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Highlights

• The article addresses reliability assessment for PhasedMission Systems

(PMS).

• With one type of component, we show current survival signature meth-

ods can be adapted.

• New survival signature methodology is developed for the fully general

PMS setting.

• Examples demonstrate the method and show simpler examples agree

with literature.
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Abstract

It is often difficult for a phased mission system (PMS) to be highly reliable,

because this entails achieving high reliability in every phase of operation.

Consequently, reliability analysis of such systems is of critical importance.

However, efficient and interpretable analysis of PMSs enabling general com-

ponent lifetime distributions, arbitrary structures, and the possibility that

components skip phases has been an open problem.

In this paper, we show that the survival signature can be used for re-

liability analysis of PMSs with similar types of component in each phase,

providing an alternative to the existing limited approaches in the literature.

We then develop new methodology addressing the full range of challenges

above. The new method retains the attractive survival signature property of

separating the system structure from the component lifetime distributions,

simplifying computation, insight into, and inference for system reliability.
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1. Introduction

A phased mission system (PMS) is one that performs several different

tasks or functions in sequence. The periods in which each of these successive

tasks or functions takes place are known as phases [1, 2]. Examples of PMSs

can be found in many practical applications, such as electric power systems,

aerospace systems, weapon systems and computer systems. A typical exam-

ple of a PMS is the monitoring system in a satellite-launching mission with

three phases: launch, separation, and orbiting.

A PMS is considered to be functioning if all of its phases are completed

without failure, and failed if failure occurs in any phase. Therefore, the relia-

bility of a PMS with N phases is the probability that it operates successfully

in all of its phases:

RS = P(Phase 1 works ∩ Phase 2 works ∩ · · · ∩ Phase N works) (1)

The calculation of the reliability of a PMS is more complex than that

of a single phase system, because the structure of the system varies between

phases and the component failures in different phases are mutually dependent

[1].

Over the past few decades, there have been extensive research efforts

to analyze PMS reliability. Generally, there are two classes of models to

address such scenarios: state space oriented models [3, 4, 5, 6] and combina-

torial methods [7, 8, 2, 9, 10, 11, 12, 13, 14]. The main idea of state space
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oriented models is to construct Markov chains and/or Petri nets to represent

the system behaviour, since these provide flexible and powerful options for

modelling complex dependencies among system components. However, the

cardinality of the state space can become exponentially large as the number

of components increases. The remaining approaches exploit combinatorial

methods, Boolean algebra and various forms of decision diagrams for relia-

bility analysis of PMSs.

In particular, in recent years the Binary Decision Diagram (BDD) — a

combinatorial method — has become more widely used in reliability analysis

of PMSs due to its computationally efficient and compact representation of

the structure function compared with other methods. Zang et al. [9] first

used the BDD method to analyze the reliability of PMSs. Tang et al. [10]

developed a new BDD-based algorithm for reliability analysis of PMSs with

multimode failures. Mo [11] and Reed et al. [12] improved the efficiency of

Tang’s method by proposing a heuristic selection strategy and reducing the

BDD size, respectively. Xing et al. [13, 14] and Levitin et al. [15] proposed

BDD based methods for the reliability evaluation of PMSs with common-

cause failures and propagated failures. Wang et al. [16] and Lu et al. [17]

studied modular methods for reliability analysis of PMSs with repairable

components, by combining BDDs with state-enumeration methods.

While the BDD method has been shown to be a very efficient combinato-

rial method, it is still difficult to analyze large systems without considerable

computational expense [1, 12]. In this paper, we propose a combinatorial

analytical approach providing a new survival signature methodology for re-

liability analysis of PMSs. The method presented here has similar computa-
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tional complexity to BDD methods (since the most efficient method currently

available for computing survival signatures uses BDD methodology [18]), but

for the first time brings all the advantages associated with the compact rep-

resentation of a system provided by the survival signature [19] to PMSs. As

such, the current work in developing the theory of survival signatures for

PMSs represents a foundational contribution for many future developments.

In particular, this work for example opens the door to invoking existing liter-

ature on bounding survival probabilities using the survival signature within

a constrained computational budget [20] to the setting of PMSs — an ex-

citing future research direction offering the first concrete promise of reduced

computational complexity in the PMS literature.

The paper is organized as follows: section 2 gives a brief background

on PMSs; section 3 first shows how the standard survival signature can be

used to evaluate PMSs with similar component types in each phase, before

providing a novel methodology which facilitates heterogeneity of components

across the phases. Section 4 presents illustrative examples showing numerical

agreement with existing literature, but where the full benefits of the inter-

pretability of survival signatures is now available due to this work. Finally,

section 5 presents some conclusions ideas for future work.

2. Phased mission systems

Figure 1 shows a simple system that performs a series of functions or

tasks which are carried out over consecutive periods of time to achieve a

certain overall goal (or ‘mission’). Such a system — where the structure

(and possibly operating environment) of the system changes over time — is
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Figure 1: A PMS with similar components in each phase.

known as a Phased Mission System (PMS), with each period of operation

being referred to as a ‘phase’. Each phase therefore corresponds to one

structural configuration and components in different phases are taken to be

mutually dependent.

Let us consider a system consisting of N ≥ 2 phases, with ni compo-

nents in phase i ∈ {1, . . . , N}. The binary state indicator variable Xij, j ∈
{1, . . . , ni} denotes the operational status of the jth component in phase i:

Xij =





1 if component j works for all of phase i

0 if component j fails before the end of phase i

The vectors Xi = (Xi1, . . . , Xini), i ∈ {1, . . . , N}, represent the states of

all components in the ith phase and the full vector X = (X1, . . . ,XN) =

(X11, . . . , X1n1 , . . . , XN1, . . . , XNnN ) represents the states of all components

during the full mission.

The state of the system in each phase is also a binary random variable,

which is completely determined by the states of the components in that

phase. Let φi represent the system state in the ith phase, that is:

φi = ϕi(Xi) = ϕi(Xi1, . . . , Xini)
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where ϕi(·) is the structure function of the system design in phase i. The

structure function evaluates to φi = 1 if the system functions for state vector

Xi, and φi = 0 if not.

Similarly, the structure function of the full PMS (that is, the operational

state of the system across all phases) is also a binary random variable, which

is completely determined by the states of all the components in the PMS

φS = ϕS(X) ,
N∏

i=1

ϕi(Xi1, . . . , Xini) (2)

The structure function as shown in eq. (2) is again a Boolean function

which is derived from the truth table of the structure functions for each phase

of operation. The truth tables depend uniquely on the system configurations

and simply provide a means of tabulating all the possible combinational

states of each component to realise the operational state of the system in

each case. The state vectors for which ϕS(X) = 1 provide a logical expression

for the functioning of the system, while the states when ϕS(X) = 0 provide

a logical expression for the failure of the system. It should be noted that,

unlike non-PMSs, there exist impossible combinations of states which should

be deleted from the truth table when performing a reliability analysis. For

example, if both the system and its components are non-repairable during

the mission, then if a component is failed in a certain phase it cannot be

working in subsequent phases.

Finally, if all phases are completed successfully, the mission is a success,

that is:

φS =
N∏

i=1

φi = 1 ⇐⇒ φi = 1 ∀ i
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3. Survival signature

For larger systems, working with the full structure function can be com-

plicated and as the system size grows it becomes hard to intuit anything

meaningful from the particular algebraic form it takes. In particular, one

may be able to summarize the structure function when it consists of ex-

changeable components of one or more types [21, 19, 22].

Recently, the concept of the survival signature has attracted substantial

attention, because it provides such a summary which enables insight into

the system design even for large numbers of components of differing types.

Coolen and Coolen-Maturi [19] first introduced the survival signature, us-

ing it to analyze complex systems consisting of multiple types of compo-

nent. Subsequently, [22, 23, 24] presented the use of the survival signature in

an inferential setting, with nonparametric predictive inference and Bayesian

posterior predictive inference respectively, and [25] presented methods for

analyzing imprecise system reliability using the survival signature. Patelli et

al. [26] developed a survival signature-based simulation method to calculate

the reliability of large and complex systems and [27] presents a simulation

method which can be used if the dependency structure is too complex for

a survival signature approach. Walter et al. [28] proposed a new condition-

based maintenance policy for complex systems using the survival signature.

Moreover, Eryilmaz et al. [29] generalized the survival signature to multi-

state systems.

Efficient computation of the survival signature was addressed by Reed

[18], using reduced order binary decision diagrams (ROBDDs). The survival

signature of a system can be easily computed by specifying the reliability
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block diagram as a simple graph by using the ReliabilityTheory R package

[30].

In this section, the survival signature is first shown to apply directly to

full mission-length PMSs where there is a single component type in each

phase. Thereafter, an extension is presented which enables heterogeneity of

component types across phases, providing novel methodology for reliability

analysis of PMSs.

3.1. PMSs with similar components in each phase

We consider a system with N ≥ 2 phases, with n components in each

phase (e.g. the PMS as shown in fig. 1), and let phase i ∈ {1, . . . , N} run

from time τi to time τi+1 with τ1 , 0 and τi < τi+1 ∀ i. Thus the full mission

time is denoted τN+1.

We assume that the random failure times of components in the same

phase are fully independent, and in addition that the components are ex-

changeable. Let Φ(l1, . . . , lN) denote the probability that the PMS functions

by the end of the mission given that precisely li, i ∈ {1, . . . , N}, of its com-

ponents functioned in phase i. Both the system and its components are

non-repairable during the mission, so n ≥ l1 ≥ l2 ≥ · · · ≥ lN ≥ 0 and the

number of components that function at the beginning of phase i is mi = li−1,

with m1 = n — so all components appear in all phases. Subject to these

constraints which do not apply in a non-PMS, the survival signature can then

be applied without further modification for the mission completion time.

There are
(
mi
li

)
state vectors where precisely li components function. Be-

cause the random failure times of components in the same phase are inde-
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pendent and exchangeable, the survival signature is equal to:

Φ(l1, . . . , lN) =

[
N∏

i=1

(
mi

li

)−1]∑

X∈S
ϕS(X) (3)

where S denotes the set of all possible state vectors for the whole system

where li components in phase i are functioning. This step is of the same

form as the standard survival signature for a static system [19], but note one

immediate subtle difference: as noted above, mi is not fixed across evalua-

tions of Φ(·), but rather is determined by li−1, since the maximum number

of functioning components in the ith phase is determined by how many com-

ponents completed phase i− 1 still functioning.

A further subtlety arises as soon as we consider any time leading up to

the mission completion time, because the structure of the system changes.

Although the standard survival signature can be used in computing the relia-

bility of a static system at any point in its life [19], this is no longer true in this

extension to PMSs. Consequently, (3) is the survival signature which repre-

sents the probability that the whole mission completes successfully given that

li components are working in phase i. For the survival function of a PMS,

we must extend the survival signature to create a family of survival signa-

tures which account for the temporally changing structure. Let Φp(l1, . . . , lp)

denote the survival signature of a PMS up to and including phase p ≤ N ,

which is the probability that the mission has not yet failed by phase p given

that li components are working in phase i ∈ {1, . . . , p}. Then,

Φp(l1, . . . , lp) =

[
p∏

i=1

(
mi

li

)−1]∑

X∈S

p∏

i=1

ϕi(X) (4)

10
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We define a function mapping mission time t to the current phase

ρ(t) : [0, τN+1]→ {1, . . . , N}, as ρ(t) , max{i : τi < t} (5)

From eq. (1) and (4), the reliability of the PMS at time t can then be

expressed pointwise as:

R(t) =

m1∑

l1=0

· · ·
mρ(t)∑

lρ(t)=0


Φρ(t)(l1, . . . , lρ(t))P



ρ(t)⋂

i=1

{Ci(t) = li}




 (6)

where Ci(t) is the random variable denoting the number of components in

phase i which function at time t ∈ [τi, τi+1). If R(t) is being evaluated at

t ≥ τi+1 then Ci(t) , Ci(τi+1). By the definition of ρ(t), R(t) will never be

evaluated for t < τi.

Because components are of the same type they share a common lifetime

distribution as long as they all appear in all phases (and hence age together).

As a result, the sequential nature of a PMS means that components in the

same phase have common conditional CDF, Fi(t), for phase i, where condi-

tioning is on the component having worked at the beginning of phase i. That

is, if the components have common CDF F (t) and all components appear in

every phase (in possibly different configurations), then the conditional CDF

in phase i is:

Fi(t) = P(T < t | τi, τi+1, T > τi)

=
1

1− F (τi)

∫ min{t,τi+1}

τi

dF (z)

=
F (min{t, τi+1})− F (τi)

1− F (τi)
(7)

where τi is the start time of phase i (τ1 , 0) and T is the random variable

representing component lifetime.
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Proceeding with this conditional CDF, the last term in eq. (6) can be

simplified as

P



ρ(t)⋂

i=1

{Ci(t) = li}


 =

ρ(t)∏

i=1

P (Ci(t) = li)

=

ρ(t)∏

i=1

[(
mi

li

)
(Ri(t))

li(1−Ri(t))
mi−li

]

where

Ri(t) = 1− Fi(t) =
1− F (min{t, τi+1})

1− F (τi)
(8)

is the reliability of the components at time t in phase i.

Thus, eq. (6) can be rewritten pointwise in t as

R(t) =

m1∑

l1=0

· · ·
mρ(t)∑

lρ(t)=0



Φρ(t)(l1, . . . , lρ(t))

×
ρ(t)∏

i=1

[(
mi

li

)
(Ri(t))

li(1−Ri(t))
mi−li

]
 (9)

Since in the general case (see special case exception in the sequel) every

component appears in every phase, this can be written

R(t) =

l0∑

l1=0

· · ·
lρ(t)−1∑

lρ(t)=0



Φρ(t)(l1, . . . , lρ(t))

×
ρ(t)∏

i=1

[(
li−1
li

)
(Ri(t))

li(1−Ri(t))
li−1−li

]
 (10)

where we define l0 , n. Writing in this final form stresses the sequential

dependence in the computation, in stark contrast to the standard survival

signature for a static system.
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3.1.1. Special case: Exponentially distributed component lifetime

There are two simplifications that arise when components are Expo-

nentially distributed. Firstly, Fi(t) ≡ F (t) ∀ i, so that Ri(t) = R(t) =

1− F (t− τi) ∀i.
The second simplification is that not all components need to appear in

all phases. It may be that some components appear only in later phases (but

continue to appear after the first phase they are in). In this case, one should

be careful not to use (10), but instead (9) where now mi = li−1 + m?
i where

m?
i is the number of components appearing in the system for the first time

at phase i.

3.1.2. Modelling constraints

Note that considerable care is required in the specification of — and

implicit assumptions made for — Fi(t). In particular, when a component is

not present in a phase, then whether ageing continues (i.e. time passes) or

not is crucial in determining whether the assumption of identical component

lifetime distribution still holds in all phases. For example, in fig. 1 each

component appears in all phases and therefore experiences the same wear,

but in fig. 2 each component is in precisely 2 of the 3 phases. Consequently,

even though one might assume all components are of the same type initially,

if component C is considered not to ‘age’ during phase 1 (where it is not

present) then it will in fact not have identical conditional lifetime distribution

to A and E during phase 2, since the latter will have already experienced

wear from phase 1.

This imposes rather unattractive modelling strictures: all components of

similar type must appear in the same phases; or all components must have

13
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Figure 2: A PMS with multiple types of components.

constant failure rate (Exponentially distributed lifetime). These modelling

strictures severely limit applicability to real world systems, thus motivating

the novel methodological extension of survival signatures hereinafter.

3.2. PMSs with different components in different phases

Most practical PMSs for which the reliability is modelled consist of het-

erogeneous component types both within and between phases. Therefore, a

more interesting challenge is to extend the methodology of survival signatures

to this more general setting.

We now consider this setting in generality and show that the problem

again simplifies in the special case of Exponentially distributed lifetimes,

which is the only case that most of the literature has addressed to date. The

only constraint we impose is that components of the same type appear in

the same phases (since then the conditional CDFs within phases remain in

agreement). However, note that this does not limit the scenarios that can be

modelled, since components of the same physical type can still be split into

multiple ‘meta-types’.

Definition 3.1. (Meta-type) Components are defined to be of the same

14
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meta-type when they are of the same physical type and appear in the same

phases.

Let there be a total of K different meta-types of component. We take

the multi-type, multi-phase survival signature to be denoted by the function

Φ(l11, . . . , l1K , . . . , lN1, . . . , lNK), the probability that the system functions

given that precisely lik, components of type k function in phase i. That is,

Φ(l11, . . . , l1K , . . . , lN1, . . . , lNK) =

[
N∏

i=1

K∏

k=1

(
mik

lik

)−1]∑

X∈S
ϕS(X)

where S denotes the set of all possible state vectors for the whole system.

Not all component types need necessarily appear in all phases, so we admit

the possibility that mik = 0 when a component type is absent from a phase

and observe the standard definition that
(
0
0

)
, 1 — this simplifies notation

versus having varying numbers of li· for each phase.

As before, the above survival signature is only applicable to the full mis-

sion time and we define a family of survival signatures corresponding the

successive phases of the mission. Let Φp(l11, . . . , l1K , . . . , lp1, . . . , lpK) denote

the survival signature of a PMS up to and including phase p ≤ N , which is

the probability that the mission has not yet failed by phase p given that lik

components of type k are working in phase i ∈ {1, . . . , p}. Then,

Φp(l11, . . . , l1K , . . . , lp1, . . . , lpK) =

[
p∏

i=1

K∏

k=1

(
mik

lik

)−1]∑

X∈S

p∏

i=1

ϕi(X) (11)

We retain the definition of ρ(t) given in (5). It then follows from eq. (1)
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and eq. (11) that the reliability of the PMS can be characterised as:

R(t) =

m11∑

l11=0

· · ·
mρ(t),K∑

lρ(t),K=0

[
Φρ(t)(l11, . . . , l1K , . . . , lρ(t),1, . . . , lρ(t),K)

×P



ρ(t)⋂

i=1

K⋂

k=1

{Cik(t) = lik}




 (12)

where Cik(t) is the random variable denoting the number of components of

type k in phase i which function at time t ∈ [τi, τi+1). In the same vein as

section 3.1, if R(t) is being evaluated at t ≥ τi+1 then Cik(t) , Cik(τi+1). By

the definition of ρ(t), R(t) will never be evaluated for t < τi.

We can simplify, by defining that P (Cik(t) = 0) = 1 when mik = 0.

P



ρ(t)⋂

i=1

K⋂

k=1

{Cik(t) = lik}


 =

ρ(t)∏

i=1

K∏

k=1

P (Cik(t) = lik)

=

ρ(t)∏

i=1

K∏

k=1

[(
mik

lik

)
(Rik(t))

lik(1−Rik(t))
mik−lik

]

with

Rik(t) =
1− Fk(min{t, τi+1})

1− Fk(τi)
(13)

where Fk(·) is the CDF of the component lifetime distribution for the meta-

type k.

Consequently, for any time t during the mission, we have the reliability

of the system characterised by:
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R(t) =

m11∑

l11=0

· · ·
mρ(t),K∑

lρ(t),K=0



Φρ(t)(l11, . . . , l1K , . . . , lρ(t),1, . . . , lρ(t),K)

×
ρ(t)∏

i=1

K∏

k=1

[(
mik

lik

)
(Rik(t))

lik(1−Rik(t))
mik−lik

]
 (14)

where mik = ljk for j = max{j : j < i,mjk > 0}. That is, mik is the number

components which were working in the most recent preceding phase where

this component meta-type appears.

3.2.1. Special case: Exponential component lifetimes

Exponentially distributed component lifetimes again provide simplifica-

tions. Now, the Rik(t) ≡ Rk(t) due to the memoryless property of the Expo-

nential distribution.

Furthermore, we can relax the definition of a meta-type of component.

The definition of component meta-types serves two purposes: (i) to ensure

that mik can be determined without tracking the individual functioning sta-

tus of all components; and (ii) to ensure that the conditional CDFs of all

components of the same meta-type in a phase are the same. The second

purpose is made entirely redundant by the memoryless nature of the Expo-

nential distribution. The first purpose remains, but can be achieved with a

weaker definition of meta-type.

Definition 3.2. (Exponential meta-type) Components are defined to be of

the same exponential meta-type when they are of the same Exponentially

distributed physical type, and if once any pair of components of the same
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exponential meta-type appear in a phase together, they both appear in all

subsequent phases where either component appears.

In other words, components of the same exponential meta-type may

first appear in the system at different phases, but thereafter should ap-

pear whenever at least one such exponential meta-type component appears.

This definition enables the determination of mik as mik = ljk + m?
ik for

j = max{j : j < i,mjk > 0}, where m?
ik is the number of components of

exponential meta-type k appearing for the first time in phase i.

The benefits of Exponential component lifetimes can be mixed in a system

containing both meta-type and exponential meta-types since a crucial feature

of survival signatures is the factorisation of such types so that they do not

interact.

4. Numerical examples

4.1. Example 1

We first consider the PMS shown in fig. 1. The duration of each phase is

taken to be 10 hours, and the failure rate of each component in each phase

is 10−4/hour.

The survival signatures of this PMS can be obtained using eq. (3). The

elements of the survival signature which are non-zero are shown in table 1 —

that is, rows where Φ(l1) = 0,Φ(l1, l2) = 0 and Φ(l1, l2, l3) = 0 are omitted.

The table is grouped into a nested sequence of phases, with just the first phase

shown, followed by the first two phases together and finally all phases — this

helps emphasise and clarify the sequential dependence of phases, where mk

depends on lk−1.
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First phase Phase 1+2 All Phases

0 ≤ t ≤ 10 10 < t ≤ 20 20 < t ≤ 30

l1 Φ(l1) l1 l2 Φ(l1, l2) l1 l2 l3 Φ(l1, l2, l3)

3 1 3 1 1 3 2 2 2
3

3 2 1 3 3 2 2
3

3 3 1 3 3 3 1

Table 1: Survival signature of the PMS shown in fig. 1

t 0 10− 10+ 20− 20+ 30

R 1 0.99700 0.997700 0.997700 0.99601 0.99501

Table 2: Reliability of the PMS in example 1

We can obtain the conditional reliability of components using the condi-

tional failure rate of the component in each phase. Equation (9) then renders

the reliability of the PMS as a whole. The results are shown in table 2 and

fig. 3. These results concord with those found using an independent method

in [9].

Of note is the jump discontinuity in the reliability function at t = 20, as

shown in fig. 3. This occurs because a failure of component A during phase

2 does not necessarily cause failure of the system at that point, so long as at

least one of components B or C work. However, in this situation the PMS

will fail instantaneously upon commencing phase 3 at t = 20+. Consequently,

the size of the jump discontinuity in fact corresponds to the probability of

the event {A fails in phase 2, but the system still functions}.
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Figure 3: Reliability of the PMS in example 1.

4.2. Example 2

For the PMS shown in fig. 2, phases 1, 2 and 3 last for 10, 90 and 100

hours respectively. There are three types of component and these follow the

same lifetime distribution across phases. Table 3 summarises the distribution

information of the components in each phase.

Note that in this setting, components of the same type appear in the

same phase and in subsequent phases. In particular, component B appears

first by itself and then appears again when D (of the same type) does — in

this situation the conditional lifetime distribution is not complicated since

the type is Exponential.

Equation (7) is applied to calculate the conditional CDF for the compo-

nents in each phase. The survival signatures of this PMS are shown in table 4,
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Type Component Distribution Parameters

1 A,E Weibull scale = 103, shape = 1.5

2 B,D Exponential rate = 10−3

3 C Exponential rate = 10−4

Table 3: Distributions of the components in each phase

with rows where Φ(l11, l12) = 0,Φ(l11, l12, l21, l23) = 0 and Φ(l11, l12, l21, l23, l32, l33) =

0 suppressed. The reliability of the PMS is shown in table 5 and fig. 4.

We again see a jump discontinuity in the reliability curve depicted in

fig. 4, at t = 10. In this instance, if component E fails during phase 1 the

system will still function, but instantaneous failure will occur once phase 2

commences. This is evident in table 5, which shows the jump discontinuity

is of size ≈ 0.0009. Indeed, this should correspond to the probability that

the system survives phase 1 but with component E failing during that phase.

That is:

P(A,B function ∩ E fails in phase 1)

= P(E fails in phase 1)P(A,B function |E fails in phase 1)

=

∫ 10

0

ba−btb−1e−(t/a)
b

dt

(
1−

∫ 10

0

ba−btb−1e−(t/a)
b

dt

)

×
(

1−
∫ 10

0

λe−λt dt

)

≈ 9.9× 10−4 for a = 103, b = 1.5, λ = 10−3

as required. Hence, PMS can exhibit jump discontinuities where probability

mass from non-critical failures in one phase accumulate onto phase change
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Figure 4: Reliability of the PMS in example 2.

boundaries when the system layout switches.

4.3. Example 3

In this final example, we replicate the space application mission discussed

by Zang [9] and Mural [31]. This example includes the full complexity of real-

world PMSs, where there is now heterogeneity of component types within

phases. This means that multiple component types arise necessarily and not

merely as a side effect of identical components appearing in differing phases.

There are five phases involved in this space mission: launch is the first phase,

followed by Hibern.1, Asteroid, Hibern.2, and finally Comet. The reliability

block diagram is shown in fig. 5. The five phases last for 48, 17520, 672,

26952 and 672 hours, respectively. The failure rates of the components in

each phase are given in table 6.

As shown in table 7, in order to calculate the reliability of the PMS,
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The first phase The first two phases All phases

l11 l12 Φ1 l11 l12 l21 l23 Φ12 l11 l12 l21 l23 l32 l33 ΦS

1 1 1 1 1 1 1 1/2 1 1 1 1 0 1 1/2

2 1 1 2 1 1 1 1/2 1 1 1 1 1 0 1/2

2 1 2 0 1 1 1 1 1 1 1 1/2

2 1 2 1 1 1 1 1 1 2 0 1/2

1 1 1 1 2 1 1/2

2 1 1 1 0 1 1/2

2 1 1 1 1 0 1/2

2 1 1 1 1 1 1/2

2 1 1 1 2 0 1/2

2 1 1 1 2 1 1/2

2 1 2 0 1 0 1

2 1 2 0 2 0 1

2 1 2 1 0 1 1

2 1 2 1 1 0 1

2 1 2 1 1 1 1

2 1 2 1 2 0 1

2 1 2 1 2 1 1

Table 4: Survival signature of the PMS shown in fig. 2
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t 0 10− 10+ 100− 100+ 200

R 1 0.9900 0.9891 0.9590 0.9590 0.9588

Table 5: Reliability of the PMS in example 2.

	

Phase 1 Phase 2

Ha

Hc

Hd

Hb
3/4

Lb

La

Phase 3 Phase 4 Phase 5

Hb

Ha

Ha

Hc

Hd

Hb
3/4

Ab

Aa

Hb

Ha

Ha

Hc

Hd

Hb
3/4

Cb

Ca

Figure 5: Reliability block diagram of the space application.

Phase1 Phase 2 Phase 3 Phase 4 Phase 5

Ha, Hb, Hc, Hd 10−5 10−6 10−5 10−6 10−5

La, Lb 5× 10−5 0 0 0 0

Aa, Ab 0 0 10−5 0 0

Ca, Cb 0 0 0 0 10−4

Table 6: Failure rates of the components.
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Type 1 Type 2 Type 3 Type 4 Type 5

Ha, Hb Hc, Hd La, Lb Aa, Ab Ca, Cb

Table 7: Types of components in example 3.

t 0 48− 48+ 17568− 17568+ 18240− 18240+ 45192− 45192+ 45864

R 1 0.99999 0.99999 0.99968 0.99964 0.99862 0.99862 0.99670 0.99600 0.98943

Table 8: Reliability of the PMS in example 3.

the 4 ‘real’ component types must be divided into 5 types when using the

methodology presented in this paper. That is, although Ha, Hb, Hc, and Hd

have homogeneous failure rates throughout all phases, because they do not

always appear together they will exhibit different ageing. Consequently, these

are split into two ‘pseudo’ types.

The result of analysing the reliability of this PMS is shown in table 8 and

fig. 6. The results found using the new methodology we have presented in

this paper are in agreement with the entirely independent method in [9].

5. Conclusion

Computing the reliability of a PMS is considerably more complex than

that of a non-PMS, due to the variation in system structure between phases

and the dependencies between component failures in different phases. Conse-

quently, reliability analysis of PMSs has become one of the most challenging

topics in the field of system reliability evaluation and maintenance engineer-

ing in recent decades. Despite some progress towards efficient and effective

methods for measuring the reliability of PMS, it is still difficult to analyze

large systems without considerable computational expense and even where
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Figure 6: Reliability of the PMS in example 3, with inset graph providing blown-up detail

of first 200 hours of operation.
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it is possible, many methods fail to convey intuition about the reliability of

the system.

In this paper, a new and efficient method for reliability analysis of PMS

is proposed using survival signature. Signatures have been proven to be an

efficient method for estimating the reliability of systems. A new kind of

survival signature is derived to represent the structure function of the PMS.

Then the proposed survival signature is applied to calculate the reliability

of the PMS. Reliability analysis of a system using signatures could separate

the system structure from the component probabilistic failure distribution.

Therefore, the proposed approach is easy to be implemented in practice and

has high computational efficiency.

Note that reliability analysis of PMSs with multiple failure mode compo-

nents is not studied in this paper. In practice the components may perhaps

have more than one failure mode. In ongoing work, the authors are con-

sidering component importance analysis, extending work such as [25, 32] to

PMSs. Additional interesting questions are raised for future work, such as

how to treat components undergoing different stresses in different phases.

This may be reflected by the parameters of the lifetime distribution for a

component varying from one phase to the next: in this setting, results such

as eq. (7) will no longer hold and issues around so-called ‘virtual age’ [33]

must be treated carefully.
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