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A B S T R A C T

The Best Estimate Plus Uncertainty (BEPU) approach is being used worldwide for nuclear power plants licensing. This method relies on the use of best estimate
models to simulate sequences, evaluating the uncertainties involved. To assess these uncertainties, several methodologies have been developed such as the non-
parametric Wilks/Wald method, parametric methods that reconstruct a distribution from the data, or the binomial approach. Additionally, sensitivity analyses can be
performed to obtain the correlation of the output-inputs. Finally, a variability analysis of the most influential parameters made to find a combination of parameters
that can lead to damage is also useful. In this paper, all previous techniques are described, studied and applied by performing a large Monte Carlo set of simulations of
a loss of coolant accident in a pressurized water reactor assessing two figures of merit. The comparison of the different methods show that the most conservative is the
Wilks/Wald method; the least conservative is the parametric approach, and in between, the binomial one. The impact of the sample size is also studied for all
methods, showing different behaviors for the different approaches.

1. Introduction

The analysis of transient and accidental sequences is a core aspect of
nuclear safety. In order to evaluate a Nuclear Power Plant (NPP) be-
havior during an event, conservative approaches have been used
worldwide since the 60s. These approaches involve conservative hy-
potheses and codes to obtain the plant response during an accidental
sequence. The values obtained with this method are then compared
against the acceptance criteria to assess the NPP response, e.g. the
Standard Review Plan [1].

During the 80s, a Best Estimate (BE) approach to accident analysis
and safety limits assessment was proposed, it was developed in an effort
to create a licensing method that bring some benefits to the plants as it
would be less demanding, see Fig. 1. This approach reduces the use of
conservatisms, and provides more realistic values. However, to accept
this approach for licensing, it is required that the uncertainties invol-
ving the accident simulation are identified and assessed so the un-
certainty of the calculated results can be estimated. In the US, this was
established according to the regulatory guide RG 1.157 [2] and later RG
1.1203 [3]. This approach was named Best Estimate Plus Uncertainty
(BEPU) approach.

The BEPU development started in the US with the Code Scaling,
Applicability and Uncertainty methodology, [4]. After the first suc-
cessful application of this approach, other methods appeared such as

GRS method [5], ASTRUM [6], TRACG-AOO [7] or UMAE [8]. Along
time, it has been used in more than 75% of the PWR fleet in the US. A
common element between all BEPU methods, is that they follow two
main steps. The first is the identification and quantification of the input
uncertainty, and secondly the quantification of the inputs uncertainty
propagation on selected key output Figures of Merit (FoM).

The output parameters or FoMs assessed in BEPU and uncertainty
analyses are normally selected because they are limited by the accep-
tance criteria for licensing. In this aspect, the most common FoMs are
Peak Cladding Temperature (PCT), Local Maximum Oxidation (LMO),
core wide oxidation, primary system pressure, fuel enthalpy, minimal
critical power ratio and suppression pool temperature.

In order to assess the uncertainty of the calculations, the different
methodologies have different approaches. One of the most successful in
terms of usage and reliability is the consideration of non-parametric
tolerance limits for the FoMs, based on the works of Wilks and Wald
[9]. The first nuclear safety analysis methodology that established this
basis was the GRS method, [10], which was later followed by other
countries and institutions [11]. This approach is based on non-para-
metric statistics and relies on the simulation of dozens or hundreds of
simulations of the same event to obtain a confidence interval for the
desired FoM. Several recent examples of non-parametric analysis can be
found in the literature [12,13]. Besides non-parametric techniques,
there are methodologies that use parametric methods such as TRACG-
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AOO, TRACG-ATWS or TRACG-LOCA [7,14]. In these approaches, the
FoM are tested for normality through Goodness of Fit (GoF) tests and, if
succeed, the data is analyzed extracting information from the re-
constructed normal distribution. If the data does not fit a normal dis-
tribution, non-parametric methods are used instead. Examples of these
methods can be found in the recent literature, [15–17].

The uncertainty analysis have been applied in many areas of nuclear
safety. For Deterministic Safety Analyses (DSA) in NPP licensing, BEPU
methodology has been applied for many reactor power uprating, see
[18]. Additionally, this kind of methodologies has also been applied to
uncertainty estimation of computational simulations relative to ex-
perimental results, [5,19–21]. Moreover, it has been used in order to
obtain the safety margin in Probabilistic Safety Assessment (PSA) ap-
plications e.g. SM2A exercise, [22].

In addition to uncertainty analysis, a sensitivity analysis is a valu-
able tool to study the sequence [23]. These analyses allow to study how
the uncertainty in an output of a model can be apportioned to different
sources of uncertainty in the model input, i.e. the derivative of the FoM
(output) with respect to the input [24], as studied in recent references,
[25,26].

The present paper presents an uncertainty analysis of an accidental
sequence in a Pressurized Water Reactor Westinghouse design (PWR-W)
with the TRACE code. The sequence is a Large Break Loss of Coolant
Accident (LBLOCA), and the analyzed FoMs are PCT and LMO. These
variables are relevant as they limited by the acceptance criteria.
Additionally, the present research has focused on both parametric and
non-parametric studies of the data obtained. The non-parametric Wald
method is used, but the FoM results are also interpreted as a binomial
distribution, and Probability Density Functions (PDFs). The present

paper compares these three approaches, and is able to present how the
parametric and non-parametric results vary with the sample size of the
Monte Carlo. Finally, a sensitivity analysis is also performed to com-
plete the analysis including a damage domain search. This is, varying
the most influential input parameters in order to find the combinations
of those that lead to damage, identifying that region and then calculate
the probability.

The present paper is divided into six sections. The second section
contains a description of the TRACE code and model. The third section
analyzes the Base Case for the LBLOCA in a PWR. The fourth section
contains all the simulation results, the parametric and non-parametric
uncertainty analyses of the results, and a discussion on the sample size.
The fifth section is dedicated to the sensitivity analysis and the para-
meter influence assessment including a damage domain development.
Finally some conclusions are drawn at the end of the article.

2. TRACE PWR-W model

The NPP model corresponds to a PWR-W with 3 loops, with a
nominal power of 2900 MWt. The main characteristics of the TRACE
model are shown in Table 1 and the Reactor Cooling System (RCS)
nodalization is shown in Fig. 2. The core data corresponds to the be-
ginning of the cycle, Xenon equilibrium, with all the control rods out,
operating at full power and with a burn-up of 1000 MWd/tU. The
version of the code used for the present study is TRACE5 Patch 4, [27].

The present model has been validated against steady state, load
rejections and several SCRAM transients performed with TRACE5 Patch
4. It has been used in many analyses, see, [28–30]. It is important to
mention that the model validation process is a significant requirement

Nomenclature

BEPU Best Estimate Plus Uncertainty
BE Best Estimate
CDF Cumulative Distribution Function
DEGB Double Ended Guillotine Break
FoM Figure Of Merit
GoF Goodness Of Fit
LBLOCA Large Break Loss of Coolant Accident

LMO Local Maximum Oxidation
NPP Nuclear Power Plants
PWR Pressurized Water Reactor
PDF Probability Density Function
PRCC Partial Ranked Correlation Coefficient
PSA Probabilistic Safety Assessment
PCT Peak Cladding Temperature
RCS Reactor Cooling System
SI Safety Injection

Fig. 1. Safety Margins and calculated values.

Table 1
PWR-W TRACE model Components.

Vessel components Pipes TEEs Valves Pumps Fills

2 67 41 58 3 12
Breaks Heat Structures Power Components Signal Variables Control Blocks Trips
35 56 3 762 1671 69

E. Zugazagoitia, et al. Reliability Engineering and System Safety 193 (2020) 106607

2



for any uncertainty analysis in order to not misinterpret variations in
the output corresponding to model errors instead of input variations.

3. Base case LBLOCA

The selected Base Case corresponds to a Double Ended Guillotine
Break (DEGB) LBLOCA with loss of offsite power but without another
system failure. At the beginning of the sequence, the DEGB LBLOCA
induces a fast depressurization of the Reactor Coolant System (RCS),
leading to the reactor trip and the Safety Injection (SI) signal. Then, the
PCT increases rapidly as the cooling capability in the core is partially
lost, Fig. 3. The first temperature peak occurs 6 s after the break during
this blowdown phase. After this phase and during the refill and reflood
phases, the upper regions of the core are still uncovered, so its tem-
perature rises again leading to the second maximum. The cladding
oxidation occurs mainly during this period, 40–60 s after the break, see
Fig. 3 (right). Later, during the reflood phase, the temperatures de-
crease steadily until the quenching has been completed and long term
cooling is achieved.

As commented above, with regards to the regulatory requirements
under LOCA conditions; the PCT shall not exceed 1477 K and the LMO
shall nowhere exceed the 17% of the total cladding thickness before

oxidation. In this case, the PCT corresponds to 1169.03 K, lower than
1477 K and a final LMO of 1.689%, see Fig. 3.Therefore, the acceptance
criteria are satisfied with a large margin on both limits. However, a
confidence interval (95/95) for these values is necessary to comply with
the common regulatory requirements; this is studied in the next section.

4. Monte Carlo sampling and uncertainty analysis of a LBLOCA

In this section, the Monte Carlo sampling of the uncertain para-
meters for the DEGB LOCA is depicted. The list of the input parameters
subject to uncertainty is presented in addition to the different analysis
of the results obtained. The present uncertainty analysis follows the
regular steps: determination of input uncertainties, selection of the
sample size, Monte Carlo random sampling of the input parameters, run
the simulations, set the confidence level, and finally determination of
the tolerance limits from the results obtained; these last two aspects are
covered in Sections 4.1–4.5. The uncertainty analysis has been per-
formed by means of parametric and non-parametric approaches stem-
ming from a Monte Carlo random sampling of the uncertain input
parameters. These two approaches are explained and applied later in
the following sections.

For the first step, a large set of parameters were identified from

Fig. 2. Full-plant TRACE model visualized with SNAP mask.

Fig. 3. PCT (left) and LMO (right) of the Base Case.
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previous LBLOCA studies, including their associated state of knowledge
and its quantification in the PDFs [19,21,26,31–37]. Moreover, the
phenomena related to the sequence were identified through the
LBLOCA PIRT, see [38,39]. Afterwards, and by means of the literature
sensitivity analyses see [10,40–42] the parameters and phenomena
with a significant relevance were also selected.

Finally, 25 uncertain parameters complete the set employed in the
analyses. The parameters chosen cover different uncertainties: Initial
and boundary conditions (BC), thermal-hydraulic (TH), thermo-me-
chanical (TM) and geometrical uncertainties (GU); they are shown
along with its range in Table 2.

The Monte Carlo sampling of the uncertain parameters has been
accomplished by using DAKOTA software [43] with TRACE5 Patch4
code within the SNAP platform. The total number of simulations run is
1020, and the FoM assessed are the PCT and the LMO.

The evolution of the PCT and the LMO for the 1020 code runs is
shown in Figs. 4 and 5. Comparing the simulation with the acceptance
criteria, none of the cases surpasses 1477 K and only one exceeds the
LMO limit of 17%. It is remarkable that the maximum PCT and max-
imum LMO correspond to different cases. Despite their direct and
strong correlation, the maximum PCT and maximum LMO values do not
necessarily need to belong to the same case, as seen in [32,44]. The
highest PCT obtained is 1432 K which develops a LMO of 4.42%,
meanwhile the highest LMO exceeds the regulatory limit and reaches
17.74% with a PCT value of 1259 K. The primary system pressure is
very similar for all simulations; only small differences during the
pressure decrease can be observed, see Fig. 6.

4.1. Non-parametric approach: Wilks/Wald method

Among the exisiting uncertainty analysis methodologies, the first
method applied is the Wilks non-parametric, as it is one of the most
widespread of the nuclear analyses, [10]. Based on Wilks and Wald
statistical works, [9], this statistic method can be interpreted as the
following: “Given a set of measurements (N) of a sample, those are ordered
from lowest to highest with the highest value being L. If this set of N mea-
surements is repeated ad infinitum, on β% of the times this set of measure-
ments is done (confidence level, β), the γ% of the set measurements (per-
centile content, γ) will be lower than the initial highest value obtained (L).”

Moreover, this restriction can be provided not only for the highest
value, but also for the second, third and subsequent highest values
(order p). Loosely speaking, if all N - p+1 simulations are below the
regulatory limit, one can be β% confident that at least γ% of the
combined influence of all the characterized uncertainties are below the
regulatory limits.

A fundamental advantage of using Wilks method is that it has no
limit on the number of uncertain parameters considered in the analysis,
and the number of code runs required in the analysis only depends on
the statistical features of the tolerance limits imposed (amount of per-
centile contained, confidence level and order) and not in the amount of
the uncertain parameters.

When the number of FoMs (R) is greater than one, as it is the case of
this analysis, (PCT and LMO), the multi-variable approach of the Wilks
formula obtained by Wald can be used, [45,46]. The relationship be-
tween these parameters, N, β, γ, R and p is established in the previously
mentioned works, and is shown in Eqs. (1) and (2), where di is the
number of bounds of the FoMs (upper and/or lower).

=
=

N
j ·(1 )
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N R
j N j
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Numerically, the one sided confidence interval 95/95 criteria for
two FoMs is limited by the highest value of a sample of 93 code

simulations for first order, see Table 3. From the 1020 simulations
performed in the present analysis, and setting β and γ to 95/95, the
Wald criterion corresponds to p= 20 order, which means that the 20th
highest value would be higher than the 95% percentile with at least
95% confidence level. As these values of LMO and PCT are both below
the acceptance criteria, the 95/95 regulatory requirement would be
fulfilled.

Alternatively, the data can be used in the formula with a lower
order; then a higher probability content and confidence level can be
obtained. Given that only one sample exceeded the acceptance criteria,
a value of p= 2 is acceptable. Given the 95% confidence required by
the regulatory bodies and second order, a 99.23% of the probability
content can be achieved so the probability of exceedance the accep-
tance criteria will be less than 0.77%.

4.2. Binomial distribution approach

The Wald criterion applied to PCT and LMO is not the only possible
non-parametric interpretation of the results. Following the discussions
in [45–47], the authors have continued the analysis by evaluating the
data as a binomial distribution with two states (acceptance criteria
meet/not meet). On each case, the resulting PCT and LMO are com-
pared against the associated acceptance criteria limit, and only two
possible outcomes are obtained: failure or success.

As shown in Fig. 7, a PCT-LMO region is defined, where the cases
succeeding the acceptance criteria (the ones below LMO and PCT
limits) are easily identified. As stated above, in this analysis only one
case has exceeded the 17% LMO.

Along with the failure mean value (1 case out of 1020), a confidence
interval can be obtained for this approach. Amongst the existent con-
fidence intervals, the Clopper–Pearson interval has been selected. This
method is not only a derivation from the binomial distribution, but also
guarantees that the coverage probability is always equal to or above the
nominal confidence level. In this regard, following the 95% one-sided
confidence limit results in 0.464% exceedance probability. The values
of the Clopper–Pearson confidence interval would be the same than the

Table 2
Uncertain parameters and range.

Number Parameter Normalized range Distribution Group

1 Break discharge
coefficient

(0.86, 1.14) Normal TH

2 Initial Core Power (0.98, 1.02) Normal BC
3 Decay Heat (0.92, 1.08) Normal BC
4 Power peaking factors (0.95, 1.05) Normal BC
5 Forced Convection HTC (0.746, 1.254) Normal TH
6 Film Boiling HTC (0.6272, 1.3728) Normal TH
7 Transition Boiling HTC (0.702, 1.298) Normal TH
8 Critical Heat Flux (0.644, 1.356) Normal TH
9 Accumulator Pressure (0.955, 1.045) Normal TH/BC
10 LPSI mass flow factor (0.95, 1.05) Normal TH
11 RCP broken loop speed (0.9, 1.1) Normal TH
12 RCP intact loop speed (0.98, 1.02) Normal TH
13 Gap conductance (0.8, 1.2) Normal TM
14 Cladding inner radius (0.995,1.005) Normal GU
15 Cladding thickness (0.93, 1.07) Normal GU
16 Pellet radius (0.998, 1.002) Normal GU
17 Fuel density (0.99, 1.01) Normal TM
18 Fuel thermal conductivity (0.85, 1.15) Normal TM/TH
19 Burst temperature

coefficient
(0.908, 1.092) Normal TM

20 Metal-water reaction
coefficient

(0.94, 1.06) Normal TM

21 Containment pressure (0.85, 1.15) Uniform BC
22 Accumulator Temperature (0.97, 1.03) Uniform BC
23 Gap pressure (0.9, 1.1) Uniform TM/BC
24 Burst Strain (0.2, 1.6) Uniform TM
25 Oxide layer (0.6, 1.4) Uniform BC/TM
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ones obtained by Wilks method of a single variable, as in fact they are
equivalent methods.

4.3. Parametric approach: distribution fit

Part of the robustness of the non-parametric methods is that they
assume that the function they are analyzing can have any shape, it only

requires the hypothesis of continuity. However, after performing a large
set of measurements, a PDF of the observed value can be reconstructed
with certain degree of goodness, and it is possible to analyze the data by
analyzing the reconstructed function. For example, BEPU TRACG
methodologies apply this approach to verify certain acceptance criteria
(e.g. Pressure, CPR) by testing the results against normality, and if
succeed, the confidence intervals are obtained using properties of the
normal distribution, [7,14].

As part of the analysis, two different PDFs, one for the PCT and
other for LMO have been determined. The PDFs are determined in-
dependently for each FoM due to the complexity of obtaining a reliable
joint PDF for PCT and LMO. In the present study, the results have been
tested through Anderson-Darling GoF test, against 60 different dis-
tributions. The GoF test and PDF reconstruction have been performed
using the statistical tool EasyFit [48].

For the PCT, the best fit corresponds to the Johnson SU distribution.
The exceedance probability of the acceptance criteria can be obtained
by means of the integration of the PDF curve beyond the 1477 K limit,
see Fig. 8. The calculated value for PCT exceedance is 2.67E-04.
However, this value lacks of a confidence interval necessary to fulfill
the regulatory requirement, so further work is needed.

Following the same procedure, a function has been reconstructed
for the LMO. In this case, the best fit is the 4-Parameter Dagum dis-
tribution. Despite the single case beyond the LMO limit, the calculated
probability for acceptance criteria exceedance is as low as 1.5E−07, see
Fig. 9. The reason can be deduced from the LMO histogram, as almost
the complete set of LMO values fall into the 1%–4% range, far from the
17% acceptance criterion.

In order to test the accomplishment with the 95/95 criterion, it is
necessary to determine a tolerance interval from the PDFs: Johnson SU
and Dagum 4P. To do so, there are methods based on the probability-
box concept [49], which is based on the calculation of statistical limits
for the real and unknown Cumulative Distribution Function (CDF). In
this method, the selected model CDF is evaluated on the all possible
combinations of the confidence intervals of the model parameters
which can be obtained more precisely by means of the Log-Likelihood
Ratio statistic test, the Wald method or the Lagrange Multiplier test
[9,50]. These methods rely on the analytic formulation of the profile
likelihood from the Maximum Likelihood function or its normal ap-
proximation.

The likelihood formulation become complex because of the analytic
expression of the Johnson SU and Dagum 4P PDFs as a large number of
dependences appear. For this reason, the Bootstrap method, even
though it is more computationally demanding, is found the most ap-
propriate to calculate the confidence intervals for the present research.
The bootstrap method is able to provide approximate confidence in-
tervals for the 95% probability region limit using re-sampling techni-
ques of the data. The key idea is to perform computations on the data
itself to estimate the variation of statistics that are themselves com-
puted from the same data, [51]. The upper limit obtained will limit the
95/95 tolerance interval.

Fig. 4. PCT of the 1020 Monte Carlo simulations.

Fig. 5. LMO of the 1020 Monte Carlo simulations.

Fig. 6. Primary System Pressure of the 1020 Monte Carlo Simulations.

Table 3
Example values of the minimum samples for FoMs and one sided tolerance
limit.

β γ values p
0.95 0.99

0.95 93 473 1
153 773 2
208 1049 3
… … …
1013 5088 20

0.99 130 662 1
198 1001 2
259 1307 3
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In the present research, the nonparametric bootstrap resampling
with the simple percentile method has been used, [9,52]. In this
method, B=1000 bootstrap samples have been extracted for both PCT
and LMO. Each bootstrap sample contains 1020 values taken from the
original sample with replacement. Then, all those samples have been
adjusted to the correspondent Johnson or Dagum distribution and the
probability of exceeding the acceptance criteria has been retained. The
probabilities obtained range from 7.0E−06 to 9.0E−03 for PCT and
1.0E−09 to 8.0E−06 for the LMO, see Fig. 10. Then, the 95th higher
percentile of the 1000 different values is used, and it corresponds to the
limit of the 95% one-sided empirical approximated confidence interval
of exceeding the acceptance criteria. Then, the obtained probability of
exceeding 1477 K with a 95% confidence is 6.00E−04, the probability
of exceeding the 17% of LMO is 1.02E−06, and therefore, the joint
probability is 6.01E−04.

As commented above, to obtain the confidence interval for the
probability of exceeding the acceptance criteria, the Maximum

likelihood estimate-ratio test method can also be used to estimate the
PDFs parameters. Then, to remark differences between methods, the
Maximum Likelihood Estimate ratio has been applied using Burr dis-
tribution for the PCT. The Burr distribution is not the best adjustment to
the PCT, but it passes the GoF tests and the likelihood-ratio method can
be applied. The probability of exceeding 1477 K by the Burr distribution
is 3.36E−04. This value is very similar to the one obtained with the
Johnson SU distribution. However, the probability for the Burr whose
parameters are equal to the upper 95% confidence interval limits is
3.1E−03, higher than the Johnson SU, but also lower than the non-
parametric Wald and binomial approaches.

It is necessary to comment, that in this parametric analysis, there is
little or no data of values next to the acceptance criteria; then the
distribution is reconstructed based mainly from data separated from the
95th percentile, but then the PDFs are used to extract information of the
region we had initially scarce information about. This provokes that
some results are very dependent on the distribution selected.

Fig. 7. Acceptance Region of PCT and LMO relative to all simulations.

Fig. 8. PCT Johnson SU probability distribution, density (left), and accumulated (right).
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4.4. Results discussion: comparison of non-parametric and parametric
statistics

Once the non-parametric and parametric analysis have been applied
to the results, a comparison between these approaches can be pre-
sented, see Table 4. Comparing the three methods, the most con-
servative approach for these results is the non-parametric approach,
and the least conservative would be using the distribution fit approach,
proving the Wald method conservative for the regulatory limits.

The safety margins of the different methods are also obtained,
comparing the 95% confidence upper limit of the 95th percentile
against the acceptance criteria, see Table 5. It is remarkable that the
safety margin obtained with the Maximum Likelihood Estimate-ratio
method is lower than the non-parametric or the parametric adjustment
with Bootstrap confidence interval. This reinforces the comment made
in the previous section, which highlights the variability induced by the
distribution in the parametric analysis.

4.5. Sample discussion: parameters convergence

In this section, the properties of the sampling are studied along the
number of simulations obtained. This approach is interesting from the
industry/regulator point of view, as it is possible to observe which limit
would have been obtained if instead of 1020, the number of simulations
would have been considered sufficient at a lower number.

Observing Figs. 11 and 12, it is seen that the mean, the highest 95th,
and the lowest 5th percentile of PCT/LMO converge in a rapid manner

to a stable value after 100 simulations. Besides, the 95th percentile is
always lower than the bounding value obtained by Wilks/Wald formula
increasing the order as more results are obtained. It is also remarkable
that both PCT and LMO bounding values found through Wilks/Wald do
not behave monotonically. Even though this is statistically probable, it
is notable that even at high statistic orders some bounds increase with
the number of simulations.

The previous results depend on the order on which the results have
appeared in the Monte Carlo sampling. To erase this dependency, 500
different sets of the 1020 runs have been created with a random order
and analyzed under Wald criterion see Figs. 13 and 14. When the sta-
tistical fluctuation of a single sampling order is erased, the mean of the
Wald tolerance interval decreases monotonically for PCT and LMO with
an increasing order. Additionally, there is a large difference between
low and mid-high statistical orders. This reinforces the idea that it is
better to approach higher statistical orders, than increase the

Fig. 9. LMO Dagum 4P probability distribution density (left), and accumulated (right).

Fig. 10. CDF of the exceedance of the 1000 Bootstrap samples for PCT (left) and LMO (right) acceptance criteria.

Table 4
Summary of probability of exceedance and confidence level.

Method Confidence
Level

Probability of
Exceedance

Non-parametric Wald 95% 0.77%
Binomial with Clopper Pearson 95% 0.46%
Distribution Fit to Johnson SU and

Dagum 4P with Bootstrap
Confidence interval

95% 0.06%
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confidence level [12,53]. In the study of [54], it was concluded than
using the full Monte Carlo (or the highest order) was beneficial as the
chance of underpredicting the true 95th percentile is reduced. Obser-
ving the 95th percentile, it is seen that it has a quicker convergence,
and narrower width than the Wald bounding value. In the case of LMO,
this is exacerbated as the majority of the simulations fit in a narrow
range of values.

Taking into account the regulator point of view, it is interesting to
compare the three methods probability of exceeding the damage for
95% confidence along the 1020 simulations. This evolution is likely to
be useful in balancing the efforts to augment the safety margins with a
BEPU approach. For this reason, the behavior of the probability of ex-
ceedance with 95% confidence of the Wald, binomial and parametric
approaches are shown in Fig. 15. As expected, the binomial method
with a Clopper–Pearson confidence interval is lower than the one ob-
tained by Wald, before and after finding the case of damage.

In order to obtain the values of the parametric analysis, 1000
bootstrap samples are created using the first 93, 210, 350 and 515
values. The parametric approach provides exceedance values even
lower, but they also have a drawback. For less than 515 cases, this
method is not adequate because the distribution fitting cannot be al-
ways achieved, as it is rejected by the GoF tests. In this particular case,
the Dagum 4P distribution is able to fit all the bootstrap samples ne-
glecting the rejection hypothesis, but the Johnson SU distribution
cannot fit the majority of the bootstrap samples from N= 93 to
N= 515 and therefore its probability is undetermined and not shown in
Fig. 15. For a low number of samples, the Dagum 4P distribution pro-
vides values for exceeding the acceptance criteria of 0.1%, which is
much higher than the value obtained with 1020 simulations.

5. Sensitivity analyses

This section describes the sensitivity analyses of the input para-
meters. As already mentioned, once the uncertainty analysis has been
performed, a sensitivity analysis has been carried out as recommended
by IAEA [55]. This analysis is conducted in order to observe the in-
fluence of the uncertainty in certain individual input parameters to the
uncertainty results, as well as their correlation. A great variety of
techniques and approaches are found in the literature involving in-
creasing levels of complexity and number of code runs associated [56].
In this work a global analysis that allows to observe correlations be-
tween inputs and outputs has been performed. Then, the most influ-
ential parameters will be deeply studied in a local sensitivity analysis,
searching for a damage domain.

5.1. Global sensitivity analysis

In this work, a global sensitivity analysis has been performed in
order to consider all input parameters simultaneously. The ranked or
Spearman correlation coefficient is initially calculated, and then the
Partial Rank Correlation Coefficient (PRCC), [24] is used to assess the
correlation of the inputs and FoMs.

Correlation coefficients range from −1 to 1; the closer to these
values, the higher the correlation between the input and outputs. A
negative value in the correlation coefficients indicates that the input
parameter and the output response are inversely proportional.

In order to identify the most influential parameters using the PRCC
values another criterion is needed. As stated by NEA, [57], a sig-
nificance threshold corresponding to a desired confidence level can be

Table 5
Summary of the Safety Margins of the 95th percentile and 95 confidence for different approaches.

Method Safety margin PCT Safety margin LMO

Non-parametric Wald 185 K 13.93%
Distribution Fit to Johnson SU and Dagum 4P with Bootstrap Confidence interval 208 K 13.98%
PCT Distribution fit to Burr with MLE for Confidence Interval 165 K N/A
Empirical 95th Percentile 219 K 14.42%

Fig. 11. Convergence of PCT percentiles, Wilks and Wald bounding Values.
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set and a parameter is considered influential as soon as its PRCC in
absolute value is larger than the significance threshold. The threshold
decreases with the number of samples and increases with the con-
fidence level requirement, see Table 6.

A confidence level threshold of 95% have been chosen, which re-
lative to 1020 code runs corresponds to a values 0.051 for PRCC as
shown in Table 6. The parameters meeting this threshold requirement
for the PCT are related to the cladding-coolant heat transfer coeffi-
cients, fuel thermal behavior, the break discharge coefficient together
with the cladding inner radius and fuel density. Amongst this group the
most influential ones are the Fuel Conductivity (−0.77), forced con-
vection HTC (−0.73), break discharge coefficient (0.70), Critical Heat

Flux (−0.65), Power Peaking Factors (0.65) and film boiling HTC
(−0.56), see Table 7. Due to the inherent relation between the PCT and
the LMO, the group of influential parameters are alike. Instead of the
cladding inner radius and fuel density, the cladding thickness (−0.29),
rod burst temperature coefficient (−0.25) and especially the initial
oxide layer, are the most influential parameters (0.91). Again, forced
convection HTC (−0.36), break discharge coefficient (0.25) and film
boiling HTC (−0.45) stand out due to its influence, see Table 7.

In order to assess the accuracy of the sensitivity analysis, the sum of
the squared ranked correlation coefficients ( RCCi

2) has been calcu-
lated. Each RCCi

2 gives an estimate of the contribution of the input to
the outputs variance, and a value of =RCC 1i

2 would mean that the
variance is totally explained. In non-monotonic or non-additive

Fig. 12. Convergence of LMO percentiles, Wilks and Wald bounding values.

Fig. 13. PCT Wald bounding value and 95th percentile values for different statistical orders.
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systems, this value can be less than one, meaning that the model var-
iance is not fully explained. The values obtained, are 84.2% for PCT and
85.3% for LMO, which explain adequately the variance, indicating
certain degree of non-monotonic and non-additive behavior, but a
higher order sensitivity measure is not found necessary.

5.2. Local sensitivity analysis: damage domain search

As a final step of the sensitivity analysis, a bi-dimensional damage
domain search for PCT and LMO has been developed. The damage
domain corresponds to the region of the input space where the PCT or
LMO acceptance criteria are exceeded. The damage domain is searched

by simulating the transient varying two different input variables along
their ranges, and simulating all possible combinations. In this study, an
equally-spaced sampling of the inputs has been used.

The analysis covers the specific variability of two parameters that
are selected based on the sensitivity analyses obtained in Section 5.2; so
attending at PRCC of Table 7, two of the most influential parameters for
both LMO and PCT are the Forced convection HTC and the Film Boiling
HTC. So, as an example, these two parameters are varied in the range
0.746–1.254 for Forced convection and 0.627–1.3728 for Film Boiling.
It must be said that the parameters selection could have been extended
to other combination of variables, but the computational effort would
have been excessive.

Fig. 14. LMO Wald bounding value and 95th Percentile values for different statistical orders.

Fig. 15. Evolution of the probability of exceedance with an increasing sample
size.

Table 6
Confidence level for 1020 samples threshold for PRCC values.

Confidence level (%) PRCC limit (abs)

99.98 0.109
99.9 0.097
99 0.072
95 0.051

Table 7
PRCC for PCT and LMO sorted from.

PCT LMO
Parameter PRCC PRCC Parameter

Break Discharge Coefficient 0.700 0.907 Initial Oxide Layer
Power Peaking Factor 0.652 0.248 Break DC
Initial Core Power 0.343 0.116 Power Peaking Factors
Decay Heat 0.185 0.104 Decay Heat
Cladding Inner Radius 0.148 0.060 Gap Pressure
RCP Broken Speed 0.052 0.049 Cladding Inner Radius
Transition Boiling HTC 0.034 0.046 Metal Water Reaction
Initial Oxide Layer 0.011 0.037 RCP Broken Speed
ACC Pressure 0.002 0.024 Initial Core Power
Containment Pressure −0.010 0.009 Gap conductance
Metal Water Reaction −0.011 0.006 Pellet Radius
Gap Pressure −0.012 0.002 Burst Strain
Burst Strain −0.024 −0.012 Fuel Density
RCP Intact Speed −0.036 −0.019 Transition Boiling HTC
LPSI Mass Flow Factor −0.040 −0.023 LPSI mass flow Factor
Pellet Radius −0.042 −0.030 ACC Temperature
ACC Temperature −0.050 −0.042 Containment Pressure
Gap Conductance −0.071 −0.062 ACC Pressure
Burst Temperature −0.080 −0.075 RCP Intact Speed
Cladding Thickness −0.096 −0.082 Critical Heat Flux
Fuel Density −0.222 −0.225 Fuel conductivity
Film Boiling HTC −0.557 −0.250 Burst Temperature
Critical Heat Flux −0.647 −0.290 Cladding Thickness
Forced Convection HTC −0.730 −0.360 Forced Convection HTC
Fuel Conductivity −0.771 −0.448 Film Boiling HTC

E. Zugazagoitia, et al. Reliability Engineering and System Safety 193 (2020) 106607

10



The results can be seen in Figs. 16 and 17. It is remarkable that even
in the 1020 simulations made for the previous analysis, no simulation
showed damage based on PCT exceedance and only one case surpassed
the LMO limit; but, in this analysis, the results are the opposite. A da-
mage domain region is found for the PCT with specific values of forced
convection HTC and film boiling HTC. It is also found that the shape of
the full domain was correctly predicted by the negative PRCC values,
see Table 7.

The probability of obtaining the input values that create the damage
domain are used to calculate the probability of having the combination
of parameters that exceeds the acceptance criteria. In this sense, the
quantification of damage probability for the PCT is 3.03E-04 and zero
for LMO. This probability is lower than the calculated with the previous
methods as it only includes the uncertainty of two input parameters.

Moreover, Figs. 16 and 17, allow to remark the importance of the
uncertainty ranges of the input parameters. Regardless of the PDFs
selected, a damage domain can remain undetected if this range is not
properly chosen.

6. Conclusions

As mentioned in this paper, the BEPU analysis as an evaluation and
licensing tool has been strongly developed in the last decades. The
present paper has described an uncertainty analysis of a LBLOCA in a 3

loop PWR-W simulated with the TRACE code performing parametric,
non-parametric methods, a sensitivity analysis and a damage domain
search. The results have been analyzed in three different manners, and
therefore, it can be interpreted distinctively:

1 Non-Parametric, Wald Method: This method relies on the order-
statistics method of Wilks and Wald that establishes the probability
of exceeding an obtained value with certain degree of confidence. In
this approach, the acceptance criteria would be exceeded with a
probability less than 0.77% and 95% confidence.

2 Binomial Distribution: This approach analyzes the data in terms of a
binomial distribution (Failure/Success) that correspond to the ex-
ceedance or not of the acceptance criteria. In this approach the
mean probability of exceeding the regulatory limits is less than
0.46%, with a Clopper–Pearson confidence level of 95%.

3 Distribution fit: In this approach the obtained data are considered a
PDF that can be reconstructed. The curves that best fit the PCT and
LMO under the Anderson–Darling GoF test have been selected.
Then, the confidence intervals for 95% are obtained thanks to the
percentile Bootstrap method, and they are used to calculate the
probability of exceeding the acceptance criteria. With this method,
the probability of exceeding the acceptance criteria is less than
0.06% with a 95% confidence level.

Comparing the three methods, the most conservative approach to
the data is using the Wald method, and the least conservative is using
binomial and parametric methods. A sampling study complements this
analysis on which a comparison of the three methods relative to the
1020 simulations in order of appearance. The trends on surpassing the
acceptance criteria are similar for the three methods, being Wald the
one which obtains the most conservative value for any number of si-
mulations and the parametric adjustment the least conservative.

Next, a sensitivity analysis of the data has been performed to study
the influence of each input parameters. To observe the influence of each
parameter altogether with the others, Spearman partial correlation
coefficients have been calculated. It is found that the most influential
parameters for PCT and LMO are similar, and that PCT and LMO have
certain degree of non-monotonic and non-additive behavior in the input
space.

Finally, two of the most influential parameters obtained in the
sensitivity analysis were selected to search for a damage domain. This
study showed that for certain values of the Film Boiling HTC and the
Forced Convection HTC a damage domain appears for PCT, but is in-
existent for LMO, which was not detected in the Monte Carlo analysis,
reinforcing the importance of sensitivity analyses.
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