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Abstract

We propose a non-intrusive stochastic model reduction method for polynomial

chaos representation of acoustic problems using proper orthogonal decomposi-

tion. The random wavenumber in the well-established Helmholtz equation is

approximated via the polynomial chaos expansion. Using conventional methods

of polynomial chaos expansion for uncertainty quantification, the computational

cost in modelling acoustic waves increases with number of degrees of freedom.

Therefore, reducing the construction time of surrogate models is a real engineer-

ing challenge. In the present study, we combine the proper orthogonal decom-

position method with the polynomial chaos expansions for efficient uncertainty

quantification of complex acoustic wave problems with large number of output

physical variables. As a numerical solver of the Helmholtz equation we consider

the finite element method. We present numerical results for several examples

on acoustic waves in two enclosures using different wavenumbers. The obtained

numerical results demonstrate that the non-intrusive reduction method is able

to accurately reproduce the mean and variance distributions. Results of un-

certainty quantification analysis in the considered test examples showed that
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the computational cost of the reduced-order model is far lower than that of the

full-order model.

Keywords: Proper orthogonal decomposition, Polynomial chaos expansion,

Uncertainty quantification, Stochastic Helmholtz equation, Acoustic waves.

1. Introduction

Advancements in numerical modelling of wave propagation allowed engineers

to develop applications in many fields. Ranging from global positioning systems

[1] and mobile phones [2, 3] to medical instrumentation [4, 5] and subsurface

imaging [6, 7], the numerical tools provide a precious help for stakeholders in

order to make relevant decisions [8, 9]. However, despite the great efforts made

to model waves, it is often the case that numerical responses are simulated with

ubiquitous uncertainties [8, 9]. There are many inevitable sources of uncertainty

for which a modeler should deal with during the numerical simulation. For ex-

ample, it is often the case that the subsurface soil properties in geophysics are

identified with uncertainty which will then be reflected in identifying the prob-

lem wavenumber or boundary conditions, compare [10, 11] among others. Cov-

ering both physical approximation and numerical parametrization, all these nec-

essary assumptions lead to generation of uncertain simulations. Consequently,

many works nowadays focus on quantifying the uncertainty encompassed in a

numerical model, compare [12, 13, 14, 15].

In practice, Uncertainty Quantification (UQ) can be carried out using either

the well-established intrusive techniques [16, 17, 18] or non-intrusive procedures

[19, 20, 21]. The first approach needs the modification of the deterministic nu-

merical algorithm whereas, the second approach uses the numerical model as a

black box. Since accurate numerical methods for solving the Helmholtz equa-

tion are still a challenging research field [22] and in order to develop a general

framework for UQ in computational acoustics, the focus in the present study is

on the non-intrusive approach. Stochastic simulations remain the most popular

techniques for uncertainty quantification. Indeed, the ensemble-based methods
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[23, 24, 25, 26] are very easy to implement and more importantly they do not

need to change the main model. The basic idea of the ensemble-based methods

remains in the central limit theorem, see for example [27]. The theorem states

that a large number of random variable samples well defined in a probabilistic

space ensures its convergence in distribution according to the associated prob-

ability density function. In fact, the well-known Monte-Carlo (MC) sampling

methods are a class of powerful tools because they ensure the convergence. How-

ever, in order to guarantee convergence, the MC methods require a large number

of simulations to be performed. Therefore, many efforts have been deployed in

order to achieve efficient methods for the uncertainty quantification (UQ), see

for instance [28, 12]. In order to outperform the classical MC simulations, these

new methods have to be at least as accurate as MC methods to estimate the

uncertainty and in addition they should require less computational times. One

leading idea in the UQ applications is to replace the expensive full model by a

meta-model, also known as surrogate model [29]. The aim here is to mimic the

behavior of the model while requiring less computational time to simulate the

response. Hence, different meta-models have been developed in the community

but Kriging and Polynomial Chaos Expansion (PCE) are considered to be the

most used to treat UQ, see [30, 31, 32, 33, 34, 35] among others. In the current

work, accounting for the complex physics in acoustics, the PCE is preferred over

the Kriging in order to ensure convergence as stated in [33].

Spectral decomposition is widely used in numerical simulation of many prac-

tical problems. In the probabilistic context, it consists in projecting a random

variable (response of a model) in a suitable basis of finite dimensions. The

theory behind PCE lies on building the base from a set of orthogonal poly-

nomials. Therefore, defining a reduced model from this technique is based on

calculating the polynomial coefficients. An intuitive method for calculating

these coefficients is to replace the model response by its approximation in the

partial differential equations governing the problem under study whereas, the

coefficients are thus calculated directly by the Galerkin method. These methods

have been presented for the first time to solve problems in structural mechanics
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with random input variables in [36]. It should be noted that this method is

called intrusive because it requires to modify the existing computer program.

Alternatively, non-intrusive methods consist of using the computer code as a

black box without amendments. In this case, obtaining the response solutions

can only be carried out through model evaluations. These methods make it

possible to obtain a polynomial approximation from an ensemble-based tech-

nique. It was first used in [36] for resolving the uncertainty propagation as

an alternative to MC methods and its application is based on the corollary of

Cameron-Martin theorem [37]. In addition, the work presented in [38] made

it possible to generalize the previous study on the chaos polynomials for other

classes of probability distributions than the Gaussian law adopting the Askey

scheme from [39] known by generalized Polynomial Chaos (gPC) and widely

used in the literature. For the sake of simplicity through this paper we will refer

to PCE for gPC. Several studies have also been published in the literature to

illustrate the efficiency of PCE in the context of UQ, sensitivity analysis and

also as a powerful tool to accelerate inverse problems such as data assimilation,

see for instance [40, 15, 41] and further references are therein.

In the framework of developing meta-models to reduce the computational

cost in the UQ, many efforts have been engaged in order to overcome the chal-

lenges presented by the advanced numerical models. This is mainly because the

construction time required for PCE increases exponentially with the stochastic

dimension, see for example [42, 43] and further references are therein. One of

the main challenges was to overcome the problem of stochastic dimensions in the

model input parameters. For example, authors in [44] introduced the adaptive

sparse PCE to tackle this problem. The idea is to use a least angle regression

as defined in [45], to estimate the PCE based on a regression method. Another

study presented in [46] combines Kriging and PCE to introduce a new meta-

model. This technique allows to take into account the global and local behaviors

of UQ. However, few studies focused on the physical dimension of the output

variables. In fact in many studies, when an UQ algorithm is implemented over

a numerical model while the output solution is a physical field discretized in a
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mesh, the method needs computation of the PCE in every node of the mesh,

see for example [40, 47, 48]. For these situations, the numerical resolution of

complex acoustic features requires fine meshes which results in highly computa-

tional costs. It should also be stressed that the physical outputs are stochastic

processes with spatial or/and temporal correlations rather than stochastic vari-

ables. Thus, the uncertainty displayed over this process is not even neither in

space nor in time. Different outputs are expected for each nodal point in the

computational mesh and at every time step in the time interval. Therefore, there

is a need to develop less time-consuming methodologies in order to quantify the

uncertainty when the output is a stochastic process. In addition, dimension

reduction is a common tools needed for UQ and nowadays each model needs a

high number of input parameters to run. As all these parameters could lead to

ubiquitous uncertainty, one strategy to reduce the computational burden, is to

fix the parameters to which the uncertainty of the response is insensitive. For

instance, these methods have been considered in [49] using the method of mo-

ments and in [47] using the sparse polynomial decomposition. However, when

the uncertain input in the model is a vector-based parameter, neglecting one

of its components may deteriorate the uncertainty described by this vector and

consequently it may fail to capture the correct physical features of the numerical

solution.

One way used in the literature to alleviate this problem consists of using

the Karhunen-Loève decomposition, see for example [50, 51, 52]. Furthermore,

for high dimensions in the model output dimension, other different techniques

could be adopted including the Principal Component Analysis (PCA) [53], the

Proper Generalized Decomposition (PGD) [54], and the Proper Orthogonal De-

composition (POD) [55] among others. It should be stressed that the main idea

on these techniques relies in the fact that uncertainty features are described in

the response of random vectors with few non-physical variables. The statistical

interests are obtained using resampling of the new surrogate model. Therefore,

due to the complex physical features in the Helmholtz equation for which the

acoustic response exhibits steep gradients and localized structures, the POD is
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implemented in the current study.

In this work, a non-intrusive reduced-order technique is developed and ap-

plied to the two-dimensional propagation of acoustic waves. We consider the

wave model in the frequency domain and the governing equation reduces to a

stochastic Helmholtz problem. It is well known that to increase the contribu-

tion and reliability of computational acoustics in design process of industrial

equipments, it is necessary to quantify the effects of uncertainties on the system

performance. As a numerical solver we implement the finite element method for

the Helmholtz equation to compute the complex solution. Our main focus in

the current study is on uncertainty associated with the wavenumber in acoustic

waves. We therefore eliminate different sources of error in the approximations

made by the numerical solver to try to quantify only the uncertainty associated

with the wavenumber. Usually the acoustic signals measurements are affected

by random environmental factors, which will negatively affect the certainty of

the measured results [56]. Quantifying the effect of such uncertainties is impor-

tant to validate the deterministic problem solution. The main focus is on the

UQ in the simulation of acoustic potential resulting from uncertain wavenum-

bers related to uncertain frequency and celerity of the waves under study. We

investigate the use of a proper orthogonal decomposition (POD) to reduce the

dimensionality of the problem outputs.

To assess the performance of the proposed methodology, several test exam-

ples are simulated using different wavenumbers. We also perform a comparison

between the proposed approach and a class of massive MC simulations in terms

of mean and variance fields. The remaining of this paper is organized as follows.

In Section 2 we present details of the mathematical formulation and the prob-

lem under investigation. The model reduction methodology along with PCE

and POD techniques are described in Section 3. Section 4 outlines the perfor-

mance of the proposed methods using several applications in acoustics. Finally,

concluding remarks are included in Section 5.
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2. Finite element method for modelling acoustic waves

In the present work we are interested in the finite element method solution

of the time-harmonic exterior wave equation. The flexibility of the finite ele-

ment method in dealing with complex geometries and material heterogeneity,

makes it a popular option for solving this type of problems, see for example

[57, 58, 59, 60, 61]. The solution is relevant to computational acoustics among

other applications, [62, 63, 64]. The finite element method is also well studied in

the literature for this type of applications, however, for completeness we briefly

introduce the finite element formulation of the problem in this section. Hence,

we consider an open bounded domain Ω in R2 where waves can propagate to

infinity. To solve the problem with the finite element method we need to trun-

cate the domain at some boundary ∂Ω. The wave potential u(x, y) ∈ H1(Ω)

can then be defined as a function that satisfies the well-established Helmholtz

equation

∆u+ κ2u = 0, in Ω, (1)

where κ > 0 is the wave number, ∆ the Laplace operator and H1(Ω) the stan-

dard Sobolev space. Furthermore, we impose a Robin-type boundary condition

on ∂Ω as

∇u · n + iκu = g, on ∂Ω, (2)

where i=
√
−1, g(x, y) is the imposed boundary function, ∇ the gradient vector

operator and n the outward unit normal to ∂Ω. The considered boundary-value

problem is defined by the equations (1) and (2). In this study we concentrate

on the impact of the uncertainty in the wavenumber κ on the finite element

solution of the the problem (1)-(2). Therefore, to eliminate numerical errors of

approximating radiation boundary conditions we avoid solving a full exterior

problem. Furthermore, the boundary condition (2) is used to impose the ana-

lytical solution of the deterministic problem on the domain boundary ∂Ω. Thus,

we also eliminate numerical errors resulting from approximating the geometry.

To recover the solution u(x, y) in Ω using the finite element method, we first

multiply the equation (1) with a weighting function w(x, y) ∈ H1(Ω), integrate
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over Ω and then use the divergence theorem, which yields∫
Ω

(
−∇w · ∇u+ κ2wu

)
dΩ +

∫
Γ

w∇u · n dΓ = 0. (3)

Substituting the boundary condition (2) into this form we obtain the following

weak formulation∫
Ω

(
∇w · ∇u− κ2wu

)
dΩ + iκ

∫
Γ

wudΓ =

∫
Γ

wg dΓ. (4)

Using the finite element method, it is possible to recover an approximation for

u(x, y) by solving the equation (4). Hence, we first discretize (4) by meshing

the domain Ω into a set of elements Ti

Th = {T1, T2, . . . , TN} , (5)

with each element Ti is a sub-domain of Ω and a union of all elements forms

the computational domain Ωh =
⋃
Ti∈Th Ti. We also assume that the standard

finite element requirements are satisfied by all the elements and h refers to the

characteristic element size. Hence, we define a discrete space Wh ⊂ H1(Ωh) by

Wh =
{
w ∈ C0(Ωh) : w

∣∣
Ti
∈ P (Ti) ∀ Ti ∈ Th

}
, (6)

where P (Ti) is the space of linear polynomials defined on the element Ti. The

solution approximation space Wh has a finite number of dimensions M which

is the number of basis functions in the space. Thus, the solution u can then be

approximated using the finite element method as a linear combination of these

basis functions Nj such as

u(x, y) ≈ uh =

M∑
j=1

ujNj(x, y), (7)

where uj are the values of uh at the elemental nodes. Using the basis functions

Nj to also replace the weighting function in the weak formulation (4), we can

rewrite the weak formulation as a summation over the discretized domain

M∑
j=1

(∫
Ω

(
∇Nj · ∇Ni − κ2NjNi

)
dΩ + iκ

∫
Γ

NjNi dΓ

)
uj =

∫
Γ

Nig dΓ. (8)
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The integration over Ω in the discrete weak formulation is performed element by

element using the well-established Gauss quadratures. Linear basis functions on

quadrilateral elements are selected in the current work. This results in a linear

system of algebraic equations as

Ax = b, (9)

where A being a sparse symmetric M ×M matrix while the M unknown nodal

values of the solution uj are represented in the vector x. The entries of the

matrix A and the vector b in this linear system (9) are given by

Aj,i =

∫
Ω

(
∇Nj · ∇Ni − κ2NjNi

)
dΩ + iκ

∫
Γ

NjNi dΓ,

and

bj =

∫
Γ

Nig dΓ,

respectively. It should be noted that the basis functions preserve the Kronecker

delta property i.e. take a value of one at one node and zero at any other node.

Hence, the associated matrix A is a sparse matrix. The linear system (9) is

solved with a direct solver using a general triangular factorization computed by

the Gaussian elimination with partial pivoting. Notice that, if a high wavenum-

ber is considered in the acoustic problem, a large number of basis functions

is needed to have a proper approximation for the considered boundary-value

problem. This may lead to the matrix A becoming ill-conditioned. To avoid

this situation in the current study, we concentrate on acoustic wave problems

with relatively low wavenumbers.

3. Uncertainty quantification for the stochastic process

We describe the general methodology with an eye towards solving stochas-

tic acoustic waves. We briefly discuss techniques used for polynomial chaos

expansions and stochastic proper orthogonal decomposition. Details on the ap-

plication of these tools for quantifying uncertainties in acoustic waves are also
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presented in this section. Accounting for stochastic input parameter ζ in (1)-(2),

the stochastic Helmholtz problem we consider in the present study reads

∆U + κ2U = 0, in Ω,
(10)

∇U · n + iκU = g, on ∂Ω,

where U(x, y, ζ) is the stochastic wave potential, κ(ζ) the stochastic wave num-

ber and g(x, y, ζ) the stochastic boundary function.

3.1. Polynomial chaos expansions

Polynomial chaos expansion has been intensively used as a surrogate model

in the context of uncertainty quantification. It aims to reproduce the global be-

havior of a simulation following a polynomial decomposition. The multivariate

polynomials that form the basis are chosen according to the probability density

function of the supposed stochastic input variables as defined for example in

[65, 38]. In the present study, the decomposition of the simulation response U

in the Cartesian coordinates (x, y) is given by

U(x, y, ζ) =
∑
i∈N

αi(x, y)Ψi(κ(ζ)), (11)

where ζ is the vector containing all the stochastic input parameters in the

stochastic space, αi are the spectral coefficient of the decomposition to be de-

termined hereinafter, and (Ψi)i≥0 are the orthogonal polynomial basis. Note

that, because of the stochastic nature of the input variable κ(ζ), the response

U has also a stochastic component assumed to be of finite variance. In practice,

the sum in (11) is truncated to a finite series as

U(x, y, ζ) ≈
∑
i∈I⊂N

αi(x, y)Ψi(κ(ζ)). (12)

The determination of a PCE is therefore conditioned by the estimation of the

spectral coefficients αi. There are many methods used in the literature to achieve

this step and we refer the reader to [13, 66, 67] for a deep discussion on these

methodologies. For the sake of simplicity and without loss of generalities, only
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the regression method is considered in the present work and one can use the

most efficient sparse decomposition when the stochastic dimension is very high,

see for example [44]. It should be stressed that the well-established quadrature

techniques are not considered in the current study because they can not be used

to build the POD modes.

The regression method is based on solving a least-square (LS) minimization

problem in some `2-norm to estimate the coefficients αi, see for instance [68, 30].

In practice, we begin by defining an error ε as the distance between the model

and the PCE for a finite set of randomly sampled input variables of size Nls

such that

ε = U(x, y,Ξ)−
∑
i∈N

αi(x, y)Ψ(κ(Ξ)) ≡ U −α>Ψ, (13)

where Ξ = [ζ(1), . . . , ζ(Nls)]> is the set of realizations for the stochastic input

variables ζ, and U = [U (1), . . . ,U (Nls)]> is the vector of associated model out-

puts. We also define α = [α0, . . . , αNPC−1
]> as the vector of theNPC = Card(I)

unknown coefficients and Ψ is the matrix of size NPC ×Nls assembling the val-

ues of all orthonormal polynomials at the stochastic input realizations values

Ψik = Ψi(ζ
(k)), with i = 0, 1, . . . , NPC−1 and k = 1, 2, . . . , Nls. Estimating the

set of coefficients α following the ordinary least-square (13) which is equivalent

to minimize the following function

J(α) = ε>ε =
(
U −α>Ψ

)> (U −α>Ψ
)
, (14)

leading to a standard well-known linear algebraic solution as

α = (Ψ>Ψ)−1 Ψ> U . (15)

Here, the input space exploration is fulfilled thanks to a Monte-Carlo sampling-

based approach as described in [69, 70] among others. The convergence of the

MC simulations is monitored using a sensitivity analysis on the size of samples

used as discussed in details for example in [71, 72, 73].

Note that, when dealing with numerical models with spatial or temporal

dependency, the classical way consists on building a single surrogate model per
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node of the mesh in the computational domain. It should also be mentioned that

in many applications for acoustic waves, highly refined meshes are required to

capture wave propagation at high wavelengths, see for instance [74]. This pro-

cedure leads to multiple decompositions to ensure the numerical convergence.

As a result, uncertainty quantification becomes computationally very expensive

not because of the stochastic dimensions but rather because of the spatial or

temporal dimensions of the output variables. The infinite expansion describ-

ing PCE (11) converges with respect to the standard `2-norm known by the

mean-squared convergence, see for example [13]. However, due to the errors of

truncation and spectral coefficient estimation, the accuracy of such expansion

must be evaluated in the same error norm. There are many different error met-

rics that allow to assess the accuracy of PCE, see [47, 13] among others. In

the present work, all the PCEs are assessed using the LOO error. This method

avoids integrating the model over another set of validation samples. It has been

introduced in this context with the introduction of sparse PCE [30] and the

LOO technique [75, 44] required the formulation of several surrogates. Each

surrogate is built excluding one point out of the input sample and the accu-

racy of the surrogate is then calculated at this particular point. Following this

theory, the error εLOO is defined by

εLOO =

Nls∑
k=1

(
U (k) −U (−k)

)2

Nls∑
k=1

(U (k) −U)2

, (16)

where U denotes the sample-averaged model simulations and U (−k) stands for

the evaluation of the PCE at ζ(k) when the surrogate has been built using

an experimental design in which ζ(k) was excluded. In practice, the surrogate

model is reconstructed once using all the samples and the error εLOO could be

evaluated analytically as reported in [44]. In the present work, the determination

of the optimal polynomial degree is performed using an iterative method. Here,

a PCE is computed for different degrees varying from 1 to 20, then the optimal

degree is determined based on the value of the corresponding εLOO. For a same
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value of the error, the lowest value of the degree is retained.

3.2. Stochastic proper orthogonal decomposition

The proper orthogonal decomposition (POD) is a technique that allows a

high-dimensional system to be approached by a low-dimensional one, compare

[76] among others. This method consists in determining a basis of orthogonal

eigenvalues representative of the simulated physics. The eigenvectors are ob-

tained by solving the integral of Fredholm whereas, the kernel of this integral

is constructed from a set of simulations constructed using an experimental de-

sign. The interesting property of this representation lies in the fact that the

eigenfunctions associated with the problem are optimal in the sense of the en-

ergetic representation (as described later) which makes it possible to use them

to construct a reduced representation of physics. The POD is used in uncer-

tainty quantifications to reduce the size of a random vector at the output of the

model. The uncertainty is therefore carried out over each direction defined by

the eigenvectors λi. The idea is based on projecting the solution U of the model

into a finite and orthonormal basis {φi, i ∈ IPOD}, where IPOD is a discrete

finite set of indices. Thus, the process U(x, y, ζ) is decomposed as

U(x, y, ζ) =
∑

i∈IPOD

λi(ζ)φi(x, y). (17)

The estimation of {φi, i ∈ IPOD} is performed by decomposing the spatial co-

variance matrix

C(x, y) =
1

Nls
UU>. (18)

Indeed, the literature is rich of methodologies that aim to decompose a covari-

ance matrix. One of the most known methods is the Singular Value Decompo-

sition (SVD) algorithm. Furthermore, we define a POD-truncated error ε such

as only the most k invaluable eigenvectors are retained as

k∑
i=0

λ̂i

Nls∑
i=0

λ̂i

> 1− ε, (19)
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where λ̂i is the mean value of λi(ζ). In summary, the stochastic POD procedure

can be implemented using the following steps:

1. Define the covariance matrix (18).

2. Expand the matrix C using an SVD algorithm in order to determine λi

and φi(x, y).

3. Retain only the first k eigenvalues and eigenvectors in the expansion using

the condition (19).

4. Reconstruct the stochastic solutions U(x, y, ζ) using (17).

It is worth mentioning that the selection of convergence criterion ε is problem

dependent. The criterion choice of ε for test examples of present investigation

is discussed in Section 4 where numerical examples are described.

3.3. The POD-PCE surrogate model

Once the stochastic POD is reconstructed, the eigenvalues are considered as

random variables. This means that we can define a PCE for each eigenvalue

following the same manner as described in the previous section on polynomial

chaos expansions leaving the spatial dependence described by the eigenvectors

φi(x, y) as

λi(ζ) =

NPC∑
j=0

γjΨj(ζ), (20)

which reduces the equation (12) to

U(x, y, ζ) =
∑

i∈IPOD

NPC∑
j=0

γjΨj(ζ)

φi(x, y). (21)

Figure 1 summarizes both algorithms that we consider in the present work for

quantification of uncertainties in stochastic acoustics. Note that the classical

way to deal with a problem of uncertainty quantification using the PCE is per-

formed when a decomposition is achieved for each node in the computational

mesh. This method is illustrated by steps 1, 2 and 3 in Figure 1. However as

mentioned before, one method to alleviate the spatial distribution is to make

a first reduction using the POD. This latter will help to separate the spatial
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Figure 1: Schematic representation of the difference between flowcharts for the classical PCE

based surrogate model and the POD-PCE based surrogate model.

dependence from the stochastic one as the stochasticity is included in the as-

sociated eigenvalues. Once the POD is carried out, only few eigenmodes are

retained enabling to make less PCE than its conventional counterpart. This

algorithm follows steps 1, 2, 4 and 5 in Figure 1. In the current work, a nu-

merical evaluation of both methods is carried out using two test examples in

computational acoustics. Special attention is given to the accuracy of the con-

sidered methods compared to the massive MC simulations (using 105 samples)

for the quantities of interest in terms of mean and variance fields. In addition,

a comparative study of efficiency in these techniques is also presented using

CPU times required for each reconstruction. Notice that such approach has
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also been tested in other cases. For example in [53], the PCE coefficients have

been computed using the least angle regression over principal component eigen-

values which is similar to the POD approach. Another approach using the PCE

of vector-valued response quantities has been reported in [77].

4. Numerical results and examples

In this section we assess the numerical performance of the proposed proper

orthogonal decomposition for acoustics using two test examples on the Helmholtz

problem (1)-(2). For each test example we present comparison results obtained

using MC, PCE and POD-PCE methods for both the real and imaginary parts

of the potential solution. In all our simulations, the value of the POD truncation

criterion defined in section 3 is set to ε = 10−4.

4.1. Plane wave propagation

As a first test example we consider the problem of plane wave propagation

in the squared domain Ω = [0, 1] × [0, 1]. Hence, we solve the two-dimensional

Helmholtz problem (1)-(2) such that its exact deterministic solution is defined

by

u(x, y) = exp
(

iκ
(
x cosα+ y sinα

))
. (22)

The boundary function g in (2) is derived from the analytical solution (22).

Here, the wavenumber κ and the wave direction α are assumed to be stochastic

parameters defined as

κ(ζκ) = κ (1 + CV ζκ) , α(ζα) = α (1 + CV ζα) , (23)

where CV is the coefficient of variation associated to the physical values of

the parameters κ(ζκ) and α(ζα), κ and α are the mean values of κ and α,

respectively. In (23), ζκ and ζα are the corresponding random variables which

are supposed to follow the centered normal law N (0, 1). In the results presented

for this test example, the mean wave direction α = π
30 and two values of the

mean wavenumber κ are selected. Here, the uncertainty is assessed for the

quantities of interest over the acoustic potential u(x, y, ζκ, ζα).

16



Table 1: CPU times (in seconds) required by the PCE and POD-PCE methods for solving

plane wave propagation problem using κ = 2π. Numbers in parenthesis refer to the number

of modes used in the POD-PCE method for a threshold of ε = 10−4. The results are obtained

for an equivalent accuracy in both methods.

CV PCE method POD-PCE method

5 % 7311 41 (6)

10 % 7763 57 (8)

15 % 8330 61 (8)

Figure 2: Mean wave potential u(x, y, ζκ, ζα) obtained for the stochastic simulation (first

column), the deterministic exact solution u(x, y) (second column) and the difference between

the two solutions (third column) obtained for plane wave propagation problem using κ = 2π

and CV = 10 %. We present results for the real part (first row) and imaginary part (second

row).

We first run the simulations using κ = 2π on a structured finite element

mesh formed of 4-noded bilinear elements with a total number of 5740 ele-

ments and 5776 nodes. For the considered conditions, we present in Table 1
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Figure 3: Optimal polynomial degree for the PCE method over each node of the computational

mesh in the real part (left) and imaginary part (right) for plane wave propagation problem

using κ = 2π and CV = 10 %.

a comparison of computational costs needed for the construction of PCE and

POD-PCE surrogate models for uncertainty quantification in this test exam-

ple using three values for the coefficient of variation CV . It is evident that

increasing the amount of uncertainty in the problem results in an increase of

CPU time for both methods. However, the computational costs required for

the proposed POD-PCE approach is far lower than those required for the PCE

method. For all considered values of CV , the POD-PCE method is more than

136 times computationally faster than the PCE method. The next set of results

is dedicated to demonstrate that the reduction does not impact the accuracy of

UQ.

In Figure 2 we present solutions for the mean wave potential obtained for

the stochastic simulation along with the deterministic exact solution using the

coefficient of variance CV = 10 %. For comparison reasons, we also include in

this figure the difference between the two solutions. Note that, since the solution

of the acoustic problems (1)-(2) are complex, we display results for both real

and imaginary parts in our simulations. It is clear from the results presented in

Figure 2 that, for the considered amount of uncertainty in the problem under

study, the deterministic and the stochastic mean solutions exhibit similar trends.
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The finite element method accurately resolves this stochastic wave problem and

it reproduces numerical results free from any non-physical oscillations. It should

be pointed out that, the PCE approach is implemented using the conventional

techniques such that a suitable polynomial degree is determined for each node

in the computational mesh. To illustrate this selection, Figure 3 presents the

distribution of polynomial degrees in the finite element mesh for the real and

imaginary parts of the solution. Under the considered stochastic inputs, the

uncertainty is captured with polynomial degrees varying from 5 to 10. However,

for some regions in the spatial domain (especially in the left side), the PCE

method needed higher polynomial degrees. For such polynomial degrees, the

order of magnitude for εLOO is 10−5 and 10−9 for the real part and imaginary

part, respectively. These low values of the error εLOO confirm the convergence

of the PCE method for this test example.

Next we compare the results obtained using the conventional PCE method

applied to the full model and the POD-PCE method solving the reduced model.

In this case, using a truncation criterion with ε = 10−4, only the first 8 eigenval-

ues are retained in the model and the PCE step is performed for each of mode.

Therefore, the surrogate model needs only 8 decompositions instead of the 5776

decompositions representing the total number of nodes in the numerical model.

The accuracy of the PCE method for each eigenvalues is assessed in Figure 4. In

this figure we present the optimal polynomial degrees to estimate each spectral

mode in the POD method and the LOO-error in the estimation of PCE method

over each mode for both real and imaginary parts of the numerical solution.

The results show a good convergence in the decomposition making them reli-

able for the UQ since the order of magnitude of the LOO-error is very low in

the presented results.

Next, we compare in Figure 5 the numerical results obtained for the mean

solutions using the MC, PCE and POD-PCE methods for both real and imag-

inary parts of the acoustic solutions. The results obtained for the variance are

depicted in Figure 7. For a better insight, we display in Figure 9 horizontal

cross-sections of the variance at y = 0.45. It is clear that from the obtained
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Real part Imaginary part

Figure 4: Optimal polynomial degrees to estimate each spectral mode in the POD method

(first row) and LOO-error in the estimation of PCE method over each mode (second row) for

the test example of plane wave propagation using κ = 2π.

results for mean and variance that the three considered methods show the same

wave patterns and capture the correct acoustic for this test case. For better in-

sights, the L2-error in the estimation of the first considered statistical moments,

namely the mean and the variance are depicted in Figure 6 and Figure 8, re-

spectively. It is evident that, as the magnitude of the error is very low (< 10−4),

one can state that both surrogate models efficiently capture the uncertainty dis-

played over the physical domain for the considered acoustic problem. However,

this accuracy is achieved in the proposed POD-PCE method requiring very low

computational cost compared to the MC and PCE methods.

We now turn our attention to the numerical case with a relatively high
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MC method PCE method POD-PCE method

Figure 5: Mean solutions obtained using MC, PCE and POD-PCE methods for the real part

(top) and imaginary part (bottom) for plane wave propagation problem using κ = 2π.

wavenumber κ = 4π. We carry out the same comparative study as in the pre-

vious test case for the plane wave propagation problem. Here, the unit squared

domain is discretized into 1600 bilinear elements with 1681 nodes. Table 2 sum-

marizes the computational costs needed by the PCE and POD-PCE methods

for uncertainty quantification in this test example using three values for the

coefficient of variation CV. Again, since the proposed POD-PCE method sig-

nificantly reduces the computational model, it outperforms the classical PCE

method. For the considered coefficient of variations, the POD-PCE method is

about 35 times faster than the PCE method. This demonstrates the efficiency of

the POD-PCE method for solving stochastic problems for wave acoustics with

high wavenumbers.

Figure 10 presents the obtained mean solutions for the stochastic problem

for the plane wave propagation problem using CV = 15 %. For comparison

purposes, we also include the real and imaginary solutions for the deterministic

problem. In the contrary to the first test example, the increase of the wavenum-
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Real part Imaginary part

Figure 6: L2-error in the estimation of the mean field using PCE method (first row) and POD-

PCE method (second row) for the test example of plane wave propagation using κ = 2π.

ber has resulted in an increase in the non-linearity of the problem. Therefore,

the deterministic and the mean solutions are not exactly the same as notable

in Figure 10. However, the wave patterns for κ = 4π have been preserved in

the stochastic model and the diffusion is more pronounced that in their deter-

ministic counterparts. As in the previous test case, we illustrate in Figure 11

the sensitivity of polynomial degrees for the real and imaginary parts of the

solution in the computational mesh. An examination of the distributions in

this figure reveals the non-linearity of the problem as high polynomial degrees

are needed to capture the uncertainty. Here, under the considered stochastic

inputs, the uncertainty is captured with polynomial degrees varying from 5 to

15. For such polynomial degrees, the order of magnitude for εLOO is 10−6 for
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MC method PCE method POD-PCE method

Figure 7: Same as Figure 5 but for the variance.

the both real and imaginary parts. This behavior confirms the convergence of

the PCE method for this test case in plane wave propagations.

A comparison between the conventional PCE method applied to the full

model and the POD-PCE method solving the reduced model has also been

performed for this test example. Note that, as the non-linearity increases, the

needed number of POD modes in the method also increases. In this test case,

using a truncation criterion with ε = 10−4, only 14 eigenvalues are retained in

the model and the PCE step is performed for each of mode. Thus, the surrogate

model needs only 14 decompositions instead of the 1681 decompositions repre-

senting the total number of nodes in the numerical model. Figure 12 depicts

the accuracy of the PCE method achieved for each eigenvalue. We present the

optimal polynomial degrees to estimate each spectral mode in the POD method

and the LOO-error in the estimation of PCE method over each mode for both

real and imaginary parts of the numerical solution. The results also show a good

convergence in the decomposition making them reliable for UQ as the order of
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Real part Imaginary part

Figure 8: L2-error in the estimation of the variance field using PCE method (first row) and

POD-PCE method (second row) for the test example of plane wave propagation using κ = 2π.

magnitude of the LOO-error is very low in the computed results.

As a final comment on this test example, we present in Figure 13 a com-

parison between the numerical results obtained for the mean solutions using

the MC, PCE and POD-PCE methods for both real and imaginary parts of

the solutions. The comparative results obtained for the variance are depicted

in Figure 14. To further illustrate this comparison we display in Figure 9 the

horizontal cross-sections of the variance solutions at y = 0.45. For this case with

κ = 4π, the conventional PCE method is not able to exactly reproduce the vari-

ance field. Indeed, the PCE method offers tools that allow to represent global

UQ for a localized random variable. Therefore, the uncertainty that propagates

through the spatial domain is not well-represented using the PCE method. On
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Figure 9: Cross-sections of the variance solutions in Figure 7 for the real part (left) and

imaginary part (right) for plane wave propagation problem using κ = 2π.

Table 2: CPU times (in seconds) required by PCE and POD-PCE methods for solving plane

wave propagation problem using κ = 4π. Numbers in parenthesis refer to the number of

modes used in the POD-PCE method for a threshold of ε = 10−4. The results are obtained

for an equivalent accuracy in both methods.

CV PCE method POD-PCE method

5 % 2250 53 (8)

10 % 2673 90 (13)

15 % 3268 93 (14)
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Figure 10: Mean wave potential u(x, y, ζκ, ζα) obtained for the stochastic simulation (first row)

and the deterministic exact solution u(x, y) (second row) obtained for plane wave propagation

problem using κ = 4π and CV = 15 %. We present results for the real part (left) and

imaginary part (right).
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Figure 11: Optimal polynomial degree for the PCE method over each node of the compu-

tational mesh in the real part (left) and imaginary part (right) for plane wave propagation

problem using κ = 4π and CV = 15 %.

the other hand, the POD-PCE method propagates the uncertainty over each

eigenmode. These latter contain already the spatial dependence and therefore,

when executing a PCE step over an eigenvalue the method captures the neces-

sary information and it reproduces the uncertainty correctly. In summary, from

a computational and UQ point of views, the POD-PCE method is more efficient

and accurate than the classical PCE method for numerical outputs in the form

of stochastic processes in plane waves.

4.2. Plane wave scattering

Our second test example consists of a plane wave scattering by a circular

cylinder studied for example in [78, 22]. If the incident wave propagates in

the negative x-axis direction then the scattered wave field can be evaluated

analytically using the expression

u = −
∞∑
n=0

iεn
J ′n(ka)

H ′n(κa)
Hn(κr) cos(nθ), (24)

where εn = 1 for n = 0 and εn = 2 for n 6= 0 while Jn(κa) is the well-established

Bessel and Hn(κa) is Hankel function of the first kind and order n. The prime

denotes the derivative of a function with respect to its argument. Note that

the expression (24) is written in polar coordinate r and θ whereas, the scatter
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Real part Imaginary part

Figure 12: Optimal polynomial degrees to estimate each spectral mode in the POD method

(first row) and LOO-error in the estimation of PCE method over each mode (second row) for

the test example of plane wave propagation using κ = 4π.
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MC method PCE method POD-PCE method

Figure 13: Mean solutions obtained using MC, PCE and POD-PCE methods for the real part

(top) and imaginary part (bottom) for plane wave propagation problem using κ = 4π.

MC method PCE method POD-PCE method

Figure 14: Same as Figure 13 but for the variance.
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Figure 15: Cross-sections of the variance solutions in Figure 14 for the real part (left) and

imaginary part (right) for plane wave propagation problem using κ = 4π.

radius is a. In this test example the domain Ω is taken to be annular defined

with the inner and outer radii i.e. ri = 1 and ro = 2, respectively. The an-

alytical expression (24) of the scattered wave is imposed on the domain inner

and outer boundaries using Robin-type boundary condition (2). The objec-

tive of this test examples if to examine the ability of the proposed POD-PCE

method for recovering the pressure of a plane wave scattered by an infinity rigid

circular scatterer subject to stochastic wavenumbers. In this example only the

wavenumber is considered to be stochastic in the form of (23) with a mean value

κ = 4π and coefficient of variation CV = 10 %. A finite element mesh formed of

4-noded bilinear elements with a total number of 9375 elements and 9500 nodes

is used in our simulations. For the selected conditions, the CPU time needed for

the PCE method and POD-PCE method is 1260 and 28 seconds, respectively.

This confirms the efficiency of the proposed POD-PCE to resolve this problem

of plane wave scattering.

In Figure 16 we present solutions for the mean wave potential obtained for

the stochastic simulation along with the deterministic solution. As can be seen,

there is a slight difference between the two solution fields in the magnitude order

mainly due to non-linearity raised by incorporation of stochastic effect in the
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Figure 16: Mean wave potential u(r, θ, ζκ) obtained for the stochastic simulation (first row)

and the deterministic solution u(r, θ) (second row) obtained for plane wave scattering problem

using κ = 4π and CV = 10 %. We present results for the real part (left) and imaginary part

(right).

wave number. It is also clear that the finite element method accurately resolves

this stochastic wave problem as no non-physical oscillations are detected in the

computational results. As in the previous test example, we also illustrate in

Figure 17 the distribution of optimal polynomial degrees in the finite element

mesh for the real and imaginary parts of the numerical solution. Obviously, the

spatial domain needs more polynomial degree to resolve all the uncertainty as

in some nodes the degree varies between 15 to 20. The average error for PCE

method in this situation is of the order of 10−6. Using the same value of the

POD truncation criterion with ε = 10−4 as in the previous simulations, a set

of 7 eigenmodes is sufficient to reduce the physical model. Thus, the surrogate

model for plane wave scattering needs only 7 decompositions instead of the 9500
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Figure 17: Optimal degree for PCE over each node of the mesh.

decompositions representing the total number of nodes in the numerical model.

Figure 18 illustrates the accuracy of the PCE method for each eigenvalue in the

model. We present the optimal polynomial degrees to estimate each spectral

mode in the POD method and the LOO-error in the estimation of PCE method

over each mode for both real and imaginary parts of the numerical solution.

Again, the presented results show a good convergence in the decomposition

making them reliable for UQ as the order of magnitude of the LOO-error is

very low in the computed results.

Finally, Figure 19 presents a comparison between the numerical results ob-

tained for the mean solutions using the MC, PCE and POD-PCE methods

for both real and imaginary parts of the solutions. Those comparative results

obtained for the variance are shown in Figure 20. For the considered wave

conditions, the three method exhibit similar acoustic trends around the scat-

ter. Bearing in mind the low computational effort required for the PCE-POD

method, this latter could be considered as an ideal algorithm for UQ in compu-

tational acoustic with stochastic inputs.

5. Conclusions

In the present study, an efficient analysis of uncertainty quantification for

acoustic problems with large number of random variables related to the wavenum-
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Real part Imaginary part

Figure 18: Optimal polynomial degree to estimate each spectral mode in the POD (first row)

and LOO-error in the estimation of PCE over each mode (second row) for the test example

of plane wave scattering using κ = 4π.

bers is presented and discussed. The reduced-order model is applied to the

two-dimensional Helmholtz equation using a finite element method. In all test

examples, uncertainty quantification is performed using both the full polyno-

mial chaos expansion and the combination of full polynomial chaos expansion

with proper orthogonal decomposition. Distributions of mean and variance ob-

tained from the reduced-order model are compared to those computed using the

full-order model. The numerical results show that the developed reduced-order

model is able to produce acceptable results for such statistical quantities.

It should be stressed that although we have concentrated here on the uncer-

tainty associated with the wavenumber but solving wave problems also involves
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Figure 19: Mean solutions obtained using MC, PCE and POD-PCE methods for the real part

(top) and imaginary part (bottom) for plane wave scattering problem using κ = 4π.

Figure 20: Same as Figure 19 but for the variance.

other uncertainties coming from approximations of the geometry as well as the

boundary conditions. Furthermore, the current work investigates problems at

relatively low wavenumbers. Considering high wavenumbers involves difficulties

related to the stability of the finite element method as well as the intensive
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computations involved in generating enough samples for the stochastic analysis.

These are some of the issues that we aim to investigate in future works.
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[11] V. Resseguier, E. Mémin, B. Chapron, Geophysical flows under location

uncertainty, part III SQG and frontal dynamics under strong turbulence

conditions, Geophysical & Astrophysical Fluid Dynamics 111 (2017) 209–

227.

[12] R. Ghanem, D. Higdon, H. Owhadi, Handbook of uncertainty quantifica-

tion, Vol. 6, Springer, 2017.

[13] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral

Method Approach, Princeton University Press, 2010.

36
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chanics/Revue Européenne de Mécanique Numérique 15 (2006) 81–92.

38



[31] M. M. Rajabi, Review and comparison of two meta-model-based uncer-

tainty propagation analysis methods in groundwater applications: polyno-

mial chaos expansion and Gaussian process emulation, Stochastic Environ-

mental Research and Risk Assessment (2019) 1–25.

[32] P. Kersaudy, B. Sudret, N. Varsier, O. Picon, J. Wiart, A new surrogate

modeling technique combining kriging and polynomial chaos expansions–

application to uncertainty analysis in computational dosimetry, Journal of

Computational Physics 286 (2015) 103–117.

[33] O. G. Ernst, A. Mugler, H.-J. Starkloff, E. Ullmann, On the convergence of

generalized polynomial chaos expansions, ESAIM: Mathematical Modelling

and Numerical Analysis 46 (2) (2012) 317–339.
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