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Abstract

Marginal and joint reliability importance measures have been found to be useful in optimal system

design. Various importance measures have been defined and studied for a variety of system models.

The results in the literature are mostly based on the assumption that the components within the

system are independent or identical. The present paper is concerned with computation of marginal

and joint reliability importance for a coherent system that consists of multiple types of dependent

components. In particular, by utilizing the concept of survival signature, expressions for marginal

and joint reliability importance measures are presented. We also introduce reliability importance

for a system of which only the survival signature is known, which therefore can be regarded to be

a black box system.

Keywords: Black box systems, Joint reliability importance, Marginal reliability importance,

Survival signature.

1. Introduction

Knowing the relative importance of a component in a system is useful in design, improvement,

and control of engineering systems. For these kind of purposes, various importance measures have

been defined and studied in the reliability literature. According to Birnbaum [2], importance

measures are categorized into three classes which are structure importance measures, reliability

importance measures, and lifetime importance measures. Structural importance measures the rel-

ative importance of components with respect to their positions in a system and it needs knowledge

only about the system’s structure function. Reliability importance measures depend on both the

structure of the system and the reliabilities of components. Lifetime importance measures depend

on both the structure of the system and the component lifetime distributions. An extensive review

of reliability importance measures is presented in Kuo and Zhu [17]. Besides classical importance
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measures, new measures have also been defined and used in optimal system design. For example,

Wu and Coolen [23] proposed a cost-based importance measure for repairable systems; Zhai et al.

[24] studied generalized moment-independent importance measures based on Minkowski distance;

Borgonovo et al. [3] defined time independent importance measure that depends on the change in

mean time to failure; Kvassay et al. [18] present a method to analyse component importance for

multi-state systems.

To make more effective decisions in designing a system, it might be suitable to measure not only

the effect of a single component on the system’s performance but also to measure the interaction

of two or more components in the system for their contribution to system reliability. We restrict

attention in this paper to joint importance of two components, the presented theory can quite

straightforwardly be generalized to more than two components. The joint effect of two components

on the system’s performance can be measured by the joint reliability importance (JRI) (Armstrong

[1]). Using JRI, we can determine that one component is more or less important, or has the same

importance when the other is functioning. Hagstrom [14] defined two components as reliability

substitutes (complements) if the JRI is non-positive (non-negative). In particular, if JRI > 0,

then one component becomes more important when the other is functioning (synergy); if JRI < 0,

then one component becomes less important when the other is functioning (diminishing returns);

and if JRI = 0, then one component’s importance is unchanged by the functioning of the other

(Armstrong [1]).

The problem of computing and evaluating JRI of two components has attracted considerable

attention in the reliability literature. The JRI of two components in k-out-of-n:G systems has

been studied in Hong et al. [16], Gao et al. [12], and Boushaba and Eryilmaz [4]. Gertsbakh and

Shpungin [13] presented a combinatorial approach to compute JRI of two components in a coherent

system that consists of independent and identical components. Rani et al. [21] studied conditional

marginal and conditional joint reliability importance in series-parallel systems. Computational

results on JRI have been presented in Eryilmaz [7], Zhu et al. [25], Zhu et al. [26], Zhu and

Boushaba [27] for more general coherent systems such as linear m-consecutive-k-out-of-n:F system,

and consecutive-k-within-m-out-of-n:F system. Eryilmaz et al. [9] presented a general formula for

computing the JRI of two components in a binary coherent system that consists of exchangeable

dependent components. In the exchangeable case, the components are dependent but they have

the same distribution. That is, all components within the system are of the same type in terms of

their failure time distribution, and the joint distribution of failure times of any r (≤ n) of them is

the same as for any other group of r components.

In this paper, we consider a more general and realistic case when the system is composed

of K ≥ 2 types of dependent components. Under this general setup, the random failure times

of components of the same type are exchangeable dependent and the random failure times of

components of different types are dependent, these concepts are explained in Section 2. Allowing

the components’ failure times to be dependent is potentially useful in numerous real-life situations,
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indeed the often used assumption of independence of components’ failure times in the reliability

literature may well frequently be made for mathematical convenience. As an example, consider a

power generation system that consists of different types of generating units (components) having

different capacities. If these units are subject to a common environmental random stress, or other

common failure mode, then their random failure times are dependent. Other examples where

dependence between the components in a system is important include load-sharing scenarios and

situations where the failure of one component influences the functioning of other components.

The concept of survival signature has been found to be very useful to study reliability properties

of such systems with components of multiple types, and multiple components of at least one of the

types (see, e.g. Coolen and Coolen-Maturi [5]). By utilizing the idea behind the survival signature,

we obtain expressions for the marginal and joint reliability importance of components in a coherent

system that consists of multiple types of dependent components. The results of the present paper

generalize and extend the results in Gertsbakh and Shpungin [13], Eryilmaz [8] and Eryilmaz et

al. [9].

This paper is organized as follows. In Section 2, we present definitions and notation that will

be used throughout the paper. Sections 3 and 4 present results on marginal and joint reliability

importance measures, respectively. These results are illustrated via examples in Section 5. Section

6 presents a variation for the case that a system’s structure is not known, instead one only knows

the number of components of each type and the survival signature. It should be emphasized that

the results presented for dependent components in this case of course also imply the results for

the more basic scenario where the components of different types in the black-box system can be

assumed to have independent failure times. Some concluding remarks are given in Section 7.

2. Definitions and notation

Consider a coherent system with in total n components of K ≥ 2 types.. Let ni denote the

number of components of type i, i = 1, 2, ...,K, where n =
∑K

i=1 ni. It is assumed that the random

failure times of components of the same type are exchangeable dependent and the random failure

times of components of different types are dependent. If Ci(t) denotes the number of components

of type i working at time t, then the survival function of the system can be written as

P {TS > t} =

n1∑
l1=0

· · ·
nK∑
lK=0

Φ(l1, ..., lK)P {C1(t) = l1, ..., CK(t) = lK} , (1)

where Φ(l1, ..., lK) represents the survival signature and is defined by [5, 6]

Φ(l1, ..., lK) =
rn1,...,nK (l1, ..., lK)(

n1

l1

)
...
(
nK
lK

) , (2)
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In equation (2), rn1,...,nK (l1, ..., lK) denotes the number of path sets of the system including exactly

l1 components of type 1, ..., exactly lK components of type K.

Let T
(i)
j denote the failure time of the jth component of type i, i = 1, 2, ...,K. The assumption

that two components of the same type, say components j1 and j2 of type k, have exchangeable

dependent failure times means that the T
(k)
j1

and T
(k)
j2

have the same marginal probability distribu-

tions but they are typically not independent, so the joint probability distribution for these random

quantities is not necessarily equal to the product of their marginal probability distributions. This

reflects that information about one of these random quantities can affect the marginal probability

distribution of the other one, and the exchangeability assumption for the failure times typically

reflects that one considers these components to be ‘similar’ with regard to their failure times while

functioning in the system. Perhaps the easiest way to interpret exchangeability is that, if one

would learn that one of these two components had failed, it would be either one of them with equal

probability 0.5. The assumption that two components of different types, say components j1 and

j2 of types k1 and k2, respectively, have dependent failure times means that the joint probability

distribution for T
(k1)
j1

and T
(k2)
j2

is not necessarily equal to the product of their marginal probability

distributions, and these marginal probability distributions are not assumed to be equal (as these

random quantities are not assumed to be exchangeable). This just reflects that information about

one of these random quantities can affect the marginal probability distribution of the other one.

From Theorem 1 of Eryilmaz [10], the joint distribution of C1(t), ..., CK(t) can be written as

P {C1(t) = l1, ..., CK(t) = lK} =

(
n1
l1

)
...

(
nK
lK

)
Sn1,...,nK (t; l1, ..., lK),

where

Sn1,...,nK (t; l1, ..., lK) =

n1−l1∑
i1=0

· · ·
nK−lK∑
iK=0

(−1)i1+...+iK
(
n1 − l1
i1

)
...

(
nK − lK
iK

)
×P

{
T
(1)
1 > t, ..., T

(1)
l1+i1

> t, ..., T
(K)
1 > t, ..., T

(K)
lK+iK

> t
}
. (3)

Thus if the joint survival function of components is given, then the joint distribution of

C1(t), ..., CK(t) can be easily calculated. For an illustration, suppose that K = 2, and the joint

survival function of T
(1)
1 , ..., T

(1)
n1 , T

(2)
1 , ..., T

(2)
n2 is given by

P
{
T
(1)
1 > t

(1)
1 , ..., T (1)

n1
> t(1)n1

, T
(2)
1 > t

(2)
1 , ..., T (2)

n2
> t(2)n2

}
=

[
1 + θ1

n1∑
i=1

t
(1)
i + θ2

n2∑
i=1

t
(2)
i

]−α
, (4)

θ1, θ2, α > 0. Then

P
{
T
(1)
1 > t, ..., T

(1)
l1+i1

> t, T
(2)
1 > t, ..., T

(2)
l2+i2

> t
}

= [1 + θ1(l1 + i1)t+ θ2(l2 + i2)t]
−α ,
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and hence

P {C1(t) = l1, C2(t) = l2}

=

(
n1
l1

)(
n2
l2

) n1−l1∑
i1=0

n2−l2∑
i2=0

(−1)i1+i2
(
n1 − l1
i1

)(
n2 − l2
i2

)
× [1 + θ1(l1 + i1)t+ θ2(l2 + i2)t]

−α ,

for l1 = 0, 1, ..., n1 and l2 = 0, 1, ..., n2.

For a component with failure time Ti, Birnbaum [2] defined the importance of the ith component

at time t by

Ii(t) = P {TS > t | Ti > t} − P {TS > t | Ti ≤ t} , (5)

for i = 1, ..., n.

The time dependent joint reliability importance (JRI) of two components is defined as

JRI(i, j) = P {TS > t | Ti > t, Tj > t} − P {TS > t | Ti > t, Tj ≤ t}

−P {TS > t | Ti ≤ t, Tj > t}+ P {TS > t | Ti ≤ t, Tj ≤ t} , (6)

for t > 0 (see, e.g. Armstrong [1]).

Consider a component i which is type a, a = 1, 2, ...,K. Let r+in1,...,nK
(l1, ..., lK) denote the

number of path sets of the system including component i of type a, l1 components of type 1,...,la−1

components of type a,...,lK components of type K. Similarly, let r−in1,...,nK
(l1, ..., lK) be the number

of path sets of the system that do not include component i of type a, and include l1 components

of type 1,...,la components of type a,...,lK components of type K. It is easy to see that

rn1,...,nK (l1, ..., lK) = r+in1,...,nK
(l1, ..., lK) + r−in1,...,nK

(l1, ..., lK). (7)

Consider two components i and j. Assume that the component i is of type a, and the component

j is of type b. Let r+i,+jn1,...,nK (l1, ..., lK) be the number of path sets of the system including component

i of type a, component j of type b, l1 components of type 1,...,la− 1 components of type a,...,lb− 1

components of type b,...,lK components of type K. Denote by r+i,−jn1,...,nK (l1, ..., lK) the number of

path sets of the system including component i of type a, do not include component j of type

b, and include l1 components of type 1,...,la − 1 components of type a,...,lb components of type

b,...,lK components of type K. The quantity r−i,+jn1,...,nK (l1, ..., lK) represents the number of path sets

of the system that do not include component i of type a, including component j of type b, l1

components of type 1,...,la components of type a,...,lb − 1 components of type b,...,lK components

of type K. Finally, let r−i,−jn1,...,nK (l1, ..., lK) be the number of path sets of the system that do not

include component i of type a, do not include component j of type b, including l1 components of

type 1,...,la components of type a,...,lb components of type b,...,lK components of type K. We have
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Figure 1: System with two types of components

l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 2 1
3 1 3 3 1

Table 1: The numbers r+i
n1,n2

(l1, l2) when i = 2

the following relation.

rn1,...,nK (l1, ..., lK) = r+i,+jn1,...,nK
(l1, ..., lK) + r+i,−jn1,...,nK

(l1, ..., lK)

+r−i,+jn1,...,nK
(l1, ..., lK) + r−i,−jn1,...,nK

(l1, ..., lK). (8)

It should also be noted that the following sum gives the total number of path sets of the system.

n1∑
l1=0

· · ·
nK∑
lK=0

rn1,...,nK (l1, ..., lK).

For illustrating the numbers defined above, consider the system in Figure 1 which has been

considered in Feng et al. [11]. The system has six components that belong to two types with n1 = 3

and n2 = 3. It can be easily checked that the system has 16 path sets. Tables 1 and 2 respectively

include r+2
n1,n2

(l1, l2) and r−2n1,n2
(l1, l2) for the component ”2”. The sum of the entries of Table 1

gives the total number of path sets including component ”2”. Tables 3 and 4 respectively include

r+1,+3
n1,n2 (l1, l2) and r+1,−3

n1,n2 (l1, l2) for components ”1” and ”3”. It should be noted that r−1,+3
n1,n2 (l1, l2) =

0 and r−1,−3n1,n2 (l1, l2) = 0 for all l1, l2.
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l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 0 2 1
3 0 0 0 0

Table 2: The numbers r−i
n1,n2

(l1, l2) when i = 2

l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 0 3 2
3 0 1 2 1

Table 3: The numbers r+i,+j
n1,n2

(l1, l2) when i = 1 and j = 3

3. Marginal reliability importance

In the following, we obtain a survival signature based expression for the marginal reliability

importance (MRI) Ii(t) when the system is formed by K ≥ 2 types of components. Suppose that

the ith component is of type a. Then, using the general property P {A | B} = P {A,B} /P {B}
for events A,B, and bringing the Ck(t) into the argument, we get

P
{
TS > t | T (a)

i > t
}

=
1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

P
{
TS > t, T

(a)
i > t,C1(t) = l1, ..., CK(t) = lK

}
,

where L1 = {(l1, ..., lK) : 0 < la ≤ na; 0 ≤ lm ≤ nm,m 6= a} . Now we can rewrite the joint prob-

ability within the summation on the right-hand side by effectively using the general property

l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 1 0
3 1 2 1 0

Table 4: The numbers r+i,−j
n1,n2

(l1, l2) when i = 1 and j = 3
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P {A,B} = P {A | B}P {B}, leading to

P
{
TS > t | T (a)

i > t
}

=
1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

P
{
TS > t | T (a)

i > t,

C1(t) = l1, ..., CK(t) = lK}P
{
T
(a)
i > t,C1(t) = l1, ..., CK(t) = lK

}
=

1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

Φ+i(l1, ..., lK)P
{
T
(a)
i > t,

C1(t) = l1, ..., CK(t) = lK} ,

where

Φ+i(l1, ..., lK) =
r+in1,...,nK

(l1, ..., lK)(
na−1
la−1

)∏
m6=a

(
nm

lm

) ,
and r+in1,...,nK

(l1, ..., lK) denotes the number of path sets of the system including component i of type

a, l1 components of type 1,...,la − 1 components of type a,...,lK components of type K. Because

P
{
T
(a)
i > t,C1(t) = l1, ..., CK(t) = lK

}
=

(
na − 1

la − 1

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK),

we obtain

P
{
TS > t | T (a)

i > t
}

=
1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

Φ+i(l1, ..., lK)

×
(
na − 1

la − 1

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK) (9)

Similarly, it can be shown that

P
{
TS > t | T (a)

i ≤ t
}

=
1

P
{
T
(a)
i ≤ t

}∑ · · ·
∑

(l1,...,lK)∈L2

Φ−i(l1, ..., lK)

×
(
na − 1

la

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK), (10)

where L2 = {(l1, ..., lK) : 0 ≤ la < na; 0 ≤ lm ≤ nm,m 6= a} ,

Φ−i(l1, ..., lK) =
r−in1,...,nK

(l1, ..., lK)(
na−1
la

)∏
m6=a

(
nm

lm

) ,
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and r−in1,...,nK
(l1, ..., lK) is the number of path sets of the system that do not include component i

of type a, l1 components of type 1,...,la components of type a,...,lK components of type K. From

equations (9) and (10), the MRI of component i of type a is obtained as

Ii(t) =
1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

Φ+i(l1, ..., lK)

×
(
na − 1

la − 1

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK)

− 1

P
{
T
(a)
i ≤ t

}∑ · · ·
∑

(l1,...,lK)∈L2

Φ−i(l1, ..., lK)

×
(
na − 1

la

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK). (11)

4. Joint reliability importance

In the following, we present an expression for the JRI of two components when they belong to

two different groups, and when they are of same type.

4.1. JRI between two components belonging different groups

Assume first that the component i is of type a, and the component j is of type b. Then the

JRI between components i and j is defined by

JRI(i, j) = P
{
TS > t | T (a)

i > t, T
(b)
j > t

}
− P

{
TS > t | T (a)

i > t, T
(b)
j ≤ t

}
−P

{
TS > t | T (a)

i ≤ t, T (b)
j > t

}
+ P

{
TS > t | T (a)

i ≤ t, T (b)
j ≤ t

}
. (12)

Let us first consider the conditional probability P
{
TS > t | T (a)

i > t, T
(b)
j > t

}
.

P
{
TS > t | T (a)

i > t, T
(b)
j > t

}
=

1

P
{
T
(a)
i > t, T

(b)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U1

P
{
TS > t | T (a)

i > t, T
(b)
j > t,

C1(t) = l1, ..., CK(t) = lK}P
{
T
(a)
i > t, T

(b)
j > t,C1(t) = l1, ..., CK(t) = lK

}
=

1

P
{
T
(a)
i > t, T

(b)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U1

Φ+i,+j(l1, ..., lK)P
{
T
(a)
i > t, T

(b)
j > t,

C1(t) = l1, ..., CK(t) = lK} ,
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where U1 = {(l1, ..., lK) : 0 < la ≤ na, 0 < lb ≤ nb, 0 ≤ lm ≤ nm,m 6= a, b} ,

Φ+i,+j(l1, ..., lK) =
r+i,+jn1,...,nK (l1, ..., lK)(

na−1
la−1

)(
nb−1
lb−1

)∏
m 6=a,b

(
nm

lm

) ,
and r+i,+jn1,...,nK (l1, ..., lK) is the number of path sets of the system including component i of type a,

component j of type b, l1 components of type 1,...,la−1 components of type a,...,lb−1 components

of type b,...,lK components of type K. Because

P
{
T
(a)
i > t, T

(b)
j > t,C1(t) = l1, ..., CK(t) = lK

}
=

(
na − 1

la − 1

)(
nb − 1

lb − 1

) ∏
m 6=a,b

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK),

we obtain

P
{
TS > t | T (a)

i > t, T
(b)
j > t

}
=

1

P
{
T
(a)
i > t, T

(b)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U1

Φ+i,+j(l1, ..., lK)

×
(
na − 1

la − 1

)(
nb − 1

lb − 1

) ∏
m 6=a,b

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK) (13)

Similarly, we can also obtain

P
{
TS > t | T (a)

i > t, T
(b)
j ≤ t

}
=

1

P
{
T
(a)
i > t, T

(b)
j ≤ t

}∑ · · ·
∑

(l1,...,lK)∈U2

Φ+i,−j(l1, ..., lK)

×
(
na − 1

la − 1

)(
nb − 1

lb

) ∏
m6=a,b

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK), (14)

where U2 = {(l1, ..., lK) : 0 < la ≤ na, 0 ≤ lb < nb, 0 ≤ lm ≤ nm,m 6= a, b} ,

Φ+i,−j(l1, ..., lK) =
r+i,−jn1,...,nK (l1, ..., lK)(

na−1
la−1

)(
nb−1
lb

)∏
m 6=a,b

(
nm

lm

) ,
and r+i,−jn1,...,nK (l1, ..., lK) is the number of path sets of the system including component i of type a,

do not include component j of type b, l1 components of type 1,...,la− 1 components of type a,...,lb
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components of type b,...,lK components of type K.

P
{
TS > t | T (a)

i ≤ t, T (b)
j > t

}
=

1

P
{
T
(a)
i ≤ t, T (b)

j > t
}∑ · · ·

∑
(l1,...,lK)∈U3

Φ−i,+j(l1, ..., lK)

×
(
na − 1

la

)(
nb − 1

lb − 1

) ∏
m 6=a,b

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK) (15)

where U3 = {(l1, ..., lK) : 0 ≤ la < na, 0 < lb ≤ nb, 0 ≤ lm ≤ nm,m 6= a, b} ,

Φ−i,+j(l1, ..., lK) =
r−i,+jn1,...,nK (l1, ..., lK)(

na−1
la

)(
nb−1
lb−1

)∏
m 6=a,b

(
nm

lm

) ,
and r−i,+jn1,...,nK (l1, ..., lK) is the number of path sets of the system that do not include component

i of type a, including component j of type b, l1 components of type 1,...,la components of type

a,...,lb − 1 components of type b,...,lK components of type K.

P
{
TS > t | T (a)

i ≤ t, T (b)
j ≤ t

}
=

1

P
{
T
(a)
i ≤ t, T (b)

j ≤ t
}∑ · · ·

∑
(l1,...,lK)∈U4

Φ−i,−j(l1, ..., lK)

×
(
na − 1

la

)(
nb − 1

lb

) ∏
m 6=a,b

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK) (16)

where U4 = {(l1, ..., lK) : 0 ≤ la < na, 0 ≤ lb < nb, 0 ≤ lm ≤ nm,m 6= a, b} ,

Φ−i,−j(l1, ..., lK) =
r−i,−jn1,...,nK (l1, ..., lK)(

na−1
la

)(
nb−1
lb

)∏
m 6=a,b

(
nm

lm

) ,
and r−i,−jn1,...,nK (l1, ..., lK) is the number of path sets of the system that do not include component i of

type a, do not include component j of type b, including l1 components of type 1,...,la components

of type a,...,lb components of type b,...,lK components of type K.

Thus the JRI between components i (type a) and j (type b) can be computed using equations

(13)-(16) in equation (12).
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4.2. JRI between two components belonging the same group

Now, assume that the components i and j are of same type, say a, 1 ≤ a ≤ K. Then

P
{
TS > t | T (a)

i > t, T
(a)
j > t

}
=

1

P
{
T
(a)
i > t, T

(a)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U ′1

Φ+i,+j(l1, ..., lK)

×
(
na − 2

la − 2

) ∏
m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK), (17)

where U ′1 = {(l1, ..., lK) : 1 < la ≤ na, 0 ≤ lm ≤ nm,m 6= a} ,

Φ+i,+j(l1, ..., lK) =
r+i,+jn1,...,nK (l1, ..., lK)(
na−2
la−2

)∏
m 6=a

(
nm

lm

) ,
and r+i,+jn1,...,nK (l1, ..., lK) is the number of path sets of the system including component i of type a,

component j of type a, l1 components of type 1,...,la − 2 components of type a,...,lK components

of type K.

P
{
TS > t | T (a)

i > t, T
(a)
j ≤ t

}
=

1

P
{
T
(a)
i > t, T

(a)
j ≤ t

}∑ · · ·
∑

(l1,...,lK)∈U ′2

Φ+i,−j(l1, ..., lK)

×
(
na − 2

la − 1

) ∏
m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK), (18)

where U ′2 = {(l1, ..., lK) : 0 < la < na, 0 ≤ lm ≤ nm,m 6= a} ,

Φ+i,−j(l1, ..., lK) =
r+i,−jn1,...,nK (l1, ..., lK)(
na−2
la−1

)∏
m 6=a

(
nm

lm

) ,
and r+i,−jn1,...,nK (l1, ..., lK) is the number of path sets of the system including component i of type a,

do not include component j of type a, l1 components of type 1,...,la−1 components of type a,...,lK

12



components of type K.

P
{
TS > t | T (a)

i ≤ t, T (a)
j > t

}
=

1

P
{
T
(a)
i ≤ t, T (a)

j > t
}∑ · · ·

∑
(l1,...,lK)∈U ′3

Φ−i,+j(l1, ..., lK)

×
(
na − 2

la − 1

) ∏
m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK) (19)

where U ′3 = {(l1, ..., lK) : 0 < la < na, 0 ≤ lm ≤ nm,m 6= a} ,

Φ−i,+j(l1, ..., lK) =
r−i,+jn1,...,nK (l1, ..., lK)(
na−2
la−1

)∏
m 6=a

(
nm

lm

) ,
and r−i,+jn1,...,nK (l1, ..., lK) is the number of path sets of the system that do not include component i

of type a, including component j of type a, l1 components of type 1,...,la − 1 components of type

a,...,lK components of type K.

P
{
TS > t | T (a)

i ≤ t, T (a)
j ≤ t

}
=

1

P
{
T
(a)
i ≤ t, T (a)

j ≤ t
}∑ · · ·

∑
(l1,...,lK)∈U ′4

Φ−i,−j(l1, ..., lK)

×
(
na − 2

la

) ∏
m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, ..., lK) (20)

where U ′4 = {(l1, ..., lK) : 0 ≤ la < na − 1, 0 ≤ lm ≤ nm,m 6= a} ,

Φ−i,−j(l1, ..., lK) =
r−i,−jn1,...,nK (l1, ..., lK)(
na−2
la

)∏
m 6=a

(
nm

lm

) ,
and r−i,−jn1,...,nK (l1, ..., lK) is the number of path sets of the system that do not include component i of

type a, do not include component j of type a, including l1 components of type 1,...,la components

of type a,...,lK components of type K.

Thus the JRI between components i (type a) and j (type a) can be computed using equations

(17)-(20).

5. Illustrative examples

In this section, we compute MRI and JRI of components in the system given in Figure 1 when

the joint survival function of components’ lifetimes follow the model (4). To compute MRI of

component i, we need the coefficients Φ+i(l1, l2) and Φ−i(l1, l2). For an illustration, we compute

13



l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 1

3
1
2

3 1 1 1 1

Table 5: The coefficients Φ+i(l1, l2) when i = 2

l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 1

6
1
2

2 0 0 2
3 1

3 0 0 0 0

Table 6: The coefficients Φ−i(l1, l2) when i = 2

these coefficients for the component ”2” in Tables 5 and 6. Manifestly,

Φ+2(l1, l2) =
r+2
n1,n2

(l1, l2)(
2

l1−1
)(

3
l2

) ,

l1 = 1, 2, 3; l2 = 0, 1, 2, 3.and

Φ−2(l1, l2) =
r−2n1,n2

(l1, l2)(
2
l1

)(
3
l2

) ,

for l1 = 0, 1, 2; l2 = 0, 1, 2, 3.

Because the component ”2” is of type 1, its MRI can then be computed from

I2(t) =
1

P
{
T
(1)
2 > t

} 3∑
l1=1

3∑
l2=0

Φ+2(l1, l2)

(
2

l1 − 1

)(
3

l2

)
Sn1,n2(t; l1, l2)

− 1

P
{
T
(1)
2 ≤ t

} 2∑
l1=0

3∑
l2=0

Φ−2(l1, l2)

(
2

l1

)(
3

l2

)
Sn1,n2(t; l1, l2),

where P
{
T
(1)
2 > t

}
= (1 + θ1t)

−α, and

Sn1,n2(t; l1, l2) =

n1−l1∑
i1=0

n2−l2∑
i2=0

(−1)i1+i2
(
n1 − l1
i1

)(
n2 − l2
i2

)
[1 + θ1(l1 + i1)t+ θ2(l2 + i2)t]

−α .

In Figure 2, we plot MRI of all components as a function of t when θ1 = 1, θ2 = 2 and α = 2.

Clearly, the components ”2” and ”5”, and ”3” and ”6” have the same MRI values. Figure 3 plots

MRI of all components when θ1 = 2, θ2 = 1 and α = 2. Although the MRI of the component ”1”

is nonincreasing in t, the MRI of other components first increase until a specific time and then

14



(a) θ1 = 1, θ2 = 2 and α = 2 (b) θ1 = 1, θ2 = 2 and α = 2

Figure 2: Marginal reliability importance

decrease. It should be noted that for the case when θ1 = 1, θ2 = 2 the lifetimes of components

of type 1 are larger than the lifetime of components of type 2 in stochastic ordering, while the

reverse is true when θ1 = 2, θ2 = 1. This leads e.g. to greater values for the MRI of component ”1”

as the MRI reflects the difference in system reliability between the situations where the specific

component functions or has failed, yet this effect is strongly dependent on the functioning of the

other components. Clearly, if the other components are likely to have failed at a time of interest,

then functioning or not of the specific component of interest is unlikely to affect system functioning,

hence low values of MRI for larger values of t tend to reflect that the other components are likely

to have failed, leading to system failure independent of the status of the component of interest.

For small values of t, MRI for a specific component may also be small, simply because all other

components may still be very likely to function and failure of only the specific component may not

lead to system failure. In this example, this latter effect is shown in the MRIs of all components

except the critical component ”1”, which of course must function in order for the system to function.

Next, we compute and evaluate JRI values for the same system under the same joint survival

model given by (4). It should be emphasized that the JRI is more difficult to interpret than the

MRI, as it represents the interaction of the functioning or failing of two components on the system

reliability. The easiest use of JRI is to consider its value for different pairs of components, where the

pair of components with maximum JRI at a specific time can be interpreted as the two components

whose joint functioning at the time considered is of most benefit compared to only either one of

these two components functioning.

To compute JRI between components i and j, we need the coefficients Φ+i,+j(l1, l2), Φ
+i,−j(l1, l2),

Φ−i,+j(l1, l2) and Φ−i,−j(l1, l2). For an illustration, we compute these coefficients when i = 1 and

j = 3. The results are presented in Tables 7 and 8. Clearly, Φ−1,+3(l1, l2) = 0 and Φ−1,−3(l1, l2) = 0

for all values of l1 and l2.

15



(a) θ1 = 2, θ2 = 1 and α = 2 (b) θ1 = 2, θ2 = 1 and α = 2

Figure 3: Marginal reliability importance

l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 1

2 1
2 0 0 3

4 1
3 0 1 1 1

Table 7: The coefficients Φ+i,+j(l1, l2) when i = 1 and j = 3

l1\l2 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 1

2 0
3 1 1 1 0

Table 8: The coefficients Φ+i,−j(l1, l2) when i = 1 and j = 3
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(a) θ1 = 1, θ2 = 2 and α = 2 (b) θ1 = 2, θ2 = 1 and α = 2

Figure 4: Joint reliability importance

Figure 4-7 plots JRI between pairs of components when θ1 = 1, θ2 = 2 and α = 2, and when

θ1 = 2, θ2 = 1 and α = 2. From Figure 4, we observe that the components ”1” and ”3” are

reliability complements. Components ”1” and ”3” are of different type, and the marginal lifetime

distribution of component ”1” (”3”) is pareto with parameter θ1 (θ2). Thus when we shift the

parameter values from θ1 = 1, θ2 = 2 to θ1 = 2, θ2 = 1 mean lifetime of component ”1” decreases

while the mean lifetime of component ”3” increases. In this case, the components ”1” and ”3”

become more reliability complements. As is clear from Figure 5, the components ”2” and ”3” are

reliability substitutes until a specific time point, and they are reliability complements after that

time. Components ”1” and ”4” become less reliability complements when parameter values are

shifted from θ1 = 1, θ2 = 2 to θ1 = 2, θ2 = 1, i.e. when mean lifetime of component ”1” decreases

while the mean lifetime of component ”4” increases.

Based on our calculations, we have observed that the two components which have largest MRI

values are ”1” and ”2” (or ”5”) when t is fixed as t0 = 0.19 and when θ1 = 1, θ2 = 2 and α = 2 (see

Figure 2a). At t0 = 0.19 the JRI between ”1” and ”2” (or ”5”) is also the largest one among all the

pairs (see Figure 6a), hence the importance of these components for the system reliability at that

time point is not only maximal when considered per component, but also their joint functioning

has the largest contribution to system reliability compared to scenarios where only one of these

two components would function at that time.

6. Reliability importance for black-box systems

The importance measures presented thus far in this paper use the survival signature to provide

simple expressions and enable efficient calculations. However, by focusing on specific components,

one needs not only the survival signature of the whole system but also of the system with the
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(a) θ1 = 1, θ2 = 2 and α = 2 (b) θ1 = 2, θ2 = 1 and α = 2

Figure 5: Joint reliability importance

(a) θ1 = 1, θ2 = 2 and α = 2 (b) θ1 = 2, θ2 = 1 and α = 2

Figure 6: Joint reliability importance
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(a) θ1 = 1, θ2 = 2 and α = 2 (b) θ1 = 2, θ2 = 1 and α = 2

Figure 7: Joint reliability importance

condition that the specific component either functions or not. This implies that one must have

access to more details about the system structure than provided by the single survival signature for

the full system. For small systems, this is relatively easy to get, in particular when e.g. applying the

efficient algorithm by Reed [22] for calculation of the survival signature. However, a main reason for

the introduction of the survival signature has been the possibility to move quantification of system

reliability to substantially larger systems and networks than when methods are used that explicitly

require the use of the system structure function, which for larger real-world problems becomes

impossible to specify. Hence, in this section we consider component importance measures based

only on the survival signature of the full system. Such a view was recently also taken by Patelli et

al. [20], who show how system failure times and corresponding estimates for the survival functions

can be derived in a very efficient manner by simulation based on only the survival signature. This

also fits with a view for larger systems or networks that, to the analyst and user of the system,

the system design may be unknown, which may be occurring if use of a system is under a service-

style contract where ownership remains with the system manufacturer. The manufacturer may

not be willing to share detailed information about the system configuration, but may be willing

to provide the survival signature. We first consider the marginal reliability importance for black

box systems, followed by joint reliability importance for components of different types as well as

for components of the same type. These are also related to the importance measures for specific

components presented in the earlier sections. Throughout this section, we again consider the case

where components of different types have dependent failure times, but of course the special case of

independent failure times within such black-box systems is also covered by the results presented.
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6.1. Marginal reliability importance for black-box systems

We are interested in the importance, for system reliability at time t, of a single component of

type a ∈ {1, . . . ,K}. We assume, however, that the full system structure function is not known but

only the survival signature is known. Hence, we consider the effect on the system survival function

at time t of the information that one component of type a is known to function at this time,

compared to the information that this component is known not to function at this time, where we

do not know which specific component of type a this information is about and hence also not its

specific role in the system. We assume that this specific component is selected by simple random

sampling from the na components of this type in the system, independent of its functioning at

time t. This assumption is fully in line with the assumed exchangeability of the failure times of all

components of type a and the fact that no knowledge is assumed to be available about the system

structure. One could e.g. interpret the information about the functioning of this component as

resulting from interference with the system in the sense that one randomly selected component of

type a has been replaced, for consideration of reliability at time t, by a similar component which

is either certain to function or certain not to function.

We denote the survival function for the system, so the probability that the system functions

at time t, given that one component of type a is known to function, by P (TS > t|a : 1), and the

survival function for the system given that this one component is known to fail by P (TS > t|a : 0).

The uncertainty about the number of components of each type that function at time t is again

denoted by Cm(t) ∈ {0, 1, . . . , nm} for all types m 6= a, while now there is only uncertainty about

the remaining na − 1 components of type a for which we do not know if they function or not.

We denote the number of these remaining components of type a which function at time t by

C ′a(t) ∈ {0, 1, . . . , na − 1}. This notation leads straightforwardly to

P {TS > t | a : 1} =
1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

Φ(l1, . . . , lK)×

P


K⋂

m=1,m 6=a
{Cm(t) = lm} ∩

{
C ′a(t) = la − 1

}
∩ T (a)

i > t

 .

where L1 = {(l1, ..., lK) : 0 < la ≤ na; 0 ≤ lm ≤ nm,m 6= a}. Because

P


K⋂

m=1,m 6=a
{Cm(t) = lm} ∩

{
C ′a(t) = la − 1

}
∩ T (a)

i > t


=

(
na − 1

la − 1

) K∏
m=1,m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK),
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we obtain

P {TS > t | a : 1} =
1

P
{
T
(a)
i > t

}∑ · · ·
∑

(l1,...,lK)∈L1

Φ(l1, . . . , lK)×

(
na − 1

la − 1

) K∏
m=1,m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

Similarly,

P {TS > t | a : 0} =
1

P
{
T
(a)
i ≤ t

}∑ · · ·
∑

(l1,...,lK)∈L2

Φ(l1, . . . , lK)×

(
na − 1

la

) K∏
m=1,m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

where L2 = {(l1, ..., lK) : 0 ≤ la < na; 0 ≤ lm ≤ nm,m 6= a}.
We denote the marginal reliability importance at time t for a component of type a for which its

exact location in the system is not known and with information about the system structure only

available in the form of the survival signature, by RIa(t). This can be defined as

RIa(t) = P {TS > t | a : 1} − P {TS > t | a : 0} .

The marginal reliability importance for an unspecified component of type a is logically related to

the marginal reliability importances of all components of type a, due to the fact that the unspecified

component is assumed to be any one of the na components of this type with equal probability. This

leads straightforwardly to RIa(t) being equal to the average of the Ii(t), as presented in Section

3, for all components i of type a. Figure 8a (8b) plots marginal importances of all components of

type 1 (type 2) along with I1(t) (I2(t)) for the system in Figure 1 when θ1 = 1, θ2 = 2 and α = 2.

6.2. Joint (different types) reliability importance for black-box systems

We now consider the joint reliability importance for two unspecified components of different

types, say type a and b. These components are again assumed to be drawn by simple random

sampling from all components of type a and of type b, respectively. Additional notation used

below straightforwardly generalizes notation from the previous section. Anologously to Equation

(12), the joint reliability importance can be derived by

JRI(a, b) = P (TS > t | a : 1, b : 1)− P (TS > t | a : 1, b : 0)−

P (TS > t | a : 0, b : 1) + P (TS > t | a : 0, b : 0)
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(a) Marginal importances of all components of
type 1 and RI1(t)

(b) Marginal importances of all components of
type 2 and RI2(t)

Figure 8: Black box marginal importance measures

The uncertainty about the number of components of each type that function at time t is again

denoted by Cm(t) ∈ {0, 1, . . . , nm} for all types m /∈ {a, b}, while now there is only uncertainty

about the remaining na − 1 and nb − 1 components of types a and b, respectively, for which we

do not know if they function or not. We denote the number of these remaining components of

types a and b which function at time t by C ′a(t) ∈ {0, 1, . . . , na − 1} and C ′b(t) ∈ {0, 1, . . . , nb − 1},
respectively. This leads to

P {TS > t | a : 1, b : 1} =
1

P
{
T
(a)
i > t, T

(b)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U1

Φ(l1, . . . , lK)×

P

 ⋂
m/∈{a,b}

{Cm(t) = lm} ∩
{
C ′a(t) = la − 1

}
∩
{
C ′b(t) = lb − 1

}
∩ T (a)

i > t ∩ T (b)
j > t

 .

where U1 = {(l1, ..., lK) : 0 < la ≤ na, 0 < lb ≤ nb, 0 ≤ lm ≤ nm,m 6= a, b} ,
Because

P


K⋂

m=1,m/∈{a,b}

{Cm(t) = lm} ∩
{
C ′a(t) = la − 1

}
∩
{
C ′b(t) = lb − 1

}
∩ T (a)

i > t ∩ T (b)
j > t


=

(
na − 1

la − 1

)(
nb − 1

lb − 1

) ∏
m/∈{a,b}

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , . . . , lK),
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we obtain

P {TS > t | a : 1, b : 1} =
1

P
{
T
(a)
i > t, T

(b)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U1

Φ(l1, . . . , lK)×

(
na − 1

la − 1

)(
nb − 1

lb − 1

) ∏
m/∈{a,b}

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

Similarly,

P {TS > t | a : 1, b : 0} =
1

P
{
T
(a)
i > t, T

(b)
j ≤ t

}∑ · · ·
∑

(l1,...,lK)∈U2

Φ(l1, . . . , lK)×

(
na − 1

la − 1

)(
nb − 1

lb

) ∏
m/∈{a,b}

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

where U2 = {(l1, ..., lK) : 0 < la ≤ na, 0 ≤ lb < nb, 0 ≤ lm ≤ nm,m 6= a, b} .

P {TS > t | a : 0, b : 1} =
1

P
{
T
(a)
i ≤ t, T (b)

j > t
}∑ · · ·

∑
(l1,...,lK)∈U3

Φ(l1, . . . , lK)×

(
na − 1

la

)(
nb − 1

lb − 1

) ∏
m/∈{a,b}

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

where U3 = {(l1, ..., lK) : 0 ≤ la < na, 0 < lb ≤ nb, 0 ≤ lm ≤ nm,m 6= a, b} .

P {TS > t | a : 0, b : 0} =
1

P
{
T
(a)
i ≤ t, T (b)

j ≤ t
}∑ · · ·

∑
(l1,...,lK)∈U4

Φ(l1, . . . , lK)×

(
na − 1

la

)(
nb − 1

lb

) ∏
m/∈{a,b}

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

where U4 = {(l1, ..., lK) : 0 ≤ la < na, 0 ≤ lb < nb, 0 ≤ lm ≤ nm,m 6= a, b} .
It can be shown that JRI(a, b) is again the average of all the joint reliability importance

measures JRI(i, j), as presented in Section 4, where i represents any component of type a and j

any component of type b.

6.3. Joint (same type) reliability importance for black-box systems

We assume here that the two components considered, i and j, are of same type, say a, 1 ≤
a ≤ K, where again nothing more is known about which specific components they are or their role

in the system, so they can be regarded as being selected from all components of type a by simple

random sampling (without replacement). The uncertainty about the number of components of
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each type that function at time t is again denoted by Cm(t) ∈ {0, 1, . . . , nm} for all types m 6= a,

while now there is only uncertainty about the remaining na− 2 components of type a for which we

do not know if they function or not. We denote the number of these remaining components of type

a which function at time t by C ′′a (t) ∈ {0, 1, . . . , na − 2}. The results below include some further

new notation which is in line with earlier notation, where a : 2 denotes the event that both the

considered components of type a function and a : 1 that one of these functions and the other does

not, again of course without any knowledge of which specific component functions or not. The

joint reliability importance can now be derived by

JRI(a, a) = P (TS > t | a : 2)− 2P (TS > t | a : 1) + P (TS > t | a : 0)

We now have

P {TS > t | a : 2} =
1

P
{
T
(a)
i > t, T

(a)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U ′1

Φ(l1, . . . , lK)×

P

⋂
m6=a
{Cm(t) = lm} ∩

{
C ′′a (t) = la − 2

}
∩ T (a)

i > t ∩ T (a)
j > t

 ,

where U ′1 = {(l1, ..., lK) : 1 < la ≤ na, 0 ≤ lm ≤ nm,m 6= a} .
Because

P

⋂
m6=a
{Cm(t) = lm} ∩

{
C ′′a (t) = la − 2

}
∩ T (a)

i > t ∩ T (a)
j > t


=

(
na − 2

la − 2

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK),

we obtain

P {TS > t | a : 2} =
1

P
{
T
(a)
i > t, T

(a)
j > t

}∑ · · ·
∑

(l1,...,lK)∈U ′1

Φ(l1, . . . , lK)×

(
na − 2

la − 2

) ∏
m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

Similarly,

24



(a) JRI(1,1) for the black box system when θ1 =
1, θ2 = 2 and α = 2

(b) JRI(1,2) for the black box system when θ1 =
1, θ2 = 2 and α = 2

Figure 9: Black box joint reliability importance

P {TS > t | a : 1} =
1

P
{
T
(a)
i > t, T

(a)
j ≤ t

}∑ · · ·
∑

(l1,...,lK)∈U ′2

Φ(l1, . . . , lK)×

(
na − 2

la − 1

) ∏
m6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

where U ′2 = {(l1, ..., lK) : 0 < la < na, 0 ≤ lm ≤ nm,m 6= a} ,

P {TS > t | a : 0} =
1

P
{
T
(a)
i ≤ t, T (a)

j ≤ t
}∑ · · ·

∑
(l1,...,lK)∈U ′3

Φ(l1, . . . , lK)×

(
na − 2

la

) ∏
m 6=a

(
nm
lm

)
Sn1,...,nK (t; l1, . . . , lK).

where U ′3 = {(l1, ..., lK) : 0 ≤ la < na − 1, 0 ≤ lm ≤ nm,m 6= a} .
It can be shown that JRI(a, a) is again the average of all the joint reliability importance

measures JRI(i, j), as presented in Section 4, where i and j represent any two different components

of type a.

Figure 9a shows the JRI between two components of type 1 for the system in Figure 1, while

Figure 9b shows the JRI between one component of type 1 and one component of type 2. These

JRIs are from the black box perspective as discussed in this section, so with only the survival

signature assumed to be known for the full system. Hence these JRIs they do not hold for specific
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components but are average values over all possible pairs of components of the respective types.

7. Concluding remarks

In this paper, we have presented expressions for the marginal and joint reliability measures for a

coherent system that consists of multiple types of dependent components. Our method is based on

the concept of survival signature which is a useful tool to study systems composed of multiple types

of components. The expressions obtained in the present paper generalize and extend the results in

Gertsbakh and Shpungin [13], Eryilmaz [8], and Eryilmaz et al. [9]. We have also presented novel

importance measures for black box systems for which only the survival signature is available.

Although in the present paper we have studied well-known classical importance measures, the

method based on survival signature seems potentially useful to study other importance measures.

This will be among our future research problems.
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