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Abstract

This work presents a Model Predictive Control (MPC) framework taking into account the usage of the actuators to
preserve system reliability while maximizing control performance. Two approaches are proposed to preserve system
reliability: a global approach that integrates in the control algorithm a representation of system reliability, and a local
approach that integrates a representation of component reliability. The trade-off between the system reliability and the
control performance should be taken into account. A methodology for MPC tuning is proposed to handle this trade-off.
System and component reliability are computed based on Dynamic Bayesian Network. The effectiveness and benefits of

the proposed control framework are discussed through its application to an over-actuated system.
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1. Introduction

The degradation of physical components in engineering
systems is generally inevitable. In particular, the degrada-
tion of actuators in a closed-loop control system can lead
to poor performance and sometimes in a loss of controlla-
bility. Therefore, actuator health is of great importance for
the safety and reliability of the controlled system. Thus,
to avoid failures it is important to enhance system safety
by taking into consideration the reliability of components
in the controller design [12].

If the design objective is still to maintain the original
system performance, this may force the remaining actu-
ators to work beyond their normal duty to compensate
the handicaps caused by the fault. Therefore, the trade-
off between achievable performance and available actuator
capability should be carefully considered in all control de-
signs.

Considerable research has been carried out in order to
enhance the system reliability from the manufacturing and
system structure point of view. Recently, system reliabil-
ity has been taken into account in the system control pro-
cess through a Prognosis and Health Management (PHM)
framework. Mainly because reliability is as a measure of
how long the system will perform its function correctly [7]
and can be used to predict future failures in the system
given the state of its components.

In some cases the control effort can be redistributed
among the available actuators to relieve the work load and
the stress factors on assets with worst conditions avoid-
ing in this manner their deterioration. For this purpose,
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an appropriate policy should be developed to redistribute
the control effort until maintenance actions can be taken.
In this work, the actuator and system reliability are inte-
grated in the control design and used as a policy which
serves to redistribute the control effort among the actua-
tors [23, 24].

This paper presents a method to manage the system re-
liability while performing the control of the system within
a framework based on Model Predictive Control (MPC).
For this purpose, the paper presents two approaches, the
local approach, based on the components reliability and
the global approach focused on the system reliability. As
a result, a trade-off between system reliability and control
performance arises.

The growing importance of maintenance has generated
an increasing interest in the development and implementa-
tion of optimal maintenance strategies for improving sys-
tem reliability, preventing the occurrence of system fail-
ures, and reducing maintenance costs of deteriorating sys-
tems [9].

MPC is an efficient technique to manage this kind of ob-
jectives. It allows the incorporation of several criteria in
the optimization problem. By instance, in [8] the authors
present an application of MPC to a Drinking Water Net-
work (DWN) which includes in the optimization problem
several criteria such as a criteria for economic cost, level
of service and level of components degradation.

In [21] and [22], the MPC formulation includes the ac-
tuator usage as constraints, whose objective is to maintain
the accumulated usage under a safety level at the end of
the mission.

Reliability can be modelled as an exponential function
[6, 33], as a Weibull function [2, 11] or a Gamma function
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List of acronyms and notation

BNs  Bayesian Networks

CAU  Cumulative Actuator Usage
CPT  Conditional Probability Table
DAG Directed Acyclic Graph
DBNs Dynamic Bayesian Networks
DWN  Drinking Water Network

Is Birnbaum’s measure

IMs Importance Measures

ISE Integrated Square Error

JCR  Joint Component Reliability
MCs  Markov chains
MPC  Model Predictive Control

MIF  Marginal Importance Factor

PHM  Prognosis and Health Management

RBD  Reliability Block Diagram

RIMs Reliability Importance Measures

SIMs  Structural Importance Measures

Is Identity matrix of size 8 x 8

[A]s Block column matrix composed by 8 x 1 blocks of
matrices A

Té‘ Block lower triangular matrix composed by 8 x [

blocks of matrices A

Lower bound of the control input for the ¢ actuator

U, Upper bound of the control input for the i actuator

H, Control horizon

H, Prediction horizon

p Energy weighting parameter

€ Weighting parameter of cost function objectives

Ai Failure rate of the ith component

2\ Baseline failure rate of the ith component

C kth minimal cut set

Py sth minimal path set

P(A) Probability of event A

P(A|B) Probability of event A given B

R; Reliability of the ith component

R Reliability of the system

Ts Sampling time

O(4) Structure function

€; Random variable representing the state of the ith
component

S Random variable representing the state of the sys-
tem

Xi Random variable representing the state of the ith
component of the system

X System state vector composed of X; elements

T Mission time

[17, 18, 26], among others. It can also be expressed as
a stochastic process [20], using a Markov chain (MC) to
model the reliability of the components with the drawback
that in practice and depending on the complexity of the
system this can lead to a combinatorial explosion of states
(32].

The use of Bayesian Networks (BN) to model and com-
puting the reliability of the system, taking into account ob-
servations (evidences) about the state of the components
has been considered recently in some works [1, 2, 27, 30].
In [25] the authors present the advantages of BNs in com-
parison with reliability block diagrams. In [4], a fault tree
is modelled using a BN. A comparison between MC and
Dynamic Bayesian Networks (DBN) applied to reliability
is presented in [31]. DBNs are interesting because they al-
low to model the system reliability with a factorization of
the MC states leading to a compact model representation.

The purpose of this paper is to present the benefit of
taking into account system and component reliability as
criteria in the MPC algorithm through an illustration ded-
icated to DWN as a part of a PHM strategy.

The paper presents a study on local and global ap-
proaches to manage the system reliability, using Reliability
Importance Measures (RIMs). The global system reliabil-
ity is modelled using a DBN.

The rest of the work is organized as follows: Section 2
deals with the components and system reliability mod-

elling. Section 3 presents the RIM used in the global ap-
proach. In Section 4 a description of the MPC framework
is presented. Section 5 presents the application of the
MPC framework on a DWN system and some results of
the control application are discussed. Finally in Section 6
some conclusions are given.

2. Reliability Modelling

2.1. Reliability concept

Before introducing the concept of reliability, let us first
define the concept of failure rate. The general definition
of failure rate, denoted as ), is stated as the fraction of
the density of the random lifetime to the survival function
(i.e. conditional probability).

From this definition, the failure rate can be interpreted
as the probability that a component will fail at the next
instant time (k 4+ At) given that it has survive until the
current instant time (k).

In this work, the definition given by [5] is used, where
the failure rate for the ith item is modelled as:

Ai(k) = XY % g(¢€,9) (1)

where A0 represents the baseline failure rate or nominal
failure rate and g(¢,9) is a load function also known as



covariate, that represents the effect of stress on the com-
ponent failure rate. £ represents an image of the applied
load and ¢ is a component parameter.

Different definitions of function g(¢,4) exists in the lit-
erature. However, the exponential form is the most com-
monly used. In [13, 14] the authors propose a load func-
tion based on the root-mean-square of the applied control
input (u;) until the end of the mission (), and an actu-
ator parameter defined from the upper and lower bounds
of control input.

Moreover, the operating conditions and environmental
factors, such as stress, load, temperature, pressure, etc.,
under which device operates must be taken into account.
In this work, it is assumed that the failure rate is provided
by:

Xi(k) = A7 gi(ui(k)) (2)

In (2) g;(u;(k)) represents the amount of load on the ac-
tuator and corresponds to the following normalized control

action:
gi(us(k)) = B~ % (3)

U; — U;

where u; (k) is the control effort at time &, u; and @; are the
minimum and maximum control efforts allowed for the ith
actuator. The major actuator load corresponds to u;(k) =
wu;, which leads to the worst failure rate \; = )\?.

Accordingly to the failure rate definition, reliability is
the probability that a system will perform its functioning
satisfactorily for a given period of time and under stated
operating conditions.

In this paper an exponential model for the component
reliability is used:

Ri(t) = e Jo M) (4)

and in discrete time it follows:

k41
<Ts Z )\i(v))
Ri(k+1)=e v=0 (5)
where \;(v) is the failure rate that is obtained from the
ith component under different levels of load and T is the
sampling time.

For analysis simplification but without loss of general-
ity, it is assumed that all the components are mutually
independent. This means that the joint distribution of the
system state vector (X = (Xy,...,X,)) is determined by
the reliability of its components.

The dependence of the state of the system regards to the
state of the components can be determined by means of
its structure function (®(X)). This function indicates the
status of the system (success or failure) given the states of
each component.

For instance, the structure function can be computed
using either the minimal path sets (Ps) which are the min-
imal sets of elements of the system whose functioning (i.e.,
being up -Up-) ensures that the system is up (6), or the

minimal cut sets (C%) which are the minimal sets of ele-
ments of the system whose failure (i.e. being down -Dn-)
causes the failure of the system (7).

S

o,X)=1-J](1- [] X (6)

j=1 i€P;

k
oX)=[[{1-JT0-x) (7)
j=1 i=er
where X; is a random binary variable that represents the
state of the component: X; = 1 the component is Up,
X,; = 0 the component is Dn.

As both of methods are equivalent in this work the min-
imal path set approach is used.

Hence, the reliability of the system is defined as the
expectation of the structure function, this is:

R = E[®(X)] (8)
which can be expressed in probability terms as:
R=P(®(X)=1) (9)

Therefore, if ®(X) = 1 the system is up (Up), and if
®(X) = 0 the system is down (Dn). Generally, the relia-
bility is determined by the way the components are inter-
connected in the system, i.e., serial or parallel or a combi-
nation of them.

2.2. Bayesian Networks & Dynamic Bayesian Networks

Basically, Bayesian Networks compute the probability
distribution in a set of variables according to the prior
knowledge of some variables and the observation of others
[10]. BNs can be considered as a subset of Directed Acyclic
Graph (DAG).

To illustrate this concept, let A and B be two nodes with
two possible states (S; and So) (Figure 1). A probability
is associated to each state of the node A and this proba-
bility is defined a priori for a root node and computed by

inference for the others. The a priori probabilities of node
A are P(A=S4;) and P(A=S45).

Figure 1: Basic Bayesian Network.

A Conditional Probability Table (CPT) is associated
with node B and defines the conditional probability of the
state of B given the state of A (P(B|A)).

Thus, the BN inference computes the marginal distribu-
tion e.g. P(B=Sp1) as:

P(B = Sp1) =P(B = Sp1|A = Sa1)P(A = Su1)
+ P(B = SBI|A = SAQ)P(A = SAQ)
(10)



A special case of Bayesian Network called Dynamic
Bayesian Network (DBN) is used to model the time de-
pendency of a process. In a DBN the random variables
are time indexed, so the process state Sa : {sf, ..., s4;} is
represented by nodes Ay and Ay a¢ at time instants k and
k + At, respectively. The time dependence is represented
by an arc and the temporal evolution of the variables is
represented by successive time slices as shows Figure 2 (for
simplicity let At be equal to 1).

The transition probability between the states of the vari-
able at time instant k to k + 1 is defined by a CPT inter-
time slices. Given the probability distribution P(Ay) at
time instant k, the network leads by inference to a unique
distribution P(Ay1) at time instant k£ + 1. The compu-
tation over time of P(Ar) is performed by iterative infer-
ences starting from k = 0 and P(Ay) [1].

time slice k time slice k + 1

Figure 2: DBN model for the ith component.

2.8. Components reliability modelling

The decay of the components reliability can be modelled
using a Markov chain process. This type of process is very
useful in system reliability modelling due to its memory-
less property, which means, that the state transitions only
depend on the current and next state, and it does not de-
pend on the previous state or the amount of time that
the process has stayed in the current state, making it an
effective tool for system reliability analysis [28].

Let e; be a discrete random variable in the Markov pro-
cess representing the state of the ith component with two
possible mutually exclusive states {Up, Dn}. The proba-
bilistic state transition between the states is defined by:

Pyc = [1 Oplz pF] (11)
where p1o = AAt : A represents a constant failure rate and
At the time interval, and p;2 can be interpreted as the
probability that the component goes from state Up to Dn
after At.

In the case of components whose failure rate depends
on time, their reliability decay can be modeled by a semi-
Markov chain (Figure 3).

The MC is homogeneous if the transition probabilities
of the states are independent on time. In a semi-Markov
chain, the memoryless property is relaxed, which means
that the state transition depends on the current state and
the transition time. Therefore, the probability matrix (11)
becomes dependent on time:

1— k k
Prc(ekqrlex) = %12( ) p121( ) (12)

p12(k)

Up Dn
Figure 3: Semi-Markov chain for the component reliability.

From (12) it is clear that the failure rate is the proba-
bility of component state to be Dn at instant time k + 1
given that its state was Up at time k, this is:

Ai(k) = P(ei(k + 1) = Dnle;(k) = Up) (13)

The semi-Markov chain is modelled by a Dynamic
Bayesian Network with CPT evolving according to time.
In this case the evolution is represented in two time slides
(Figure 4) [1].

time slice k time slice k + 1

Figure 4: DBN model for the ith component.

Therefore, DBN computes the component reliability us-
ing:

Rz(k+1> :P(ez(k’+1) :Up) (14)

which follows expression (5).

2.4. System reliability modelling

A system is defined as a set of i components whose states
are described by the random variable e;, as:

P(X; =1) =P(e; = Up); P(X;=0)=P(e; =Dn) (15)

where X;: X; = 1 if the ith component is up, X; = 0 if
the ith component is down.

Assume that the state of the components are known.
Therefore, in this work the system reliability is computed
from its components reliability using a DBN.

For instance, once the minimal path sets of the system
are identified, its states (i.e., if the minimal path set is up
or down) are represented by a random variable as a node
in the DBN. The state of the components of the system are
also represented as nodes in the DBN and are connected
to their respective minimal path set node. Note that the
probabilities of the component states are computed by in-
ferences in the DBN modelling of the semi Markov chain
described in Section 2.3.

Finally, the state of the system (i.e., system reliability)
is given by the top node of the BN which is connected to
the minimal path set nodes.



For example, consider the reliability block diagram
(RBD) of Figure 5, which shows the contribution of com-
ponent reliability to the success or failure of a three com-
ponents system. It is clear that with a minimum of two
components the system can performs its function satisfac-
torily, being {1, 3} and {2, 3} the minimal path sets of the
system. Although, in this example a RBD is used to define
the structure of the BN, the minimal path sets can also be
obtained by other methods or directly from the system.
This will be illustrated in the case study in Section 5.

Compr

Comps

| B

Compo

Figure 5: RBD of a three components system example.

Then, it is possible to build a BN of the system reli-
ability from its minimal path sets see Figure 6, being e;
the probability of the ith component state, P; the proba-
bility of the state of the ith minimal path set and S the
probability of the system state [27].

Figure 6: Bayesian Network of system reliability.

Tables 1 and 2 present the CPTs of nodes P, and S, re-
spectively. P; depends on the states of the components e
and ez and its behaviour corresponds to an AND gate, i.e.,
all the components in a success path should be available
for the system to be available. S depends on the state of
success path nodes P; and P, and has the behaviour of an
OR gate, i.e., if there is at least one success path available,
then the system will be available.

Table 1: CPT for node P;. Table 2: CPT for node S.

P1 S
1 e Up Dn P P Up Dn
Up Up 1 0 Up Up 1 0
Up Dn 0 1 Up Dn 1 0
Dn Up 0 1 Dn Up 1 0
Dn Dn 0 1 Dn Dn 0 1

It is possible then to compute the probability distribu-
tion for each variable conditioned by the values of the other

variables in the graph. This feature is particularly im-
portant in case a control system must work in real-time,
because in that case evidences acquired about a state vari-
able must be propagated to update the state of the rest of
the domain. Therefore, the reliability of the system (R) is
computed using the BN as:

R(k+1) = P(S(k +1) = Up) (16)

In the case of complex structure systems with high
amount of components the compute of the structure func-
tion becomes non trivial. The use of BNs to reliability
modelling allows several modelling structures based on
minimal path sets, or logical combination of components
states (using AND or OR gates) [15].

3. Reliability Importance Measures

One of the objectives of system reliability analysis is to
identify the weakness in a system and to quantify the im-
pact of components failures over system functioning. Sev-
eral indicators of reliability importance exist, each express-
ing the importance from a slightly different point of view.

Importance Measures (IMs) were first introduced by
[3] and are classified in two groups: Reliability Impor-
tance Measures (RIMs) and Structural Importance Mea-
sures (SIMs). The RIMs evaluate the relative importance
of a component taking into account its contribution to the
system reliability and the SIMs provide the relative im-
portance of a component taking into account its position
into the system structure.

These metrics can be defined according to their func-
tional aspect, leading to their modelling by the minimal
path sets, and according to their dysfunctional aspect,
leading to their modelling by the minimal cut sets. As
both are equivalent, in this study only the functional as-
pect is used.

The aim is to quantify the importance of the ith com-
ponent for the reliability of the total system and how the
changes in the component reliability impact in the system
reliability.

One of the most used RIMs is the Birnbaum’s impor-
tance measure [3] also known as Marginal Importance Fac-
tor (MIF). MIF is related to the probability that a com-
ponent is critical for the system.

Definition 1. The Birnbaum’s importance measure of the
tth component for the functioning of the system, denoted
as Ip,(i; p), for a coherent system with independent com-
ponents it is defined as:

9R(p)
opi

IB(ia p) =
(17)

This measure is well known from classical sensitivity
analysis. It represents the probability that the failure and
functioning of the ith component coincide with the failure



and functioning of the system. This can be interpreted as
the maximum decrease of system reliability when the ith
component changes from the condition of perfect function-
ing to failed condition.

Note that the Birnbaum’s importance measure of the
ith component only depends on the structure of the system
and the reliabilities of the other components, and that it is
independent of the actual reliability of the ith component.

The Birnbaum’s importance measure of component i
can be computed by inference using the DBN system
model by introducing evidences about the states of each
component (i.e., being Up or Dn) and computing the dif-
ference between the system reliabilities in both cases.

4. Reliability aware MPC Framework

4.1. MPC formulation

Consider the following linear discrete-time dynamic
model of a system described in the state-space form as:

xz(k+1) = Az(k) + Bu(k)
y(k) = Cu(k)

where for each k € Z*,z(k) € R" is the state, u(k) € R?
is the control input, y(k) € R? is the measured output,
A € R™"™ is the state matrix, B € RI*P is the input
matrix and C € R7*™ is the output matrix.

Model-based predictive control (MPC) is a discrete time
technique where an explicit dynamic model of the plant is
considered to predict the system outputs by applying (20)
recursively along the prediction horizon, obtaining (18)
(Hp) where @(k + i|k) is the control input corresponding
to k + 1 calculated at time instant k£, and the hat notation
represents a predicted value.

The control actions are manipulated throughout a fi-
nite control horizon (H,) in order to minimize a given cost
function, with H, < Hp. This methodology is represented
in Figure 7, where the past outputs and control input se-
quences (showed in the left side) are used to compute the
future output sequence over H),, and future control inputs

(20)

Past Future
-~

Set point (target)

e e o Past output

° o ooo Predicted future output

. —— Past control action
—=— Future control action

Control horizon, He

i |
u | : "
— — 1 Prediction horizon, Hp

|
k +Hp

| | 1 1
k-1%k k+1k+2 k+Hc-1
Sampling instant

Figure 7: Model Predictive Control basic concept

sequences over H.. Such that the cost function is mini-
mized.

The cost function generally includes a term for the track-
ing error, minimizing the square difference between the
predicted output (V) and the set-point (Yys), and a term
for the minimization of the square of the energy (U) and
its variation (AU) according to (18) and (19).

In this work, the cost function J is defined as:

min
 (U(K|K), ..
U(k+ Hc — 1]k),
AU (k[k), ...,
AU (k+Hc—1]k))

N Tra
J= e[V =Yis| [V Vo]
+(1-¢) (UT p U+AﬁTAU)

(21)
subject to

where: Yyer = [Yref(k+ 1), ..., yres(k + Hp)] T is the out-
put reference, p =diag(p,p,...,p) of size H. x H, and
p =diag(p1, p2, ..., pp) is the weighting for the energy and e
is a weighting parameter between tracking and energy ob-
jectives, U, U, X and X, are the lower and upper bounds
of the control effort and system states, respectively.

The resulting control action 4 (k|k) is injected to the sys-
tem while a(k +ilk) Vi=1,..., H. — 1 are discarded. At

CB

0q><p qup

9k + 1]k) cA CAB on 0 a(k|k)
g(k +2|k) cA? > a(k + 1]k)
- k :
z(k) + Hp_gzw (18)
G(k + Hpy|k) C Aty CAM»—1B CAH»—2p S>> CcA'B| |a(k+ H, — 1]k)
=0 —_—
Yy F, 5
H
a(k|k) Iy Opxp Opxp Ad(k[k) Ipxp
a(k + 1]k) L, I, Opxp Ad(k + 1|k) Ly
. =|. . : : S ak-1)
: : : : : : (19)
a(k + H. — 1]k) L, I, I, | |Ad(k+ H. —1]k) Loy
U e AU [Ipla.

He



next instant time k+ 1, y(k + 1) is measured and the opti-
mization problem is solved again. Thus, 4(k + 1|k + 1) is
calculated moving the prediction horizon using the concept
of sliding window.

4.2. MPC tuning methodology

MPC tuning involves finding the appropriate values for
the weighting parameters in the cost function, as well as
the prediction and control horizons that depend on the
application and the amount of data that can be handled.

This work focuses on proposing a methodology to find
p and ¢ in (21) as follows:

Step 1:
Select € = 0 and through simulations find the optimal
value of p in which the reliability of the system at the
end of the mission time is the highest.

The comparison and selection of the best approach
is performed based on the following criteria. Let the
Joint Component Reliability index (JCR) be a mea-
sure of the remained overall reliability of the system
components at the end of the mission time:

JCR = ﬁ R; (22)

=1

and, let the Cumulative Actuator Usage (CAU) be a
measure of the actuator energy consumption defined

as:
Tt /Ts

CAU=T, Y Uk U(k) (23)
k=0

where T, is the mission time.

Step 2:
Having selected p as mentioned in the previous step,
find the optimal value of ¢ through simulations, start-
ing from £ = 0 to 1.

The idea is to study the effect produced by the vari-
ation of parameter € in the system reliability or in
other words, the impact of the tracking error in the
reliability. To measure this impact, an index called
the integral square error (ISE) is defined:

T /Ts A T
SE=T, 3 [Y(k) - Yref(k)} [Y(k) — Yyep (k)
k=0

(24)

Therefore, the € value which corresponds to the highest
system reliability and the lowest ISE.

4.8. Control action redistribution

The weights p in the cost function (21) redistribute the
control effort among the actuators [23].

In this work, a global and a local approach are proposed
to handle the reliability in the optimization problem. The

global approach consists in considering the Birnbaum’s im-
portance measure viewed in Section 3 (computed using the
DBN reliability model) by setting:

p(k) = diag(Ip;(k)) Vi=1,2,...,p (25)

in this case, it is expected that components with a greater
contribution to the system reliability are used less than
the others.

On the other hand, the local approach tries to preserve
system reliability by preserving component reliability by
setting the weight as:

p(k) =diag(1— R;(k))Vi=1,2,...,p (26)

This criteria aims at finding the optimal control actions
and distribute it among the available actuators in such a
way that actuators with lower reliability level are relieved.
Hence, the use of highly reliable components is prioritized.

The local approach assumes an equivalent contribution
of component reliability to system reliability. However,
this is hardly ever true. In fact, the DBN reliability model
can intrinsically explain this relation.

The control strategy scheme is presented in Figure 8.
On the one hand, the MPC computes the control inputs
according to: the cost function, a set of bounds, the cur-
rent system state and the weight p. Then, the control
input is injected to the system and used to compute the
component failure rates.

bounds

U, U, T, T u(k) DWN z(k+1)
— = > >
Model System
(k) Predictive
Control (k) 1
o z
MPC weights
update V
R(k) DBN ;(k) Failure rate
Ry(k+1) update
Ri(k+1) {R (k)
1
z

Figure 8: Block diagram of the approach

On the other hand, those failure rates are used in the
DBN to compute: the components reliability, the overall
system reliability and the Birnbaum’s importance mea-
sure. This data is used then to update the weight p, which
is used in the MPC algorithm, closing in this way the loop.

5. Application: Drinking Water Network

5.1. System description

A DWN is composed by sources (water supplies), sinks
(water demand sectors) and pipelines that link sources to
sinks. It also contains active elements like pumps, valves.
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Figure 9: Drinking water network diagram.

The considered DWN corresponds to a subsystem of the
Barcelona water transport network [30] (Figure 9).

The network consists of 5 sources and 1 sink. It is as-
sumed that the demand forecast at the sink (d,,(k)) is
known (Figure 10), and that any single source can sat-
isfy this required water demand. It is also assumed that
the volume of the tanks should follow a given set point
(Figure 11).

0.8

50 100 150 200 250 300
Time [h]

Figure 10: Drinking water demand.

The DWN is modelled by applying mass balance to each
tank and the following linear discrete-time model is ob-
tained:

x(k+1) = Az(k) + Bu(k) + Bad,, (k) (27)

y(k) = Cx(k)
where z(k) € R™ are tanks volume, u(k) € RP are the
control inputs (pump commands) with u(k) > 0V k, y(k)
€ RY are the measured tanks volume, d,,, (k) € R™ is the
water demand, A € R™*" is the state matrix, B € R?*P
input matrix, By € R™*™ is the disturbance matrix, and
C € R9*"™ is the output matrix.

N — Setpoint tank 1

é — Setpoint tank 2
) — Setpoint tank 3
g —— Setpoint tank 4
)

>

e g
- 1

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [h]

Figure 11: Volume reference for the 4 reservoirs

5.2. Dynamic Bayesian Network modelling

The DWN reliability is modelled using a DBN following
the methodology explained in Section 2.4. Firstly, system
components must be identified. In this case there are 10
pumps, 5 sources, 4 tanks and several pipes.

Secondly, the minimal path sets should be determined.
A minimal path set is composed by those components
which allow a flow path between sources and sinks, such
as pipes, tanks and pumps. A list of the components that
correspond to each minimal path set is presented in Ta-
ble 3. There are nine minimal path sets in the system of
Figure 9. Each minimal path set is available depending
on the reliability of its components. Pipes and tanks are
considered perfectly reliable so they do not provide signifi-
cant information to the network. Nevertheless, sources are
included in the minimal path sets merely for illustrating
the procedure.

Table 3: Components and minimal path sets relationship.

A | Ay [ As | Ay | As Jer | ea|es|ea|es|ec|er|es]en]| e

Py X X X

Py X X X

Py X X X

Py X X X X

Ps X X X X
Py X X X X X
Py X X X X

Py X X X X
Py X X | % X X

Provided the information of Table 3, the DBN presented
in Figure 12 is built as follows: nodes e; and A; are drawn
for each component. Note that nodes e; have two time
slices in time k and k + 1 following the approach of Sec-
tion 2.3.

Then, these nodes are interconnected to their corre-
sponding minimal path set nodes P; using arcs. Finally,
each minimal path set node is interconnected to the system
reliability node S [30].

Initially, at instant k = 0, the pumps and the system
are assumed to be fully reliable, i.e. their reliability is 1.
Then, the probability of each node is computed using its
CPT.



Figure 12: Dynamic Bayesian network model of the DWN.

At each sampling time, the reliability R; of each pump
is computed according to its failure rate using a MC (Fig-
ure 12). Its behaviour follows an exponential distribution
as stated in (4).

Note that it is independent of the previous states of the
component. It only depends on its present state. In the
DBN, this corresponds to the CPT shown in Table 4.

Table 4: Inter-time slices CPT for node e;x+1-
€; (ki + 1)
e; (k) Up Dn

Up  L-(NT; x gi(ui(k))) AT x gi(ui(k))
Dn 0 1

Remark 1. The failure rate is computed according to
gi(u;(k)). The CPT shown in Table 4 defines the dis-
cretized stochastic process of using (2) and (3) in (4).

The CPT of node P; is shown in Table 5. This CPT
depends on the states of the source 1 (4;) and pumps 1
and 5 (eq, e5). Its behaviour corresponds to an AND gate.

Table 5: CPTs for nodes P;.

A1 €1k+1 €gk+1 UpplDTL
Up Up Up 1 0
Up Up Dn 0 1
Up Dn Up 0 1
Up Dn Dn 0 1
Dn  Up Up 0 1
Dn  Up Dn 0 1
Dn  Dn Up 0 1
Dn  Dn Dn 0 1

It is assumed that with one source it is possible to satisfy
the water demand. Thus, the availability of the system can
be assured as long as at least one of paths P; is available,
which corresponds to the CPT of node S shown in Table
6. It depends on the state of nodes P; to Py and has the
behaviour of an OR gate.

Table 6: CPT for node S.

S
P P, P ... P Up Dn
Up Up Up ... Up 1 0
Up Up Up ... Dn 1 0
- - - ... Up 1 0
Dn Dn Dn ... Dn 0 1

The system reliability of the DWN is computed by im-
plementing the DBN presented in the Figure 12 using the
BNT toolbox for Matlab [19].

5.8. MPC with reliability optimization

The control of the DWN system is performed applying
the MPC formulation of Section 4. Table 7 provides the
simulation parameters used. A hierarchical control struc-
ture is assumed, where the MPC layer produces a set of
set-points for the lower level flow controllers. Hence, a 1
hour sampling time is assumed for the upper level MPC.
Since the water demand (Figure 10) exhibits a daily pro-
file, a 24 h prediction horizon has been chosen and the
initial tank volumes have been set to X.

Table 7: Simulation parameters

parameter value
H, | H. 248
Ty | Tar [] 1 | 2000
p | € {13 1- Ria IBi} | {107187“'71}
_ 075 075 075 120 0.85
3
U [m?/s] 160 170 085 170 1.60
0 0 0 0 0
U 3
U m*/s] 0 0 0 0 0
9.85 10.70 10.50 1.40 0.85
A0 [hL x 1074
[P X107 80 1170 0.60 074 0.78
X [m?] 65200 3100 14450 11745
X [m?] 25000 2200 5200 3500
X, [m?] 45100 2650 9825 7622

To find the appropriate values for the weighting param-
eters the procedure presented in Section 4 is followed.

First, Step 1 is applied and the following simulation sce-
narios are considered: p; = 1— R;, p; = Ig; and p; =1
where no dependency on system reliability is assumed.



Figure 13 displays the p; = 1 — R; weights evolution,
where the smaller reliability profile (i.e., higher weight)
corresponds to pumps 1, 2, 3 and 7.
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Figure 13: MPC weights for the case p; =1 — R;.
Figure 14, provides the p; = Ip; weights evolution,

where the highest weight corresponds to pump 6 (in the
figure it goes off of the plot). In this scenario, the system
reliability is highly sensitive to pump 6 reliability, so MPC
tries to preserve the system reliability by preventing its
use.
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Figure 14: MPC weights for the case p; = Ip;.
Table 8 presents the indexes values for each scenario.
For p; = 1 — R, system reliability is improved with respect

to the nominal case. However, the best system reliability
results are achieved when p; = Ip;.

Table 8: Indexes of the RIMs in control loop at Thy.

Scenario R [x1073] CAU [x105] JCR
Nominal  975.0303 1.5370 0.0933
1—-R; 978.7349 2.0251 0.2147
Ig; 993.4226 3.8502 0.1702

Instead, the case p; = 1— R; provides the best joint com-
ponent reliability. In this case, these results show that the
global approach improves more slightly the overall system
reliability than the local approach. This is explained by
the fact that in the local approach, individual component
reliabilities are not incremented all at once, and that the
failure rate of the components is not the same. Then, in
the global approach, the components use is penalized de-
pending on their impact in the overall reliability system.

In both cases (local and global), improving system relia-
bility leads to an increase in the cumulative actuator usage
which indicates that the improvement of system reliability
can lead to an increase of energy consumption.

Concerning the case p; = Ip;, note that those pumps
that do not belong to minimal path sets Ps and Ps (i.e.,
pumps 1, 2, 3, 6, 8 and 9) are greatly penalized. This
is mainly due to the criticality of pump 6 from a system
reliability point of view. Remark from Table 3 that pump
6 belongs to 7 out of 9 minimal path sets.

Figure 15 provides the evolution of the input commands
(u;) produced by the MPC layer for each pump in the
three different cases. Remark that, when p; = 1 — R;, the
usage of the pumps with a greater baseline failure rate are
diminished.
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Figure 15: Pump commands corresponding to p; = 1 (blue), p; =
1 — R; (green) and p; = Ip; (red).

Once selected p = Ig; as the optimal setting to obtain
the best system reliability, the optimal value of ¢ will be
chosen following Step 2 of the procedure presented in Sec-
tion 4.

To this purpose several simulations were done for € in
the range of 0 to 1. Figure 16 presents the reliability ob-



tained at the end of the simulation time, where the main
system reliability behaviour is, as expected, decreasing as
¢ increases. Nevertheless, for some specific values of ¢, the
system reliability tends to stay steady or even increases
when € = 10%, perhaps it is due to numerical issues in the
optimization solver.
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Figure 16: Overall system reliability evolution for the 4 reservoirs

Figure 17 shows the tracking error obtained at the end
of the mission. These results show that as ¢ approaches
to 1, less ISE is obtained, as it can be expected from (21),
since the tracking error is less penalized.
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Figure 17: Tracking error for the 4 reservoirs in semilog scale

Therefore according to these results, p should be selected
as p = Ip;, and the value of ¢ which has the highest sys-
tem reliability and lowest ISE is around 10710, Figure 18
presents the tracking response of the control algorithm.

6. Conclusions

An MPC framework that takes into account the usage of
the actuators to preserve system reliability while maximiz-
ing control performance has been proposed in this work.
A methodology has been proposed to tune the MPC cost
function weights that provide best system reliability and
control performance. To handle the reliability in the op-
timization problem of the MPC controller, a global ap-
proach considering the Birnbaum’s importance measure
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Figure 18: Tracking references of tanks

and a local approach, considering an equivalent contribu-
tion of component reliability to system reliability, have
been studied.

The reliability assessment is computed on-line using a
Dynamic Bayesian Network (DBN).

Results show that a reliability importance measure pro-
vides better system reliability. In this work the Birn-
baum’s importance measure has been studied, but other
reliability importance measures exist [16].

Future research will focus on the study of these other
importance measures for reliability preservation through
MPC tuning.

The methodology presented in this paper is based in
determining the minimal path sets, which is known to be
an NP-hard problem when applied to complex system with
high amount of components. Nevertheless, the DBN model
may be build from other methods based on a top down
analysis avoiding the specification of all path sets [29].
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