
A robust weighted SVR-based software reliability growth model

Lev V. Utkin1, Frank P.A. Coolen2

1Telematics Department, Central Scientific Research Institute of Robotics and Technical Cybernetics,
Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Department of Mathematical Sciences, Durham University, United Kingdom

Abstract

This paper proposes a new software reliability growth model (SRGM), which can be re-
garded as an extension of the non-parametric SRGMs using support vector regression to
predict probability measures of time to software failure. The first novelty underlying the
proposed model is the use of a set of weights instead of precise weights as done in the
established non-parametric SRGMs, and to minimize the expected risk in the framework of
robust decision making. The second novelty is the use of the intersection of two specific sets
of weights, produced by the imprecise ε-contaminated model and by pairwise comparisons,
respectively. The sets are chosen in accordance to intuitive conceptions concerning the soft-
ware reliability behaviour during a debugging process. The proposed model is illustrated
using several real data sets and it is compared to the standard non-parametric SRGM.

Keywords: Imprecise contaminated model, pairwise comparisons, quadratic
programming, software reliability growth model, support vector regression

1. INTRODUCTION

Software reliability is one of the most important factors in the software development
process, which directly impacts on software quality. According to [1], software reliability
is defined as the probability of failure-free software operation for a specified period of
time in a specified environment. One of the methods for analyzing software reliability is to
consider a software testing process, where defects of software are detected and removed. As
a result, the software reliability tends to grow. Therefore, in order to estimate the software
reliability by using information from the software testing process, many software reliability
growth models (SRGMs) have been developed and successfully verified and applied in many
software projects. As pointed out by several authors [2, 3, 4], most SRGMs can be divided
into two large groups: parametric and non-parametric models.

Parametric SRGMs are generally based on assumptions about the behaviour of the
software faults and failure processes, usually in the form of some statistical characteristics,
for example, probability distributions of time between failures of the software. Depending
on the initial data representation, parametric SRGMs can also be divided into the times-
between-failures or time-dependent models and the nonhomogeneous Poisson process (NH-

Preprint submitted to Reliability Engineering and System Safety January 10, 2018

PP) based models. The first type of models uses times between successive software failures
during the testing or debugging period in order to predict some probability measures of
time to the next software failure. One of the best known software reliability models is
the Jelinski-Moranda model [5], which assumes that the elapsed time between failures is
governed by the exponential probability distribution with a parameter (failure rate) that is
proportional to the number of remaining faults in the software. The second type of models
uses numbers of software failures observed in a given period of time in order to predict
how many software failures will be observed in a time period after the debugging process.
The best known parametric models of the second type are the NHPP based SRGMs. An
example of the NHPP models is the well known Goel–Okumoto NHPP model [6], which
assumes that the cumulative number of failures follows a Poisson process, such that the
expected number of failures in a given time interval after time t is proportional to the
expected number of undetected faults at time t. Since parametric SRGMs depend on a
priori assumptions about the nature of software faults and the stochastic behaviour of the
software failure process, they have quite different predictive performances across various
projects [2, 7].

Non-parametric SRGMs utilize machine learning techniques including artificial neural
networks, genetic programming and support vector machines (SVMs) to predict the soft-
ware reliability. One of the important advantages of the models is that they usually do not
use any prior assumptions and are based only on fault history data. Many non-parametric
SRGMs have been proposed in the literature [2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21]. Contributions to this field are continuing, For example, Barghout [22] presented
a new non-parametric model which is based on the idea of separation of concern between
the long term trend in reliability growth and the local behaviour. Ramasamy and Lak-
shmanan [23] proposed another non-parametric model applying an infinite testing effort
function. Bal and Mohaparta [24] proposed a nonparametric method using radial basis
function neural network for predicting software reliability. Some models using the machine
learning framework have been considered and reviewed by other authors [25, 26, 27]. It
should be noted that most so-called non-parametric SRGMs are not non-parametric in the
strictest sense, because most models require some parameters to be assigned, for example,
parameters of a kernel in SVMs. Nevertheless, we will use the term non-parametric for
such models in order to distinguish them from models of the first type.

Among all learning techniques applied for constructing non-parametric SRGMs, we
select for consideration SVMs [28, 29]. Since many SRGMs can be regarded as special cases
of regression models, we consider a learning technique known as support vector regression
(SVR), which is a modification or a special case of the SVM. Many available non-parametric
SRGMs are based on SVR [7, 11, 18, 30].

Numerical results with many non-parametric SRGMs based on the SVR confirm the
advantage of SVR [11]. However, although the SVR shows good learning performance
and is suitable for generalizations, there are some limitations of its practical use. A main
problem in many projects is that there may only be few test data available. In this case,
the use of SVR for constructing a SRGM may lead to incorrect results. Moreover, tuning

2

parameters of learning algorithms are based on the procedure of cross-validation which
divides the learning set into two subsets: training and testing. If there is only a small
total data set, then this division leads to even smaller training sets which cannot be used
to correctly construct the model. Incorrect results occurring in such a scenario as a result
of the SVR, where the expected risk as an error measure for minimization is replaced by
an approximation, are called the ‘empirical expected risk’. This can be regarded as a
bound depending on the so-called VC dimension introduced by Vapnik [29]. The empirical
expected risk causes problems for very small training data sets. A further problem of such
models is that all failures during a debugging process are viewed as equivalent. In other
words, the first failures discovered in the test process have identical impact on the software
reliability prediction as the last failures discovered in the debugging process. However,
failures discovered in the early part of the debugging process may well be characterized by
“simple” errors in software, which arise due to inattention or carelessness of a programmer.
Once such errors have been removed, remaining failures, both those discovered later in the
debugging process and those that remain and hence may lead to failures after testing, are
more likely to share common features. Furthermore, there may be an effect of data ageing
due to possible substantial changes of software during debugging. We should also note
that an assumption about independence of times to failure in the model may be violated
[31] because the experience of testers with the specific software is likely to grow during the
debugging process.

A possible way to overcoming the first problem mentioned above is by assuming a prob-
ability distribution over the elements of the training set instead of the uniform distribution,
and to use it in the optimization problem of minimizing the risk measure. However, the
question arises how we can justify that a specific probability distribution is better than the
uniform distribution which is used in the empirical risk measure. The second problem can
be overcome by assigning different weights to elements of the training set. In particular, a
simple way is to assign ranked weights, with small weights assigned to the first elements of
the training set (corresponding to the the early stages of the debugging process) and larger
weights assigned to the later elements (corresponding to the later stages of the debugging
process). Of course, this leads to other natural questions about the validity of the assigned
weights and how changes of weights may affect the reliability prediction.

Taking into account the above mentioned issues, we propose a new non-parametric
SRGM based on the SVR. The main idea underlying the new SRGM is to replace precise
weights assigned to the elements of training data by a set of weights produced by means of
special rules. In other words, based on a small amount of training data, we construct a set
of distributions. Then we can choose a single distribution from the set which maximizes
the expected risk in accordance with the minimax strategy as commonly used in theories
and methods for decision support. The chosen distribution, as well as the bounds of the
set of distributions, depend on the unknown reliability model parameters which have to
be computed. After substituting the “optimal” probability distribution into an expression
for the expected risk, we can compute the optimal parameters of the regression model
by minimizing the risk measure over the set of values of parameters. The properties of

3

normalized weights of elements are the same as those of probabilities, within the scope of
the considered model. We will use the term ‘weights’ instead of ‘probabilities’.

Let us explain the selection of a single distribution from the set of distributions. In
fact, by replacing the precise weights of training data with a set of weights, we equivalently
replace the expected risk measure with a set of risk measures such that every measure
corresponds to a weight distribution from the set of weights. If we take a convex and
compact set of weights, then it is easy to prove that the set of risk measures as a set of
expectations makes up a closed interval with some lower and upper bounds. This implies
that we have to choose a point inside the interval of risk measures in order to minimize the
corresponding risk measure and to get the SRGM parameters. That is why we apply the
minimax or robust strategy as one of the strategies to deal with interval-valued functionals.
According to the minimax strategy we select the upper bound of the interval for minimizing
and for getting the model parameters. In other words, we maximize (the upper bound) the
expected risk over the set of distributions in order to minimize this upper bound over the
SRGM parameters.

Another important novel idea underlying the proposed SRGM is that we consider the
intersection of two sets of weights. The first set is produced by the linear-vacuous mixture or
imprecise ε-contaminated model [32], which can be viewed as a generalization of the well-
known ε-contaminated (robust) model [33, Section 4.2.]. The application of this model
relaxes the uniform distribution of weights, but does not assign a precise distribution.
The second set is produced by a set of linear comparative equalities which softly rank the
weights. We again do not assign precise weights for ranking the elements of training data.
The second set allows us to relax the strict ranking. Crucially, both these sets compensate
each other: the use of each set on its own would tend to lead to very imprecise predictions
of the software reliability after the debugging process, but the logical use of the intersection
of these sets leads to quite reasonable levels of imprecision.

Robust SVMs with sets of weights have been studied for classification problems [34, 35,
36]. Similar ideas as in those models are applied to the SVR in this paper, which is the
basis for the proposed robust SRGM. The robustness stems from the statistical sense as a
tool for taking into account how the SRGM behaves under a perturbation of the underlying
statistical model, i.e., under changes of the uniform distribution of weights in the empirical
risk measure. The idea to use sets of weights in the form of imprecise statistical models
suggests as name for the proposed SRGM in this paper: IWSRGM (Imprecise Weight
SRGM).

The paper is organized as follows. The statement of the non-parametric SRGMs in the
framework of the SVR is given in Section 2. A weighted extension of the SVR is considered
in the same section. The weighted SVR under the condition that weights of examples are
only known to belong to a compact and convex set is studied in Section 3. Properties
and extreme points of two sets of weights and their intersection are provided in Section 4.
Section 5 presents an algorithm for the new model and its application to various real data
sets, to illustrate the proposed IWSRGM and to compare it to the standard non-parametric
SRGM. Some conclusions and future scope of the research are provided in Section 6.

4

2. WEIGHTED SVR AND THE NON-PARAMETRIC SRGM

We start by formulating the non-parametric SRGM in the general framework of predic-
tive learning problems [28, 29, 37]. Parameters of the regression models are computed by
minimizing a risk functional defined by a certain loss function and by a probability distri-
bution of the noise. In regression analysis, we aim at estimating a functional dependency
f(x) between a set of sampled points X = (x1,x2, ...,xn) taken from Rm, and target values
Y = (y1, y2, ..., yn) with yi ∈ R. In the framework of machine learning, the regression prob-
lem can be stated in the same way. We assume that there are n training data (examples)
S = {(x1, y1), (x2, y2), ..., (xn, yn)}, in which xi ∈ Rm represents a feature vector involving
m features and yi ∈ R is an output variable. Let us write the function f(x) in the form
f(x) = 〈a, φ(x)〉 + b, where a = (a1, ..., am), b are parameters of the function; φ(x) is a
feature map Rm → G such that the data points are mapped into an alternative higher-
dimensional feature space G; 〈·, ·〉 denotes the dot product. A learning machine has to
choose the function f(x) from a given set of functions, such that it optimally approximates
the unknown dependency. This can be done in several ways, for example, by minimizing
the empirical expected loss, where the loss function represents a measure of difference be-
tween the estimate f and the actual value y given by the unknown function at a point x.
The standard SVR technique is to assume that the probability distribution of the training
points is the empirical (non-parametric) probability distribution function whose use leads
to the empirical expected risk

Remp =
1

n

n∑
i=1

l(yi, f(xi)).

Here l is the so-called ε-insensitive loss function with the parameter ε, which is defined
as

l(y, f(x)) =

{
0, |y − f(x)| ≤ ε,

|y − f(x)| − ε, otherwise.

Many realizations of the SVR use some distribution of weights w = (w1, ..., wn) instead
of the uniform distribution (1/n, ..., 1/n) over the sampled points S in order to incorporate
prior knowledge about importance of the points. The expected risk in this case is of the
form:

Rw =
n∑

i=1

wil(yi, f(xi)). (1)

We assume here that the weights are non-negative and w1 + ...+ wn = 1.
The parameters a and b are estimated by minimizing the following regularized risk

function:

RSVR,w =
1

2
〈a, a〉+ C

n∑
i=1

wil(yi, f(xi)).

5

Here, the first term is the standard Tikhonov regularization or smoothness term [38]; C > 0
is the constant “cost” parameter which determines the trade-off between the flatness of f
and the amount up to which deviations larger than ε are tolerated [39].

Introducing slack variables ξi and ξ∗i , the problem of minimizing the regularized risk
function can be written as follows:

minimize
1

2
〈a, a〉+ C

n∑
i=1

wi (ξi + ξ∗i) (2)

subject to ξi ≥ 0, ξ∗i ≥ 0,
yi − 〈a, φ(x)〉 − b ≤ ε+ ξi, (3)

〈a, φ(x)〉+ b− yi ≤ ε+ ξ∗i . (4)

The above problem can be written in its dual formulation utilizing Lagrange multipliers
αi, α

∗
i , i = 1, ..., n, as [40]

maximize
n∑

i=1

yi(αi − α∗i)− ε
n∑

i=1

(αi − α∗i)

− 1

2

n∑
i,j=1

(αi − α∗i)(αj − α∗j)K(xi,xj), (5)

subject to
n∑

i=1

(αi − α∗i) = 0, (6)

0 ≤ αi ≤ Cwi, 0 ≤ α∗i ≤ Cwi, i = 1, ..., n. (7)

Here K(xi,xj) = 〈φ(xi), φ(xj)〉 is the kernel function, that is the inner product of the points
φ(xi) and φ(xj) mapped into the feature space. We do not need to compute the function
φ(x) explicitly due to the kernels, as it can be seen from the optimization problem that
only the kernels are used in the objective function. Typical examples of kernel functions
are linear, polynomial and Gaussian [41]. We will only use the Gaussian kernel, which is
defined as

K(x,y) = exp
(
−‖x− y‖2 /σ2

)
,

where σ is the kernel parameter determining the geometrical structure of the mapped
samples in the kernel space. The regression function f can now be written in terms of the
Lagrange multipliers as

f(x) =
n∑

i=1

(αi − α∗i)K(x,xi) + b.

A simple expression for computing b can be found in [39].

6

3. SVR WITH A SET OF WEIGHTS

Suppose that a weight vector, or distribution, belongs to a compact and convex set P ,
i.e., it is produced by finitely many linear constraints. Let us consider how to deal with
this set of weights in the framework of the SVR.

First of all, we return to the expected risk (1). Since w ∈ P and the set P is convex,
the corresponding set of RSVR,w is bounded by some lower and upper bounds for every set
of values of a and b. The upper bound determines the well-known minimax (pessimistic)
strategy. According to the minimax strategy, a vector w is selected from the set P such that
the expected risk RSVR,w achieves its maximum RSVR,w for every fixed a and b. It should
be noted that the “optimal” vector w may be different for different values of parameters a
and b. The minimax strategy can be explained in a simple way. We do not know a precise
vector w and every vector from P can be selected. Therefore, we should take the “worst”
distribution providing the largest value of the expected risk. The minimax criterion can
be interpreted as an insurance against the worst case because it aims at minimizing the
expected loss in the least favorable case [42]. This leads to the following optimization
problem corresponding to the minimax strategy:

RSVR = min
a,b

max
w∈P

(
C

n∑
i=1

wil(yi, f(xi)) +
1

2
〈a, a〉

)
, (8)

subject to (3), (4) and w ∈ P .
Let us fix the values a and b. Then we have a linear programming problem with variables

w and constraints P . The set P is compact and convex. Therefore, the optimal solution
can be found among the extreme points of the set. If the number of extreme points is s,
then the above problem is reduced to s standard optimization problems of the form:

R
(k)
SVR = min

a,b

(
C

n∑
i=1

w
(k)
i l(yi, f(xi)) +

1

2
〈a, a〉

)
, k = 1, ..., s, (9)

subject to (3), (4).

Here w
(k)
i is the i-th element of the k-th extreme point. After solving s programming

problems (9), we get s “local” solutions a(k) and b(k), k = 1, ..., s. The final optimal solution
of the problem corresponds to the largest objective function, i.e., we choose the parameters
a(k) and b(k) with k = kopt such that

kopt = arg max
k=1,...,s

R
(k)
SVR.

It is interesting to note that extreme point w(kopt) is the “optimal” or “worst” distri-
bution providing the largest value of the expected risk. When we deal with the dual form
(5)-(7), the same procedure is carried out, but we take the variables αi, α

∗
i , i = 1, ..., n,

instead of a and b.

7

The above approach for solving the optimization problem is very simple when we know
the extreme points. Therefore, the next problem is to determine the extreme points of a
suitable set P which is relevant and interesting for SRGMs.

4. WEIGHTS FOR OBSERVATIONS AND THEIR EXTREME POINTS

The main idea proposed in this paper, in order to improve the SRGM, is to consider
two sets of weights. The first set is produced by the imprecise ε-contaminated model [32].
Its use relaxes the uniform distribution of weights. The second set is produced by a set of
pairwise comparisons, which allows us to relax a strict ranking of weights in the sense that
we do not assign precise weights for ranking the elements of the training data. The use of the
first set of weights is a common way to robustify statistical models, particularly in case of a
small number of training data. The second set of weights reflects the different importance
of data obtained during the debugging process, where elements of the training set from
the later stages of the debugging process are deemed to be more important than elements
from the earlier stages of this process. There are several reasons why this is attractive.
First, particularly simple errors in the software are likely to be removed early on in the
debugging process. Secondly, there may be an effect of data ageing due to substantial
change of the software during debugging: by removing errors, a programmer may change
substantial parts of the software. Hence, software failure data from the earlier stages of
the debugging process may be less relevant for predicting the software’s future reliability
than data from the later stages, which can be reflected through the weights. Furthermore,
the assumption about independence of times to failure may be violated. Cai et al. [31]
pointed out that this assumption is not realistic in general, because test cases are usually
not just selected at random but based on the previous experience with the software in the
debugging process.

Both sets of weights discussed above are important for constructing the SRGM, so we
aim at benefitting from the advantages of both sets. Therefore, we use the intersection
of the sets to develop the new IWSRGM. This has the further important advantage that,
while each of the two sets considered is rather large and would lead to overly pessimistic
decisions based on the minimax criterion, these two sets compensate each other and their
intersection reduces the size of P substantially, making the minimax criterion more suitable
in order to reach robust but realistic inferences. From the perspective of computation, it
is important to note that both these sets of weights are convex, and the intersection of
two convex sets is also a convex set which is totally defined by its extreme points. This
implies that we can use the results obtained in the previous section in order to solve the
programming problems (9) by determining the extreme points of the intersection of the two
sets of weights. Next we present the two sets of weights in detail, followed by presentation
of the intersection of these two sets.

8

4.1. The linear-vacuous mixture set of weights

The linear-vacuous mixture or imprecise ε-contaminated models produce the set P(ε, w)
of weights, or probabilities, w = (w1, ..., wn) such that wi = (1 − ε)pi + εhi, where p =
(p1, ..., pn) is an elicited probability distribution, or the single probability distribution one
would expect to be most realistic, hi is arbitrary and h1 + ...+ hn = 1, 0 < ε < 1. The set
P(ε, p) is a subset of the unit simplex S(1, n). Moreover, it coincides with the unit simplex
when ε = 1. We denote the set P(ε, p) under condition p = (1/n, ..., 1/n) as P(ε). It can
be produced by n+ 1 hyperplanes

wi ≥ (1− ε)n−1, i = 1, ..., n, w1 + ...+ wn = 1. (10)

4.2. The set of weights produced by comparative information

Let us consider the following comparative information:

w1 ≤ w2 ≤ ... ≤ wn, (11)

and the condition w1 + ...+ wn = 1.
A set M of weights w = (w1, ..., wn), which is produced by n − 1 inequalities of the

form wi − wi−1 ≥ 0, n inequalities wi ≥ 0 and one equality w1 + ...+ wn = 1, has extreme
points of the form:

w1 w2 ... w3 w4 wn

0 0 ... 0 0 1
0 0 ... 0 1/2 1/2
0 0 ... 1/3 1/3 1/3
...

1/n 1/n ... 1/n 1/n 1/n

It is interesting to see that the extreme points correspond to cases for which only several
elements of the training data are used for constructing a regression model. Moreover, we
have two extreme cases. The first one is the distribution of weights having only one non-
zero element. In this case, the decision is made on the basis of the last point. Another
extreme case coincides with the uniform distribution, as used for the empirical expected
risk.

4.3. Intersection of the two sets of weights

Before we study the intersection of general sets P(ε) and M, we consider this inter-
section for the case n = 3 by using the standard unit simplex. Figure 1 illustrates the
unit simplex, every point of which is a possible weight vector (w1, w2, w3). The set M
corresponds to the area restricted by the triangle ABC. The set P(ε) corresponds to the
area restricted by the small simplex. Their intersection is restricted by the triangle BED
(the shaded area). We can see from the figure that the obtained set of weights is quite
small when compared to the two individual sets of weights. Furthermore, the weights in
the intersection, hence those used in the IWSRGM, are shifted towards the last (the third)

9

Figure 1: Intersection of the two sets of weights in the unit simplex for n = 3

vertex of the simplex, which means that the final element of the test data tends to get most
weight. However, the simultaneous restriction to the small simplex corresponding to P(ε)
prevents that the weight assigned to the last vertex becomes too large.

Now we turn our attention to the general case with n elements in the test data, for
which the following proposition is crucial for computational feasibility of our proposed new
model. The proof of this proposition is presented in the Appendix.

Proposition 1. The set of extreme points of the intersection P(ε) ∩ M consists of n
elements of the form:

w1 = w2 = ... = wi−1 =
1

n
− ε

n
,

wi = wi+1 = ... = wn =
1

n
+
ε

n
· i− 1

n− i+ 1
,

i = 1, ..., n.

Proposition 1 provides the set of the extreme points of the set P(ε) ∩M, which are
necessary for solving the s = n programming problems (9). Every optimization problem
is defined by one of the extreme points w(k), k = 1, ..., n. As a result, we have n standard
weighted SVRs which can be easily solved.

Let us consider the set P(ε)∩M in more detail as it is very interesting, and we believe
it is attractive for a robust SRGM. Condition (11) produces a rather large set of weights
M and its sole use could lead to quite unlogical results. In particular, one of the extreme
points ofM is (0, ..., 0, 1)., according to which the time to failure after the debugging process
would be predicted on the basis of only the last observation from that process. It is therefore
unlikely that one would want to use the entire set M to construct a robust SRGM. The
set of weights P(ε) also has shortcomings. In particular, if we look at its extreme points,

10

then we observe that they consist of identical elements except for a single element which
is larger than the other elements. In particular if ε is quite large, the prediction of the
time to failure after the debugging process would be based substantially more on one of the
elements of the test data than the other ones. The intersection of these sets P(ε) and M,
however, avoids these problems and keeps attractive properties of both sets, in particular
the fact that the weights are somewhat larger towards the data from the later stages of the
debugging process but earlier data also keep some influence on the predictions. Finally,
it is worth mentioning two special cases of the proposed IWSRGM. If ε = 0, then the set
P(ε) ∩M is reduced to the single point (1/n, ..., 1/n), which corresponds to the standard
SVR without considering sets of weights. The second extreme case occurs for ε = 1, which
leads to P(1) ∩M =M, which means that only the set of weights reflecting the pairwise
comparisons is used.

5. THE ALGORITHM FOR IWSRGM AND APPLICATIONS

In this section we present the algorithm for implementing the IWSRGM and we illustrate
its application on six publicly available data sets. For each application, we randomly split
the data set, consisting of n examples, into two subsets. One of these, the training set, is
used to train (‘fit’) the model, while the subset of the remaining data, the test set consisting
of ntest examples, is used to validate the model. For most data sets, we use about 20% of
examples for testing, so ntest is about equal to 0.2n, the randomly selected examples for
testing are given the indices n−ntest+1, ..., n. Every regressor is computed by means of the
weighted SVR with parameter ε = 0 of the so-called ε-insensitive loss function, for details
we refer to [39]).

Since the main purpose of these examples is to show the application of the IWSRGM
on simple problems which are easy to visualize, the hyperparameters are chosen without
fine tuning. For all performed experiments, we quantify the prediction performance with
the normalized root mean square error measure (MSE), defined as

MSE =

√∑ntest

i=1 (yi − f(xi))2

ntest

.

Here yi and f(xi) are the actual value and the forecasted value for the time between
the (i − 1)-th and i-th detected software failure, respectively. This MSE is only used to
compare the application of different models to the same data set, hence it could also be
defined with the denominator outside of the square-root, it would make no difference for
these comparisons. The corresponding error measures for the standard and the IWSRGM
algorithms will be denoted MSEst and MSEImp. We will also use the relative absolute
difference between MSEs (RAMSE) which is defined as

RAMSE = |MSEst −MSEImp| /MSEst × 100.

All experiments use a standard Gaussian radial basis function (RBF) kernel, with kernel
parameter σ (see Section 2). Different values for the kernel parameter σ and the “cost”

11

parameter C have been tested and those leading to the best results have been used. This
procedure is realized by considering all possible values of σ and C in a predefined grid. The
grid for σ is determined as 2v, where v = −15, ..., 0, ..., 15. The values of C are taken in
accordance with the expression C0 + iCs, where C0 and Cs are experimentally determined
parameters, i = 1, ..., 40.

Algorithm 1 describes the implementation of the IWSRGM in pseudo-code. The pro-
posed IWSRGM has been evaluated and investigated using six publicly available data sets,
taken from the literature, which all have different characteristics. The results are presented
and discussed in the following subsections.

Algorithm 1 The algorithm implementing the IWSRGM

Require: S (training set), parameters ε, ε, grid for σ ∈ {σ1, ..., σr}, grid for C ∈
{C1, ..., Ct}

Ensure: f(xn+1)
{Straining, Stesting} : S ← Straining ∪ Stesting

i← 1; j ← 1
repeat
k ← 1
repeat
w ← w(k)

Solve problem (9) using w, σi, Cj and Straining

Compute R
(k)
SVR.

k + +
until k > n
kopt(i, j)← arg maxk=1,...,nR

(k)
SVR

MSE(i, j)←MSE(kopt(i, j), Stesting, σi, Cj, w
kopt(i,j))

i+ +; j + +
until i > r; j > t
(i, j)opt ← arg min(i,j)MSE(i, j)
f(xn+1)←

∑n
i=1(αi − α∗i)K(xn+1,xi) + b

5.1. Data Set 1

The first data set contains software inter-failure times taken from a telemetry network
system by AT&T Bell Laboratories [43]. The data set contains 22 observations of the
actual time series. The system receives and transmits data from a telemetry network
which consists of telemetry events such as alarms, facility-performance information and
diagnostic messages to operators for action. To test the system, system testers executed
in a manner that emulated its expected use by system operators and other personnel. The
system was tested for three months until it was released to the beta site. After this, data
was collected for approximately another three months during beta-test execution [43, 44].

12

Figure 2: Fault detection prediction results with two SRGMs for Data Set 1

Figure 2 presents the fault detection prediction results based on two SRGMs: the
standard non-parametric SRGM based on the SVR (the thin curve) and the IWSRGM
(the thick curve), for which ε = 0.6 is used. The actual observations are also given (linked
by the dashed curve), where the training data are depicted by triangles and the testing data
by circles. It seems that the actual data have substantial heteroscedasticity, i.e., changes
of variance, in particular after the 15-th failure detection. In such a scenario, it seems
reasonable to base predictions more strongly on the observations from the later part of the
training set than from the earlier part, as achieved by our method.

Figure 2 shows that the thin curve is close to most training points, especially at the
beginning of the debugging process. However, it behaves unsatisfactory for the testing
period, where the large variation of times to failure is observed. At the same time, the thick
curve is more influenced by ‘anomalous’ points, which happens due to two reasons. First,
the imprecise ε-contaminated model assigns larger weights to anomalous points because
they increase the expected risk measure. Secondly, the set of weights produced by the
comparative information assigns smaller weights to points at the beginning of the debugging
process. The IWSRGM combines these two effects and performs better than the standard
non-parametric SRGM for the testing set.

To get more insight into the proposed IWSRGM, we investigate how the prediction
performance depends on the contamination parameter ε, by considering values at steps
0.1 over the whole range 0 to 1 for ε. Note that ε = 0 corresponds to the standard non-
parametric SRGM based on the SVR, as also used in Figure 2. Dependence of the MSE on
the parameter ε is shown in Figure 3. The solid curve corresponds to the MSE obtained
by using the proposed IWSRGM. The dashed line shows the MSE for ε = 0, i.e., for the
standard non-parametric SRGM. It should be noted that the solid curves and dashed lines
in the similar figures for all later data sets, in the following subsections, will denote the

13

Figure 3: Dependence of the MSE on the parameter ε, Data Set 1

MSEs for the IWSRGM and the standard SRGM, respectively. Figure 3 shows that the
MSE of the IWSRGM is smaller than the MSE of the standard model for ε ≤ 0.6. Moreover,
of the values considered, ε = 0.1 is optimal as it leads to the largest reduction of MSEs for
the IWSRGM compared to the standard SRGM.

5.2. Data Set 2

A further example of fault detection prediction results is shown in Figure 4, using data
from a software inter-failure times series from [44], containing 101 observations. The two
SRGMs and the actual data are represented in the same manner as in Figure 2. The
observations are characterized by large variation. As a consequence, the influence of the
parameter ε on the MSE (see Figure 5) is quite weak: the largest RAMSE, at point ε = 0.7,
is very small and equal to 1.7%.

5.3. Data Set 3

The next example uses data on helicopter main rotor blade part code, based on a system
database collected from October 1995 to September 1999, as given in [45, Subsection 3.3.3].
The data set consists of 52 observations. The results are shown in Figure 6. This shows
that variation of times to failure is rather large. Moreover, the reliability growth is almost
invisible. At first glance, the predicted results of the two models (standard SRGM and
IWSRGM) are close, due to the large training set. However, we can see from Figure 7,
which shows the dependence of the MSE on the parameter ε, that the largest RAMSE is
15.6%, hence the IWSRGM provides a considerable improvement compared to the standard
SRGM.

Figure 7 also shows that the MSE of IWSRGM is smaller than the MSE of the standard
model for all ε. Some variation of the MSE as function of ε is caused by the small number
of testing data. It is important to point out that the set M of comparative information
itself (the case ε = 1) provides substantially better results than the standard model.

14

Figure 4: Fault detection prediction results with two SRGMs for Data Set 2

Figure 5: Dependence of the MSE on the parameter ε, Data Set 2

15

Figure 6: Fault detection prediction results with two SRGMs for Data Set 3

Figure 7: Dependence of the MSE on the parameter ε, Data Set 3

16

Figure 8: Fault detection prediction results with two SRGMs for Data Set 4

Figure 9: Dependence of the MSE on the parameter ε, Data Set 4

5.4. Data Set 4

Next we show an example using data from testing an on-line data entry software package
developed at IBM [46]. The data set contains 15 observations. The results are presented
in Figure 8. This is only a small data set, but there is clear reliability growth. Figure 9
illustrates how the MSE depends on the parameter ε, it shows that the introduction of
the set of weights together with the use of the minimax strategy, in our newly proposed
method, leads to better results. The optimal value of ε = 0.4 as this corresponds to the
largest difference between the MSEs of the standard SRGM and the IWSRGM; the largest
RAMSE is 6.3%.

5.5. Data Set 5

Next we consider the NTDS failure data set, first reported in [5] and containing 34
failure data. The data set can be also found in [45, Subsection 4.8]. The results are shown

17

Figure 10: Fault detection prediction results with two SRGMs for Data Set 5

Figure 11: Dependence of the MSE on the parameter ε, Data Set 5

in Figure 10. For most of the debugging period, the data do not indicate reliability growth,
we even observe some reduction of reliability. Only in the later stages of the debugging
period the data show reliability growth. It should also be noted that the observed data
show considerable heteroscedasticity. Therefore, this is another illustrative example when
sets of weights may lead to better results, in particular the use of the set M of pairwise
comparisons. This is indeed the case as can be seen from Figure 11). The largest RAMSE
is 15.2%, so the IWSRGM performs considerably better than the standard SRGM.

5.6. Data Set 6

As final example, we show a case in which the incorporation of the weighted sets does
not improve the standard SRGM. We use the software inter-failure time series reported in
[47] and evaluated in [48] (‘JDM-I failure data’). The data set contains 17 observations.

18

Figure 12: Fault detection prediction results with two SRGMs for Data Set 6

Figure 13: Dependence of the MSE on the parameter ε, Data Set 6

The results are shown in Figure 12. The same examples were obtained for different values
of ε. Here curves corresponding to the different SRGMs are very close to each other.
Moreover, we can observe some reduction of the software reliability during the debugging
process. Figure 13 shows that the standard SRGM is better that the IWSRGM, but only
marginally so as the largest RAMSE is 0.9%. Of course, ε = 0 reduces the IWSRGM to
the standard SRGM, so a search in the newly proposed model over the different values for
ε will indicate that the special case of the standard SRGM performs best for these data.

6. Concluding remarks

In this paper we have presented a new software reliability growth model (SRGM), called
Imprecise Weight SRGM (IWSRGM), which can be viewed as an extension of the standard
non-parametric SRGMs using the SVR to predict probability measures of time to the next

19

software failure. Two main ideas led to the proposed model. The first one is to use the set
of weights instead of precise ones and to minimize the expected risk in the framework of
minimax (hence ‘pessimistic’) decision making. The second idea is to use the intersection of
two specific sets of weights, which are chosen in accordance with some intuitive conceptions
concerning the software reliability behaviour during a debugging process.

The IWSRGM is attractive from both the computation and development points of view,
due to the representation of the complex optimization problem (8) by a finite set of standard
quadratic programmes which implement the SVR. This representation requires knowledge
of the extreme points of the set of weights used for constructing the model, which was
presented in this paper. This also implies that variations to the proposed IWSRGM can be
derived by using other sets of weights, as long as these sets are compact, convex and their
extreme points are known. This suggests an interesting topic for future research, namely
to construct different sets of weights corresponding to different software reliability growth
scenarios.

Six examples with data sets from the literature have been presented. These have il-
lustrated that the proposed IWSRGM tends to perform better than the standard non-
parametric SRGM, although it is possible that no improvement may be achieved (Data
Set 6). At the same time, we have observed that the quality of predictions depends on
the parameter ε of the linear-vacuous mixture or imprecise ε-contaminated model, whose
optimal value is a priori unknown. It can be obtained only by considering all possible values
in a predefined grid. These examples have shown that the proposed model may provide
worse results in comparison with the standard non-parametric SRGM for some values of
ε, especially for large values when the set of weights produced by pairwise comparisons
becomes prevailing over the set produced by the imprecise ε-contaminated model.

This new model, like other software reliability growth models, can be used to provide
insight into the improvement of the software during a testing and debugging process. It
should be noted that only the times-between-failures models for software reliability growth
have been studied in the paper. However, we do not foresee major difficulties in extending
the proposed approach to the NHPP-based SRGMs, this is left as a topic for future research.
Another direction for future research is incorporation of prior statistical knowledge into the
SRGM, which may improve the predictive properties of the developed models.

Appendix: Proof of Proposition 1

Denote the set of inequalities (10) by P and the set of inequalities (11) by M . We do
not include into P inequalities wi ≥ 0 because all points with wi = 0 for at least one i do
not belong to the intersection P(ε)∩M. Let us consider the system of 2n− 1 inequalities
from P and M . It is know that every extreme point satisfies n− 1 equalities from P ∩M .
We study the following cases.

Case 1. All n− 1 equalities are from P . Then it is obvious that w1 = ... = wn = 1/n.

20

Case 2. n − 2 equalities are from P , and 1 constraint is from M . This implies that there
is one strict inequality wi−1 < wi from P and one equality wk = n−1− εn−1 from M . Here
we have to consider two subcases. The first subcase is k ≥ i. Then

wi−1 < wi = wk = n−1 − εn−1.

However, wi = wi+1 = ... = wn. Hence, w1 + ... + wn = 1 − ε < 1 and we have reached a
contradiction. Therefore, this subcase does not give extreme points.

The second subcase is k < i. Then

w1 = w2 = ... = wi−1 =
1

n
− ε

n
.

Then there holds
wi + ...+ wn = 1−

(
n−1 − εn−1

)
i.

Hence, we get

wi =
1− (n−1 − εn−1) i

n− i+ 1
=

1

n
+
ε

n
· i− 1

n− i+ 1
.

This is an extreme point for a fixed i. Note that the extreme point obtained in Case 1 can
be regarded as a special case of Case 2 when i = 1.

Case 3. n− 3 equalities are from P , and 2 constraints are from M . This implies that there
are two strict inequalities wi−1 < wi and wj−1 < wj, i < j, from P , and two equalities
wk = n−1 − εn−1 and wl = n−1 − εn−1, k < l. The subcase with k ≥ i or l ≥ i is not
considered here, it leads to a contradiction similar to first subcase in Case 2. Hence we can
restrict attention to the second subcase with k < i and l < i. Then we can write

w1 = w2 = ... = wi−1 =
1

n
− ε

n
.

Suppose that ws = a, s = i, ..., j − 1, and ws = b, s = j, ..., n, i.e.,

wi = ... = wj−1 = a, wj = ... = wn = b.

Here due to inequalities wi−1 < wi and wj−1 < wj, we can write

1

n
− ε

n
< a < b.

The numbers a and b satisfy the following obvious condition:(
1

n
− ε

n

)
(i− 1) + a(j − i) + b(n− j + 1) = 1.

It can be seen that there are infinitely many values of a and b satisfying the above condition.
This implies that we get an edge of the corresponding polytope. The same can be obtained,
in similar manner, for the other cases where we take n − r equalities from P , and r − 1
constraints from M . Consequently, Case 2 totally defines all extreme points, as was to be
proved.

21

Acknowledgements

The authors are grateful for useful comments by three reviewers which led to improved
presentation and suggested further topics for future related research.

References

[1] Lyu, M.R. (1996). Handbook of Software Reliability Engineering. McGraw-Hill, New
York.

[2] Li, H.F., Lu, M.Y., Zeng, M., Huang, B.Q. (2012) A non-parametric software reliability
modeling approach by using gene expression programming. Journal of Information
Science and Engineering, 28, 1145–1160.

[3] Hua, Q.P., Xie, M., Ng, S.H., Levitin, G. (2007). Robust recurrent neural network
modeling for software fault detection and correction prediction. Reliability Engineering
and System Safety, 92, 332–340.

[4] Roy, P., Mahapatra, G.S., Rani, P., Pandey, S.K., Dey, K.N. (2014). Robust feedfor-
ward and recurrent neural network based dynamic weighted combination models for
software reliability prediction. Applied Soft Computing, 22, 629–637.

[5] Jelinski, Z., Moranda, P.B. (1972). Software reliability research. In: W. Greiberger,
editor, Statistical Computer Performance Evaluation, pp 464–484. Academic Press,
New York.

[6] Goel, A.L., Okomoto, K. (1979). Time dependent error detection rate model for
software reliability and other performance measures. IEEE Transactions in Reliability,
R-28, 206–211.

[7] Tian, L., Noore, A. (2005). Dynamic software reliability prediction: an approach based
on support vector machines. International Journal of Reliability, Quality and Safety
Engineering, 12, 309–321.

[8] Amina, A., Grunskeb, L., Colman, A. (2013). An approach to software reliability
prediction based on time series modeling. The Journal of Systems and Software, 86,
1923–1932.

[9] Cai, K.Y., Cai, L., Wang, W.D., Yu, Z.Y., Zhang, D. (2001). On the neural network
approach in software reliability modeling. The Journal of Systems and Software, 58,
47–62.

[10] Chiu, K.C., Huang, Y.S., Lee, T.Z. (2008). A study of software reliability growth
from the perspective of learning effects. Reliability Engineering & System Safety, 93,
1410–1421.

22

[11] Jin, C., Jin, S.W. (2014). Software reliability prediction model based on support
vector regression with improved estimation of distribution algorithms. Applied Soft
Computing, 15, 113–120.

[12] Kim, T., Lee, K., Baik, J. (2015). An effective approach to estimating the parameters
of software reliability growth models using a real-valued genetic algorithm. Journal of
Systems and Software, 102, 134–144.

[13] Kumar, N., Banerjee, S. (2015). Measuring software reliability: A trend using machine
learning techniques. In: Q. Zhu and A.T. Azar, editors, Complex System Modelling
and Control Through Intelligent Soft Computations, volume 319 of Studies in Fuzziness
and Soft Computing, pp 807–829. Springer, Berlin.

[14] Kumar, P., Singh, Y. (2012). An empirical study of software reliability prediction using
machine learning techniques. International Journal of System Assurance Engineering
and Management, 3, 194–208.

[15] Li, H.F., Zeng, M., Lu, M.Y., Hu, X., Li, Z. (2012). Adaboosting-based dynamic
weighted combination of software reliability growth models. Quality and Reliability
Engineering International, 28, 67–84.

[16] Lou, J., Jiang, J., Shuai, C., Wu, Y. (2010). A study on software reliability prediction
based on transduction inference. In: Test Symposium (ATS), 2010, 19th IEEE Asian,
pp 77–80, Shanghai.

[17] Lou, J., Jiang, J., Shen, Q., Shen, Z., Wang, Z., Wang, R. (2016). Software reliability
prediction via relevance vector regression. Neurocomputing, 186, 66–73.

[18] Moura, M.d.C., Zio, E., Lins, I.D., Droguett, E. (2011). Failure and reliability predic-
tion by support vector machines regression of time series data. Reliability Engineering
and System Safety, 96, 1527–1534.

[19] Pai, P.F., Hong, W.C. (2006). Software reliability forecasting by support vector ma-
chines with simulated annealing algorithms. Journal of Systems and Software, 79,
747–755.

[20] Xing, F., Guo, P., Lyu, M.R. (2005). A novel method for early software quality predic-
tion based on support vector machine. In: Proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2005), pp 1–10.

[21] Yang, B., Li, X., Xie, M., Tan, F. (2010). A generic data-driven software reliability
model with model mining technique. Reliability Engineering and System Safety, 95,
671–678.

23

[22] Barghout, M. (2016). A two-stage non-parametric software reliability model.
Communications in Statistics - Simulation and Computation. Early online version:
doi:10.1080/03610918.2016.1189567.

[23] Ramasamy, S., Lakshmanan, I. (2017) Machine learning approach for software relia-
bility growth modeling with infinite testing effort function. Mathematical Problems in
Engineering, Article ID 8040346, 6 pages. doi:10.1155/2017/8040346.

[24] Bal, P.R., Mohapatra, D.P. (2017). Software reliability prediction based on radial
basis function neural network. In: Advances in Computational Intelligence, Sahana,
S., Saha, S. (Eds). Advances in Intelligent Systems and Computing, vol 509. Springer,
Singapore. pp.101-110.

[25] Algargoor, R.G., Saleem, N.N. (2013). Software reliability prediction using artificial
techniques. International Journal of Computer Science Issues, 10, 274–281.

[26] Begum, M., Dohi, T. (2017). A neuro-based software fault prediction with Box-Cox
power transformation. Journal of Software Engineering and Applications, 10, 288–309.

[27] Choudhary, A., Baghel, A.S., Sangwan, O.P. (2016). Software reliability prediction
modeling: A comparison of parametric and non-parametric modeling. In: Proceedings
of the 6th International Conference - Cloud System and Big Data Engineering, pp
649–653.

[28] Hastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, New York.

[29] Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.

[30] Xing, F., Guo, P. (2005). Support vector regression for software reliability growth
modeling and prediction. In: Advances in Neural Networks – ISNN 2005, volume 3496
of Lecture Notes in Computer Science, pp 925–930. Springer, Berlin.

[31] Cai, K.Y,, Wen, C.Y., Zhang, M.L. (1991). A critical review on software reliability
modeling. Reliability Engineering and System Safety, 32, 357–371.

[32] Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London.

[33] Huber, P.J. (1981). Robust Statistics. Wiley, New York.

[34] Utkin, L.V., Zhuk, Y.A. (2014). Robust novelty detection in the framework of a
contamination neighbourhood. International Journal of Intelligent Information and
Database Systems, 7, 205–224.

24

[35] Utkin, L.V., Zhuk, Y.A. (2014). Imprecise prior knowledge incorporating into one-class
classification. Knowledge and Information Systems, 41, 53–76.

[36] Utkin, L.V. (2014). A framework for imprecise robust one-class classification models.
International Journal of Machine Learning and Cybernetics, 5, 379–393.

[37] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York.

[38] Tikhonov, A.N., Arsenin, V.Y. (1977). Solution of Ill-Posed Problems. W.H. Winston,
Washington DC.

[39] Smola, A.J., Scholkopf, B. (2004). A tutorial on support vector regression. Statistics
and Computing, 14, 199–222.

[40] Tay, F.E.H., Cao, L.J. (2002). Modified support vector machines in financial time
series forecasting. Neurocomputing, 48, 847–861.

[41] Scholkopf, B., Smola, A.J. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, Massachusetts.

[42] Robert, C.P. (1994). The Bayesian Choice. Springer, New York.

[43] Pham, L., Pham, H. (2000). Software reliability models with time-dependent hazard
function based on Bayesian approach. IEEE Transactions on Systems, Man, and
Cybernetics, Part A, 30, 25–35.

[44] Pham, L., Pham, H. (2001). A Bayesian predictive software reliability model with
pseudo-failures. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 31,
233–238.

[45] Pham, H. (2006). System Software Reliability. Springer, London.

[46] Ohba, M. (1984). Software reliability analysis models. IBM Journal of Research and
Development, 28, 428–443.

[47] Musa, J.D., Iannino, A., Okumoto, K. (1987). Software Reliability: Mesurement,
Prediction, Application. McGraw-Hill, New York.

[48] Liu, J., Xu, M. (2011). Function based nonlinear least squares and application to
Jelinski–Moranda software reliability model. Preprint arXiv:1108.5185.

25

