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Abstract

This paper presents an investigation into generalized Bayesian analysis of
warranty contracts, using sets of prior distributions within the theory of
imprecise probability. Explicit expressions are derived for optimal lower and
upper bounds for the expected profit for the manufacturer of a product,
corresponding to an imprecise negative binomial model for which two sets of
prior distributions are studied. The results can be used to set a maximum
value of compensation such that the manufacturer’s expected profit remains
positive, under vague prior knowledge.
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1. INTRODUCTION

Warranties are important aspects of many contracts between consumers
and manufacturers. Typically, decisions about such contracts must be made
at an early stage, when the available knowledge about the product reliability
might be vague. While the Bayesian approach is attractive to investigate
warranties, meaningfully assigning a single prior distribution might be dif-
ficult and it might not fully reflect available information. In particular, if
one attempts to model lack of prior information, the generalized Bayesian
approach using theory of imprecise probability, in which sets of prior distri-
butions are used instead of a single prior distribution, provides an attractive
framework for inference that can be used to analyse warranty contracts.

aCorresponding author: frank.coolen@durham.ac.uk

Preprint submitted to Reliability Engineering and System Safety January 19, 2015



An introduction to general theory of imprecise probability has been pre-
sented by Augustin et al [1], while an earlier detailed mathematical introduc-
tion to such theory was presented by Walley [2]. Introductions and overviews
of imprecise probability with specific attention to topics in reliability and risk
have been presented by the current authors [3, 4, 5]. The problem studied in
this paper concerns a basic model for warranties, proposed by Singpurwalla
[6] and also mentioned by Aven [7]. It does not include detailed analysis of
real-world warranty data, which is an important and challenging topic which
could benefit from analysis with the use of statistical methods based on im-
precise probabilities. Recent contributions to statistical methods for analysis
of real-world warranty data, including many further references, have been
presented by Wu [8] and Gupta et al [9]. Standard Bayesian analysis of war-
ranty claim data has been proposed by many authors, for example, Stephens
and Crowder [10], Chen and Popova [11], Wu and Huang [12], Akbarov and
Wu [13].

Section 2 introduces the basic setting for the analysis of warranty con-
tracts considered in this paper. Section 3 presents a standard Bayesian ap-
proach for such an analysis, which is generalized through the use of an im-
precise probability model in Section 4. While this model is closely related
to popular imprecise probability models, it has a quite obvious disadvantage
which is addressed in Section 5, effectively by using a restricted set of prior
distributions. The main results presented in this paper are explicit expres-
sions for the lower and upper expected profits for the manufacturer with
a specified warranty contract. These are optimal lower and upper bounds
and they enable valuation of compensation under this contract in order for
the expected profit to remain positive. The presented imprecise probability
models only assume vague prior knowledge and explicitly reflect this through
these lower and upper bounds. The results are illustrated by examples in the
respective sections. The paper ends with some concluding remarks in Sec-
tion 6. Detailed proofs of the propositions in this paper are presented in an
appendix.

2. WARRANTY CONTRACT ANALYSIS

Consider a scheme of typical warranty contracts as proposed by Singpur-
walla [6] and also considered by Aven [7]. The scheme models the exchange of
items from a large collection of similar items between a manufacturer (seller
A) and a consumer (buyer B).
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Let n be the number of items that the buyer would like to purchase.
These items are supposed to be exchangeable with regard to their intended
functioning and to have independent and identically distributed (iid) failure
behaviour. Each item is required to be used for τ units of time, so the iid
assumption for their lifetimes implies that each item meets this requirement
with the same probability and the random success of any item in doing so
is independent of that of other items, conditional upon the value of this
probability. Throughout this paper, and in line with common practice, the
probability of an item functioning successfully over the period considered is
assumed to be high, so failures are relatively rare. It is assumed that an item
can only fail once.

Suppose that the buyer B is willing to pay x monetary units, say dollars,
per item, and is prepared to tolerate at most a total of z failures for all the
n units in the time interval [0, τ ]. For each failure in excess of z, the buyer
B needs to be compensated at the rate of y dollars per item. In effect, the
quantity τ can be viewed as the duration of a warranty. One of the questions
of interest is determination of the maximum compensation y per item in
order for the seller to keep a non-negative expected profit.

Suppose that it costs c dollars to produce a single unit of the item, then
the sale of n units at price x leads to income n(x − c) dollars for seller A.
If the buyer B experiences z or fewer failures in [0, τ ], then this income is
equal to A’s profit. However, if B experiences i > z failures in [0, τ ] then A’s
liability is (i− z)y leading to total profit of n(x− c)− (i− z)y dollars.

Formally, the number of failing items in the given time period of length
τ should be modelled by a Binomial distribution. However, due to the rea-
sonable assumption that failures during this period are relatively rare, it
is common practice [6] to use the Poisson distribution as approximation,
this simplifies computation and is assumed henceforth in this paper. In this
model, the parameter reflecting the quality of the items is the failure rate λ,
which represents the average number of failing items among n items during
a unit time interval. Let p(i|λ) denote the probability for the event that
exactly i items will fail during the time interval [0, τ ]. For known value of
the parameter λ, this probability is

p(i|λ) =
(λτ)i exp(−λτ)

i!
. (1)

Note that, while these probabilities are positive for all integers i ≥ 0, the
assumption that items will only fail quite rarely implies that p(i|λ) for i > n
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will be neglectably small, hence the approximation mentioned above remains
reasonable. The corresponding expected profit for seller A, denoted by G (for
‘gain’), for known value of λ, is

EλG=n(x− c)− y
n∑

i=z+1

(i− z)p(i|λ). (2)

In this paper, the scenario considered is that seller A will aim at non-negative
expected profit, so EλG ≥ 0. Of course, this could be replaced with a different
target for the expected profit, the mathematical analysis would be easily
adapted and is not discussed further. If the seller has strong background
information concerning the failure rate λ, it may be possible to consider it to
be known. However, in many applications such information is not available.
The Bayesian approach, reviewed in the following section, is the standard
method for dealing with a not fully known failure rate.

3. STANDARD BAYESIAN APPROACH

If the parameter λ is unknown, it can be considered as a random quantity
for which a probability density function π(λ|θ) can be assumed. In this case,
the Bayesian approach can be applied for computing the expected profit,
which is determined as the unconditional expected value

EG =

∫
Ω

EλG · π(λ|θ)dλ = n(x− c)− y
n∑

i=z+1

(i− z)

∫
Ω

p(i|λ) · π(λ|θ)dλ.

Here θ is the vector of parameters of π and Ω = R+ is the set of possible
values of λ. The corresponding probability of exactly k failures occurring
during a period of length τ is

P (k) =

∫
Ω

p(k|λ) · π(λ|θ)dλ.

The Bayesian approach enables prior information, mainly based on expert
judgement, to be combined with data. Suppose that the prior distribution
π(λ|θ) reflects the expert’s opinion about the possible values for λ prior
to collecting any information. Suppose that data become available of the
following form: n items have been tested for m periods, which can be of
variable length. Suppose that the number of failing items, out of n, during
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period j ∈ {1, . . . ,m} is kj, and that the length of this period is τj. It should
be noted that a more general scenario, with numbers of items being tested
during the different periods not being equal to n, is quite straightforward
to analyse following a similar setting but with the parameter λ explicitly
related to a single item; this is left as an exercise for the reader, the current
restriction simplifies the presentation and does not really limit the model
with regard to the main new results as presented in the following sections.

It is convenient in Bayesian analysis to choose a prior distribution such
that resulting computations in order to derive the posterior distribution are
easy, which particularly occurs when a conjugate prior distribution is used.
This leads to a posterior distribution belonging to the same parametric fam-
ily of distributions as the prior distribution [14]. The Gamma distribution
is a conjugate prior for the parameter λ of the Poisson distribution. Its pa-
rameters are θ = (a, b), with a > 0, b > 0, and it has the probability density
function

π(λ|a, b) = Gamma(a, b) =
1

Γ(a)
baλa−1 exp(−bλ), λ > 0.

where Γ(a) is the gamma function.
Suppose that data become available for n items during m time periods,

as described above, and let K = k1 + . . . + km and T = τ1 + . . . + τm. The
corresponding posterior predictive probability for the event that, out of n
further items, k will fail during a time period length τ can be derived by
standard Bayesian methods [14]. These probabilities, for k ≥ 0, are given by
the Negative Binomial distribution and are equal to

P (k) =
Γ(a+K + k)

Γ(a+K)k!

(
b+ T

b+ T + τ

)a+K (
τ

b+ T + τ

)k
. (3)

Note again that these P (k) are positive for all k ≥ 0, but with relatively few
items failing these probabilities for k > n will be extremely small, ensuring
that the approximate model does not lead to complications.

Returning to the warranty model analyzed in this paper, as introduced
in Section 2, the expected profit for the manufacturer is equal to

EG = n(x−c)−y
n∑

k=z+1

(k − z)Γ(a+K + k)

Γ(a+K)k!

(
b+ T

b+ T + τ

)a+K (
τ

b+ T + τ

)k
.

(4)
This standard Bayesian scenario is illustrated by Example 1.
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Example 1. Suppose a buyer is considering to purchase n = 100 items at a
cost of x = 20 dollars per item. Suppose that it costs c = 16 to produce each
single item. Let the time period considered be of length τ = 1 and suppose
that the buyer would be willing to accept only z = 1 failure for all 100 items
during this period. Suppose that also 100 items have been tested, over three
time periods which were all also of length 1, and assume that the numbers
of failing items per time period were k1 = 0, k2 = 1, k3 = 1. To derive the
posterior probabilities for the model described above, the sufficient statistics
for these data are the total length of the periods for the tests, T = 3, and the
total number of failing items during these tests, K = k1+k2+k3 = 2. Assume
that the prior distribution was the Gamma distribution with parameters a = 1
and b = 1, then the corresponding expected profit is equal to

EG = 100 · 4− y
100∑
k=2

(k − 1)Γ(3 + k)

Γ(3)k!

(
4

5

)3(
1

5

)k
= 100 · 4− y · 0.262.

This implies that the expected profit for the seller A is nonnegative if and
only if

100 · 4− y · 0.262 ≥ 0

and hence that A would be willing to pay up to 1, 527 dollars in compensation
per item, for any number of items that would fail during the warranty period
of length 1 apart from one item, which was the number deemed to be accept-
able to fail by the buyer B. Of course, there are likely to be further aspects
which the seller A may need to take into account to set a realistic level of
compensation, for example additional costs and risk of large losses. Including
such aspects is conceptually straightforward in combination with the posterior
distribution presented here.

It should be noted that the negative binomial distribution is widely ap-
plied in many areas, including marketing research, insurance and risk man-
agement, where events of interest are relatively rare. When applying the
Bayesian approach, as outlined in this section, the choice of prior distribu-
tion in general, or more specifically the choice of the parameters a and b
if one assumes the conjugate Gamma prior distribution, is nontrivial if one
has little or no meaningful prior information about the frequency of failures.
It has become a standard procedure, in such situations, to use a so-called
‘noninformative’ prior distribution.
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Many methods for determining noninformative prior distributions in the
Bayesian framework have been proposed in the literature. Many methods
apply the Bayes-Laplace postulate, which is also known as the principle of
insufficient reason [15]. According to this principle, the prior distribution
should be uniform. However, this choice meets some difficulties or problems.
The first problem is that the uniform distribution is not invariant under
reparametrization. If one has no information, for instance, about a parame-
ter φ, then one also has no information about 1/φ, but a uniform distribution
for φ does not correspond to a uniform distribution for 1/φ. Another possible
problem with the uniform prior is that if the parameter space is infinite, the
uniform prior is improper because it does not integrate to one. The corre-
sponding posterior distribution may well be proper, but for example in case
of data containing zero failures, in the setting considered in this paper, the
posterior distribution may remain improper, hence not enabling conclusions
in terms of expected values. Walley [16] gives a number of examples illustrat-
ing possible problems and shortcomings of the principle of insufficient reason.
A detailed review of other methods for constructing a noninformative prior
has been presented by Syversveen’s [17].

Another interesting approach to modelling absence of prior information
within a Bayesian framework of statistics is based on using a class M of
prior distributions instead of a single prior distribution [1, 16]. This over-
comes many of the problems related to selecting a single noninformative
prior. Typically, when interest is in an event U , the class of prior distribu-
tions is reflected by corresponding lower and upper probabilities for the event
U , denoted by P (U) and P (U), respectively, which are defined by as

P (U) = inf{Pπ(U) : π ∈M}, P (U) = sup{Pπ(U) : π ∈M}.

As pointed out by Walley [16] and Syversveen [17], the classM is “not a
class of reasonable priors, but a reasonable class of priors”. This means that
each single member of the class is not a reasonable model for prior ignorance,
because no single distribution can model ignorance satisfactorily. However,
the whole class can be considered to provide a reasonable model for prior
ignorance. When one has little prior information, the upper probability of
a non-trivial event should be close to one and the lower probability should
be close to zero. One can interpret this, in terms of precise probabilities, as
reflecting that the prior probability for the event of interest can be anywhere
within the range from 0 to 1. It is particularly attractive to define such
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classes of prior distributions in a manner such that the conjugacy property is
maintained, hence leading to quite straightforward updating of the prior class
to a class of posterior distributions when data become available. Examples
of such models are Walley’s imprecise Dirichlet model [16], which has been
applied to a variety of scenarios in reliability [18, 19, 20], and, more generally,
imprecise probability models for inference in exponential families [21]. In the
following sections, two related models using classes of prior distributions in
the generalized Bayesian framework are presented for the basic warranty
problem discussed in this paper.

4. IMPRECISE NEGATIVE BINOMIAL MODEL I

To simplify presentation, it is convenient to let us replace the parameters
a and b in the expression for the Negative Binomial distribution P (k) as
by α and s, such that a = sα and b = s. This replacement is proposed by
Quaeghebeur and de Cooman [21] in their paper devoted to imprecise models
for inference in exponential families, and follows a similar parametrization
used by Walley [16] for the imprecise Dirichlet model. Then

P (k) =
Γ(sα +K + k)

Γ(sα +K)k!

(
s+ T

s+ T + τ

)sα+K (
τ

s+ T + τ

)k
.

A convenient way to construct an imprecise probability model is by using
the set of all Negative Binomial distributions with fixed hyperparameter s
and with arbitrary α ≥ 0. Note that this corresponds to applying the same
reparametrization for the underlying Gamma prior distribution for the pa-
rameter λ of the Poisson model, and taking the corresponding class of prior
distributions. By dealing with the set of distributions instead of a single
distribution, one derives lower and upper bounds for EG instead of a precise
value as corresponds to a single distribution, which is in line with the lower
and upper probabilities as discussed above. These lower and upper bounds
can be obtained by minimizing and maximizing EG over all values of α in
[0,∞).

The expected profit for the seller A, with the replaced parameters, is of
the form

EG = n(x−c)−y
n∑

k=z+1

(k−z)
Γ(sα +K + k)

Γ(sα +K) · k!

(
s+ T

s+ T + τ

)sα+K (
τ

s+ T + τ

)k
.
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The hyperparameter s > 0 determines the influence of the prior distribution
on posterior probabilities and the expected profit. In particular, if s = 0,
then the posterior distribution

P (k) =
Γ(K + k)

Γ(K)k!

(
T

T + τ

)K (
τ

T + τ

)k
.

is totally determined only by information in the form of K and T .

Proposition 1. If y ≥ 0, then the expected profit EG as a function of the
parameter α has a single minimum.

The expected number of failures X under conditions K = 0 and T = 0 is
computed as

EX = a/b = α.

So the parameter α for the Negative Binomial distribution can be interpreted
as the prior expected number of failing items out of n items, which are all
used for a time period of unit length. Assuming that the prior expected
number of failures may be arbitrary from 0 to ∞ and using Proposition 1,
the following optimal lower and upper bounds for the expected profit are
derived corresponding to the model presented in this section. Note that the
upper expected profit is not proven as it is straightforward.

Proposition 2. The upper expected profit, denoted by EG, is achieved for
α→∞ and is equal to

EG = n(x− c).

It follows from Proposition 2 that the upper bound for the expected profit
is noninformative. It assumes an ideal case when we get the maximally possi-
ble expected profit. The value of compensation y can be accepted arbitrarily
in this case.

Proposition 3. The lower bound for the expected profit, denoted by EG, is
achieved at the point α0 which is the root of the equation

n∑
k=z+1

Zk ·
Γ (sα +K + k)

Γ (sα +K)
vsα+K

(
k−1∑
i=0

1

sα +K + i
+ ln v

)
= 0, (5)

where

Zk =
(k − z) (1− v)k

k!
, v =

s+ T

s+ T + τ
.
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The point α0 belongs to interval [α1, αn−z]. Here α1 and αn−z are roots of
equations

z∑
i=0

1

sα +K + i
+ ln

(
s+ T

s+ T + τ

)
= 0,

n−1∑
i=0

1

sα +K + i
+ ln

(
s+ T

s+ T + τ

)
= 0,

respectively.

Proposition 3 provides a simple way for numerical computation of the
lower bound for the expected profit EG. According to the proof of this
proposition, equation (5) has a unique root. Moreover, bounds for possible
values of the root can be simply computed. This implies that (5) can be
solved by means of one of the well-known numerical methods, for example,
gradient methods or the bisection method.

Note that the limit value of the expected profit for α → 0, before any
observations, is n(x − c), i.e., values of the expected profit for α → ∞ and
for α → 0 coincide and are equal to the upper bound EG. This interesting
fact is explained in the following way by setting K = T = 0. The case α→ 0
means that the number of failing items tends to zero and seller A does not
need to compensate the failed items. Non-zero probabilities of failures P (k)
by α → ∞ are concentrated at values k � n. The restricted value of n
is the main reason of the unexpected behaviour of the lower bound for the
expected profit EG as a function of the parameter α. This fact gives us the
idea to study the expected profit under condition of large values of n.

Proposition 4. If y ≥ 0 and n → ∞, then the expected profit EG is a
decreasing function of the parameter α.

Proposition 4 implies that we can apply the property of monotonicity of
the expected profit for very large values of n.

Example 2. Consider again the scenario of Example 1, which is now used to
illustrate the imprecise model presented in this section, in order to compute
an interval for the values of y corresponding to nonnegative expected lower
and upper bounds for the profit for seller A. Assume that the hyperparameter
s is set equal to 1, then the upper bounds for the expected profit is EG = 400.
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The lower bound for the expected profit is the root of the equation

100∑
k=2

(k − 1)Γ (α + 2 + k)

Γ (α + 2) k!
0.8α+2 · 0.2k

(
ln 0.8 +

k−1∑
i=0

1

α + 2 + i

)
= 0,

which is α0 = 330. At that, the bounds for α0 can also be computed using
Proposition 3. They are α1 = 2.48 and αn−z = 398.5. The function

Q(α) =
n∑

k=z+1

(k − z)P (k, α)

is shown in Fig. 1. Moreover, the function Q(α) at point α0 = 330 has value
Q(330) = 77.112. The pessimistic value of y can be derived from the equation
100 · 4− y · 77.112 = 0. The solution is y = 5.19.

Hence the upper bound for y is undetermined. The lower bound for y is
determined from the equation EG = 0 and is y = 5.19. This means that, in
the worst case scenario with all items failing, compensation of 5.19 dollars
per item would be the maximum in order to avoid a loss, which follows from
the difference between the selling price and production costs. This situation
is addressed further in the following section.

In order to compare these values it is interesting just to apply the Poisson
distribution with the parameter λ = K/T = 2/3 in the standard warranty
model, so without learning in the Bayesian framework. The corresponding
expected profit is

EG = 100 · 4− y
100∑
i=2

(i− 1)
(2/3)i exp(−2/3)

i!

= 100 · 4− y · 0.18.

This would lead to y = 2, 222 as maximum possible compensation in order
for A to keep nonnegative expected profit. Clearly, the above calculated lower
value for y forms an interval which contains this value corresponding to re-
placing λ by the empirical value K/T .

5. IMPRECISE NEGATIVE BINOMIAL MODEL II

The imprecise Negative Binomial model I, as presented in the previous
section, has one major problem when applied to the warranty model con-
sidered in this paper. Namely, the upper bound for the expected profit, as
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Figure 1: The function Q(α)

derived in Proposition 2, does not depend on data observations due to it
being attained for the limit situation α→∞. Therefore, another model for
constructing a set of Negative Binomial distributions for the warranty model
is now proposed. Similar to model I, this is based on the generalized Bayesian
approach with a class of Gamma prior distributions for the parameter λ of
the Poisson distribution, but now the possible range of values for α is limited.
The proposal followed here is to take as the set of parameters (a, b) all values
within the triangle given by end-points (0, 0), (sa, 0), (0, sb), with hyperpa-
rameters sa > 0 and sb > 0. Note that this implies that, a priori, all ‘rates
of occurrence of failures’ a/b ∈ [0,∞) are represented by pairs (a, b) within
this set. This can again be considered to represent lack of prior information.
Next the posterior lower and upper expected profits in the warranty model,
using this set of parameters, are derived.

However, before getting the bounds for the expected profit, we consider
some properties of EG as a function of the second parameter b.

Proposition 5. If y ≥ 0, then the expected profit EG of equation (4), as a
function of the parameter b, has a single minimum in the interval [0,∞) or
it is decreasing over this interval.

Let us represent the function EG in equation (4) as EG = n(x − c) −
yQ(a, b). Then the minimum of EG corresponds to the maximum of Q(a, b).
It follows from the proof of Proposition 5 that the condition for the function
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Q(a, b) to have its maximum at point b ≥ 0 for fixed a is

n∑
k=z+1

(k − z)P (k) ((a+K)τ − (b+ T )k) .

Here P (k) is defined by equation (3). If the optimal value of b is negative,
then the function Q(a, b) is decreasing.

If we take sa such that it is less than some aopt(b) which provides the
maximum of Q(a, b) for a fixed b, then Q(a, b) increases for a ≤ sa, for every
b. This implies that the smallest value of Q(a, b) is achieved at a = 0. Then
the minimum of Q(0, b) is achieved at b = sb if sb is larger than the optimal
value of b providing the minimum of Q(0, b). Together with Proposition 5,
this enables us to formulate the following proposition which determines the
upper bound for the expected profit.

Proposition 6. Suppose that Q(0, b) achieves its maximum at b = bopt.
Let us take sb ≥ bopt. Then the upper expected profit EG is achieved at
(a, b) = (0, sb) and is equal to

EG = n(x− c)− y
n∑

k=z+1

(k − z)Γ(K + k)

Γ(K)k!

(
sb + T

sb + T + τ

)K (
τ

sb + T + τ

)k
.

Here bopt is defined as the solution of the equation:

n∑
k=z+1

(k − z)Γ(K + k)

Γ(K)k!

(
b+ T

b+ T + τ

)K (
τ

b+ T + τ

)k
(Kτ − (b+ T )k) = 0.

(6)
If bopt < 0, then the function EG is increasing as a function of b and we take
bopt = 0.

In the same way, we formulate another proposition which determines the
lower bound for the expected profit.

Proposition 7. Let us consider a set of values of b ∈ [0, sb]. The lower
expected profit EG is determined by means of the optimization problem:

EG = n(x− c)− y · max
b∈[0,sb]

Q(a0(b), b),

13



where a0(b) is the root of equation (5) in Proposition 3 under the condition
that sα is replaced by a and v is computed as

v =
b+ T

b+ T + τ
.

If the obtained value of a0(b) satisfies condition a0(b) > sa, then a0(b)
takes the value sa.

It follows from Proposition 7 that EG can only be computed numerically
by considering all possible values b ∈ [0, sb] in a predefined grid.

Corollary 1. Before taking any observations into account, hence solely based
on the set of prior distributions as described for model II in this section, and
assuming sa > 0 and sb > 0, the optimal upper bound for the expected profit
for seller A is EG = n(x− c).

It is interesting to point out that the lower bound for the expected profit
does not have a similar trivial form due to restricted values of n.

The Negative Binomial model II for the basic warranty scenario consid-
ered in this paper, is illustrated in the following example.

Example 3. Consider again the scenario of Example 1, where now model
II is applied in order to determine the interval of values of y, following the
same arguments as in Example 2, and assuming that sa = 1 and sb = 1.

First, we solve equation (6), i.e.,

100∑
k=2

(k − 1)Γ(2 + k)

Γ(2)k!

(
b+ 3

b+ 3 + 1

)2(
1

b+ 3 + 1

)k
(2 · 1− (b+ 3)k) = 0.

This equation has a negative solution. Therefore, the function Q(0, b) is
decreasing as function of b and the value of the hyperparameter sb can be
taken arbitrarily in the interval (0,∞).

EG = 100 · 4− y
100∑
k=2

(k − 1)Γ(2 + k)

Γ(2)k!

(
1 + 3

1 + 3 + 1

)2(
1

1 + 3 + 1

)k
= 100 · 4− y · 0.14.
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Let us solve the problem maxb∈[0,1]Q(a0(b), b). It turns out that Q(a0(b), b)
achieves its maximum at b = 1, where a0(1) = 332.8. Hence, the optimal
lower bound for the expected profit is attained for a = sa = 1, leading to

EG = 100 · 4− y
100∑
k=2

(k − 1)Γ(1 + 2 + k)

Γ(1 + 2)k!

(
1 + 3

1 + 3 + 1

)1+2(
1

1 + 3 + 1

)k
= 100 · 4− y · 0.262.

Hence, the upper bound for y, determined by setting EG = 0, is y = 2, 857.
The lower bound for y, determined by setting EG = 0, is y = 1, 527, which
is identical to the value for the “precise” model as derived in Example 1.
The bounds differ substantially from the value under model I as derived in
Example 2, which is a direct consequence of the restriction of the prior range
of values of α.

To consider some further aspects of interest in the proposed model II,
Figure 2 shows the lower and upper bounds for y for various values of the hy-
perparameters sa = sb = s. This clearly illustrates the increased imprecision
for larger values of s, the specific value to use must be based on judgement of
the topic experts.

It is further of interest to illustrate the dependence of the lower and upper
bounds for ln(y) on z. For the model with s = 1, Figure 3 shows these
bounds for some values of z, where it is assumed that not too many of the
n = 100 items are likely to fail during the time period considered, as failures
are assumed to be quite rare. Both these lower and upper bounds for y are,
of course, increasing as functions of z, with particularly the upper bound
increasing rapidly due to the small number of failing items in the observed
data.

Finally, it is interesting to consider how the total time T of the data
observations influences the lower and upper bounds for ln(y). For fair com-
parison, the corresponding values of the total number K of failures over this
time period are defined such that the empirical failure rate, given by K/T ,
is constant and is kept at the value 2/3 (see Example 2). The corresponding
values are shown in Figure 4. Clearly, the imprecision, that is the width of
the interval [y, y], decreases as T increases, which is in line with intuition
as the amount of imprecision logically decreases as function of the number
of available data observations, and y tends to a limit value which can be
determined from Equation (2) with p(i|λ = 2/3).

15



Figure 2: The lower and upper bounds for ln(y) for various values of the hyperparameter
s.

Figure 3: The lower and upper bounds for ln(y) for various values of z.
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Figure 4: The lower and upper bounds for ln(y) for various values of T .

6. CONCLUDING REMARKS

This paper has introduced two imprecise probability models for a basic
warranty scenario, which can be used to guide the compensation offered by
a seller of units in case too many items fail during the warranty period. The
proposed models are closely related, with model I being arguably the intu-
itively more logical one, but it has a disadvantage that is overcome by model
II. The explicit derivations of formulae for the lower and upper expected
profits for these two models are powerful results that make application and
analysis of the models straightforward. Of course, there are many aspects
related to practical warranty decisions that require more detailed study in
order to develop imprecise probability models and inferential approaches for
them, these provide interesting challenges for future research.
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Appendix

A. Proof of Proposition 1
Let us introduce notation w = sα + K, v = (s + T )/(s + T + τ) and

consider the function

Q(w) =
n∑

k=z+1

(k − z)
Γ(w + k)

Γ(w) · k!
(1− v)k vw.

We aim to prove that the function Q(w) has a single maximum in interval
[0,∞) for w (the expected profit has a single minimum in interval [0,∞) for
α). Without loss of generality, we take z = 0 and integer values of w for
simplicity. Let us transform the function Q(w) as follows:

Q (w) =
n∑
k=1

1

(k − 1)!

Γ (w + k)

Γ (w)
(1− v)k vw. (7)

Hence, we can represent the function Q(w) through the following derivatives:

Q (w) =
vw (1− v)

Γ (w)

n∑
k=1

(w + k − 1) ...k · (1− v)k−1

= (−1)w
vw (1− v)

Γ (w)

n∑
k=1

(
(1− v)w+k−1

)(w)

v

where (·)(w)
v denotes the w-th derivative over v. The above implies that

Q (w) = (−1)w
vw (1− v)

Γ (w)

(
(1− v)w − (1− v)w+n

v

)(w)

v

.

It is easy to show that(
(1− v)w

v

)(w)

v

=

(
1

v

)(w)

= (−1)w
w!

vw+1
.

Then we get

Q (w) = (−1)w
vw (1− v)

Γ (w)

(
(−1)w

w!

vw+1
−
(

(1− v)w+n

v

)(w)

v

)
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or

Q (w) =
1− v
v

w − (−1)w
vw (1− v)

Γ (w)

(
(1− v)w+n

v

)(w)

v

.

Let us use the expression for differentiation of the product of two functions

(f · g)(n) =
n∑
k=0

(
n

k

)
f (n−k)g(k).

Here
(
n
k

)
= n!/(k!(n− k)!). Then we get(

(1− v)w+n · 1

v

)(w)

v

=
w∑
k=0

(
w

k

)(
(1− v)w+n)(w−k)

(
1

v

)(k)

= (−1)w
w∑
k=0

(
w

k

)
(w + n) ... (n+ k + 1) · (1− v)n+k k!

vk+1
.

As a result, we obtain

Q (w) =
1− v
v

w

− w

(
w∑
k=0

1

(w − k)!
(w + n) ... (n+ k + 1) · (1− v)n+k+1 vw−k−1

)
or

Q (w) =
1− v
v

w

− w

(
w∑
k=0

1

k!
(w + n) ... (w + n− k + 1) · (1− v)w+n−k+1 vk−1

)
.

Hence, there holds

Q (w) =
1− v
v

w

− 1− v
v

w

(
w∑
k=0

(
w + n

k

)
(1− v)w+n−k vk

)
,
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or

Q (w) =
1− v
v

w

w+n∑
k=w+1

(
w + n

k

)
(1− v)w+n−k vk.

After replacing the summation index, we finally get

Q (w) = (1− v) vw−1w
n∑
k=1

(
w + n

n− k

)
(1− v)n−k vk

or

Q (w) = (1− v) vw−1w
n−1∑
k=0

(
w + n

k

)
(1− v)k vn−k.

For arbitrary values of w, we have

Q (w) = (1− v) vw−1w

×

(
n−1∑
k=1

(1− v)k vn−k

k!
(w + n) ... (w + n− k + 1) + vn

)
.

Another form of the same function is

Q (w) =
1− v
v

vw+nw

×

(
n−1∑
k=1

1

k!

(
1− v
v

)k
(w + n) ... (w + n− k + 1) + 1

)
. (8)

Both polynomials before vw in (7) and (8) have the n-th power. The
derivative of function (8) is

Q′ (w) =
1− v
v

vw+n

n−1∑
k=1

1

k!

(
1− v
v

)k
(w + n) ... (w + n− k + 1)

×

(
1 +

k−1∑
i=0

w

w + n− i
+ w ln v

)
+

1− v
v

vw+n (1 + w ln v) .
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For clarity, we write the above sum starting from index zero

Q′ (w) =
1− v
v

vw+n

n−1∑
k=0

1

k!

(
1− v
v

)k
× (w + n) ... (w + n− k + 1)

×

(
1 +

k−1∑
i=0

w

w + n− i
+ w ln v

)
.

One can see that the root of the equation Q′ (w) = 0 is between w1 (k1)
and w1 (k1 + 1) for some k, where w1 (k1) is the root of an equation produced
from the expression in parentheses, which is of the form:

1

w
+

k1−1∑
i=0

1

w + n− i
= − ln v.

Then we have to find k, k1 and w satisfying the system of equations
k−1∑
i=0

1
w+i

= − ln v,

1
w

+
k1−1∑
i=0

1
w+n−i = − ln v.

If a solution of the above system is unique, then we have proven the
proposition. Suppose that the solution is not unique. Let w0 (k) be a root of
the equation

k−1∑
i=0

1

w + i
= − ln v,

and w1 (k) be a root of the equation

1

w
+

k−1∑
i=0

1

w + n− i
= − ln v, k = 1, ..., n.

It is obvious that the sequences {w0 (k)} and {w1 (k)} are increasing. It
is also obvious that there exist k and k1 such that the root w∗ of the equation
Q′ (w) = 0 satisfies the following inequalities:

k−1∑
i=0

1

w∗ + i
≥ − ln v ≥

k∑
i=0

1

w∗ + i
,
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1

w∗
+

k1−1∑
i=0

1

w∗ + n− i
≥ − ln v ≥ 1

w∗
+

k1∑
i=0

1

w∗ + n− i
.

So, we get a new expression for Q(w) following from (8)

Q (w) =
1− v
v

w
n−1∑
k=0

1

k!
(w + n) ... (w + n− k + 1) (1− v)k vw+n−k,

which can be rewritten for integer w as

Q (w) =
1− v
v

w
n−1∑
k=0

(
w + n

k

)
(1− v)k vw+n−k.

We introduce the function

P (w) =
Q (w)
1−v
v
w

=
n−1∑
k=0

(
w + n

k

)
(1− v)k vw+n−k.

First, we will prove that this function is monotone and decreasing. Sec-
ond, we will prove that the function −P ′ (w) /P (w) is increasing. Then the
equation Q′ (w) = 0 has a unique root which defines the maximum of the
function Q (w). Indeed, it follows from the equality Q′ (w) = 0 that

1− v
v

P (w) +
1− v
v

wP ′ (w) = 0.

Hence, there holds

−P
′ (w)

P (w)
=

1

w
. (9)

Consequently, if the function −P ′ (w) /P (w) is increasing, then equality (9)
has a unique root.

Now we have to prove that the function P (w) is decreasing, this is done
in two steps.

First, we show that the inequality P (w + 1) ≤ P (w) holds. It follows
from the equality (

w + n+ 1

k

)
=

(
w + n

k

)
+

(
w + n

k − 1

)
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that the function P (w + 1) is represented as

P (w + 1) =
n−1∑
k=1

(
w + n+ 1

k

)
(1− v)k vw+n−k+1 + vw+n+1

=
n−1∑
k=1

((
w + n

k

)
+

(
w + n

k − 1

))
(1− v)k vw+n−k+1 + vw+n+1.

Hence

P (w + 1) =
n−1∑
k=1

(
w + n

k

)
(1− v)k vw+n−k+1

+
n−2∑
k=0

(
w + n

k

)
(1− v)k+1 vw+n−k + vw+n+1.

The above implies

P (w + 1) =
n−1∑
k=1

(
w + n

k

)
(1− v)k vw+n−k (v + 1− v)

−
(
w + n

n− 1

)
(1− v)n vw+1 + (1− v) vw+n + vw+n+1.

Consequently, we can write

P (w + 1) = P (w)−
(
w + n

n− 1

)
(1− v)n vw+1 ≤ P (w) . (10)

As the second step, we prove that the function −P ′ (w) /P (w) is increas-
ing, i.e., we prove that

−P
′ (w + 1)

P (w + 1)
≥ −P

′ (w)

P (w)
.

Equality (10) can be rewritten as follows:

P (w + 1) = P (w)− 1

(n− 1)!
(w + n) ... (w + 2) (1− v)n vw+1.
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By differentiating we get

P ′ (w + 1) = P ′ (w)−
(
w + n

n− 1

)
(1− v)n vw+1

×

(
n−2∑
i=0

1

w + n− i
+ ln (v)

)
(11)

Now we consider the difference

P ′ (w + 1)P (w)− P ′ (w)P (w + 1)

and prove that it is not larger than zero. By using (10) and (11), we obtain

P ′ (w + 1)P (w)− P ′ (w)P (w + 1)

=

(
P ′ (w)−

(
w + n

n− 1

)
(1− v)n vw+1

(
n−2∑
i=0

1

w + n− i
+ ln (v)

))
P (w)

−P ′ (w)

(
P (w)−

(
w + n

n− 1

)
(1− v)n vw+1

)
= −

(
w + n

n− 1

)
(1− v)n vw+1

(
n−2∑
i=0

1

w + n− i
+ ln (v)

)
P (w)

+

(
w + n

n− 1

)
(1− v)n vw+1P ′ (w) .

Now we have to prove that

P ′ (w)−

(
n−2∑
i=0

1

w + n− i
+ ln (v)

)
P (w) ≤ 0.

This is obvious due to

P ′ (w) =
n−1∑
k=0

Ck
w+n (1− v)k vw+n−k

(
k−1∑
i=0

1

w + n− i
+ ln (v)

)

≤ P (w)

(
n−2∑
i=0

1

w + n− i
+ ln (v)

)
,

which completes the proof.
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Figure 5: Typical curves of the function EGk for k = 1, ..., 4

B. Proof of Proposition 3
We consider the k-th term EGk of the sum in the expression for EG,

without parameters which do not depend on α and k,

EGk = −(k − z)
Γ(w + k)

Γ(w) · k!
vw (1− v)k .

Here w = sα +K and v = (s+ T )/(s+ T + τ). Denote

Z =
(k − z) (1− v)k

k!
≥ 0,

and rewrite the k-th term as follows:

EGk = −ZΓ(w + k)

Γ(w)
vw.

Differentiating the above expression gives

dEGk

dw
= Z · Γ (w + k)

Γ (w)
vw (ψ (w)− ψ (w + k)− ln v) .

Here ψ (x) = d
dx

ln Γ (x) is the digamma function. Hence, we can write the
following condition for the extremum:

ln v + ψ (w + k)− ψ (w) = 0.
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Note that 0 < v ≤ 1, which implies that ln v ≤ 0. On the other hand,
ψ (w + k)− ψ (w) is a decreasing function of w ≥ 0 because

ψ (w + k)− ψ (w) =
k−1∑
i=0

1

w + i
.

Moreover, ψ (w + k) − ψ (w) ≥ 0. Therefore, there exists a single point w0

for which ψ (w0 + k)− ψ (w0) = − ln v. If w ≤ w0 then

ψ (w + k)− ψ (w) ≥ ψ (w0 + k)− ψ (w0)

due to fact that function ψ (w + k)− ψ (w) is decreasing. This implies that
ln v + ψ (w + k)− ψ (w) ≥ 0 and

dEGk

dw
≤ 0,

because Z ≥ 0 and vwΓ (w + k) /Γ (w) ≥ 0. If w > w0 then

ψ (w + k)− ψ (w) ≤ ψ (w0 + k)− ψ (w0)

and
dEGk

dw
≥ 0.

The above implies that w0 is a global minimum of EGk.
According to Proposition 1, there is a unique minimum point α0. Typical

curves of the function EGk for different k are depicted in Fig. 5. One can see
from the figure that every term EGk has a single minimum whose existence
has been proved above. Moreover, the value of αk corresponding to the
minimum of EGk is less than the value of αk+1 corresponding to the minimum
of EGk+1. This follows from the inequality

k−1∑
i=0

1

w + i
≤

k∑
i=0

1

w + i

and condition ln v + ψ (w + k)− ψ (w) = 0. This implies that the minimum
of the sum of all EGk should be located between α1 and αn−z.
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C. Proof of Proposition 4
Without loss of generality, we again take z = 0 for simplicity. Then we

can write

EG = n(x− c)− y
∞∑
k=1

kP (k)

= n(x− c)− y · EX.

Here the expectation EX for the Negative Binomial distribution is defined
as EX = τ(a+K)/(b+ T ). Hence, there holds

EG = n(x− c)− yτ(sα +K)/(s+ T ),

as was to be proved.

D. Proof of Proposition 5
Let us represent the function EG as EG = n(x − c) − yQ(b). Then we

have to prove that the function Q(b) has a single maximum. Without loss
of generality we again take z = 0 for simplicity. By differentiating Q(b) we
obtain the following condition for the maximum

n∑
k=1

kP (k, b) ((a+K)τ − (b+ T )k) = 0.

Here P (k, b) is used to denote the probability given in equation (3).
Let us consider the case n = 1, which gives

(a+K)τ = b+ T.

It is obvious that we have a single non-negative root of the above equation if
(a+K)τ−T ≥ 0. Suppose that the proposition is valid for some n, i.e., there
is a value of b denoted bn such that Q(b) achieves the maximum at point bn.
By induction, we write the following condition of the maximum for the case
n+ 1:

bn+1 + T =
(a+K)τ

∑n
k=1 kP (k, b) + (a+K)τ(n+ 1)P (n+ 1, b)∑n

k=1 k
2P (k, b) + (n+ 1)2P (n+ 1, b)

.

We will prove that there is a single value of bn+1 satisfying the above
condition. We write the above equality in the following short form:

β (α + P (n+ 1, b)) = γ + λP (n+ 1, b),
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where β = bn+1 +T , α = (a+K)τ/(bn +T )/(n+ 1)2, γ = (a+K)τ/(n+ 1)2,
λ = (a+K)τ/(n+ 1). First, note that P (n+ 1, b) has a maximum (see the
similar case n = 1). Now we prove that β (α + P (n+ 1, b)) has a maximum
if P (n + 1, b) has a maximum. Indeed, in this case P ′(n + 1, b) = 0 holds.
Then for the function βP (n+ 1, b) we can write

(βP (n+ 1, b))′ = β′P (n+ 1, b) + βP ′(n+ 1, b)

= P (n+ 1, b) + βP ′(n+ 1, b) = 0.

The above condition is valid if P ′(n + 1, b) ≤ 0 at point bn+1. Then
βP ′(n+1, b) is increasing function by b ≥ bn+1. At the same time P (n+1, b)
is decreasing as function of b ≥ bn+1. This implies that they intersect in a
single point, as was to be proved.

The case when the function Q(b) is decreasing is obvious if bn+1 ≤ 0.
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