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Abstract

Formulas for limiting average availability of a repairable system exist only for
some special cases: (1) either the lifetime or the repair time is exponential;
or (2) there is one spare unit and one repair facility. We consider a more gen-
eral setting involving several spare units and several repair facilities; and we
allow arbitrary life- and repair time distributions. Under periodic monitor-
ing, which essentially discretizes the time variable, we compute the limiting
average availability. The discretization approach closely approximates the
existing results in the special cases; and increases the limiting average avail-
ability as we include additional spare unit or additional repair facility.

Keywords: Periodic monitoring, Perfect repair, Semi-Markov process,
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1. Introduction1

Reliability engineers have always been interested in different techniques2

to improve the functionality, quality and effectiveness of operating systems.3

Consequently, availability of a maintained system (that is, the probability4

that the system is fully functional) is a key quantity of interest. Many heavy5

industries such as power plants, metal casting, chemical production, space6

∗Corrosponding author
Email addresses: dchatter@iu.edu (Debolina Chatterjee), jsarkar@iupui.edu

(Jyotirmoy Sarkar)

Preprint submitted to Reliability Engineering & System Safety June 27, 2019

____________________________________________________

This is the author's manuscript of the article published in final edited form as: 
Chatterjee, D., & Sarkar, J. (2020). Computing limiting average availability of a repairable system through discretization. Reliability 
Engineering & System Safety, 193, 106616. https://doi.org/10.1016/j.ress.2019.106616

https://doi.org/10.1016/j.ress.2019.106616


administration etc. rely on expensive machineries for production and mainte-7

nance. Failure of these machineries is detrimental to the industry, resulting8

in both economic and logistic challenges. Therefore, the system should be9

actively maintained by setting up one or more repair facilities and also by10

keeping one or more back-up spare units to serve as replacement when any11

damaged/failed unit is sent for repair. Fire detection system, safety valves12

etc. especially use this kind of spare/repair management. The plan may13

sound straightforward; but there are many logistical issues to address. For14

instance, the system has to be monitored continuously to detect failure and15

switch the operation to the spare unit immediately. Also, one must deter-16

mine the optimum number of repair facilities that should be established and17

the optimum number of spare units that should be kept on hand so that the18

overall system availability is not compromised, and at the same time the cost19

is within control.20

We recall a well-studied model of a repairable system and some known21

results under that model. However, several restrictive assumptions in this22

otherwise attractive model severely limits its applicability. Here, we remove23

these restrictive assumptions by devising a discretization approach, which24

reduces the burden of monitoring the system continuously, reproduces the25

results in the known special cases, and extends to the most general setting.26

1.1. Formulation of the Problem27

Consider a continuously monitored one-unit repairable system supported28

by several identical spare units and several identical repair facilities. Initially,29

one unit is put on operation; and all spare units remain on cold standby30

(that is, spare units cannot fail). Upon failure of the operating unit, in-31

stantaneously a spare unit, if available, is put on operation (this is called32

instantaneous installation to operation) and the failed unit is sent to a re-33

pair facility (this is called instantaneous commencement of repair). Repair34

takes a random amount of time; and after repair the unit is restored back35

to a level equivalent to a new unit (this is called the perfect repair policy),36

which becomes a spare unit. We assume that lifetimes and repair times are37

stochastically independent. The system fails (and enters a down state) when38

the operating unit fails and there is no spare unit on standby to take over39

the operation. Thereafter, when at least one of the repairs is completed, the40

repaired unit is immediately put into operation; and the system is revived.41

The most important measure of success of a repairable system is the long42

run probability that the system is functioning, or the limiting availability of43
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the system. Oftentimes, under continuous life- and repair time distributions44

and continuous monitoring, the limiting availability exists; and then it equals45

the limiting average availability, or the limiting proportion of time the system46

is up; and is given by47

Aav =
MSUT

MSUT +MSDT
(1.1)

where MSUT denotes the mean system up time and MSDT denotes the mean48

system down time.49

In the very special case of exponential lifetime and exponential repair50

time distributions with means µ and ν respectively, [1] (page 206), provided51

the limiting average availability for the case of one repair facility (r = 1) and52

either no or one spare unit (s = 0 or s = 1). More specifically,53

Aav(r = 1, s = 0) =
µ

µ+ ν
=

1/ν

1/ν + 1/µ
(1.2)

since, in this case, in eq. (1.1) MSUT equals the mean time to failure and54

MSDT equals the mean time to repair; and55

Aav(r = 1, s = 1) =
µ(µ+ ν)

µ2 + µν + ν2
=

1/ν

1/ν + 1/µ− 1/(µ+ ν)
(1.3)

1.2. Availability in some other models56

Allowing arbitrary distributions for the lifetime X and the repair time Y ,57

[13] (page 283), derived the limiting average availability of a one-unit system58

supported by one repair facility and one spare unit as59

Aav(r = 1, s = 1) =
E[X]

E[max{X, Y }]
(1.4)

Indeed, when eq. (1.4) is specialized to exponential life- and repair distribu-60

tions, one can recover eq. (1.3).61

In [9], for a maintained system under continuous monitoring and perfect62

repair policy, the instantaneous availability is determined using the Fourier63

transform technique. Here repair time is restricted to exponential, but life-64

time is allowed to be either gamma or exponential. Further, using the same65

technique but incorporating several imperfect repairs before a replacement66

or a perfect repair, the availability is obtained for exponential lifetime and67

repair time distributions (with possibly different parameters) in [2].68
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Assuming periodic inspection, in [11], the system availability is deter-69

mined when repair is perfect, lifetime is either gamma or exponential and70

repair time is constant. The work is extended in [3] by allowing an im-71

perfect repair policy and a random repair time (specifically, exponential).72

Further in [12], a periodically inspected system supported by a spare unit73

and maintained with perfect repair or upgrade is considered; and both the in-74

stantaneous availability and the limiting average availability are determined75

for arbitrary lifetime, degenerate upgrade time and exponential repair time.76

The paper [4] adds to the results of [11] by assuming that the periodic in-77

spections take place at fixed time points after repair or replacement in case78

of failure.79

Allowing arbitrary continuous lifetime, but restricting to exponential re-80

pair times only, [10] derived the limiting average availability of a one-unit sys-81

tem under continuous monitoring when there are s ≥ 1 spare units and r ≥ 182

repair facilities, by studying the embedded Markov chain (tracked at selected83

observation times), which is said to be in State i where (i = 0, 1, ..., s, s+ 1),84

if there are i failed units undergoing or awaiting repair by that observation85

time.86

Apart from a one-unit system, availability has been studied also for a87

k-out-of-N system. For example, the authors of [14] study the interactions88

among several control variables such as preventive maintenance policy, spare89

part inventories and repair capacity while they affect the system availability.90

They present an exact as well as an approximate method to develop a trade-91

off among these control variables. These authors also advocate in [15] a block92

replacement policy in which all failed and degraded components are repaired93

by a single repair shop while spare units take over the operation. They94

provide two approximate methods to analyze the relation between system95

availability and control variables. In both papers they assume the component96

lifetimes and repair times are exponentially distributed.97

For a k-out-of-N : G system, [17] and [18] allow the repair time to have98

a general distribution, but assume the lifetime to be exponential. The for-99

mer paper considered one repair man with a single vacation, while the latter100

considered a replaceable repair equipment which may fail during the repair101

period and then be replaced by a new one. Both papers used supplemen-102

tary variable technique and Laplace transform to calculate the availability.103

The supplementary variable technique is implemented in [16] to derive state104

equations by defining the system state space and sojourn time in each state105

to calculate the availability of the system.106
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1.3. Overcoming the challenge107

Let us highlight a serious drawback in the models mentioned above to set108

the stage for our current research. Although not realistic, researchers often109

assume exponential life- or repair time distribution to simplify mathematical110

derivations. They exploit the lack of memory property of the exponential dis-111

tribution to ensure that the successive differences between life- or repair times112

are independent exponential variables (with different rates), and thereby they113

obtain closed form expressions for the limiting average availability.114

Can we make the model more realistic by allowing arbitrary lifetime and115

arbitrary repair time distributions for any number of spare units and repair116

facilities? The challenge of obtaining the limiting average availability under117

this general setting is expressed in [10] as follows:118

“When repair time distribution is other than exponential, except119

for the case of (r = 1, s = 1), one must keep track of the time120

on repair of all failed units at all times. Therefore, there is no121

hope of identifying an embedded discrete-time Markov chain, and122

the derivation of the limiting average availability will require a123

technique different from the one presented in this paper.”124

Some recent papers allow arbitrary life- and repair time distributions:125

In [5], the authors studied single-component repairable systems supporting126

different levels of workloads. They provide a numerical algorithm to evalu-127

ate the probability that the system will perform a specified amount of work128

within a specified mission time, and the associated conditional expected cost.129

The paper [6] models dynamic performance of multi-state series parallel sys-130

tems with repairable elements that can function at different load levels and131

employs a universal generating function technique to assess system perfor-132

mance. Here the instantaneous availability is evaluated at different load133

levels. Further, in [7], the authors proposed a discrete-state continuous-134

time stochastic process to evaluate instantaneous availability for a common135

bus performance sharing (CBPS) system. The technique involves integra-136

tion with respect to the joint distribution of < Tj, Xj > (where Tj denotes137

the detection time of the failure of the jth component and Xj denotes the138

operation time).139

The current paper responds to the challenge posed in [10] by adopting a140

discretization approach: We inspect the system only at discrete time points;141

and we intervene only when during inspection we find a unit has failed or142
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the failed system is ready for revival because at least one repair has been143

completed. In particular, if a repair has been completed, but the operating144

unit has not failed, we do not intervene at all! Thus, this approach essentially145

discretizes the time variable. Moreover, it relaxes the burden of monitoring146

the system continuously to monitoring it periodically (at inspection times147

only); hence, it is logistically preferable.148

In Section 2, we revisit the case of (r = 1, s = 1); model the stochastic149

process through discretization as a semi-Markov process; derive the limiting150

average availability; and exhibit its closeness to the analytic result (eq. (1.4))151

of [13]. In Section 3, we extend the discretization method to the case of152

(r = 2, s = 1); that is, we permit a second repair facility. Finally, Section 4153

concludes the paper with a summary.154

2. Discretization approach for (r = 1, s = 1)155

We assume the following:156

(1) Lifetimes of the units are independent and identically distributed (IID)157

continuous random variables with arbitrary cumulative distribution158

function (CDF) F on a positive support.159

(2) Repair times are IID continuous random variables with arbitrary CDF160

G on a positive support.161

(3) Lifetimes and repair times are stochastically independent.162

(4) Repair is perfect; that is, a repaired unit is as good as new.163

(5) The system is under periodic monitoring; that is, it is inspected at164

regular intervals.165

(6) Interventions are made only at observation epochs when an operating166

unit is found to have failed or when the down system is ready for revival167

because at least one failed unit has been repaired.168

(7) Whenever at inspection a unit is found to have failed, it is sent to the169

repair facility. Repair commences instantaneously if the facility is free.170

Otherwise, the failed unit awaits repair until the facility is free.171
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(8) Installation to operation happens immediately when a failed unit is sent172

to repair (at an inspection epoch) and there is a spare unit (as a result173

of an already completed repair), or when the failed system is ready for174

revival at an inspection epoch because one of the failed units has been175

repaired.176

2.1. States of the system177

Figure 1 depicts the states of the system (with explanations below), tran-178

sition between them and the random variables determining such transitions.179

Figure 1: The state transition diagram for the (r = 1, s = 1) case. A rectangle denotes an
up state, and an oval denotes a down state. The status of each unit is denoted as follows:
P for operation; S for stand-by; R for repair (with subscript indicating for how many
inspection periods the repair has been going on); and W for waiting for repair.

180

We label the states of the system to indicate the number of failed units:181

(0) State 0 means there is no failed unit.182

(1) State 1 means there is one failed unit.183

(2) State 2 means there are two failed units. Additionally, we must use184

a second index to indicate how long the repair on the first failed unit185

has been going on when the system enters State 2, because that will186

determine how long the system will stay in State 2. This second index187

splits State 2 into sub-states: We say the system is in State (2, k) for188

7



k = 1, 2, . . . , N − 1, if repair on the first failed unit has been going on189

for a duration k∆ when the other unit was detected to have failed. This190

is because we monitor the system only at epochs that are multiples of191

∆ from the start (or from system revival).192

Note that by the time the system is detected to have failed, repair on193

the first failed unit has been going on for a positive duration. Hence,194

there is no State (2, 0). Also, repair is surely completed inN∆ duration.195

Hence, there is no State (2, N).196

Let F and G denote the CDFs of the discretized lifetime and repair197

time X and Y respectively. Let p and q denote the corresponding prob-198

ability mass functions (PMFs) calculated by taking successive differences199

pk = F (k∆)−F ((k−1) ∆) and qk = G(k∆)−G((k−1) ∆) respectively, for200

k = 1, 2, . . . , N . Let R denote the CDF of max{X, Y } calculated by taking201

product R(k∆) = F (k∆)G(k∆), and let r denote the corresponding PMF202

of max{X, Y } obtained by successive differences rk = R(k∆)−R((k− 1) ∆)203

for k = 1, 2, . . . , N .204

205

We describe the transition probabilities between states of the system:206

• At time t = 0, the system is in State 0, where one unit begins to operate207

and the other spare unit is on cold standby. The system goes from State208

0 to State 1 when the operating unit is detected to have failed, repair209

starts on it and the spare unit is put on operation instantaneously.210

Hence,211

P0→1 = 1 (2.1)

The system never returns to State 0.212

• From State 1, after an intervention, the system can go to two places:213

(i) If repair on the failed unit is completed before the operating unit214

is detected to have failed, then we do not record this transition at all.215

Instead, we wait until the operating unit is detected to have failed at216

epoch k∆. Then we interchange the roles of the two units; and say that217

the the system has re-entered State 1. This happens with probability218

P1→1 =
N∑
k=1

pk G(k∆) (2.2)
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(ii) On the other hand, if the operating unit is detected to have failed at219

epoch k∆, before the repair on the previously failed unit is completed,220

then the system goes to State (2,k) with probability221

P1→(2,k) = pk{1−G(k∆)} (2.3)

In this case, the freshly failed unit awaits repair to commence on it only222

after the repair on the previously failed unit is found to be completed223

at an inspection epoch. While the system is in State 2 (that is, in any224

of the States (2,k)), no unit is operating; and the system is down.225

• From State (2,k) the system surely goes to State 1 when the ongoing226

repair on the first failed unit is found to be completed at an inspection227

time and the repair on the second failed unit begins. This happens228

with probability229

P(2,k)→1 = 1 (2.4)

In the proposed discretization approach, we split the repair time into230

N (to be determined momentarily) intervals each of length ∆; and observe231

the system at epochs k∆ for k = 1, 2, . . . , N . For all practical purposes,232

we assume that repair is completed only at epochs k∆, since those are the233

observation epochs (and possible installation epochs).234

We choose N large enough so that the probability that the larger of life-235

time and repair time (hence, either lifetime or repair time) exceeds N∆ is236

very small (preferably under .001, say); that is, {1−R(N∆)} ≈ .001.237

238

The continuous-time stochastic process, after discretization, can be de-239

scribed as a Semi-Markov Process: The probability distribution of the future240

state depends only on the current state (and not on the history of states vis-241

ited so far); and the system stays in any state for a random duration whose242

distribution depends on the current state and the immediately next state.243

Moreover, from the above discussion of transitions and associated proba-244

bilities, we note that the embedded discrete-time Markov chain is irreducible245

(that is, all states communicate with one another); and since the state space246

is finite, the chain is recurrent.247

Using the theory of semi-Markov processes, see [8], we can find the lim-248

iting proportion of time the system spends in each state. First, we find the249

stationary probabilities {πj, j ∈ S} of the discrete-time Markov chain by250
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solving the following state equations:251

πj =
∑
i∈S

πiPij, for all j ∈ S; and
∑
j∈S

πj = 1 (2.5)

where Pij denotes the transition probability from State i ∈ S to State j ∈ S252

and the transition probability matrix P , which is of dimension (N + 1) ×253

(N + 1), is as follows:254

P =

0 1 (2, 1) . . . (2, N − 1)


P0,0 P0,1 P0,(2,1) · · · P0,(2,N−1) 0
P1,0 P1,1 P1,(2,1) · · · P1,(2,N−1) 1
P(2,1),0 P(2,1),1 P(2,1),(2,1) · · · P(2,1),(2,N−1) (2, 1)

...
...

...
. . .

...
...

P(2,N−1),0 P(2,N−1),1 P(2,N−1),(2,1) · · · P(2,N−1),(2,N−1) (2, N − 1)

=


0 1 0 · · · 0
0 ∗ ∗ · · · ∗
0 1 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0


In the P -matrix above, the row and the column labels stand for the corre-255

sponding states. Note that although the transition matrix P is (N + 1) ×256

(N + 1), it has non-zero entries (denoted by *) only in the second row corre-257

sponding to transition out of State 1 and in the second column corresponding258

to transition into State 1. Therefore, it is straight-forward to solve eq. (2.5).259

Second, we find the expected sojourn time in each state; that is, the260

expected time the system stays in that state before it moves to a new state.261

If a unit is found to have failed at inspection time k∆, it must have failed262

during the interval ((k−1)∆, k∆]. For simplicity, we assume that it has failed263

at the midpoint of the interval; that is, it was operating for the initial ∆/2264

period in the interval and was in failed state during the last ∆/2 period (but265

was undetected). Although this is a rather crude assumption, it serves our266

purpose as far as computation of limiting average availability is concerned.267

The expected sojourn times µ0 and µ1 in State 0 and State 1 respectively,268

both equal E(X)−∆/2 =
∑N

k=1 pk k∆−∆/2, since we do not record a repair269
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until after the operating unit fails. We subtract ∆/2 from the expected270

discretized lifetime to account for the fact that the system is actually down271

during the last ∆/2 duration within each State 0 and State 1.272

The expected sojourn time µ(2,k) in any State (2, k) (a down state), is273

the expected additional repair time, given that the previously failed item has274

been undergoing repair for k∆ time. For k = 1, 2, . . . , N , we have,275

µ(2,k) = E[Y |Y > k] =
N−k∑
j=1

qj+k j∆

1−G(k∆)
(2.6)

There is no need to make a further adjustment of ∆/2 in eq. (2.6) as the276

system is down the whole time while in State (2,k).277

Next, using Corollary to Proposition 4.8.1 of [8], the limiting probability278

that the stochastic process will be found in State j (where j runs over all N279

States 1, (2, 1), (2, 2), . . . (2, N − 1)) is independent of the initial state and is280

given by281

θj =
πjµj∑N
i=1 πiµi

(2.7)

The denominator
∑N

i=1 πiµi in (2.7) is called the expected cycle time; and282

it is the expected time between successive renewals (or entry into State 1).283

Having calculated all θj’s, we define θ2 = θ(2,1) + · · ·+ θ(2,N−1) = 1− θ1, since284

State 2 is the aggregate of States (2, 1), (2, 2), . . . , (2, N − 1).285

Since the system is up in States 0 and 1, and down in State 2, but the286

system never returns to States 0, the limiting average availability of the287

system is given by288

Aav = 1− θ2 = θ1 (2.8)

2.2. Computation and comparison289

We want to compare the limiting average availability computed by eq. (2.8)290

under discretization approach to the value computed by eq. (1.4) under291

continuous monitoring. As a test case, let us assume a Weibull(shape=3,292

scale=1.12) lifetime distribution with mean lifetime 1, and a Weibull(shape=2,293

scale=2) repair time distribution with mean repair time 1.77.294

295
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Under discretization approach, since F (12)G(12) < .001, we decompose296

the time range (0, 12] into N = 120 intervals of length ∆ = 0.1 each. We297

construct the CDFs of discretized life- and repair times, F and G, from the298

above mentioned Weibull distributions evaluated at k∆ for k = 1, 2, . . . , 120.299

We construct the PMFs p, q, r as defined above by successive differences.300

Using equations (2.1 - 2.4), we construct the transition probability matrix301

P , which in this case is of dimension 121 × 121. Recall from above that P302

has non-zero entries only in row 2 and column 2. Below we partially display303

the second row rounding each entry to 3 decimal places; all other entries of304

the second column are 1.305

P =

0 1 (2, 1) (2, 2) (2, 3) (2, 4) . . . (2, N − 1)



0 1 0 0 0 0 · · · 0 0
0 .252 .001 .005 .013 .024 · · · ∗ 1
0 1 0 0 0 0 · · · 0 (2, 1)
...

...
...

...
...

...
. . .

...
...

0 1 0 0 0 0 · · · 0 (2, N − 2)
0 1 0 0 0 0 · · · 0 (2, N − 1)

Next, we calculate the stationary probabilities using (2.5): We find π0 =306

0, π1 = 0.572; and for State (2, k)’s (for k = 1, 2, . . . , N − 1), the stationary307

probabilities, rounded to 4 decimal places, are: {π(2,1), π(2,2), . . . , π(2,N−1)}308

= {.0004, .0028, .0075, .0140, .0218, .0300, .0375, .0433, .0464, .0465, .0435,309

.0381, .0311, .0237, .0167, .0110, .0066, .0037, .0019, .0009, .0004, .0001,310

.0001, 0, 0, 0, . . . , 0}.311

Lastly, the expected sojourn times in State 0 and State 1 are both obtained312

from E(X) − ∆/2 =
∑N

k=1 pk k∆ − ∆/2 as µ0 = µ1 = 10.0014. Likewise,313

for State (2, k)’s (for k = 1, 2, . . . , N − 1), we get the expected sojourn times314

(rounded to 4 decimal places) as {µ(2,1), µ(2,2), . . . , µ(2,N−2), µ(2,N−1)}315

= {17.2677, 16.3901, 15.5837, . . . , 1.4000, 1.000}.316

Therefore, θ0 = 0 and θj’s for j = 1, (2, 1), . . . , (2, N − 1) are calculated317

using eq. (2.7). In particular, θ2 = 0.4665872, and the expected cycle time318 ∑N
i=1 πiµi = 10.72444. Moreover, using eq. (2.8), the limiting availability to319

be θ1 = 1− θ2 = .5334128.320

Two comments follow: (1) The exact analytic result, given in (1.4), yields321

the limiting availability to be .5334131. Thus, our discretization approach322
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closely approximates the analytic result previously derived by [13]. (2) For323

the case (r = 1, s = 1), the limiting average availability is .53341, while for324

the case (r = 1, s = 0), using eq. (1.1), the limiting average availability is325

only 1/2.77 = .361. Thus, there is a significant increase (47.76%) in Aav with326

the introduction of a spare unit.327

328

For (r = 1, s = 1), having established the test case of Weibull life- and329

Weibull repair times, we carry out a more comprehensive study of various330

combinations of life- and repair time distributions, always ensuring mean331

lifetime=1 and mean repair time=1.77. We report in Table 1 the limiting332

average availability using both the analytic formula and the discretization333

approach. We extend the time range to (0, 20] so that F (20)G(20) < 0.001,334

but we keep ∆ = 0.1, implying that there are 201 states.335

``````````````̀Lifetime
Repair time

(1/1.77)
Exponential

(2, 0.855)
Gamma

(2, 2)
Weibull

Weibull (3, 1.12)
.49341 .52055 .53341
.49335 .52055 .53341

Gamma (2, 0.5)
.48172 .50413 .51515
.48167 .50413 .51515

Inverse-Gauss (1 , 1)
.47221 .49058 .49867
.47215 .49057 .49904

Exponential (1)
.46971 .48787 .49677
.46926 .48746 .49638

Lognormal (-0.5 , 1)
.46263 .47865 .48946
.46452 .48062 .48902

Table 1: Availability under different life- and repair time distributions for the (r = 1, s = 1)
case. The top entry of each cell is the availability computed through discretization and
the bottom entry using eq. (1.4).

336

Highlighted in the table is the special case when both life- and repair337

time distributions are exponential. The analytic result for this case is al-338

ready given in [1](page 206), [13](page 283) and [10](Corollary 2.2). Here we339

demonstrate that the result of the discretization approach (.46971) closely340
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approximates the analytic result (.46926). The slight discrepancy is due to341

crudely subtracting ∆/2 from the expected sojourn times of the system up342

states; State 0 and State 1.343

To increase limiting average availability we have allowed a spare unit to344

take over the operation when the main unit has failed and is under repair. Of345

course, when there is only one repair facility (that is, r = 1), then when the346

system is down only the first failed unit is under repair while the other failed347

unit is awaiting repair. In order to improve the limiting average availability348

of the system, one strategy is to introduce one more repair facility to expedite349

the repair of the second failed unit. However, when there are multiple repair350

facilities, no analytic result exists in the literature to allow both life- and351

repair time distributions to be arbitrary. The close agreement between the352

values of eq. (1.4) and eq. (2.8) gives us confidence to proceed with the353

discretization approach in case r > 1.354

3. The discretization approach for (r = 2, s = 1)355

Having justified the discretization approach when (r = 1, s = 1), we356

proceed to apply it to the case of a second repair facility, where no analytic357

result is available. Here, (r = 2, s = 1); that is, there are one operating unit,358

one identical spare unit and two identical repair facilities.359

360

3.1. The states of the system361

Figure 2 shows the states of the system (with explanations below), tran-362

sitions between them and the random variables determining the transitions.363

364

Initially, the system is in State 0, where one unit begins to operate and
the other unit is on cold standby. We write the state-space of the system in
two different notation—using one or two indices—depending on the level of
details required for the analysis:

S = {0; 1; 2+; 1+} = {0; (1, 0); (2, 1), . . . , (2, N − 1); (1, 1), . . . , (1, N − 1)}

where the first index i denotes how many units have been detected to have365

failed and are under repair, and the second index j tells us how long the repair366
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Figure 2: The state transition diagram for the (r = 2, s = 1) case. The notation are the
same as in Figure 1.

on the first failed unit has been going on when the repair on the second failed367

unit just starts.368

Let us explain the state space notation in terms of several examples:369

• State 1 = (1, 0) means that one unit has been detected to have failed;370

it has been placed on repair just now, so that its repair duration so far371

is 0; and the other unit has just been placed on operation.372

• Note that there is no State (2, 0) because by the time failure on the373

second unit is detected, the repair on the first failed unit has already374

started and it has been going on for a positive multiple of ∆. Also, there375

is no State (2, N) because if repair has been going on for duration N∆,376

it must have been completed. Likewise, there is no State (1, N).377

• State (2, 5) (provided, of course, N > 5) means that the system just378

entered State 2 (that is, both units are known to have failed); repair379

on the first failed unit has been going on for 5∆ periods; and repair on380

the second failed unit has just started.381

• State (1, 7) (provided, of course, N > 7) means that repair on the only382

failed unit has been going on for 7∆ periods when the other unit is just383

put on operation (hence, there is only one failed unit).384

Recall that we only record those inspection epochs when a failure is de-385

tected or when a down system is ready for revival because at least one unit386
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has been repaired. In particular, we do not record epochs when a repair is387

completed, but the other unit is still operating.388

Next, let us write down the recorded transitions between states and the389

associated transition probabilities. Recall that we monitor the system only390

at epochs ∆, 2∆, 3∆, . . .. As in the case of (r = 1, s = 1), we assume that X391

is the discretized lifetime with CDF F and PMF p; and Y is the discretized392

repair time having CDF G and PMF q. Also, we choose N such that the393

larger of life- and repair times exceeds N∆ with probability at most .001.394

• From State 0, the system surely goes to State 1=(1,0) after a random395

lifetime having PMF p. Therefore,396

P0→(1,0) = 1 (3.1)

• From State 1=(1,0), if the operating unit is still functioning at epoch397

k∆, we do nothing. But if the operating unit is found to have failed398

at epoch k∆, then it must have failed in the interval ((k − 1)∆, k∆],399

which happens with probability pk = F (k∆) − F ((k − 1) ∆). There400

are two distinct cases to consider:401

(i) Repair is already completed by epoch k∆ (that is, repair is finished402

sometime during (0, k∆]), which happens with probability P{Y ≤403

k∆}=G(k∆). In this case, interchange the roles of the two units—404

the repaired unit takes over the operation and the failed unit is put on405

repair. Hence, the system re-enters State 1=(1,0). Hence,406

P(1,0)→(1,0) =
N∑
k=1

pkG(k∆) (3.2)

(ii) Repair is not completed by epoch k∆, which happens with proba-407

bility P{Y ≤ k∆}=G(k∆). In this case, the system goes down, since408

both units have failed and there is no other spare unit to take over409

operation. More specifically, the system enters State (2, k). Hence,410

P(1,0)→(2,k) = pk {1−G(k∆)} (3.3)

• When the system enters State (2, k), we continue to observe the system411

at regular intervals of ∆, labeling those epochs as (k+1)∆, (k+2)∆, . . ..412

Two distinct cases are possible:413

16



(i) Both failed units are repaired during the same time interval, say,414

((k+j−1)∆, (k+j)∆], where j = 1, 2, . . . , N−k. To find the probability415

of this case happening, add over all j the product of two independent416

probabilities: Given that the repair of the first failed unit was not417

completed by time k∆, the conditional probability that it is completed418

during ((k + j − 1)∆, (k + j)∆] is
qk+j

1−G(k∆)
. The probability that the419

second failed unit on which repair started at epoch k∆ is repaired420

during the same time interval as the first failed unit is qj. Finally, note421

that in this case, one of the repaired units (it does not matter which422

one, since the two units are identical) is put on operation and the other423

becomes a standby spare; that is, the system enters State 0. Therefore,424

P(2,k)→0 =
N−k∑
j=1

qj
qk+j

1−G(k∆)
(3.4)

(ii) One of the repairs is completed, but not the other. In this case,425

the repaired unit is put on operation; and the repair on the other unit,426

which has been going on for l∆ time, continues on, causing the system427

to enter State (1, l). The meaning of l is explained below in two sub-428

cases depending on which repair is completed—repair on the first failed429

unit, or repair on the second failed unit.430

– (a) Suppose that the first failed unit, on which the repair has been431

going on for k∆ time, is repaired earlier; and it happens during432

interval ((k+l−1)∆, (k+l)∆]. The conditional probability of this433

event is qk+l

1−G(k∆)
. The probability that the second failed unit, on434

which repair had started freshly at epoch k∆, will not be repaired435

within the additional l∆ duration is P{Y > l∆} = 1−G(l∆).436

– (b) Suppose that the second failed unit, on which repair started437

at epoch k∆, gets repaired earlier; and it happens during inter-438

val ((l − 1)∆, l∆], which has probability ql−k. Then the condi-439

tional probability that the first failed unit will not be repaired by440

epoch l∆, given that the repair was not completed by epoch k∆,441

is 1−G(l∆)
1−G(k∆)

.442

Combining the two sub-cases (a) and (b), we have443

P(2,k)→(1,l) = [qk+l + ql−k]

{
1−G(l∆)

1−G(k∆)

}
(3.5)
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where we interpret qt = 0, unless 1 ≤ t ≤ N .444

• From State (1,l), the system can go to one of two directions:445

(i) If repair is completed before the operating unit fails, we do not446

record that transition; instead, we wait until the operating unit fails,447

say during interval ((j−1) ∆, j∆] (for j = 1, 2, . . . , N), with probability448

pj, and the system goes to State (1,0). The conditional probability that449

repair is completed before this additional time j∆, given that the repair450

was not completed by time l∆, is G((l+j)∆)−G(l∆)
1−G(l∆)

. Hence,451

P(1,l)→(1,0) =
N∑
j=1

pj

{
G((l + j)∆)−G(l∆)

1−G(l∆)

}
(3.6)

where we interpret G(t∆) = 1, whenever t ≥ N .452

(ii) If the operating unit fails during interval ((k − l − 1)∆, (k − l)∆],453

which happens with probability pk−l, before repair of the failed unit is454

completed, then the system goes down and enters State (2, k), where455

k > l. Given that the ongoing repair is not completed by time l∆,456

the conditional probability that the repair will not be completed in457

additional time (k − l) ∆ (that is, by epoch k∆) is 1−G(k∆)
1−G(l∆)

. Hence,458

P(1,l)→(2,k) = pk−l

{
1−G(k∆)

1−G(l∆)

}
(3.7)

for k > l.459

Considering all the above state transition, the transition probability matrix460

P is of dimension 2N × 2N and has the following structure:461

P =

0 1 (2, 1) . . . (2, N − 1) (1, 1) . . . (1, N − 1)



0 1 0 · · · 0 0 · · · 0 0
0 ∗ ∗ · · · ∗ 0 · · · 0 1
∗ 0 0 · · · 0 ∗ · · · ∗ (2, 1)
...

...
...

. . .
...

...
. . .

...
...

∗ 0 0 · · · 0 ∗ · · · ∗ (2, N − 1)
0 ∗ ∗ · · · ∗ 0 · · · 0 (1, 1)
...

...
...

. . .
...

...
. . .

...
...

0 ∗ ∗ · · · ∗ 0 · · · 0 (1, N − 1)

18



The row and column labels in above matrix represent the corresponding462

states. As in the case of (r = 1, s = 1), here also the continuous-time463

stochastic process, after discretization, is a Semi-Markov Process. Hence,464

the analysis follows along similar lines.465

First, we find the stationary probabilities {πj, j ∈ S} of the discrete-time466

Markov chain by solving the state equations that are similar in structure to467

eq. (2.5), but involve many more states.468

Second, we find the expected sojourn time in each state. In fact, the469

expected sojourn times µ0, µ(1,0) and µ(1,l) in States 0, (1, 0), (1, l), for 1 ≤ l ≤470

N−1, are all equal to E(X)−∆/2 =
∑N

k=1 pk k∆−∆/2. [The subtraction of471

∆/2 accounts for the system being down during the last ∆/2 duration within472

each state 0, (1, 0), (1, l).] The expected sojourn time µ(2,k) in State (2, k) (a473

down state) is the expected value of the minimum of the two repair times Y0474

and Yk having CDFs G(j) and G(k+j)−G(k)
1−G(k)

for 0 ≤ j ≤ N (with G(t) = 1 for475

t > N) respectively. Using Problem 1.1 of [8], this expectation can be found476

as the sum of the survival function evaluated at non-negative integers. That477

is, for k = 1, 2, . . . , N , we have478

µ(2,k) = E[min{Y0, Yk}] =
N∑
j=0

P{Y0 ≥ j, Yk ≥ j}

=
N−k∑
j=0

[1−G(j∆)][1−G((k + j)∆)]

1−G(k∆)
.

(3.8)

Here, there is no need to make an additional adjustment of ∆/2 as the system479

is down throughout the time it is in State (2,k).480

Next, using Corollary to Proposition 4.8.1 of [8], the limiting probability481

that the stochastic process will be found in State j is independent of the initial482

state and is given by expressions of the form (eq. (2.7)), but with many more483

states. Let us define State 1+ as aggregate of States (1, 1), (1, 2), . . . , (1, N−1)484

and State 2 as aggregate of States (2, 1), (2, 2), . . . , (2, N − 1).485

Having calculated all θj’s, we define θ2 = θ(2,1) + · · ·+ θ(2,N−1). Since the486

system is up in States 0, 1, 1+, and down in State 2, all states being recurrent,487

the limiting average availability of the system is given by488

Aav = 1− θ2. (3.9)
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3.2. Computations and comparison489

We compute the limiting average availability for various life- and repair490

time distributions, always choosing mean lifetime 1 and mean repair time491

1.77. We have truncated all distributions to have support [0, 12], which we492

have partitioned into 120 equal sub-intervals; that is, we choose ∆ = 0.1.493

Consequently, there are 240 states in the state space S.494

The transition probability matrix P is 240 × 240, whose entries, using495

equations (3.1 - 3.7) and rounded to 4 decimal places, are partially displayed:496

P =

0 1 (2, 1) . . . (2, N − 1) (1, 1) . . . (1, N − 1)



0 1 0 · · · 0 0 · · · 0 0
0 .2517 .0007 · · · ∗ 0 · · · 0 1

.3213 0 0 · · · 0 .0075 · · · ∗ (2, 1)
...

...
...

. . .
...

...
. . .

...
...

.0025 0 0 · · · 0 .9975 · · · 0 (2, N − 1)
0 .2875 ∗ · · · ∗ 0 · · · 0 (1, 1)
...

...
...

. . .
...

...
. . .

...
...

0 .9997 0 · · · .0003 0 · · · 0 (1, N − 1)

The stationary probabilities are obtained by using eq. (2.5). They are497

π0 = .010, π(1,0) = .265, and498

{π(2,1), π(2,2), π(2,3), . . . , π(2,N−2), π(2,N−1)} = {.0002, .0013, .0035, . . . , 0, 0}.499

The expected sojourn times in State 0, State (1, 0) and State (1, l) for500

l = 1, 2, . . . , N − 1 are all equal to 10.0016. And, using eq. (3.8)501

{µ(2,1), µ(2,2), µ(2,3) . . . , µ(2,N−2), µ(2,N−1)} = {12.549, 12.093, 11.665, .., 1.399, 1}.502

Next, using eq. (2.7), we see that the limiting probabilities that the503

stochastic process will stay in a State j, for j ∈ S are respectively θ0 = .0106,504

θ(1,0) = .2794, θ1+ = .3764 and θ2 = .4666. Also, the expected cycle time is505

9.493. Finally, using eq. (3.9), the limiting average availability is obtained506

as .66650.507

Furthermore, in Table 2, we display the limiting average availability cal-508

culated for the same set of life- and repair times as in the case (r = 1, s = 1)509

and the percentage improvement when (r = 2, s = 1).510

511

Table 2 exhibits about 25-35% increase in limiting average availability512

when a second repair facility is included in the presence of one spare unit.513
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``````````````̀Life-time
Repair-time

(1/1.77)
Exponential

(2, 0.855)
Gamma

(2 , 2)
Weibull

Weibull (3, 1.12)
.65807 .66392 .66650
33.37 27.54 24.94

Gamma (2, 0.5)
.64764 .65057 .65171
34.44 29.05 26.51

Inverse-Gauss (1 , 1)
.63903 .63992 .63943
35.33 30.44 28.23

Exponential (1)
.63676 .63718 .63693
35.56 30.61 28.21

Lognormal (-0.5 , 1)
.63024 .63009 .62537
36.23 31.64 29.88

Table 2: We compare the limiting average availability between cases (r = 1, s = 1) and
(r = 2, s = 1). The top entry in each cell is the computed availability for (r = 2, s = 1); and
the bottom entry is the percentage increase in availability compared to the (r = 1, s = 1)
case given in Table 1.

4. Conclusion514

Recall from Section 2 that our discretization approach closely approxi-515

mates the analytic result for the (r = 1, s = 1) case. Also, from Section 3 we516

note that for the (r = 2, s = 1) case under exponential life- and exponential517

repair times, the analytic result of [10], yields a limiting average availabiltiy of518

0.63871, while our discretization approach using eq. (2.8) gives a limiting av-519

erage availability of .63676. Hence, we claim that the discretization approach520

works reasonably well; and it can be used to compute the limiting average521

availability for any life- and repair time distributions. We also find that as522

we increase an additional spare unit from (r = 1, s = 0) to (r = 1, s = 1) or523

as we add an additional repair facility from (r = 1, s = 1) to (r = 2, s = 1)524

there is significant increase in the limiting average availability of the system.525

Obviously, we anticipate a further increase in limiting average availability526

when the number of spare units and/or the number of repair facilities is527

increased. Of course, inclusion of an additional spare unit or an additional528

repair facility will invariably lead to an increase in the number of states and529

therefore inflate the computational burden. Nonetheless, the discretization530

approach will continue to yield the limiting average availability under any531
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arbitrary continuous life- and repair time distributions for other systems as532

well. For example, in future we plan to extend the discretization method to533

study a k-out-of-N : G system.534

Thus, our main contribution in this paper is to provide a simple com-535

putational technique by utilizing the discretization approach that allows us536

to incorporate any arbitrary life- and repair time distributions as well as537

increase the number of repair facilities and/or the number of spare units.538
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