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Abstract

Parallel systems are a commonly used structure in reliability engineering. A
common characteristic of such systems is that the failure of a component may
not cause its system to fail. As such, the failure may not be immediately detected
and the random (disruption) time at which the number of failed components
reaches a certain predefined number d may therefore be unknown. For such
systems, scheduling maintenance policy is a difficult task, which is tackled in
this paper. The paper assumes that times between inspections conform to a
modulated Poisson process. This assumption allows the frequency of inspection
responds to the variation of the disruption state. The paper then estimates
the disruption time on the basis of inspection point process observations in the
framework of filtering theorem. The paper develops a unified cost structure
to jointly optimise inspection frequency and replacement time for the system
when the lifetime distribution of a component follows the Pareto or exponential
distribution. Numerical results are provided to show the application of the
proposed model.

Keywords: Replacement; Inspection; Renewal-Reward; Optimization; Partial
information; Filtering theorem.

Acronyms
MRD: Mean residual disruption time
PM: Preventive maintenance
RMA: Repair and maintenance action

Nomenclature

m Number of components in the system
tr Periodic replacement time
Xd(t) Disruption state
τd Disruption (alert) time at which the process Xd(t) describing the

system state jumps from normal state (0) to the degraded state (1)
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Tn Time at which the nth inspection is conducted
N(t) Counting process describing the total number of inspections until

time t
FNt Partial filtration generated by the history of the counting process

N(t) of inspections
Ft Complete filtration generated by the history of both the counting

process N(t) and the state process Xd(t)
λXd(t) State-dependent inspection intensity adapted to the complete in-

formation level Ft
λ̂t Inspection alert function: state-dependent inspection intensity adapted

to the partial information level FNt
q01(t) Failure rate of components at time t
F (t) Lifetime distribution of a component in the system
q̃01(t) Transition rate of the state process Xd(t) from normal state (0) to

the degraded state (1)
Fd(t) Disruption (alert) time distribution
φd(t, n) Disruption alert function: FNt -adapted state process Xd(t) within

(n+ 1)th inter-inspection time [Tn, Tn+1)
ϕ̄n(·) FN -adapted distribution of (n+1)th inter-inspection time [Tn, Tn+1)

(n ≥ 0)
ct Inspection cost rate at time t
CXd(t) State-dependent penalty cost per unit time of the system being un-

available due to an undetected failure within inter-inspection times(
t ∈ [Tn, Tn+1)

)
kXd(t) Replacement cost of the system as the state process at time t is

Xd(t)
Cd(t) Total cost up to time t
Cd(t, n) Expected total cost adapted to the complete information level Ft
cd(t, n) Cost rate adapted to the complete information level Ft
ĉd(t, n) Cost rate adapted to the partial information level FNt

Indexes used in the nomenclature and in the subsequent sections are also defined
as follows:

Xd(t) Index of modulated stochastic processes
n Index of inspection epoch
l Index of component
i Index of the disruption state
d Index of inspection alert parameter

1. Introduction

1.1. Motivation

Parallel systems are a commonly used structure in reliability engineering as
they provide a redundant approach to improving system reliability and availabil-
ity. For this there is strong demand within the two sectors for more analytical
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approach to decision making (e.g. see [34, 35]). Nuclear reactor safety systems,
emergency core cooling systems, fire detectors, and protective devise are good
examples of parallel systems used in the real world. A common characteristic of
such systems is that the failure of a component may not cause its system to fail.
As such, the failure may not be immediately detected and can be regarded as a
hidden failure. Consequently, the number of failed components in the system,
which is called the state of the system in what follows, may be unknown at a
given time. That is, a parallel system may experience hidden failures and their
state is not observable. It is reported that 40% of complex industrial systems
experience hidden failures [20]. This raises an intriguing question: how can the
reliability and the maintenance cost be analysed to handle such a lack of data
scenario while providing effective decision making? This paper aims to answer
those two questions.

1.2. Related works

For the past several decades, many classical inspection scheduling models for
maintaining systems subject to hidden failure have been studied. For example,
earlier works on the maintenance problem are given by Barlow et al. [10], Mun-
ford and Shahani [21], Keller [15] and Hauge [12]. The problem of inspection
for deteriorating systems subject to hidden failure was first proposed by Barlow
et al. [10], who minimize the total expected cost associated to the inspection
and the elapsed time between system failure and its detection. Applying linear
cost functions, Munford and Shahani [21] suggest an optimal inspection policy
for the failure detection of a system. Keller [15] addresses an optimal inspection
scheduling problem for systems subject to random failure. The model is based
on the assumption that the frequency of inspection is driven by a continuous
density function.
In preference to previous works (e.g. see [8, 9, 11, 13, 17, 23, 25–29, 31–33]),
both the cost structure and the inspection model explored here respond to the
variation of the system state. Examples of papers that use particular cost struc-
tures can be found in [11, 23, 26, 33]. Using a constant penalty cost rate as the
majority of existing relevant literature (e.g. see [11, 23, 26, 27]), Zequeira and
Brenguer [33] propose an approach to the determination of optimal inspection
policies given three types of inspections: partial, perfect and imperfect. Their
model allows to determine the optimal (constant) inter-inspection period and
the optimal times of preventive maintenance actions. Using the net cost consist-
ing of deterministic components, Tsai et al. [27] study a trivariate replacement
policy for a deteriorating system whose failures can only be detected through
inspection. He et al. [13], given a more flexible cost structure, consider a system
with periodic inspection and preventive maintenance with the aim of minimiz-
ing the expected cost with respect to some maintenance system parameters.
Aperiodic inspection policies proposed in literature (e.g. see [1–3, 14, 27]) is
often more useful and realistic than the periodic policy, since it is more adap-
tive to deteriorating systems and generally results in policies with lower costs.
A commonly used approach, however, is periodic inspection policies as the im-
plementation of periodic inspection is much easier than that of aperiodic one.
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Maintenance optimization models based on the periodic inspection policy is vast
(e.g. see [8, 9, 17, 18, 25, 28, 29]). For example, Lienhardt [17] study both the
corrective maintenance and a periodic inspection policy for a repairable system
subject to non-self announcing failures. They use the cost rate as a measure of
policy to optimize the model with respect to maintenance parameters. Bada and
Berrade [9] deal with a bivariate policy for a system subject to non-self announc-
ing failures and periodic inspections. Taghipour and Banjevic [28] propose two
optimization models for the periodic inspection of a system with hard-type and
soft-type components. Given the basic assumption that, soft-type components
failure is non-self announced, their model aims at optimizing the periodic in-
spection interval. Recently, based on a periodic inspection policy, Liu et al. [18]
develop a delay-time-based model to determine the optimal inspection interval
for parallel systems. More recently, Bjarnason and Taghipour [8] investigate pe-
riodic inspection frequency and inventory policies for a k-out-of-n system where
the component’s failures are hidden and conform to a non-homogeneous Poisson
process.

1.3. Our modelling approach

From the above literature review, we can conclude: Although some main-
tenance models consider joint inspection and preventive maintenance policies
(e.g. see [13, 19, 27, 30]) for systems subject to hidden failures, a unified main-
tenance model which accounts for all these factors does not exist. To fill up this
knowledge gap, this paper assumes that the failure of a component in a parallel
system can only be detected through an inspection and then proposes two-step
method. The first step is to estimate the unobservable disruption state (sys-
tem state) based on the inspection point process observations. This problem
is solved in the framework of filtering theorem. The second step is to schedule
a preventive maintenance policy for an m-component parallel system. More
generally, given partial information, the approach explored here can deal with
two basic problems: how to inspect and when to stop operating the system and
carrying out a replacement in order to detect the system failure and minimize
some maintenance cost.
The proposed method has the following characteristics.

• The method assumes that the inspection times follow the modulated Pois-
son process, which is a Poisson process whose rate varies according to a
Markov process (see [4] the application of the modulated Poisson process
in reliability engineering). This inspection modelling technique is a con-
venient and realistic way that allows the system to deliver an alert on
approaching the disruption. The crew uses this information (alert) to per-
form inspections. The alert can be regarded as a signal, upon which an
inspection has to be performed.

• Since the state of the system is unobservable, this paper uses the filtering
theorem to estimate the unobservable state. This estimation method not
only provides (i) an estimate of the disruption model, but also gives (ii) an
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estimate of the inspection model adapted to the observed information. In
the current context, the first result delivering an alert on approaching the
disruption and the second result that reflects the reaction of the mainte-
nance crew to perform inspection are respectively remarked as disruption
alert function and inspection alert function.

The advantages of the proposed approach can be summarized as follows: the
probabilistic modelling of the disruption time as a measure of alertness helps to
warn on a possibly approaching failure of system’s component(s) (disruption)
and therefore avoid system failure by performing PM. Furthermore, the model
can adapt itself to the system state in a sense that, changes in the system state
ideally induce changes in the maintenance cost and the maintenance system
parameters that include inspection frequency, periodic replacement times and
the detection probability of the system failure as well.
It is known that changes in the maintenance decision mechanism may induce
changes in both the total maintenance costs and the detection of a possible
failure. On the one hand, insufficient maintenance may save maintenance cost;
but it may result in undetected failures. On the other hand, excessive main-
tenance results in detecting the system failure more promptly; but it incurs
higher maintenance cost. Since both the amount of maintenance and the main-
tenance cost depends on the maintenance strategy, the problem is to determine
an appropriate inspection and replacement policy avoiding the system failure by
a possible PM, whilst simultaneously reducing total RMAs cost. To this end,
this paper minimises the long-run expected cost per unit time for optimizing
maintenance policy. Numerical examples are provided to demonstrate how the
proposed degradation model may affect the inspection and maintenance policies.

1.4. Contribution and importance of this work
With above motivation, based on a set of realistic assumptions, this pa-

per proposes a novel data-driven approach to optimizing replacement policy
with some characteristics which have not been addressed or previously studied
in isolation. More specifically, the novel aspect of our model lies in the pro-
posal of a framework which is capable of handling the lack of information on
the state of parallel systems while providing an effective method for decision
making. It contributes to not only the joint modelling of inspection and pre-
ventive maintenance policy, but also the formulation of a unique and realistic
inspection scheduling function incorporating a disruption alert function. The
explored disruption alert function and scheduling function respectively help the
practitioners to: (i) perform appropriate maintenance actions in response to the
system state and (ii) propose a systematic approach to scheduling non-periodic
inspection times. This approach is typically appropriate for non-self announcing
failure systems particularly safety systems whose state is not directly observed
and their failure is detected only by inspections.

1.5. Overview
The paper is organized as follows. Section 2 presents the model for calibra-

tion. The model assumptions are detailed in Section 2.1 and further discussions
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on both the degradation model and the inspection model are made in Section
2.2. Section 2.3 formulates the disruption problem. Since the model is given
partial information, using the filtering theorem, Section 2.3 is developed to get
an estimate of the disruption time by projection on the observed history. Sec-
tion 2.4 is assigned to formulate the inspection scheduling model. Section 2.5
examines the explored disruption model. Given some assumptions, Section 3
explores some disruption and inspection scheduling models emerging as special
cases. Section 4 introduces the cost model and formulates the average cost rate
used as a measure of policy to optimize the model with respect to maintenance
parameters. In Section 5, given two underlying degradation models some nu-
merical results are given to illustrate the use of the proposed model in practical
application. Section 6 concludes the paper.

2. Assumption and model development

2.1. Model assumptions

The following assumptions are made.

(1) The complex system consists of m components.

(2) Failure of the system can only be detected by inspections (”hidden or non-
self announcing failures”).

(3) The inspection intensity process is assumed to follow a modulated Poisson
process.

(4) The only available information is given by the inspection point process ob-
servations (observation filtration).

(5) With the same approach as Zhao et al. [36] the model assumes that the
system is replaced at periodic times {tr, 2tr, · · · }.

(6) Inspections do not impact on the failure characteristics of the system. This
implies that upon detection of failure before the replacement time tr, the
system is brought back to its operational state without affecting it’s failure
rate.

Assumptions (5)-(6) intuitively imply that the action space may include two
types of actions: a planned replacement after ktr (k = 1, 2, · · · ) time units and
a minimal repair action at inspection instant if the system experiences a failure
within replacement cycles.

2.2. Model Development

This section aims to develop a method based on the above assumptions.

2.2.1. Modelling degradation

Consider a multi-component parallel system consisting of m components
whose lifetimes are independent and identically distributed random variables.
The system is subject to random failure which can only be detected through
inspection. The system state is characterized by a two unobservable states: a
normal state and a degraded state. The transition time from the steady state
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to the degraded state called “disruption time” is defined as the first time the
total number of failed components reach a predetermined threshold d:

τd = inf {t : Y (t) = d} ; d = 1, 2, · · · ,m− 1 (1)

where τd is the disruption time and Y (t) is a stochastic process counting the
total number of failed components up to time t. Denote

Xd(t) =

{
0, if τd > t,
1, if τd ≤ t.

(2)

From equations (1) and (2), one can see that the disruption time at which the
system state, Xd(t), jumps from 0 to 1 depends on the threshold’s value d: a
smaller value of d may result in earlier disruption.

2.2.2. Modelling inspections

In the present setting, we suppose that to detect the system failure, the
system is inspected according to a modulated Poisson process. Specifically, let
N(t) be a modulated Poisson process such that N(t) with the associated time
points of inspections, T1 < T2 < · · · , depicts the total number of arrivals up to
time t. More precisely, according to Aven and Jensen [5], N(t) admits a smooth
semi-martingale (SSM) with the F-intensity λt and the F-martingale Mt:

N(t) =

∫ t

0

λsds+Mt =

∫ t

0

[λ0 + (λ1 − λ0)Xd(s)]ds+Mt,

where t ∈ R+,M ∈ M and M denotes the class of martingales adapted to the
filtration Ft. As noted, the inspection intensity process λt is modulated by the
stochastic process Xd(t) such that

λt = λXd(t) ∀t ≥ 0, (3)

where λi satisfying
λ0 < λ1 <∞, (4)

denotes the rate of arrivals when the state of Xd(t) is i (i = 0, 1). Here, Xd(t)
influences and modulates the arrival rate of the Poisson process. The reader is
referred to Özekici [22] for more details about the modulated Poisson process.
Equations (1)-(3) indicate that changes in the threshold’s value d induce changes
in both the disruption time and the inspection intensity: as d decreases, the state
process Xd(t) jumps sooner from the normal state to the degraded state which
implies an increase in the number of inspections. It is evident that this modeling
technique, in an elegant way, not only allows the inspection intensity responds to
the variation of the system state, but also ensures (see equation (4)) the system
upon approaching disruption is inspected more frequently which properly results
in more certain detection of failure.
Since the model including N(t) is driven by the unobservable state process
Xd(t), the first main problem investigated here is to get an estimate of the
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unobservable state Xd(t) given the inspection point process observations up to
time t,

FNt = σ {N(s) : 0 ≤ s ≤ t} ,

that is
φd(t) = E[Xd(t)|FNt ] = P[τd ≤ t|FNt ]. (5)

This helps in two ways:

(i) the detection of the disruption time τd at which the state process Xd(t)
jumps from the normal state to the degraded state, and

(ii) the estimation of the intensity process λXd(t) by projection on the observed
history. That is,

λ̂t = E
[
λXd(t)|FNt

]
= E

[
λ0 + (λ1 − λ0)Xd(t)|FNt

]
. (6)

The function λ̂t reflecting the reaction of the maintenance crew is called in-
spection alert function. Indeed, given that the probability of the disruption
detection at time t is φd(t), the inspection intensity that is at the discretion of
the maintenance crew should be

λ̂t = λ0 + (λ1 − λ0)φd(t).

The situation may be regarded as a case of condition-based maintenance in
a sense that the function (5) provides some information (alert) regarding the
state of the disruption. Through the inspection alert function (6), the crew will
use the information to perform inspections in order to detect system failures.
Intuitively, this alert is the signal that an inspection has to be performed.

2.3. Modelling disruption

This section aims to provide a solution to the disruption alert function φd(t)
by setting in the filtering theorem framework [e.g. see 6, 7]. The solution
technique used here is similar to that of models proposed by Ahmadi et al. [1]
and Ahmadi [3].

2.3.1. Complete information-based disruption model

We have to detect the random time of change of the inspection intensity
λXd(t) i.e. τd (see Figure 1) based on the observation of the inspection point

process N(t). For this purpose, let F (t) =
∫ t

0
f(u)du be the cumulative distri-

bution of components lifetime. Using the semi-martingale argument [5], one can
note that the increasing right-continuous state process Xd(t) = I(τd ≤ t) with
the associated maintenance parameter d admits the following semi-martingale
representation:

Xd(t) =

∫ t

0

q̃01(s)(1−Xd(s))ds+mt,
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Figure 1: The disruption time τd at which the state process Xd(t) jumps from 0 to 1.

where mt is an Ft-martingale and

q̃01(t) =

{
fd(t)

1−Fd(t) , if Fd(t) < 1;

0, otherwise,

denotes the transition rate of the state process Xd(t) from normal state (0) to
the degraded state (1) with the disruption distribution function

Fd(t) = P(τd ≤ t) =

m∑
k=d

(
m

k

)
[F (t)]k[1− F (t)]m−k.

Using the fact that the density function of the disruption time is

fd(t) =
dFd(t)

dt
=

m!

(d− 1)!(m− d)!
[F (t)]m−1[1− F (t)]m−df(t),

the transition rate of the state process Xd(t) can be formulated as

q̃01(t) =

(
m

d−1,m−d
)
q01(t)∑d−1

k=0

(
m
k

)
[exp(Q01(t))− 1]k−d+1

where q01(t) = f(t)
F̄ (t)

denotes the failure rate of the system and

Q01(t) =

∫ t

0

q01(s)ds.
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2.3.2. Partial information-based disruption model

Since the disruption time at which the process Xd(t) jumps from 0 to 1 is
not directly observed, in the filtering theorem framework [e.g. see 6, 7], we get
an estimate of the state process Xd(t) = I(τd ≤ t) based on the observed history
FNt . More precisely, the problem is that of computing φd(t) given in (5) and
getting an FN -adapted estimate of the inspection intensity process

λt = λXd(t) = λ0 + (λ1 − λ0)Xd(t), (7)

that is to say, before the disruption time τd, λt = λ0, and after τd, λt = λ1 (see
Figure 1).
By projection on the observed history FNt one can show that

φd(t) =

∫ t

0

[
q̃01(s) + (λ1 − λ0)φd(s)

]
(1− φd(s))ds

+
∑
n≥1

(λ1 − λ0)φd(T
−
n )
(
1− φd(T−n )

)
λ0 + (λ1 − λ0)φd(T

−
n )

I(Tn ≤ t),

or, equivalently, between the jumps
(
t ∈ [Tn, Tn+1)

)
,

φd(t, n) = φd(t)I(Tn ≤ t < Tn+1)

= φd(Tn) +

∫ t

Tn

(
q̃01(s) + λ̄φd(s, n)

)(
1− φd(s, n)

)
ds;

(8)

at the jumps,

φd(Tn) =
λ1φd(T

−
n )

λ0 + λ̄φd(T
−
n )

, (9)

where φd(T
−
n ) denote the left limit of φd(·) at time Tn and λ̄ = λ1 − λ0. From

(8) one can see that for t ∈ [Tn, Tn+1) the disruption time distribution φd(t, n)
satisfies the differential equation (7) with the initial condition (9):

φ′d(t, n) =
d

dt
φd(t, n) =

(
q̃01(t) + λ̄φd(t, n)

)
(1− φd(t, n) > 0, (10)

where the positive derivative implies increasing trajectories of φd(t, n) between
the jumps. Therefore, by projection on the observed history FNt for t ∈
[Tn, Tn+1) (n ≥ 0) and the use of the disruption time distribution φd(t, n),
an FNt -adapted estimate of the inspection intensity (7) can be given by

λ̂t = E
[
λXd(t)|FNt

]
= λ0 + λ̄φd(t, n). (11)

To get insight to the effect of the disruption alert function φd(t, n) and the in-

spection alert function λ̂t on both the performance of inspections and failures,
let the measure of alertness on approaching a disruption, φd(t, n), tend to 1.

From (11) we get λ̂t −→ λ1 (λ1 > λ0) that implies more frequent inspections to
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avoid the system failure.
From equations (9) and (10) one can note that the solution of the differential
equation (10) based on the initial condition (9) rests on the estimation of in-
spection times Tn (n ≥ 1). In Section 2.4 we devise an inspection scheduling
function based on the FN -adapted inspection intensity. We will see the explored
scheduling function incorporating the disruption alert function φd(t, n) enables
us (i) to provide a systematic approach to the determination of non-periodic
inspection times and (ii) to estimate the disruption alert function φd(t, n) over
inter-arrival inspection times [Tn, Tn+1) (n ≥ 1),

2.4. Scheduling inspections

Let ϕn(v) for v ∈ [0, Vn+1) be the distribution function of the (n+1)th inter-
inspection time Vn+1 = Tn+1−Tn (n ≥ 0) adapted to the observed information
FN . Then for t ∈ [Tn, Tn+1) we have

ϕ̄n(v) = P
(
Vn+1 ≥ v|λ̂t

)
= exp

(
−
∫ Tn+v

Tn

λ̂sds

)
, (12)

where ϕ̄n(v) = 1−ϕn(v). Since λ̂(t, n) = λ0 + (λ1 − λ0)φd(t, n), t ∈ [Tn, Tn+1),
equation (12) can be expressed as

ϕ̄n(v) = exp(−λ0v)× exp

(
−(λ1 − λ0)

∫ Tn+v

Tn

φd(s, n)ds

)
. (13)

If µn = E
[
Vn+1|λ̂t

]
(n = 0, 1, 2, · · · ) denote the (n+1)th expected time between

inspections, using the inter-inspection time distribution (13), an FN -adapted
estimate of inter-inspection times can be given by

µn =

∫ ∞
0

ϕ̄n(t)dt (14)

This provides a sequence of inspection times ηn (n = 1, 2, · · · ):

ηn =

n−1∑
k=0

µk.

The scheduling function (14) develops the sequence of inspections and alert
functions φd(t, n) (n ≥ 0) emerging as the solution of the differential equation
(10) in the following way: given initial condition at time T0 = 0, i.e. φd(0) = 1,
the solution of the differential equation (10) provides information regarding the
state of disruption, that is, φd(t, 0) for t ∈ [0, T1). By employing equations (13)-
(14), this information is used to schedule the first inspection time µ1 = E(T1).
The scheduled inspection time µ1 reveals the initial condition φd(µ1). Similarly
as above, given the initial state φd(µ1), the differential equation (10) determines
the updated disruption state φd(t, 1) for t ∈ [µ1, T2). By using the scheduling
function (14), the updated disruption state characterizes the second inspection
epoch µ2 = E(T2) and this process continues.
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Figure 2: The disruption time distribution φd(t) = P[τd ≤ t|Ft] for different d = 1, 2, 3.

2.5. Examining the model

In this Section, using the mechanism described above, we examine the re-
sponse of the model to threshold’s values d. For this, we consider a 4-component
system whose components lifetime conforms to a generalized Pareto distribution
with the non-linear failure rate q01(t) = a+1

at+b , t ∈ [0, −ba ), and know parameters

(a, b) = (− 1
4 , 1) and (λ0, λ1) = (2, 3). Figure 2 reveals a strong influence of

the threshold’s value d on the sojourn time distribution in normal state of the
state process Xd(t). As the threshold’s value d decreases to 1 the state process
Xd(t) is more susceptible to depart from normal state (Xd(t) = 0) with the
FN -adapted departure rate

rd(t, n) =
φ′d(t, n)

φ̄d(t, n)
; t ∈ [Tn, Tn+1) (15)

where φ̄d(t, n) = 1 − φd(t, n) denotes the sojourn time distribution of Xd(t)
in normal state (Xd(t) = 0). The response of the inspection intensity (11) to
the maintenance alert parameter d is examined for different threshold’s values
d ∈ {1, 2, 3}. As illustrated with decreasing d, the disruption time occurs sooner
(see Figures 3-5) making inspections more frequent (see Figures 6-8). As noted,
both the inspection alert function and the inspection intensity as a measure of
alertness reflect the reaction of the maintenance crew. In the sense that they
deliver an alert regarding a possibly approaching disruption and this alert is
used to make inspections. Thus, the alert is a signal that an inspection has to
be performed to detect a failure.
Section 3.1, given a general degradation model and the threshold’s value d =
1, provides some results on both the disruption and inspection problem for a
two-component parallel system. Section 3.2 examines the results based on an
exponential degradation model.
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Figure 3: The disruption time distribution φd(t, n) = P[τd ≤ t|Ft] given d = 1.
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Figure 4: The disruption time distribution φd(t, n) = P[τd ≤ t|Ft] given d = 2.
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Figure 5: The disruption time distribution φd(t, n) = P[τd ≤ t|Ft] given d = 3.
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Figure 6: FN -adapted inspection intensity λ̂t given d=1.
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Figure 7: FN -adapted inspection intensity λ̂t given d=2.

0 0.5 1 1.5 2 2.5 3
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

t

In
s
p
e

c
ti
o
n

 i
n
te

n
s
it
y

Figure 8: FN -adapted inspection intensity λ̂t given d=3.
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3. The Disruption problem (d,m) = (1, 2)

3.1. General degradation model

Let’s consider a particular case of the model with d = 1 and m = 2. Using
the differential equation (10), for t ∈ [Tn, Tn+1) (n ≥ 0), one can see the sojourn
time distribution of Xd(t) in normal state can be expressed as

φ̄d(t, n) = 1− φd(t, n) =
g(t, n)

G(t, n)
, (16)

where

g(t, n) = φ̄d(Tn)
[ F̄ (t)

F̄ (Tn)

]2
× exp

(
− λ̄(t− Tn)

)
G(t, n) = 1− λ̄

∫ t

Tn

g(x, n)dx.

Alternatively, the measure of alertness can be characterized by the departure
rate rd(t, n) (see equation (15)):

rd(t, n) =
φ′d(t, n)

1− φd(t, n)
= λ̄φd(t, n) + 2q01(t) (17)

and the mean residual disruption time md(t, n) (MRD function for short):

md(t, n) =
ln
(
G(t, n)/G(∞, n)

)
λ̄φ̄d(t, n)

. (18)

More specifically, md(t, n) is the conditional expectation of τd− t given that the
state process has not departed from the normal state (τd > t). Continuing the
argument and using the equation (16), the distribution function of the (n+ 1)th

inter-inspection time and the inspection scheduling function can be respectively
expressed as

ϕ̄n(v) =
exp(−λ1v)

G(Tn + v, n)
, (19)

µn =

∫ ∞
0

exp(−λ1t)

G(Tn + t, n)
dt; (n ≥ 0). (20)

Remark 3.1. In a special case, let n = 0. Continuing the example, equations
(16)-(18) for t ∈ [0, T1), are respectively simplified as

φ̄d(t, 0) = 1− φd(t, 0) =
g(t, 0)

G(t, 0)
, (21a)

rd(t, 0) =
φ′d(t, 0)

1− φd(t, 0)
= λ̄φd(t, 0) + 2q01(t), (21b)

md(t, 0) =
ln
(
G(t, 0)/G(∞, 0)

)
λ̄φ̄d(t, 0)

, (21c)
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with
g(t, 0) = exp(−λ̄t)× F̄ (t)2

and

G(t, 0) = 1− λ̄
∫ t

0

g(x, n)dx.

Examining (21c) it is clear that as t → 0 the mean residual disruption time
tends to the mean time to disruption. In other words,

md = md(0, 0)→
− ln

(
G(∞, 0)

)
λ̄

. (22)

Furthermore, let λ̄ = λ1 − λ0 approaches to zero. This condition relaxes the
assumption that the frequency of inspections is modulated by the state process
Xd(t). In this case, (21a)-(21c) and (22) become

lim
λ̄7→0

φd(t, 0) = 1− g(t, 0; 0)

G(t, 0; 0)
= 1− F̄ 2(t), (23a)

lim
λ̄7→0

rd(t, 0) = q̃01(t) = 2q01(t). (23b)

lim
λ̄7→0

md(t, 0) =

∫∞
t
F̄ 2(x)dx

F̄ 2(t)
, (23c)

lim
λ̄ 7→0

md =

∫ ∞
0

g(x, n)dx. (23d)

Using equations (16)-(18), we illustrate how changing the inspection model and
the information pattern FN determined by the history of inspection point pro-
cess observations impacts on the reliability characteristics of the disruption
time τd. Intuitively, we examine the response of the model to the parame-
ter λ̄ = λ2 − λ1: λ̄ = 0 means that the approach towards inspection frequency
does not change over time, while λ̄ > 0 allows the inspection intensity responds
to the variation of the disruption state. Figures 9-11 clearly show the impact
of the alert on detecting the system failure. As the system does not deliver
a signal on approaching the potential disruption (λ̄ = 0), the crew may not
appropriately react to perform inspections, which leads to a delay on detecting
failures, a risky position. This supports our approach to inspection modelling
given in Section 2.2.2. That means, considering the problem of modelling the
dependence between the inspection intensity and the disruption state in terms
of (i) an alter of the system and (ii) a supplementary reaction to take this alter
into account.
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Figure 9: The response of the disruption time distribution φd(t, 0) to λ̄ given d = 1
and m = 2.
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Figure 10: The response of the FN -adapted mean residual disruption time to λ̄ given
d = 1 and m = 2.
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Figure 11: The response of the FN -departure rate to λ̄ given d = 1 and m = 2.

3.2. Exponential degradation model

Letting components lifetime be distributed exponentially with parameter γ,
results (16)-(18) for t ∈ [Tn, Tn+1) are respectively formulated as

φ̄d(t, n) =
φ̄(Tn)

bn + an × exp
[
θ(t− Tn)

] (24a)

rd(t, n) =
θan

an + bn × exp
[
− θ(t− Tn)

] , (24b)

md(t, n) =
− ln(an)

θbn
, (24c)

where θ = (λ̄+ 2γ),

an = 1− λ̄φ̄1(Tn)/θ, bn = λ̄φ̄(Tn)/θ.

In addition, the inspection time distribution (19) may be rewritten as

ϕ̄n(v) =
exp(−λ1v)

an + bn exp
(
− θv

) . (25)

Remark 3.2. Continuing to the example, let λ0 = 2γ. Given this equation
(25) becomes

ϕ̄n(v) =
exp(−λ1v)

c + d exp(−λ1v)
,

with
µn = − ln

[
1− λ̄φ̄(Tn)/λ1

]
/d,

and

c =
λ1 − λ̄φ̄1(Tn)

λ1
, d = λ̄φ̄(Tn).
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Setting n = 0, one can get an estimate of the first inspection time:

µ0 = E
(
V1

)
=

ln(λ1/λ0)

λ̄
.

4. Cost model

This section aims to jointly determine an optimal replacement policy and
an optimal inspection frequency with respect to a state-dependent cost-reward
model. The extended approach rests on the identification of an embedded re-
newal process defined by the periodic replacement epochs. This allows the
application of the renewal reward theorem.

4.1. Average cycle costs

A cycle is comprised of a sequence of inspections and repair and maintenance
actions that ultimately ends with replacement. Replacement times at periodic
times {tr, 2tr, · · · } are regenerative epochs, and inter-replacement times form a
renewal sequence. Upon detection of failures within replacement cycles, minimal
repairs are carried out with negligible costs. Remaining repair and maintenance
actions in a cycle incur costs that include: (i) inspection costs to detect the
system failures, (ii) a penalty cost associated with undetected failures and (iii) a
periodic replacement cost made after every tr units of time. More precisely, each
inspection at time t incurs a time-dependent cost ct = ct (c > 0). Undetected
failures within inter-inspection times generate a state-dependent penalty cost
per unit time CXd(t):

CXd(t) = C0 + (C1 − C0)Xd(t),

(C1 > C0). This implies that as the system state shifts to more degraded state
Xd(t) : 0 7→ 1, the penalty cost increases from C0 to C1. In addition, we
assume that the replacement of the system in different states incurs different
costs. In other words, the replacement of the system at time t is measured by
a state-dependent cost kXd(t):

kXd(t) = k0 + (k1 − k0)Xd(t), (k1 > k0).

It is noted, as the state process Xd(t) moves from the normal state (Xd(t) = 0)
to the degraded state (Xd(t) = 1) the replacement cost increases k0 7→ k1. With
respect to the above cost structure, the total cost up to the periodic replacement
time tr termed by Cd(tr) can be expressed as

Cd(tr) =

∫ tr

0

csdN(s)︸ ︷︷ ︸
Inspection cost

+

∫ tr

0

CXd(s)ds︸ ︷︷ ︸
Penalty cost

+ kXd(tr)︸ ︷︷ ︸
Replacement cost

. (26)

The first and the second term on the right hand side of (26) represents the total
inspection cost and the penalty cost associated with undetected failures up to
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the replacement time tr respectively. The last cost is incurred as the system is
found in the state Xd(tr) at replacement time tr. Since λXd(t) is an F-intensity
of N(t) and both the CXd(s) and kXd(t) are F-measurable, an F-adapted total
cost Cd(t, n), t ∈ [Tn, Tn+1) (n ≥ 0), can be expressed as

Cd(tr, n) = E
[
Cd(tr)|Ftr

]
=

∫ tr

0

csλXd(s)ds+

∫ tr

0

CXd(s)ds+ kXd(tr),

= k0 +

∫ tr

0

[
Cλ0

(s) +
(
Cλ1

(s)− Cλ0
(s)
)
Xd(s)

]
ds+

∫ tr

0

(k1 − k0)dXd(s)

= k0 +

∫ tr

0

cd(s, n)ds,

where

cd(t, n) =
[
Cλ0(t) +

(
Cλ1(t)− Cλ0(t)

)
Xd(t)

]
+ (k1 − k0)dXd(t),

is the total cost rate and Cλi
(t) = Ci + λict for i = 0, 1.

4.2. Partial information-based cost model

Since the state indicator Xd(t) and therefore cd(t, n) cannot be observed, a
projection on the observation filtration FN is needed. As described in Section
2.3.2 such a projection from the F-level to the FN -level leads to the following
conditional expectation;

ĉd(t, n) = E
[
cd(t, n)|FNt

]
=
[
Cλ0

(t) +
(
Cλ1

(t)− Cλ0
(t)
)
φd(t, n)

]
+ (k1 − k0)dφd(t, n).

(27)

Thus, an FN -adapted estimate of the expected total cost can be given by

Ĉd(tr, n) = k0 +

∫ tr

0

ĉd(s, n)ds, (28)

The integrand ĉd(s, n) is the conditional expectation of the cost rate at time s
given the observations up to time s. In addition, by plugging the derivative of
φd(t, n), i.e.,

φ′d(t, n) =
dφd(t, n)

dt
= 2φ̄d(t, n)q01(t) + λ̄φ̄d(t, n)

(
1− φ̄d(t, n)

)
,

(see equation (10)) into equation (27), in terms of the sojourn time distribution
φ̄d(t, n), an FN -adapted estimate of the cost rate can be given by

ĉd(t, n) = −k10λ̄φ̄
2
d(t, n) +

(
λ̄(k10 − ct) + 2k10q01(t)− C10

)
φ̄d(t, n) + Cλ1(t)

where k10 = k1 − k0 and C10 = C1 − C0.
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4.2.1. Long-run average cost rate

The main objective is to minimize the long-run average cost rate by optimiz-
ing the periodic replacement time tr. To this end, let ψd(n, tr) be the long-run
average cost per unit time. Since the sequence of replacement times {tr, 2tr, · · · }
forms a regenerative process, the time between two consecutive replacements is
a renewal cycle. Therefore, by the renewal reward theorem (c.f. Ross [24]), the
long-run average cost rate is the average per cycle cost divided by the cycle
length tr given by

ψd(tr, n) =
Ĉd(tr, n)

tr
,

with expression for Ĉd(tr, n) provided in (28). We set out to solve the optimiza-
tion problem

t∗r = arg min
tr∈R+

{ψd(tr, n)} ,

along with determining the optimal inspection frequency n∗ subject to the opti-
mal replacement time t∗r . In other words, the optimization problem investigated
here is a two-step process optimization. In the sense that we first minimize the
long-run average cost rate via the renewal-reward theorem by optimizing the pe-
riodic replacement time tr, then given the optimal stopping time t∗r , a solution
to the optimal inspection frequency n∗ of the system is obtained.

5. Numerical results: (d,m)=(1,2)

We consider a two-component parallel system (e.g. Nuclear reactor safety
systems/Emergency core cooling systems, fire detector and protective devise)
whose failure is non-self announcing. The response of the model to two degrada-
tion models is examined as the failure rate of components is non-linear q01(t) =
a+1
at+b or constant q01(t) = γ with expressions for sojourn time distribution given
in (16) and (24a). Let (a, b) = (−0.25, 1) and γ = 1 and the choice for the costs
and the maintenance parameters are d = 1, (C0, C1) = (1, 3), (k0, k1) = (3, 6),
c = 0.75 and (λ0, λ1) = (2, 3). The choices were chosen arbitrarily to show some
important features of both the inspection and maintenance policies.
As noted, results summarized in Table 1 reveal an unconvincing influence of the
degradation model on the inspection model which leads to the same behaviour
(see Figure 12) and thus fairly similar results. Table 2 and Figures 13-14 show
that the optimal strategy determined by the periodic replacement time t∗r gives
an optimal solution to the inspection frequency and the average cost rate: the
minimum cost for both degradation models is achieved at optimal replacement
time t∗r = 1.63 with the optimum inspection frequency n∗ = 4. As described
in Section 3.1, an alternative way of considering the measure of alertness is via
the expected remaining time to the potential disruption. The MRD function is
meant to reflect the reaction of the maintenance crew. More precisely, md(t, n)
ought to be small at times t for which disruptions are expected and the alert
therefore should be high. This information meaningfully provides insight into
the inspection frequency and the detection of the system failure. Figure 15 and
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Table 1: Inspection times, optimal replacement time and disruption time for different degra-
dation models.

η1 η2 η3 η4 t∗r η5 τd η6 η7

Pareto 0.4136 0.77 1.116 1.4526 1.636 1.7869 1.91 2.1206 2.45
Exponential 0.4055 0.7565 1.0942 1.4285 1.637 1.7621 1.96 2.0955 2.43

Table 2: Optimal parameters for different degradation models.

n∗ t∗r md(t
∗
r , n
∗) ψd(t

∗
r , n
∗)

Pareto 4 1.636 0.28 6.66
Exponential 4 1.637 0.33 6.66

Figure 16 illustrate the behaviour of this function for both degradation mod-
els. It is evident that when the underlying degradation process conforms to a
Pareto model, at optimal time t∗r = 1.63, the expected remaining time to the
disruption (or, departure) at which the state process jumps from the normal
state to the degraded state is md(t

∗, n∗) = 0.28 (see Figure 15). This intuitively
implies that the time to detect the disruption at which the system’s component
experiences a failure is τd = t∗r + 0.28 = 1.91. While, the expected remaining
time to the disruption time corresponding to an exponential model is to some
extent more md : 0.28 7→ 0.33 indicating an estimate of the disruption time
τd = t∗r + 0.33 = 1.96. For an illustration purpose, an evolution of the mean
residual departure time corresponding to the exponential model is given (see
Figure 16). As noted, in contrast to the Pareto model whose MRD function
over inter-inspection times is not constant, the MRD associated with the expo-
nential model is a piecewise constant function. In addition, results summarized
in Table 1 and Table 2 clearly show that the inter-inspection times and particu-
larly optimal solutions are not sensitive to degradation models and as illustrated
in Table 1 and Figures 15-16 only the mean residual departure time responds to
the degradation models. As time progresses and the system begins to degrades,
inspections for both degradation models occur more frequently. This behaviour
which ideally increases the failure detection probability of the system is more
pronounced when the system state shifts to the degraded state. Therefore,
based on above discussion we would suggest that corresponding to the Pareto
(Exponential) degradation model, the process should be stopped with the opti-
mal inspection frequency n∗ = 4, and the periodic replacement is scheduled at
optimal time

t∗r = arg min
tr∈R+

{ψd(t, n)} = 1.63.

Thus, the main results not only provide information regarding the inspection
scheme, but also help the crew to detect a disruption and avoid a possibly
approaching failure by a preceding preventive replacement.
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Figure 12: Inspection intensity with optimal parameters (n∗, t∗) = (4, 1.63). The solid
line and the dash-dotted line correspond to the exponential and the Pareto model.
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Figure 13: Expected cost per unit time of the Pareto model with (n∗, t∗) = (4, 1.6366)
and the optimal cost ψd(t∗, n∗) = 6.66.
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Figure 14: Expected cost per unit time of the exponential model with (n∗, t∗) =
(4, 1.6367) and the optimal cost ψd(t∗, n∗) = 6.66.
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Figure 15: Mean residual departure (disruption) time of the Pareto model.
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Figure 16: Mean residual departure (disruption) time of the Exponential model.

6. Conclusions

In many applications, particularly safety systems whose state is not directly
observed and their failure are detected only by inspections, the intrinsic relia-
bility requires methodologies which are capable of handling such a lack of data
while providing effective decision making. The main issue discussed here is to
detect the random time of change of the unobservable system state so-called
disruption. The disruption problem is given limited and partially observed data
including the inspections point process observations, the typical situation in
practice. The approach to estimating the disruption problem, which rests on an
associated maintenance alert parameter d, helps in two ways: firstly, it delivers
an alert or a signal on approaching the system’s failure. This information is used
to appropriately control the inspection frequency in order to detect the system
failures. Secondly, it provides insight to perform a replacement in order to avoid
typically more costly system failures. This estimation problem has been solved
in the framework of filtering theorem. The second problem investigated here is
the construction and the estimation of a unified cost model based on the avail-
able information. The estimated cost model as a measure of policy contributes
to the joint determination of an optimal inspection frequency and an optimal
replacement time for systems with partial information.
The main examples considered are that of a Pareto and an exponential degrada-
tion model for a two-component parallel safety system with the alert parameter
d = 1. Given both the degradation models, the results of the model provide
sensible and realistic inspection and replacement policy for safety systems and
give insight into the behaviour of the model and the effect of information pat-
tern.
Two main findings of our model include:

• to detect the random time of change of the unobservable state (disruption
time) of a non-self announcing failure system on the basis of limited and
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partially observed data by the use of the filtering theorem;

• construction of both an inspection alert function and an inspection schedul-
ing function based on the estimated disruption model.

Both new findings contribute to diagnosis, prediction of the system failure and
maintenance decision making for such systems. The model shows the feasibility
of these programmes.
This paper outlines an approach and unified structure which will be developed
later by setting the model in an optimal control framework [7]. The use of
the control framework provides an extension of modelling techniques from non-
repairable systems to repairable systems through incorporating a control process
as a repair action into the degradation model.
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