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Abstract

In system reliability, the structure function models functioning of a system
for given states of its components. As such, it is typically a straightforward
binary function which plays an essential role in reliability assessment, yet
it has received remarkably little attention in its own right. We explore the
structure function in more depth, considering in particular whether its gener-
alization as a, possibly imprecise, probability can provide useful further tools
for reliability assessment in case of uncertainty. In particular, we consider
the structure function as a predictive (imprecise) probability, which enables
uncertainty and indeterminacy about the next task the system has to per-
form to be taken into account. The recently introduced concept of ‘survival
signature’ provides a useful summary of the structure function to simplify
reliability assessment for systems with many components of multiple types.
We also consider how the (imprecise) probabilistic structure function can be
linked to the survival signature. We briefly discuss some related research
topics towards implementation for large practical systems and networks, and
we outline further possible generalizations.

Keywords: Lower and upper probabilities, structure function, survival
signature, system reliability

1. INTRODUCTION

In the mathematical theory of reliability, the main focus is on the func-
tioning of a system, given the structure of the system and the functioning,
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or not, of its components. The mathematical concept which is central to
this theory is the structure function. For a system with m components, let
state vector x = (x1, x2, . . . , xm) ∈ {0, 1}m, with xi = 1 if the ith component
functions and xi = 0 if not. The labelling of the components is arbitrary
but must be fixed to define x. The structure function φ : {0, 1}m → {0, 1},
defined for all possible x, takes the value 1 if the system functions and 0 if
the system does not function for state vector x. In this paper, as in most of
the literature, attention is restricted to coherent systems, for which φ(x) is
not decreasing in any of the components of x, so system functioning cannot
be improved by worse performance of one or more of its components (gen-
eralization to allow incoherent systems is possible but would make concepts
and notation later in the paper more complex). Coherence of a system is fur-
ther usually assumed to imply that all the system’s components are relevant,
meaning that the functioning or not of each component makes a difference
to the functioning of the system for at least one set of states for the other
components.

The structure function is a powerful tool for reliability quantification,
but in practice there may be uncertain or unknown aspects related to a sys-
tem’s functioning which can be taken into account by a generalization of the
structure function to a probabilistic structure function. A main motivation
for this generalization is that the system may have to deal with a variety
of tasks of different types, which put different requirements on the system.
We focus then on a specific future task to be performed, calling it the ‘next
task’, and take uncertainty about the type of this task into account by using
probabilities over the different types of tasks, and by generalizing this to
imprecise probabilities which enables uncertainty and indeterminacy to be
included in the modelling. This approach is very flexible; it can even be used
to include the possibility of a fully unknown type of task, which might for
example be suitable to reflect possible unknown threats to the system. A
further motivation comes from the fact that there may simply be too many
uncertainties affecting the system’s functioning, which cannot be modelled
in detail due to lack of meaningful information or limited time for detailed
analysis. Throughout, it should be kept in mind that the proposed (im-
precise) probabilistic structure function generalized the classical structure
function, and as such provides a more flexible tool for reliability quantifica-
tion. If one strongly feels that one can always model scenarios in full detail
then one can argue that this generalization is not required, in which case
perhaps the interest in the probabilistic structure function would be merely
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from the perspective of a mathematical exercise. However, we believe that
there are plenty of real-world scenarios that will benefit from the flexibility
provided by the (imprecise) probabilistic structure function when compared
to the special case of the deterministic structure function, ensuring that the
contribution of this paper goes far beyond merely a mathematical exercise.

Section 2 presents the structure function as a, possibly imprecise, pre-
dictive probability. This section also includes some motivating examples.
Section 3 explains how the (imprecise) probabilistic structure function can
be incorporated into (lower and upper) survival signatures for efficient sys-
tem reliability quantification [1]. Uncertainty with regard to the type of the
next task is considered in Section 4, and illustrated in an extensive example
in Section 5. The paper concludes with a discussion of some related aspects
in Section 6.

2. THE STRUCTURE FUNCTION AS (IMPRECISE) PROBA-
BILITY

A simple way to reflect uncertainty about the system’s functioning given
the state vector x is by defining the structure function as a probability, so φ :
{0, 1}m → [0, 1]. We define φ(x) as the probability that the system functions
for a specific state vector x and for the next task the system is required to
perform. It should be emphasized that explicit focus on the next task is not
necessary when generalizing the structure function in this way, but it provides
a natural tool for further uncertain aspects which we discuss later. We will
simply refer to this generalized structure function as probabilistic structure
function, and for simplicity we keep using the same notation φ(x which is
reasonable as the classical deterministic structure function is a special case
of the probabilistic structure functioning, only using probabilities 0 and 1.
Note that one could similarly define a probabilistic structure function for a
system that has to perform multiple future tasks, this is left as a topic for
future consideration.

We wish to emphasize that considering the structure function as a prob-
ability differs essentially from the classical use of the structure function with
randomness on whether or not the individual components function. The cor-
responding probability that the system functions with random functioning of
the components is usually called the ‘reliability function’ [2]. The important
novelty in this paper is that the system functioning can be uncertain for given
states of the components, which can occur due to a range of practical circum-
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stances. Combining the probabilistic structure function with randomness for
the state of the components is a straigthforward further step, simplified by
the use of the survival signature, as also presented in this paper.

Let S denote the event that the system functions as required for the next
task it has to perform, then

φ(x) = P (S|x) (1)

This generalization already enables an important range of real-world scenar-
ios to be modelled in a straightforward way. Scenarios where the flexibility of
the probabilistic structure function might be useful are, of course, situations
where even with known status of the components, it is not certain whether
or not the system functions, that is performs its task as required. This may
be due to varying circumstances or requirements which may not be modelled
explicitly, or may not even be fully known. It could also just be that, in
principle, the function of the system could be determined with certainty but
that constraints on time or access to experts may prevent this. As an ex-
ample, one could consider a collection of wind turbines as one system, with
the task to contribute to overall generation of a level of energy required to
provide a specific area with sufficient electricity for a specific period of time
(we can consider this to be the ‘next task’). One could consider each wind
turbine as a component (with several other types of components in the sys-
tem, that is irrelevant for now). Even if one knows the number of functioning
components at a particular time, factors such as the weather, the availabil-
ity of other electricity generating resources for the network, and the specific
electricity demand, can lead to uncertainty about whether or not the system
meets the actual requirements. To fit with the established deterministic def-
inition of the structure function one could define system functioning in far
more detail, but this may be hard to do in practice. As another example,
one could think about a network of computers which together form a system
for complex computations, where its actual success in dealing with required
tasks might be achieved with some computers not functioning, but with some
lack of knowledge about the exact number of computers required to complete
tasks of different types. A further motivating example is given at the end of
this section.

The generalization from deterministic to probabilistic structure function,
although mathematically straightforward, requires substantial information in
order to assess the probabilities of system functioning for all possible state
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vectors x. While this modelling might explicitly take co-variates into account,
thus possibly benefitting from a large variety of statistical models, it may be
difficult to actually formulate the important co-variates and one might not
know their specific values. This leads to two further topics we wish to discuss,
namely what precisely is meant when we say that the system functions, and
a generalization of probability to allow lack of knowledge to be reflected.

Whether or not a real-world system performs its task may depend on
many circumstances beyond the states of the system components. It may
be too daunting to specify system functioning for all possible circumstances,
and it may even be impossible to know all possible circumstances. Hence,
speaking of ‘system functioning’ in the traditional theoretic way seems rather
restricted. One suggestion would be to only define system functioning for
one (or a specified number of) application(s), e.g. whether or not a system
functions at its next required use. This will not be sufficient for all real-world
scenarios, but it will enable important aspects of uncertainty on factors such
as different tasks and circumstances to be taken into account. We believe
that this is a topic that requires further attention, it links to many system
dependability concepts including flexibility and resilience.

The generalization to a probabilistic structure function provides substan-
tial enhanced modelling opportunities for system reliability and dependabil-
ity. However, the use of single-valued probabilities for events does not enable
the strength or lack of information to be taken into account, with most ob-
vious limitation the inability to reflect if ‘no information at all’ is available
about an event of interest. In recent decades, theory of imprecise probability
[3] has gained increasing attention from the research community, including
contributions to reliability and risk [4]. It generalizes classical, precise, prob-
ability theory by assigning to each event two values, a lower probability and
an upper probability, denoted by P and P , respectively, with 0 ≤ P ≤ P ≤ 1.
These can be interpreted in several ways; for the current discussion it suf-
fices to regard them as the sharpest bounds for a probability based on the
information available, where the lower probability typically reflects the in-
formation available in support of the event of interest and the corresponding
upper probability reflects the information available against this event. The
case of no information at all can be reflected by [P , P ] = [0, 1] while equal-
ity P = P reflects perfect knowledge about the probability and results in
classical precise probability as a special case of imprecise probability.

We propose the further generalization of the structure function within
imprecise probability theory by introducing the lower probabilistic structure
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function
φ(x) = P (S|x) (2)

and the upper probabilistic structure function

φ(x) = P (S|x) (3)

This provides substantial flexibility for practical application of methods to
quantify system reliability and other dependability concepts. For example,
it may be known historically that, under different external circumstances, a
system with a certain subset of its components functioning manages a task
well in 85 to 95 percent of all cases. While it might be possible to go into
further detail and e.g. describe beliefs within this range by a probability
distribution, or assume this for mathematical convenience, this may not be
required or it may actually be impossible in a meaningful way, and one can
use lower probability 0.85 and upper probability 0.95 to accurately reflect
this information. If one has to rely on expert judgements to assign the
values of the probabilistic structure function, then time may often be too
limited to meaningfully assign precise probabilities for system functioning
for all possible component state vectors. In such cases, the use of imprecise
probabilities also offers suitable flexibility. Assigning a subset of probabilities
for some events (or bounds for these) will imply bounds for all other related
events under suitable assumptions [3]; in particular assumed coherence of
the system, which implies that any additional component failure can never
improve system functioning, is useful and justifiable in many applications.

Before we consider the use of the probabilistic structure function in more
detail, let us discuss a motivating example of a (fictitional) scenario where
this generalization of the structure function may be of use. In a university
department, there are four lecturers involved with the teaching and exami-
nations of four modules in a specific topic field. After students have sat the
exams for the four modules, the marking of the examinations must be com-
pleted within five days, to include second marking which is required for all
scripts with a score below 50 out of 100. Lecturer A is very experienced and
taught all these modules before. Lecturer B has substantial expertise with
two of the four modules, Lecturer C similarly with the other two modules.
Lecturer D only joined the department recently, taught one module but is
new to exam marking. If all is well each lecturer will have sufficient time to
mark the single module they are responsible for, and there will also not be a
problem for the required second marking. However, as it is crucial that the
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marking is completed within the five days to ensure graduation ceremonies
can go ahead as planned, one wishes to get more insight into the uncertain-
ties in this scenario, with e.g. the idea that attempts can be made to have
a recently retired and experienced member of staff on stand-by. Assuming
that each of Lecture A to D is either available or not for the whole week,
this can be considered as functioning or not of 4 components making up the
system (where the possible involvement of the retired staff member is not in-
cluded as we wish to investigate the scenario with the current staff). System
functioning can be defined as the successful completion of the marking for
all four modules within the period of five days.

For detailed insight into this scenario, we need to consider whether or
not the system will function if one or more of its components fails, so if the
marking will be completed if one or more lecturers are not available. There
are very many aspects to be considered here, which will make clear that
the model components and system only considered to be functioning or not,
may not be sufficient for the problem at hand. For example, if Lecturers C
and D are unavailable, Lecturers A and B may just be able to complete all
the marking if nearly all students performed well, thus leading to very little
second marking of scripts. There are many uncertainties, for example due
to the inexperience of Lecturer D or private-life aspects which may limit a
lecturer’s availability beyond the regular working day. If one has the oppor-
tunity to model all these aspects it may be possible to still use a deterministic
structure function for this scenario, but even that is not an argument against
offering the more flexible tool of a probabilistic structure function. With the
latter tool, proposed in this paper, one can provide meaningful conclusions
based on assessments of how likely it is that the marking will be finished
given the availability, or not, of the lecturers, and imprecise probabilities can
be used to reflect lack of perfect information. For example, if only Lecturers
A and B are available then one may judge the probability that the job can
be completed in 5 days to be between 0.2 and 0.5, while if only Lecturers
A and D are available one may judge this probability to be between 0 and
0.4, and so on. These would be meaningful judgements, which can provide
useful input into the decision process on whether or not one should attempt
to have the retired lecturer on stand-by. In such scenarios, which are more
common than one may like, the flexibility provided by the probabilistic struc-
ture function, in particular also allowing imprecise probabilities, seems to be
an advantage that is strong enough to warrant the proposal and development
of this generalization of the classical deterministic structure function.
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3. THE PROBABILISTIC STRUCTURE FUNCTION AND THE
SURVIVAL SIGNATURE

For larger systems, working with the full structure function may be com-
plicated, and one may particularly only need a summary of the structure
function in case the system has exchangeable components of one or more
types. Recently, we introduced such a summary, called the survival sig-
nature, to facilitate reliability analyses for systems with multiple types of
components [1]. In case of just a single type of components, the survival sig-
nature is closely related to the system signature [5], which is well-established
and the topic of many research papers during the last decade. However,
generalization of the signature to systems with multiple types of components
is extremely complicated (as it involves ordering order statistics of different
distributions), so much so that it cannot be applied to most practical sys-
tems. In addition to the possible use for such systems, where the benefit only
occurs if there are multiple components of the same types, the survival sig-
nature is arguably also easier to interpret than the signature as one may find
it easier to think in terms of numbers of components of different types that
are functioning rather than orderings of failure times for such components.
We briefly review the survival signature and some recent advances, then link
it to the above suggested probabilistic structure function.

Consider a system with K ≥ 1 types of components, with mk components
of type k ∈ {1, . . . , K} and

∑K
k=1mk = m. Assume that the random failure

times of components of the same type are exchangeable [6], while full inde-
pendence is assumed for the random failure times of components of different
types. Due to the arbitrary ordering of the components in the state vector,
components of the same type can be grouped together, leading to a state vec-
tor that can be written as x = (x1, x2, . . . , xK), with xk = (xk1, x

k
2, . . . , x

k
mk

)
the sub-vector representing the states of the components of type k.

The survival signature for such a system, denoted by Φ(l1, . . . , lK), with
lk = 0, 1, . . . ,mk for k = 1, . . . , K, is defined as the probability for the event
that the system functions given that precisely lk of its mk components of type
k function, for each k ∈ {1, . . . , K} [1].

There are
(
mk

lk

)
state vectors xk with

∑mk

i=1 x
k
i = lk. Let Sk

lk
denote the

set of these state vectors for components of type k and let Sl1,...,lK denote
the set of all state vectors for the whole system for which

∑mk

i=1 x
k
i = lk,

k = 1, . . . , K. Due to the exchangeability assumption for the failure times of
the mk components of type k, all the state vectors xk ∈ Sk

lk
are equally likely
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to occur, hence [1]

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

φ(x) (4)

We now consider the survival signature with the probabilistic structure
function as presented in Section 2, using the lower probabilistic structure
function (2) and the upper probabilistic structure function (3). The sur-
vival signature can straightforwardly be adapted to include these, due to its
monotone dependence on the structure function. This leads to the following
definitions of the lower survival signature

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

φ(x) (5)

and the corresponding upper survival signature

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

φ(x) (6)

These are the sharpest possible bounds for the survival signature correspond-
ing to the lower and upper probabilistic structure functions, and as such
indeed the lower and upper probabilities for the event that the system func-
tions given that precisely lk of its mk components of type k function, for each
k ∈ {1, . . . , K}.

These lower and upper survival signatures can be used for imprecise re-
liability quantifications. Particularly if chosen quantifications are monotone
functions of the survival signature, this is again a straightforward gener-
alization of the precise approach [1]. Let us consider the event that the
system functions for the next task it has to perform, denoted by S. Let
Ck ∈ {0, 1, . . . ,mk} denote the number of components of type k in the sys-
tem which function when required for the next task. The probability for the
event S is [1]

P (S) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P (
K⋂
k=1

{Ck = lk}) (7)
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With the generalization of the survival signature, we get the lower probability
for the event that the systems functions for the next task

P (S) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P (
K⋂
k=1

{Ck = lk}) (8)

and the corresponding upper probability

P (S) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P (
K⋂
k=1

{Ck = lk}) (9)

For this imprecise case, just as for the precise case [1], assuming independence
of the functioning of components of different types leads to simplification of
(8) and (9) by using, for lk ∈ {0, 1, . . . ,mk} for each k ∈ {1, . . . , K},

P (
K⋂
k=1

{Ck = lk}) =
K∏
k=1

P (Ck = lk)

If, in addition, it is assumed that functioning of components of the same type
is conditionally independent given probability pk ∈ [0, 1] that a component
of type k functions for the next task, then further simplification is achieved
by using

P (
K⋂
k=1

{Ck = lk}) =
K∏
k=1

(
mk

lk

)
plkk [1− pk]mk−lk

This leads to relatively straightforward computations for reliability metrics,
which we do not discuss further in this paper. It is important though to
emphasize that exactly the same approach can be followed when interest
is in processes over time, where instead of focussing on functioning of the
system for the next task one can consider the probability that the system
functions at a given time [1].

The probabilities for the numbers of functioning components can also be
generalized to lower and upper probabilities, as e.g. done by Coolen et al.
[7] within the nonparametric predictive inference framework of statistics [8],
where lower and upper probabilities for the events Ck = lk are inferred from
test data on components of the same types as those in the system. This
step is less trivial as one must ensure to have probability distributions for
these events, thus summing to one over lk = 0, 1, . . . ,mk for each type k.
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For coherent systems this is not very complicated due to the monotonicity of
the (lower or upper) survival signature, see [7] where the method for dealing
with imprecision on the random quantities Ck is presented.

The main advantage of the survival signature, in line with this property
of the signature for systems with a single type of components [5], as shown
by Equation (7), is that the information about the system structure is fully
separated from the information about functioning of the components, which
simplifies related statistical inference as well as considerations of optimal
system design. This property clearly also holds for the lower and upper
survival signatures as is shown by Equations (8) and (9).

4. MULTIPLE TYPES OF TASKS

If a system may need to deal with different tasks, the (lower or upper)
probabilistic structure function should, ideally, be defined for each specific
type of task. Let there be R ≥ 1 types of tasks. The (lower or upper)
probabilistic structure function for a specific type of task r ∈ {1, . . . , R} is
the (lower or upper) probability for the event that the system functions for
component states x and for known type of task r, we denote these as before
with an additional subscript r (we generalize earlier notation in this way
throughout this section without explicit introduction), so

φr(x) = P (S|x, r) φ
r
(x) = P (S|x, r) φr(x) = P (S|x, r)

If interest is in the next task that the system has to perform, and it is
known of which type this task is, then we are back to the setting discussed
before. If the type of task is not known with certainty, then there are several
possible scenarios. First, suppose that one can assign a precise probabil-
ity for the event that the next task is of type r, denoted by pr, for each
r ∈ {1, . . . , R}. Then the system’s probabilistic structure function for the
next task can be derived via the theorem of total probability, which also
applies straightforwardly to the corresponding lower and upper probabilistic
structure functions in the generalized case. This leads to

φ(x) =
R∑

r=1

φr(x)pr φ(x) =
R∑

r=1

φ
r
(x)pr φ(x) =

R∑
r=1

φr(x)pr

For this scenario the corresponding lower and upper survival signatures that
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apply for the next task, of random type, are easily derived and given by

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

R∑
r=1

φ
r
(x)pr

=
R∑

r=1

Φr(l1, . . . , lK)pr

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

R∑
r=1

φr(x)pr

=
R∑

r=1

Φr(l1, . . . , lK)pr

These results hold as all sums involved are finite, hence the order of summa-
tions can be changed, which can also be applied to derive

P (S) =
R∑

r=1

P r(S)pr

P (S) =
R∑

r=1

P r(S)pr

Secondly, one may only be able to assign bounds for the probabilities pr,
where the sharpest bounds one can assign are lower and upper probabilities,
denoted by p

r
and pr. Let p denote any probability vector of dimension R,

so p = (p1, . . . , pR) with all pr ≥ 0 and
∑R

r=1 pr = 1, and let P denote the set
of all such probability vectors with p

r
≤ pr ≤ pr for all r ∈ {1, . . . , R}. In

this situation, deriving the lower and upper probabilistic structure functions
for the next task is less straigthforward, as they require optimisation over
the set P of probability vectors

φ(x) = min
p∈P

R∑
r=1

φ
r
(x)pr φ(x) = max

p∈P

R∑
r=1

φr(x)pr (10)

In case of a precise probabilistic structure function, the lower and upper
probabilistic structure functions on the right-hand sides of these equations
are just equal to the precise probabilistic structure function, with imprecision
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still resulting from the set P of probability vectors. While these optima
are not available in closed-form, their computation is quite straightforward,
solutions are obtained by setting all pr equal to either p

r
or pr apart from

one which will take on a value within its corresponding range [p
r
,pr] such

that the individual probabilities sum up to one.
For this scenario, deriving the corresponding lower and upper survival

signatures is less straightforward than for the first scenario above. These
lower and upper survival signatures are

Φ(l1, . . . , lK) = min
p∈P

[ K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

R∑
r=1

φ
r
(x)pr

 (11)

Φ(l1, . . . , lK) = max
p∈P

[ K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

R∑
r=1

φr(x)pr

 (12)

which generally requires solving complex optimisation problems. From com-
putational perspective it is far easier to calculate[

K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

(
min
p∈P

R∑
r=1

φ
r
(x)pr

)
(13)

and [
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

(
max
p∈P

R∑
r=1

φr(x)pr

)
(14)

These expressions follow by inserting the lower and upper probabilistic struc-
ture functions (10) into the equations for the lower and upper survival signa-
tures, and require many optimisations to be performed, but as just mentioned
these are all quite straightforward. Generally, the lower survival signature
(11) is greater than or equal to expression (13) and the upper survival sig-
nature (12) is less than or equal to expression (14). If all optimisations in
expression (13) have the same probability vector within P as solution, then
the lower survival signature (11) is equal to expression (13), and similarly
for the upper survival signature (12) with regard to the optimisations in ex-
pression (14). While this may appear to be unlikely, we will illustrate a case
where it applies in the example in the following section. Further investigation
into the optimisation problems for general situations is left as an important
challenge for future research.
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Figure 1: System with three types of components

Finally, one may wish to use statistical inference for the pr in case one
has relevant data. There is a variety of options, including Bayesian methods,
which might be generalized through the use of sets of prior distributions as
in the imprecise Dirichlet model for multinomial data [3], and nonparametric
predictive inference [9, 10]. The latter approach may be of specific interest
as it provides the possibility to take unobserved or even undefined tasks into
consideration [11].

5. Example

We present an extensive example to illustrate the new concepts and meth-
ods presented in this paper. The uncertainty about system functioning given
the states of its components is assumed to result from two cases, requiring
different numbers of components to function for successful functioning of the
system. Five different types of task are then considered, each varying with
regard to the (imprecise) probability that they belong to either of the two
cases. We then explore predictive (imprecise) probabilities of system func-
tioning for 4 situations with different information about the next task that
the system has to perform. Crucially, the fourth situation includes the possi-
bility that the next task is totally unknown, which is a specific advantage of
the presented method with the probabilistic structure function as predictive
imprecise probability.

Consider the system presented in Figure 1, consisting of two subsystems in
series configuration, with three types of components as indicated by the num-
bers in the figure. Consider the following variation for the second subsystem
consisting of three components: for some tasks to be performed according to
the requirements it is sufficient for one of the three components to function,
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l1 l2 l3 Φ1(l1, l2, l3) Φ2(l1, l2, l3)
0 1 1 1/2 0
0 2 0 1 0
1 0 1 1/2 0
1 1 0 1/2 0
1 1 1 3/4 1/2
1 2 0 1 1/2
2 0 0 1 0
2 1 0 1 1/2

Table 1: Survival signatures for system in Figure 1, two cases

but for other tasks (or under other circumstances) it is necessary to have
at least two components functioning. We will refer to these as Case 1 and
Case 2, respectively. The survival signatures for this system corresponding
to these two cases are presented in Table 1, denoted by Φ1 and Φ2, where
the quite trivial entries for which both survival signatures are equal to 0 or
1 are not included.

Suppose that five different possible tasks have been identified which this
system may have to deal with. These may actually be different tasks, or
just due to different circumstances under which the tasks may need to be
performed. For Task A Case 1 applies, so only one functioning component
in the second subsystem is required. For Task B Case 2 applies. For Task C
there is uncertainty about whether one or two components need to function
in the second subsystem, with either case having probability 1/2. For Task D
the same uncertainty occurs, but the probabilities that either case applies are
not precisely known, with lower and upper probability for Case 1 equal to 0.4
and 0.8, respectively, which by the conjugacy property for lower and upper
probabilities [3] implies lower and upper probability 0.2 and 0.6 for Case 2.
Finally, for Task E the same uncertainty occurs but there is no knowledge at
all about the probability with which each case applies, represented by lower
and upper probabilities 0 and 1, respectively, for both cases.

The survival signatures for Tasks A and B are just ΦA = Φ1 and ΦB = Φ2.
For Tasks C-E, the probabilistic structure functions are easily derived and
lead to the (lower and upper) survival signatures given in Table 2, where for
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l1 l2 l3 ΦA ΦB ΦC [ΦD,ΦD] [ΦE,ΦE]
0 1 1 0.5 0 0.25 [0.2, 0.4] [0, 0.5]
0 2 0 1 0 0.5 [0.4, 0.8] [0, 1]
1 0 1 0.5 0 0.25 [0.2, 0.4] [0, 0.5]
1 1 0 0.5 0 0.25 [0.2, 0.4] [0, 0.5]
1 1 1 0.75 0.5 0.625 [0.6, 0.7] [0.5, 0.75]
1 2 0 1 0.5 0.75 [0.7, 0.9] [0.5, 1]
2 0 0 1 0 0.5 [0.4, 0.8] [0, 1]
2 1 0 1 0.5 0.75 [0.7, 0.9] [0.5, 1]

Table 2: Lower and upper survival signatures for Tasks A-E

completeness also ΦA and ΦB are given and entries which are either equal to
0 or 1 for all these functions have been left out.

For these (lower and upper) survival signatures, the following ordering
holds for all (l1, l2, l3),

ΦB = ΦE ≤ ΦD ≤ ΦC ≤ ΦD ≤ ΦE = ΦA

This means that in this example the special case applies in which expressions
(13) and (14) give the lower and upper survival signatures, as the minimisa-
tions to derive the following lower survival signatures are all solved by the
same probability vector in P , and similar for the maximisations to derive
the upper survival signatures. While this special case does not illustrate the
full modelling ability of the concepts presented in this paper, it is of prac-
tical interest in situations such as discussed in this example, where there
are a number of basic tasks which differ with regard to their demands on
the system, and a variety of scenarios for the next possible task to be per-
formed, each of these being represented by a different (imprecise) probability
distribution over those basic tasks. For all such scenarios, the optimisations
involved in deriving the lower and upper survival signatures for the next task
to be performed by the system are straightforward, as in this example. We
now consider several scenarios with different levels of knowledge about the
type of the next task, the lower and upper survival signatures are presented
in Table 3 (again leaving out those which are trivially equal to 0 or 1).

Suppose first, Scenario I, that the next task can be of any of the five
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l1 l2 l3 [ΦI ,ΦI ] [ΦII ,ΦII ] [ΦIII ,ΦIII ] [ΦIV ,ΦIV ]
0 1 1 [0.19, 0.33] [0.17, 0.34] [0.095, 0.415] [0.17, 0.39]
0 2 0 [0.38, 0.66] [0.34, 0.68] [0.19, 0.83] [0.34, 0.68]
1 0 1 [0.19, 0.33] [0.17, 0.34] [0.095, 0.415] [0.17, 0.39]
1 1 0 [0.19, 0.33] [0.17, 0.34] [0.095, 0.415] [0.17, 0.39]
1 1 1 [0.595, 0.665] [0.585, 0.67] [0.5475, 0.7075] [0.535, 0.695]
1 2 0 [0.69, 0.83] [0.67, 0.84] [0.595, 0.915] [0.62, 0.84]
2 0 0 [0.38, 0.66] [0.34, 0.68] [0.19, 0.83] [0.34, 0.68]
2 1 0 [0.69, 0.83] [0.67, 0.84] [0.595, 0.915] [0.62, 0.84]

Table 3: Lower and upper survival signatures for Scenarios I-IV

types A−E, each with probability 0.2. The lower survival signature for the
next task in this scenario, denoted by ΦI , is derived as the average of the
(lower) survival signatures for tasks A-E, and similar for the upper survival
signature.

For Scenario II, suppose that the next task can again be of types A, B or
C with probability 0.2 each, but there is uncertainty (‘indeterminacy’) with
regard to the probability that this task may be of types D or E, reflected
through lower and upper probabilities of 0.1 and 0.3, respectively, for both
these types. To derive the lower survival signature for the next task in this
scenario, we assign maximum probability 0.3 to ΦE for all (l1, l2, l3), as this
is never greater than ΦD, which of course is assigned the minimum possible
probability 0.1 to remain within the set of probability vectors P . Similarly,
due to ΦE ≥ ΦD for all (l1, l2, l3), the corresponding upper survival signature
is derived by assigning probability 0.3 to ΦE and 0.1 to ΦD.

To illustrate a greater level of indeterminacy with regard to the next task,
Scenario III considers that it may be of each of the five identified types with
lower probability 0.1 and upper probability 0.5. With the ordering of the
(lower and upper) survival signatures for the five types, it is easy to verify
that the lower survival signature over this set of probability vectors P is
derived by assigning probability 0.5 to ΦB, 0.2 to ΦE (these two values can
be chosen differently as long as they sum up to 0.7 and are both between 0.1
and 0.5) and 0.1 to each of ΦD, ΦC and ΦA. Similarly, the upper survival
signature is derived by assigning probability 0.5 to ΦA, 0.2 to ΦE and 0.1 to
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each of ΦD, ΦC and ΦB.
Finally, we return to the setting of Scenario II, but with an important

addition. For Scenario IV, suppose that it is judged that the next task the
system needs to perform could actually also be a totally unknown task, for
which it is not known at all whether or not the system can deal with it.
This goes beyond the two basic tasks discussed throughout this example, for
which the survival signatures were given in Table 1. To reflect total lack
of knowledge of such an unknown (‘unidentified’, ‘unforeseen’) task, which
we indicate by index U , we can assign lower probabilistic structure function
φ
U

(l1, l2, l3) = 0 and upper probabilistic structure function φU(l1, l2, l3) = 1
for all (l1, l2, l3), reflecting that even with all components functioning we
do not know if the system can deal with this task, and that even with no
components functioning it might be possible that this task can be satisfac-
torily dealt with. While these values may appear to be extreme, it covers all
possibilities for unknown tasks, including e.g. targeted attacks on the sys-
tem. It should be emphasized that such lack of knowledge cannot be taken
into account adequately when restricted to the use of precise probabilities,
and thus illustrates one of the major advantages of the use of imprecise
probabilities. It should further be noticed that these extreme probabilistic
structure functions may not formally correspond to coherent systems, as as-
sumed in this paper. However, this serves as an extreme example here and, if
one wishes to strictly stay with the assumption of coherence one could keep
these definitions for all (l1, l2, l3) except (0, 0, 0), for which one could assume
φU(0, 0, 0) = 0 and (2, 2, 1), for which one could assume φ

U
(2, 2, 1) = 1; this

would make little difference so we stay with the earlier representation of total
lack of knowledge. Let us assume that the next task can be of type U with
lower probability 0 and upper probability 0.1, so the set of probability vec-
tors over the six types A − E and U consists of all probability vectors with
pA = pB = pC = 0.2, pD, pE ∈ [0.1, 0.3] and pU ∈ [0, 0.1]. To derive the lower
survival signature for the next task in this scenario, we assign, in addition
to the fixed probabilities 0.2 to types A,B,C, probability 0.1 to ΦU , 0.2 to
ΦE and 0.1 to ΦD. To derive the corresponding upper survival signature, we
similarly assign probability 0.1 to ΦU , 0.2 to ΦE and 0.1 to ΦD.

As is clear from Table 3, increase in indeterminacy, reflected through
increased imprecision in the assigned lower and upper probabilities, leads to
more imprecise lower and upper survival signatures in a logically nested way.
From the perspective of risk management, the lower survival signatures are
likely to be of most interest, as they reflect the most pessimistic scenario for
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system functioning corresponding to the information and assumptions made.
As this example shows, the lower survival signature is derived by assigning
the maximum possible probabilities to the possible types of task for which
the system is least likely to function well.

In Scenario IV, we illustrated the possibility to include a totally unknown
type of task by assigning lower and upper probabilities of 0 and 0.1 for the
event that the next task is of such nature. In most risk scenarios, it would
make sense to have lower probability 0 for such an event. The upper proba-
bility is, of course, more important for risk management as, combined with
the lower probability for the system functioning for such a task, it relates
to the most pessimistic scenario. To illustrate our method we just chose
the value 0.1 for this upper probability, yet it is worth mentioning that the
nonparametric predictive inference (NPI) approach can actually provide a
meaningful numerical value for the upper probability for the event that an
as yet unobserved or even undefined event occurs [9, 10, 11, 12]. This NPI
upper probability, which we do not discuss further in this paper, is based
on relatively weak assumptions and is decreasing as function of the number
of events considered in the data yet increasing as function of the number of
different types of tasks the system had to deal with thus far. The presented
upper and lower survival signatures for different scenarios, in this example,
will not be the ultimate inference in most reliability investigations. Typi-
cally, they are combined, as illustrated before, with probabilities about the
functioning of the components in order to get lower and upper probabilities
of system functioning. This in turn can be used to support decisions on e.g.
design of the system or inspection and maintenance strategies, this is beyond
the scope of the current paper.

6. DISCUSSION

Traditional theory of system reliability tends to be based on quite strong
assumptions with regard to knowledge about systems and their practical use.
As shown in this paper, rather straightforward generalization of the structure
function to consider it as a probability increases modelling opportunities
substantially. Beyond that, the use of imprecise probabilities enables us to
reflect indeterminacy, which is particularly important in risk scenarios where
one may have limited knowledge and experience of the system functioning, or
where the system may need to be resilient in case of unforeseen tasks. In this
paper we have illustrated the approach mainly by considering different types

19



of tasks, which in the example were related to two basic ways a given system
could need to function, namely with one subsystem either requiring only one
or at least two of its three components to function. The main advantage of the
survival signature, as shown in this paper, is that the generalization to lower
and upper probabilistic structure functions is straigthforwardly embedded
in its definition, leading to lower and upper survival signatures. These are
formulated for a single future task, which is important if one wishes to use
statistical methods to infer system reliability and to reflect the amount of
information available. Developing such statistical methods related to the
lower and upper survival signatures is an interesting challenge for future
research.

One could argue that using imprecise probability to reflect indeterminacy
is an easy way out, as one effectively considers both the most optimistic
and pessimistic scenarios which correspond to the information available, and
reports the bounds based on these as the results of the inferences. The
importance of this generalization of probability should, however, not be un-
derestimated, as it avoids choosing precise values even in cases where there is
no justification for doing so. Seeing the quality of the available information
reflected explicitly in the reliability quantification, without lack of detailed
information being hidden due to stronger assumptions or precise input values
chosen for convenience, provides useful information for managing risks. If one
does have quite detailed information it can be included in the inferences, and
indeed doing so will normally lead to less imprecision, so it is certainly worth
aiming to use all available information. In addition, one can also explore
the influence of further assumptions or information on the imprecise results,
which can be helpful if one wishes to explore what to focus on in order to
derive the most useful information for a specific problem.

Following the first steps presented in this paper, there are many research
challenges in order to develop a methodology that is applicable to large scale
systems. It is important for such research challenges to be taken on with
direct relation to real world applications, in order to discover the real prob-
lems and to see how results can be implemented. Part of such challenges
will be in computation, as deriving the survival signature involves complex
calculations, the number of which increases exponentially with the size of
the system. Aslett [13] has developed a function in the statistical software
R which can compute the survival signature for small to medium sized sys-
tems, but for practical systems and networks more research is required. For
monotone systems, working with bounds for the survival signature, if it is
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only calculated for a subset of all combinations of numbers of functioning
components of different types, is quite straightforward [7], this is also easily
generalized to the lower and upper survival signatures as presented in this
paper.

The theory presented in this paper is particularly useful for systems and
networks with multiple types of components and with many components
of the same type, as the survival signature is a sufficient summary of the
system’s structure which, in such cases, provides a substantial reduction
compared to the complete (probabilistic) structure function. One might en-
counter such systems and networks in many application areas, for example
complex computer or communication systems with many parallel servers, en-
ergy networks, and transport infrastructure including rail networks. It may
further be relevant for biology and medical research, exploring the opportu-
nities for applications is an exciting challenge. In many modern applications
emphasis is on real-time monitoring and online prediction. The setting pre-
sented in this paper may be suitable for such inference, in particular when
combined with nonparametric predictive inference (NPI) [8] where inferences
are in terms of the next event and take all data into account. The combined
use of NPI and signatures has been presented for systems consisting of only
a single type of components [14, 15]. Recently, NPI has also been applied to-
gether with the survival signature [7], this also requires a substantial research
effort to become implementable to large scale practical problems. The use of
Bayesian methods in combination with the survival signature for quantifica-
tion of system reliability has also recently been presented [16], and provides
many further research challenges. In practice, components may not fail inde-
pendently due to common failure causes. This has been investigated within
the NPI framework, combined with the use of the survival signature [17], and
can also be generalized by using the lower and upper survival signatures as
presented in this paper.

There has, of course, been some research into the role of the structure
function in system reliability, with consideration of generalizations, for ex-
ample changing the system functioning, and hence the structure function,
from binary to multi-state [18, 19] or even a continuous state space, for the
latter situation a regression method has been proposed to derive the struc-
ture function [20]. Such generalizations can also be relevant together with the
generalization proposed in this paper, and suggest further topics for research.
Beyond this, one can also incorporate uncertainty about the functioning of
the components, where again both precise and imprecise probabilistic meth-
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ods may be explored. One may also generalize the structure function further
to represent both a level (or ‘quality’) of system functioning and the probabil-
ity that this level is attained, or, perhaps particularly relevant for networks,
to reflect successful passing through the network with multiple possible start
and end point; all such topics require careful consideration at the level of
the structure function, but can be generalized by considering the structure
function as a (possibly imprecise) probability.

We have advocated the explicit consideration of the ‘next task’ the system
has to perform, but this is not a restriction on the proposed methodology.
However, following this approach, one can also consider multiple future tasks,
which may be interconnected as occurs in phased-missions. If there is depen-
dence between the components’ functioning or the system requirements for
different phases, this must be modelled with care, but once more there is no
conceptual difficulty in allowing the structure functions for such tasks to be
generalized as (imprecise) probabilities.

An important research topic from practical perspective is how such meth-
ods can deal with the effect of maintenance and inspection activities. Basi-
cally, if condition monitoring of components reveals information which leads
to distinction between components which were initially deemed to be ex-
changeable, then this should be dealt with by creating a new type of com-
ponent, and hence by changing the survival signature. The same may be
required upon replacement of a component. The computational require-
ments for this have not yet been studied, where particularly methods that
are applicable to large scale practical systems will provide interesting and
important research challenges. As always, real-world application of the con-
cepts introduced in this paper will be of major benefit to provide further
research directions.
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