besides the general improvement of the model's efficiency, we
investigated the idea of local diagnosability analysis. Instead of
considering the whole satellite platform, we exploited the system
hierarchy and the containers to create smaller subsystem models,
on which we conducted diagnosability analysis. Then either
permanent or transient errors were injected in those models and
it was checked whether they could be diagnosed. The results of
these analyses are shown in Table 3. The column “Model” is either
full, EPS, or AOCS, meaning respectively the full satellite platform,
or only the electric power subsystem or only the attitude and orbit
control subsystem.

The table shows that, in general, failure scenarios considering
permanent errors require less analysis time and less memory than
scenarios with transient errors. This is also visible when the
model's state spaces of respectively transient and permanent
errors are compared (cf. Table 2).

Fig. 11. Battery subsystem with fault injections.

Table 2
Reachable states on full satellite model.

Scenario Diameter Reachable states Time
(h)

Memory
(GB)

No fault injections 20 2341 6.0 1.2
Permanent fault in solar

array
84 403,220,000 1.5 3.6

Transient fault in solar
array

142 135,895,000,000 180.0 14.0
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In two cases we still run out of memory (indicated by o.o.m. in
the memory column), namely when double permanent errors are
injected in the Earth sensors and a single transient error in the
main error amplifier (MEA). Both are on the full satellite platform
model. In those two cases no conclusion can be drawn regarding
the diagnosability of the failure.

One scenario is undiagnosable. The cause for this is the notion
of delayed diagnosis. The double permanent errors cause the
diagnosis property, the setting of the fail-operational flag, to
change. Yet the observables are not directly changed along, but
with a delay. The COMPASS toolset detects this as an undiagno-
sable discrepancy, as after setting the fail-operational flag to true,
the observables are the same as when the flag was false. The
satellite design however specifies that the fail-operational flag is
set within a bounded delay, and this is reflected in the model as
well. The currently used diagnosability analysis algorithm in
COMPASS cannot measure this delay and assumes a diagnosable
model must have a zero-delay between the change of diagnosis
properties and the change of observables. To this end, the
COMPASS toolset will be enhanced in the future, in order to
correctly determine diagnosability for non-zero diagnosis delays.

7.5. Discussion

The longer time frame for this pilot compared to its predecessor
phase B pilot, as well as the fact of having employed a higher qualified
modeler, led to a satellite platform model that captures more detail,
yet keeping it manageable for analyses. The result is the largest and
most detailed system-level formal model of a satellite platform known
to date, that can be used as a reference for future formal modeling
initiatives. In addition to existing identified modeling strategies (see
Section 6.2), two more strategies were added to further avoid the state
space explosion. Additionally, special focus was put on diagnosability
analysis, which in the phase B pilot was deemed untractable.
Diagnosability analysis becomes increasingly important in the engi-
neering life-cycle as fault management designs become more involved
to meet mission demands. We experimented with local diagnosability
analyses and with different failure scenarios. The outcome resulted in
a clear need for an enhanced diagnosality analysis algorithm that also
accounts for delayed diagnostic means.

8. Related work

Several works have been reported in the literature that focus on
modeling languages, formal semantics, analysis algorithms and
tools similar to the COMPASS approach. The most closely related
results are discussed in the following paragraphs.

High-level specification languages. Several research works focus
on high-level modeling languages like the Architecture Analysis
and Design Language (AADL). The Unified Modeling Language
(UML) [46] is found in many applications. A survey by [47]
overviews its use for safety and dependability analysis. It also
has been customized to fit the system engineering domain, leading

to a language called SysML [48]. Unfortunately, SysML inherits the
weaknesses of UML, with the most serious one for our setting
being the loose formalism for nominal and error behavior model-
ing. In [49], the authors introduce a toolchain in order to model
system software in a component-oriented manner, using the Focus
language. Focus models can be formally verified based on a
translation to Isabelle/HOL and are the basis for the generation
of C code implementing their behaviour. The COMPASS toolset
does not provide similar functionality, but on the other hand, adds
a safety and dependability dimension to the modeling and analysis
of nominal system software.

Our AADL dialect has some similarities with existing approaches
for the specification of component-based systems, such as interaction
systems [50] and constraint automata [51], as well as formalisms for
composing automata, such as interface automata [52] and hybrid I/O
automata [53]. A recent work by [54] focused on AADL aiming to map
the time-constrained event-behavior of AADL's mode transitions to
timed Petri nets. The authors also mention the possibility to use
colored Petri nets, in order to handle data-dependent constraints.
More recently, in [55], the authors provide a denotational semantics
for a subset of AADL and its Behavior Annex. However, none of the
aforementioned works offers the necessary expressiveness for model-
ing reconfiguration of components and port connections and for
explicitly representing data elements with hybrid aspects, multi-way
communication and probabilistic error behavior.

Formal semantics. Apart from our AADL dialect, an approach
towards defining a formal semantics for AADL that is worth
mentioning is the one reported in [56]. It introduces an opera-
tional semantics of a subset of AADL by giving a translation into
the BIP component framework, thus realizing a possibility to
perform timed analyses. In [57], the Arcade framework is pre-
sented that allows probabilistic analysis of the modeled architec-
tures. Another framework for dependability analysis of AADL
models is described in [58]. Based on a translation of AADL into
generalized stochastic Petri nets (GSPNs), the authors present
transient and steady-state analysis of AADL models with error
behaviour. However, none of the aforementioned works combines
timed or hybrid extensions and probabilistic or safety analyses
(FDIR, FMEA, and FTA) into a single framework.

A related area of active research interest is the incorporation of
probabilistic information into various formalisms. In [59], a prob-
abilistic extension of the Statecharts semantics is proposed. The
approach supports different semantic models, such as stochastic
Petri nets and probabilistic automata. In [60], the author intro-
duces a probabilistic extension of the component-based modeling
formalism Reo [61], which in fact targets only software compo-
nents and does not account for hardware/software co-design
aspects. Finally, in [62] the authors present an object-oriented
approach towards dependable co-design based on UML and the
Parallel Object-Oriented Specification Language.

Tools. COMPASS is not the only existing AADL based toolset. The
TOPCASED project [63] provides a toolchain that translates AADL
and its Behavior Annex into Fiacre, and from Fiacre into timed
Petri nets, which can be then model checked using the TINA

Table 3
Diagnosability analysis report.

Failure scenario Model Diagnosis property Outcome Time (s) Memory (MB)

Single transient in MEA Full Fault detected n.a. 565,383 o.o.m.
Single permanent in battery Full Fault detected Diagnosable 383,891 36,905
Single permanent in battery EPS Fault detected Diagnosable 259 76
Single transient in battery EPS Fault detected Diagnosable 577 88
Double permanent in Earth sensors Full Fail-operational flag is set n.a. 515,836 o.o.m.
Double permanent in Earth sensors AOCS Fail-operational flag is set Undiagnosable 164,049 28,775
Single transient in solar array EPS Fault detected Diagnosable 775 93
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toolbox. There is also another backend that translates Fiacre into
Lotus NT, the process algebraic language that can be analyzed
within the CADP toolbox [64]. Both Fiacre backends cover the
AADL Behavior Annex and support the analysis of real-time
properties, but as opposed to COMPASS, they do not integrate
the specification and analysis of erroneous behavior. In [65], the
authors present an ontology-based transformation of AADL mod-
els into the Altarica formal language. Their approach utilizes the
ontology languages built-in reasoning capabilities to bridge the
semantic gap between AADL and Altarica. This allows them to
detect lack of model elements and semantically inconsistent parts
of the system design, but timed or hybrid extensions and prob-
abilistic analyses remain out of scope. Other worth to mention
AADL based tools are ADeS [66] for simulation of system archi-
tectures, as well as Cheddar [67] and the Furness toolset [68] for
schedulability analysis.

Applications. In the past, other case studies have been con-
ducted within the space domain. We highlight a few of them that
bear similarity with the projects described in this paper.

In [69], a formal approach is described for the specification of
an Attitude and Orbit Control System (AOCS). Key in that approach
is that correctness properties are verified with each refinement of
the specification. The COMPASS approach allows for incremental
specification by deepening the system hierarchy, but verifies
correctness properties on a whole system architecture at once. In
our pilot projects, we cover the full satellite platform, which
includes the Attitude and Orbit Control System.

In [70], the architectures of a spacecraft and a space-based
network are analyzed with respect to their reliability under
degraded modes of operation, also referred to as their surviva-
bility. It employs stochastic Petri-nets as their fundamental model.
In contrast to their work, we use a high-level modeling language
for expressing the case, which we believe is more engineer-
friendly. Also, we validate properties beyond survivability, such
as correctness and performance aspects.

In [71], NASA studied the use of formal analysis techniques for
finding bugs in the Martian Rover software. They focus on code
verification of spacecraft software implementations. In our pro-
jects we focus on the spacecraft system software design, and
analyze it from a correctness, safety and dependability and
performance perspective.

In [72], the validation of a satellite's design is supported by
simulation of several linked models comprising parts of the
spacecraft and its Failure Detection, Isolation and Recovery con-
cept. The result is an integrated simulatable model of high-fidelity
upon which functional correctness properties can be validated.
Our pilot project does not reuse and link existing models, and the
fidelity of our model is comparatively lower in order to mitigate
the state space explosion problem. However, we validate proper-
ties beyond functional correctness, covering the safety, depend-
ability and performance aspects.

The COMPASS toolset was also evaluated by Thales Alenia
Space, on two case studies of their satellite subsystems [6]. The
first case study relates to the definition of satellite mode manage-
ment and its associated fault management strategy. It models the
AOCS (Attitude and Orbit Control System) equipment and other
functional subsystems, and the (re-)configuration sequences,
representing sequences of commands which are sent to the AOCS
units in case of a detected failure. Injected faults include transmis-
sion error, electrical default and data inconsistency. The model was
simulated, and several properties of the model were verified using
FTA and model checking. The second case study models a thermal
subsystem, consisting of thermal lines, heaters and sensors, that
regulates the satellite's temperature by performing both active and
passive regulation. The functional model, covering the whole
perimeter of the thermal regulation function, was complemented

by a more detailed model, taking into account the behavior of the
thermal lines. A thermal line consists of heater lines, safety
switches and thermistors. Several forms of redundancies are
foreseen, to deal with failures. Injected faults include stuck-at-
value for sensors, no heating and always heating for a heater,
stuck-at-ON and stuck-at-OFF for a switch. Different alternative
models were built, simulated and analyzed for correctness, relia-
bility, safety and diagnosability capabilities using model checking,
FTA and FMEA, fault detection and fault recovery analysis. Both
subsystem case studies sparked the interest in a pilot on a system-
level spacecraft, which we performed and reported the results in
Sections 6 and 7.

9. Conclusions

In five years, we implemented the latest advances in (prob-
abilistic) model checking into a full-fledged graphical toolset for
formal model-based system-level design and rigorous analysis of
correctness, safety, dependability and performability properties,
and demonstrated its effectiveness for spacecraft design validation
in an industrial setting. The pilot projects, described in this article,
were performed on satellite system-level and subsystem-level
designs of past and ongoing space missions. These projects led
to the definition and analysis of extremely large spacecraft system
models and resulted in an advancement of validating spacecraft
designs for correctness, safety, dependability and performance
based on an integrated system model. The associated technology
readiness level increased from level 1 (in 2008) to early level 4 (in
2012). Follow-up projects are going on and planned for, and thus
further activities build upon the existing cooperation between
academia and the space industry. Even though the COMPASS
toolset is developed to meet the needs of the space industry, its
general focus on safety-critical systems also applies to similar
domains such as the automotive, aviation and railway industries.
Distribution of the COMPASS toolset is restricted to ESA member
states. The literal license, along with manuals, tutorials and
presentations are available on our website [3].
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