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Abstract  

This paper develops a condition-based maintenance (CBM) policy for systems subject to 

aging and cumulative damage. The cumulative damage is modeled by a continuous degradation 

process. Different from previous studies which assume that the system fails when the 

degradation level exceeds a specific threshold, this paper argues that the degradation itself does 

not directly lead to system failure, but increases the failure risk of the system. Proportional 

hazards model (PHM) is employed to characterize the joint effect of aging and cumulative 

damage. CBM models are developed for two cases: one assumes that the distribution parameters 

of the degradation process are known in advance, while the other assumes that the parameters are 

unknown and need to be estimated during system operation. In the first case, an optimal 

maintenance policy is obtained by minimizing the long-run cost rate. For the case with unknown 

parameters, periodic inspection is adopted to monitor the degradation level of the system and 

update the distribution parameters. A case study of Asphalt Plug Joint in UK bridge system is 

employed to illustrate the maintenance policy. 
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With the development of sensor technologies, system condition can be monitored at a much 

lower expense, which prompts the application of condition-based maintenance. CBM takes 

advantage of the online monitoring information to make maintenance decisions. For a system 

subject to CBM, based on the collected condition information, maintenance actions are carried 

out only when “necessary” (Liu et al, 2014; Liu et al, 2016b). Compared with the traditional 

time-based maintenance, CBM has shown its priority in preventing unexpected failure and 

reducing economic losses (Zhang et al, 2014; Wu et al, 2016).  

CBM is conducted based on the observation that systems usually suffer a degradation 

process before failure, and the degradation process can be observed by degradation indicators 

such as temperature, voltage and vibration. In literature, many researchers used multi-state 

deteriorating models to describe the degradation process and formulated the maintenance 

strategy as a Markov or semi-Markov decision process (Maillart, 2006; Srinivasan & Parlikad, 

2013). Although Markov model is widely used in degradation modeling, one disadvantage is that 

the classification of system state is very arbitrary (Li et al, 2012; Chen et al, 2015; Lin et al, 

2016).  

Recently, more emphasis is paid to continuous degradation processes. In the framework of 

continuous degradation, the degradation process is usually described by a general path model or 

a stochastic-process-based model such as Wiener process, Gamma process and inverse Gaussian 

process (Ye & Xie, 2015; Ye et al, 2015; Liu et al, 2016a). Caballé et al (2015) proposed a CBM 

for systems with continuous degradation and external shocks. Peng & van Houtum (2016) 

developed a joint CBM and lot sizing policy for systems subject to continuous degradation.  

An implicit assumption of the previous research is that a system fails when its degradation 

level exceeds a pre-specified failure threshold. However, in reality, the failure threshold is 

difficult to determine and usually it is a random variable depending on the environment condition 

and product’s characteristics. In this paper, the cumulative damage is modeled as a continuous 

degradation process. We argue that degradation process does not necessarily lead to system 

failure, but increases the likelihood of failure. Both internal aging and cumulative damage 

contribute to system failure. Examples of the joint effect of aging and cumulative damage on 

system failure can be found in systems such as high-voltage power transformers and bridge 

systems (Wu & Ryan, 2011; Wardhana & Hadipriono, 2003; Mo & Xie, 2016). For a new 

transformer, its insulation strength can withstand severe events such as transient overvoltage and 
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lightning strikes. When a transformer ages, its internal condition degrades, which makes it more 

vulnerable to fluctuating environment condition and increases the risk of failure. For a bridge 

system, failures are usually triggered by external events such as hurricane, flood and overload. If 

a bridge system undergoes severe deterioration, it may hit the point where tiny external 

influences can lead to system failure. The degradation itself does not directly lead to system 

failure, but it increases the probability of failure when exposed to external events.  

A convenient and prevalent way to integrate the aging and degradation effect into system 

failure is by a proportional hazards model (Lin & Wei, 1989). PHM incorporates a baseline 

hazard function which accounts for the aging effect with a link function that takes the inspection 

information into account to improve the prediction of failure (Pham et al, 2012). Applications of 

PHM can be found in various fields such as finance, manufacturing system and energy 

generators (Jardine & Tsang, 2013). 

In literature, several studies have been conducted on maintenance policy in the PHM 

framework. Banjevic et al (2001) developed a control-limit maintenance policy for systems 

subject to periodic inspection. Ghasemi et al (2007) proposed a CBM policy for systems with 

imperfect information, where the condition the system cannot be directly monitored. Wu & Ryan 

(2010) investigated the value of condition monitoring in the PHM setting, where a continuous-

time Markov chain was used to describe the system condition. Wu & Ryan (2011) further 

extended the model by considering Semi-Markov covariate process and continuous monitoring. 

Tian & Liao (2011) proposed a CBM policy for multi-component systems using PHM. Lam & 

Banjevic (2015) investigated the issue of inspection scheduling for CBM. In all of these previous 

studies, the degradation process is characterized via Markov or semi-Markov model. In addition, 

the distribution parameters in the PHM are assumed as known in advance.  

This paper aims to develop CBM policies for systems subject to aging and cumulative 

damage. The system is subject to aging and extremely frequent cumulative damage (e.g., traffic 

load to a bridge), where the extremely frequent cumulative damage is approached by a 

continuous degradation process. PHM is used to model the joint effect of aging and cumulative 

in the framework of failure rate. The effect of cumulative damage is modeled as the stochastic 

covariate in the PHM framework. The system is subject to periodic inspection, which is assumed 

to be perfect. At inspection, maintenance actions are carried out based on the observed condition 

information. Optimal maintenance policies are obtained by minimizing the long-run cost rate. 
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Specifically, two CBM models are developed by assuming respectively known distribution 

parameters and unknown distribution parameters. In the case where the distribution parameters 

are unknown, the parameters have to be estimated and updated at each inspection, and 

maintenance decisions are made subsequently.  

This paper differs from the existing works in that: (a) It incorporates the influence of both 

aging and cumulative damage in modeling the failure rate. (b) It argues that degradation itself 

does not result in system failure, but increases the risk of failure. (c) It utilizes the observed 

condition information to update distribution parameters for making appropriate maintenance 

decisions.  

The remainder of this paper is organized as follows. Section 2 presents the degradation-

integrated failure model, where PHM is used to describe the impact of aging and cumulative 

damage. Section 3 formulates two maintenance models. One assumes known distribution 

parameters while the other assumes unknown distribution parameters. Application of the 

maintenance models to Asphalt Plug Joints in UK bridge system is presented in Section 4. 

Finally, concluding remarks and future research suggestions are given in Section 5. 

 

2 Degradation-integrated failure model  

This paper considers a single-unit system subject to aging and cumulative damage. The 

cumulative damage is modeled as a continuous degradation process. For systems such as bridges, 

which are subject to traffic load hours by hours, a continuous degradation process is reasonable 

to characterize the cumulative damage over time. In this paper, we use “cumulative damage” and 

“degradation process” interchangeably. In the present paper, the degradation process derives 

from cumulative shocks, which is an external factor. Besides the external factor, the system also 

suffers from internal aging factors. That is to say, the aging and the degradation are two 

processes. Therefore, we model the system subject to both aging and degradation process. 

Different from previous studies which assume that soft failure occurs when the degradation level 

hits a pre-specified threshold, we here consider sudden failure, which depends on both the aging 

and cumulative damage. For most infrastructure systems, failures usually happen due to external 

shocks or serious events, and degradation makes it more vulnerable when exposed to shocks. As 

previously described, the degradation process itself does not directly lead to system failure, but it 

increases the failure rate of the system. PHM is used to characterize the influences of degradation 
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level on system failure rate. The degradation level of the system is represented as the value of 

covariate in the PHM framework (Lehmann, 2009). Based on PHM, the failure rate at time t is 

given by  

0( ; ) ( ) ( )t th t X h t X                                                      (1) 

where 0 ( )h t  is the baseline failure rate at time t, which is a non-decreasing function of t. tX  is 

the degradation level at time t, and ( )  is a positive function projecting the degradation level to 

the failure rate function. Let  , 0tX X t   be a continuous stochastic process that depicts the 

degradation process. Various stochastic processes can be used to describe the degradation 

process, among which a wide used candidate is the general path model (Lu & Meeker, 1993). 

Assume that  ; , , ( )tX g t t   , where ( )g  is a parametric function that characterizes the 

evolution of the degradation process,   is a random variable that accounts for unit-to-unit 

variability,   is a random parameter that captures the initial degradation level among the 

components’ population, ( )t  is an independent and identically distributed (iid) random error 

term (Elwany et al, 2011). The selection of ( )g  depends on system characteristics and can take 

a variety of forms such as linear, exponential or logarithmic. In this paper, for simplicity, we 

assume that ( )g  is a linear function. The degradation process can be denoted as 

( )tX t t     (Gebraeel et al, 2005; Haghighi & Bae, 2015), where the error term ( )t  

follows a Gaussian distribution with mean zero and variance 
2 ,   and   follow Gaussian 

distributions, with mean ' 2

0 0 / 2    and variance 2

0 , and mean 1  and variance 2

1  . Since 

( )t  is independent of time t, we may suppress the notation of t and denote ( )t  as  . In Eq (1), 

the baseline failure rate function, 0 ( )h t , accounts for the aging effect, which can be explained as 

the normal failure rate when no cumulative damage is imposed. The influence of cumulative 

damage is incorporated in the degradation level tX . Obviously tX  follows a Gaussian 

distribution,  

 2 2 2 2 2

0 1 0 1/ 2,tX N t t                                                 (2) 

It is assumed that 2 2 2 2 2

0 1 0 1/ 2t t         , such that the probability of tX  being 

negative can be neglected and tX  stochastically increases with t almost surely. Given the 

degradation process x , the conditional reliability can be obtained as  
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 0
0

( ; ) ( | ,0 ) exp ( ) ( )
t

s sR t x P T t x s t h s x ds                                  (3) 

where T  is the time to failure and sx  is the realization of sX  at time s. The probability density 

function (pdf) is given as  

                
 

 
0

0

0
0

| ( ) ( )
; lim

exp ( ) ( )

t
T tt

s

P t T t t T t h t x
f t x

t h s x ds




 

   
 




                     (4) 

The expected lifetime of the system can be obtained as 

       | ,0
0 0

|
s sX s T T s X s sE T E E T t f t x f x dx dt

 

 
                              (5) 

where 
sXf  is the pdf of degradation level by time s. If the projecting function ( )  is exponential, 

 0( ; ) ( )expt th t X h t X , where   is the coefficient, then we have 

0log ( ; ) log ( )t th t X h t X  , which implies that the failure rate function follows a lognormal 

distribution, 

    2 2 2 2 2 2

0 1 0 0 1log ( ) / 2 log ( ),h t N t h t t                             (6) 

The lognormal distribution fits numerous reliability data and reflects the failure due to crack 

propagation (Provan, 1987). 

 

3 Maintenance model formulation 

This section aims to establish maintenance models for systems with known and unknown 

distribution parameters respectively. The system is assumed as non-repairable; thus the 

inspection/replacement policy is adopted (Huynh et al, 2011). The system failure is self-

announcing, but the degradation level is not evident, which can only be detected at inspection. 

Periodic inspection is carried out to detect the degradation level, with the cost iC . Two 

maintenance actions are available upon the system: preventive replacement and corrective 

replacement. Preventive replacement can be an overhaul of the system, while corrective 

replacement refers to physical replacement of the system (Huynh et al, 2011). Both preventive 

replacement and corrective replacement restore the system to the “as good as new” state. At 

inspection, if the degradation level or the age of the system exceeds a certain threshold, 

preventive replacement will be implemented, with the cost 
pC . If the system fails unexpectedly, 
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corrective replacement is performed immediately, with the cost rC . The corrective replacement 

cost includes the replacement cost of the system and also the cost comprising various costs with 

respect to failure-induced problems. Intuitively,  rC  is more complex and more cost intensive 

(
p rC C ). 

Assume that the system is inspected every  time units, where   is a given parameter 

associated with the system characteristics. Given that the system functions at the kth inspection, 

the probability that the system survives through ( 1)k   is 

    
( 1)

0( 1) | , , 1 exp ( ) ( )
k

s s
k

P T k T k x k s k h s x ds



    



                        (7) 

Proposition 1. Given the degradation level sX , for  1k s k    , the cumulative hazard 

rate function between two consecutive inspections increases in k. In addition, the inequality  

  0 0
0 0

( ) ( ) ( )
t t

s sE h s X ds h s E X ds   
     

holds for the cumulative hazard rate of the system.  

The detailed proofs of the propositions in this paper are provided in Appendix. Proposition 1 

implies that the expected cumulative failure rate is at least larger than the cumulative failure rate 

given at mean degradation level. Based on Proposition 1, we can readily obtain that the 

conditional reliability of the system surviving through the next inspection,

  ( 1) | , , 1sP T k T k x k s k         , decreases with the inspection index k.  

In the following, we will develop maintenance models for systems with known and unknown 

distribution parameters. The maintenance model of known parameter refers to the case that the 

parameters are determined or estimated by historical data or expert opinion, while no online 

monitoring is employed. On the other hand, the unknown parameter refers to the case that the 

prior distribution of the parameters are estimated with historical data or expert opinion, and the 

parameters are updated with monitored or inspected information. The difference between the two 

models lies in whether inspection information is used to update the parameters. 

 

3.1 Maintenance model with known distribution parameters 

In this section, we assume that the parameters of the failure rate function are known in 

advance. Since both the age and the degradation level influence the failure rate, maintenance 
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operations are carried out based on the hazard rate at inspection, which explicitly incorporates 

the effects of aging and degradation. If the hazard rate at inspection exceeds a specific threshold 

 , preventive replacement is implemented. Otherwise, the system is left as it be. Long-run cost 

rate is used as the criterion to evaluate the maintenance policy. Our objective is to minimize the 

long-run cost rate by seeking an optimal  . According to the renewal theorem, the long-run cost 

rate is given by 

 
 

 
 

 

( )
lim

min ,

p a r b i I

t
I

E C S C P C P C E NC t

t E S E T N
 



      
  

                                (8) 

where S  is the length of a renewal cycle, aP  is the probability that a renewal cycle ends with 

preventive replacement, bP  is the probability that a renewal cycle ends with corrective 

replacement, and IN  is the number of inspections.  

At time t, the probability that the failure rate of the system exceeds the threshold    can be 

obtained as  

 

  

1

0 0

2 1

0 1 0

2 2 2 2

0 1

( , ) ( )
( ) ( )

/ 2 / ( )

t t tP h t X P X P X
h t h t

t h t

t

 
  

    

  





    
         

    

   
  
   

                        (9) 

Since a renewal cycle occurs either after a preventive replacement or corrective replacement, 

it is appealing to analyze the renewal cycle separately. The probability that preventive 

replacement is performed at the kth inspection is expressed as 

 
    

  

     

    

01 ln / ( )

0
0 0

0
1 0
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exp
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( ) (( 1) )
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X tk

h t x t f dxdt
P k

h t x t f dxdt

P h k P h k

 









   







 
 

  
 
 

   

 

                                (10) 

The probability that failure occurs within the interval   1 ,k k   can be obtained as  
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                                (11) 

Detailed derivations of Eq (10) and (11) are provided in Appendix. 

If preventive replacement is carried out at the kth inspection, the cost and length of a renewal 

cycle can be obtained as 
a p iC C kC   and aS k . If a failure occurs in the interval 

  1 ,k k  , the cost and in a renewal cycle is expressed as  1b r iC C k C    and the 

expected length is calculated as    
 1

( )
k

b
k

E S k k t f t dt



 


   . The long-run cost rate can be 

achieved by combining the renewal cycles ending with preventive replacement and corrective 

replacement. After some calculations, the long-run cost rate is given as 

 
 

          

   
    

1 1 1

1
1 1

1

( )

( )

p a r b i a b

k k k

k

a b
k

k k

C P k C P k C kP k k P k
E C

E S
k P k k k t f t dt P k





 

  

  

  

 


 

   

 

  

  

  
                  (12) 

The optimal maintenance threshold   can be obtained by minimizing Eq (12), i.e., 

 * arg min ( ) : 0     . 

 

3.2 Maintenance model with unknown distribution parameters  

In this section, we assume that the distribution parameters of the degradation process are 

unknown and have to be estimated with the inspected information. Denote kX  as the observed 

degradation level at the kth inspection. If the parameters   and   are known, we can have the 

joint distribution of the observations 1,..., kX X  as  

 1 22
1

1
,..., | , exp

22

k
k

i
k

i

X i
f X X

  
 

 

      
     

   
                         (13) 

However, the exact values of   and   are unknown, due to the unit-to-unit variation. We 

assume that the prior distribution of   and   are known, which can be obtained from the 

reliability characteristics of the population of the components. In accordance with previous 
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sections, let the prior distributions of   and   be Gaussian distributions with mean '

0  and 

variance 2

0  and mean 1  and variance 2

1 .  

Given the inspected information 1,..., kX X , the posterior distributions of   and   are 

bivariate normal distribution with parameters (Gebraeel et al , 2005) 

       
       

22 ' 2 2 2 2 2 2

0 0 1 0 1 11 1 1 1

22 2 2 2 2 2

0 1 1 01 1 1

k k k k

i ii i i i

k k k

i i i

X i i X i

k i i i


        


      

   

  

   


  

   

  
 

     
       

2 2 2 2 2 2 ' 2
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22 2 2 2 2 2
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k i i i
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where   is the correlation. The above equations imply that the degradation process is 

nonstationary evolution process whose parameters are updated according to the observed health 

condition of the system. The joint pdf of   and   is given as  

 22

1
( , ) exp

2 12 1

z
f

 

 
  

 
  
   

                                        (14) 

where 

      
2

2

2 2

2
z

  

   

       

   

  
    

Proposition 2. The correlation   and 2

  decrease with the inspection interval  , while 2

  

increases with  .  
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Proposition 2 can be used to reduce the variance of estimates by varying the inspection 

length. If   exerts a dominant impact on the degradation process, which can be evaluated via the 

prior distribution, then inspection interval is suggested to be extended so as to reduce the 

uncertainty of the estimates. If the degradation process is largely influenced by  , then the 

inspection interval should be short so as to improve the accuracy of the estimates. 

Corollary 1. Under continuous monitoring, the variances of   and   are constant. 

Corollary 1 can be achieved by letting   approach to 0 and k  approach to  . Corollary 1 

expresses the consequence of continuous monitoring and perfect inspection, which significantly 

reduces the associated uncertainty. After estimating the distribution parameters at the kth 

inspection, the distribution of the degradation level at time t k  can be predicted, which 

follows a Gaussian distribution with mean (Gebraeel et al, 2005) 

   
2

2
t k t k 


                                                       (15) 

and variance  

     
22 2 2 2 2t k t k t k                                                   (16) 

Since the parameters are updated whenever an inspection is carried out, maintenance 

decision based on a stationary failure rate may lead to a suboptimal solution. Instead, we focus 

on a dynamic maintenance policy, which captures the predictive information of the degradation 

process. We use the “failure probability till next inspection” (FPI) as the indicator to make 

maintenance decisions. In this way, the maintenance procedure goes as follows: at each 

inspection, the distribution parameters are updated based on the inspected information, if the FPI 

of the system exceeds a certain threshold, preventive replacement is performed. Otherwise, the 

system is left unattained.  

Since the maintenance decision is made one inspection after another, we focus on the 

expected cost till the subsequent inspection. Given that the system functions through the previous 

k inspections, and the estimates of the distribution parameters,   and   are available, the FPI of 

the system can be denoted as 

         
( 1)

0 | ,0
( 1) | , , 1 exp ( ) | ,

k

x sk
P T k T k h s x s f dx s ds



 
      

 

           (17) 

If the system fails before the kth inspection, corrective replacement is performed at once, and 

a renewal cycle follows subsequently. If the FPI is larger than 
k  at the kth inspection, i.e., 
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( 1)

0
0

log 1/ 1
k

kX sk
h s x s f x s ds




 

 

   , preventive replacement is carried out. 

Within a renewal cycle, if the system does not fail before the kth inspection, then at the kth 

inspection, the expected cost within the period   , 1k k   is  

           
          

( 1)

0
0

( 1)

0 | ,0

( ) 1 exp

| , log 1/ 1

k

pe i r X sk

k

p kX sk

E C k C C h s x s f x s ds

C P h s x s f ds







 



   

 

 

      

  

 

 
                  (18) 

The expected length of the period   , 1k k   is 

     
        

          

1 ( 1)

0
0

( 1)

0 | ,0

exp ( )

| , log 1/ 1

k k

pe T X sk k

k

kX sk

E T k t k f t dt h s x s f ds

P h s x s f ds

 

 



 

  

   

  

 

          

 

  

 

            (19) 

Eq (19) is obtained based on the event that no preventive replacement is carried out at the kth 

inspection. The effectiveness of the maintenance policy is highly dependent on the observation 

data; a closed-form expression of the long-run cost rate is difficult to obtain. For simplicity, we 

make the period-by-period maintenance decision by comparing the FIR with the ratio of 
pC  and 

rC . The decision   is then presented as 

1, if FPI /

0, otherwise

p rC C



 


                                                   (20) 

where 1 denotes preventive replacement and 0 implies doing nothing. Note that for safety-critical 

systems where a high reliability is required, more constraints are imposed on k . Maintenance 

actions have to satisfy the reliability constraint while minimizing the maintenance cost.  

 

4 Case study  

To illustrate the practical value of the proposed approach, we apply the present model to 

support the maintenance decision of bridge joints in UK. Bridge joints are used to accommodate 

the necessary movements of bridge decks, withstand the traffic load, and protect bearing from 

induced moisture and chloride ion. In this example, Asphalt Plug Joint (APJ) is studied and 

analyzed in particular. APJ is one of the most common bridge joints due to its waterproof and 

noise reduction properties. It also exhibits the property of low cost and easiness to install, repair 
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and replace. APJ is constituted by a metal plate, which spans between bridge decks to 

accommodate longitudinal expansion and contraction (up to 40 mm). The plate is then covered 

by asphaltic plug making a smooth riding surface and preventing the debris and water. Fig 1 

shows the structure of a bridge and the location of APJ. 

 

Fig 1 Sketch of asphalt plug joint 

APJs have an expected lifetime of between 5 years and 15 years based on the operating 

environment. According to the local maintenance experts, apart from the regular aging process, 

the deterioration of APJ is influenced by environmental factors such as accumulated debris, 

corrosion and traffic load. Additionally, it is also influenced by the induced damaged from other 

bridge components, such as the water leakage on the underside of the deck, the performance of 

bearing and superstructure movement. In this example, we mimic the overall impact of the factor 

as a time-dependent covariate factor. When an APJ is functioning improperly, it will cause 

problems on the bridge deck and bearing. To mitigate the risk of APJ failure, general inspection 

is regulated with a two-year interval to assess the condition of APJ joints. The inspection cost is 

250£. The replacement cost is 6,341£. The failure cost includes replacement cost, traffic 

management cost and add-on cost, which is 15,751£ in total. The local maintenance team is keen 

to find the optimal threshold to replacement APJ so that the operation and maintenance cost can 

be minimized.  

 

4.1 CBM with known distribution parameters 
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According to the practical experience from the experts in UK Council, the baseline hazard 

rate function follows a Weibull distribution, 1

0( ) /b bh t bt a , where the scale parameter is set as 

40a   (year) and shape parameter 3b   . Weibull distribution was widely used in modeling the 

crack proposition (Bažant, 2004; Cook & Clarke, 1988). The link function is assumed as 

exponential, e.g.,  ( ) expt tX X  .  

The parameters of the degradation process are set as 0 0.5  , 1 0.2  ,
2 0.01  ,

2

0 0.005   and 2

1 0.005  . According to Eq (6), the failure rate function follows a lognormal 

distribution, which is plotted in Fig 2. As can be observed, the failure rate increases rapidly after 

10 years, which implies a high risk of failure and intervention actions should be implemented in 

time. In addition, we plot the variation of system reliability and pdf in Fig 3.  

 

Fig 2 Plot of failure rate 
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Fig 3 Plot of system reliability & pdf 

 

Since in this model, the distribution parameters are estimated from historical data or expert 

opinions, estimation errors may affect the performance of the present model. Sensitivity analysis 

is thus conducted to investigate the influences of parameters on the lifetime distribution of the 

system. Fig 4 shows how the failure rate and system reliability vary with different u . Obviously, 

a larger u  leads to a higher failure rate; system reliability function shifts to left when u  

increases. In addition, Fig 5 plots the influences of different u  on the failure rate and system 

reliability. Compared with u , different u  lead to larger differences in the failure rate and 

system reliability.  The results imply that degradation rate exerts a significant effect on system 

lifetime distribution and the managers or engineers are suggested to invest more resource to 

accurately determine the value of degradation rate.   

 

Fig 4 Sensitivity analysis on u  (a) failure rate (b) system reliability 
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Fig 5 Sensitivity analysis on u  (a) failure rate (b) system reliability 

 

In current operation, the APJs are inspected every two years, 2  . According to Eq (12), 

the optimal maintenance policy is obtained as 0.038  , which implies that preventive 

replacement is carried out when the failure rate at inspection exceeds 0.038. The minimal long-

run cost rate is achieved as ( ) 1078   . Fig 6 shows how the long-run cost rate varies with 

respect to  . 

 

Fig 6 Long-run cost rate with respect to   
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Fig 7 Degradation threshold of preventive replacement with respect to system age 

 

4.2 CBM with unknown distribution parameters 

When the parameters of the degradation process are unknown, inspection is performed to 

observe the system state and update the estimation of the parameters. For the bridge system, we 

only have eight-year inspection data, where the system is inspected every two years. For 

illustration purpose, we also simulate the system state data for the later eight years. Four APJs 

are under investigation. The parameters of the prior distribution are obtained by historical 

experience and expert judgment, which are given as 0 0.5  , 1 0.2  ,
2 0.01  , 2
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and 2

1 0.005  . The parameters are estimated according to Proposition 2 and FPI of the system 

is calculated based on Eq (17).  

Table 1 shows the observed system state along with the estimated parameters and FPI. It can 

be seen that the observed system state increases with the inspection index. In addition, the FPI 

increases rapidly with the inspection index. This is due to the fact that the link function ( )  is 

exponential, which leads to exponential increasing of the failure rate. The estimated parameters 

u  and u  are close to the prior, which implies the effectiveness of the prior distribution.  

Based on the proposed maintenance policy, the system is replaced preventively when the 

FRI is larger than / 0.4026p rC C  . With the calculated FPI, we can conclude that, if the APJs 

are not failed, they should be preventively replaced at the fourth inspection, so as to achieve 

maximal economic benefits.  
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Table 1 Observations, estimated parameters and FPI of the APJs 

Item   Real data Simulated data 

1 Observation  0.86 1.38 1.63 1.98 2.47 2.91 3.40 3.71 

u  0.49 0.485 0.4989 0.5099 0.5016 0.491 0.4743 0.4751 

u  0.19 0.215 0.1971 0.189 0.1933 0.1974 0.2027 0.2025 

FPI 0.0024 0.0236 0.0855 0.2175 0.4506 0.7423 0.9476 0.9971 

2 Observation  0.99 1.4 1.62 2.41 2.45 3.05 3.14 3.8 

u  0.5086 0.5092 0.5315 0.4952 0.5268 0.5204 0.5546 0.5450 

u  0.2271 0.2238 0.1952 0.2219 0.2057 0.2038 0.1975 0.2 

FPI 0.0026 0.0249 0.0874 0.2618 0.4975 0.7931 0.9494 0.9976 

3 Observation  0.84 1.32 1.71 2 2.31 2.75 3.41 3.68 

u  0.4871 0.4835 0.4825 0.4955 0.5109 0.5107 0.4775 0.4719 

u  0.1843 0.2027 0.204 0.1943 0.1865 0.1865 0.197 0.1985 

FPI 0.0023 0.0226 0.087 0.2203 0.4331 0.706 0.9357 0.9959 

4 Observation  0.81 1.22 1.85 2.09 2.21 2.85 3.5 3.85 

u  0.4829 0.4815 0.4552 0.466 0.5063 0.5308 0.4756 0.4479 

u  0.1757 0.1823 0.2162 0.2082 0.1875 0.1779 0.1953 0.2027 

FPI 0.0023 0.0211 0.0902 0.2342 0.4348 0.6784 0.9315 0.9967 

 

 

5 Conclusions 

This paper investigates the condition-based maintenance policy for systems with aging and 

cumulative damage. The joint effect of aging and cumulative damage is described by 

proportional hazards model. Maintenance models are developed with consideration of known 

and unknown distribution parameters respectively. The results in this paper show that the 

degradation rate exerts a significant impact on system lifetime distribution. Engineers or 

managers are suggested to pay more attention to improving the accuracy of the degradation rate 

estimation. The proposed condition based model can be widely applied for infrastructure systems 

which are subject to cumulative damage and exhibit a long life cycle.   
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Extensions of this research can be conducted by generalizing the one-dimensional 

cumulative damage into multi-dimensional. Then multiple sensors should be equipped to inspect 

the damage (degradation) indicators. Parameter estimation of the distribution parameters could 

be complicated as interactions may exist among the multi-dimensional cumulative damages. The 

difficulty of extending to multi-dimensional degradation processes lies in the computational 

intensity. Approximation methods are thus appreciated in such cases. In addition, the form of 

link function can be explored with a variety of candidates. An exponential function is used for 

simplicity in this paper; in reality, various link functions can be tested if the associated data are 

available.  
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Appendix  

1. Proof of Proposition 1 

Denote ( )w t  as the cumulative hazard rate function of the system, i.e., 

0
0

( ; ) ( ) ( )
t

s sw t x h s x ds   

In the following, for notational simplicity, we will suppress sx  of  the ( ; )sw t x . the derivative of 

( )w t  with respect to t can be obtained as 

0

( )
( ) ( ) 0t

dw t
h t x

dt
   

and  

2

0
02

( ) ( )( )
( ) ( ) 0t t

t

t

dh t d x dxd w t
x h t

d t dt dx dt


    

Here we unofficially use /tdx dt  to denote the derivative of tx . The inequality holds since 0 ( )h t  

and ( )tx  are is non-decreasing functions in t and tx , and tX  is stochastically increasing in t. 

we can conclude that ( )w t  is a convex function in t. Based on the Jensen’s inequality, we have  

1 3 2( ) ( ) 2 ( )w t w t w t  , for any 1 2 30 t t t   , 
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On the other hand, the cumulative hazard rate between two consecutive inspections can be 

rewritten as 

( 1) ( 1)

0 0 0
0 0

( ) ( ) ( ) ( ) ( ) ( ) (( 1) ) ( )
k k k

s s s
k

h s x ds h s x ds h s x ds w k w k
  


    

 

        

Readily we can obtain  

( 1)

0 0
( 1)

( ) ( ) (( 1) ) ( ) ( ) (( 1) ) ( ) ( )
k k

s s
k k

h s x ds w k w k w k w k h s x ds
 

 
     




         

On the other hand, Jensen’s inequality states that    ( ) [ ]E g x g E x , for any  convex function 

( )g x , which completes the proof.  

 

2. Derivation of Equation (10) and Eq (11) 

Denote aU  as the event that given no failure occurs, the system is preventively replaced at the 

kth inspection,   1 ( ) , 0,( 1) ( )aU h t t k h k         , and aV  as the event that no failure 

occurs before k ,  1 no failure occurs beforeaV k . We can have  
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Denote bU  as the event that no preventive replacement is carried out before the kth inspection,

  1 ( ) , 0,( 1)bU h t t k     , and bV  as the event that given no preventive replacement, 

failure occurs within the interval   1 ,k k  ,    1 failure occurs within 1 ,bV k k   . The 

probability that failure occurs in the period   1 ,k k   is given as  
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3. Proof of Proposition 2 

Let  
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Then the derivative of  
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2  is given as 
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Since 2   , it can be concluded that   decreases with  . 

On the other hand, 2

  can be rewritten as 
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which implied that 2

  increases with  . 

In addition, 2

  can be rewritten as  
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  for any k, we can easily conclude that 2

  decreases with  .  

 

4.  Proof of Corollary 1  

Denote k M  , where M is a constant with bounds, M  . Let  
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When 0   and k  , we have 
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 , which implies 
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Similarly, we can obtain 
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 , which completes the proof.  
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Highlights: 

 We develop a condition-based maintenance policy for degrading systems  

 The system is subject to aging and cumulative damage 

 Proportional hazards model is employed to describe the degradation effect  

 The model utilizes the observed condition information to update distribution parameters  

 

 




