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Abstract

Motivated by a real failure dataset in a two-dimensional context, this paper
presents an extension of the Markov modulated Poisson process (MMPP) to two
dimensions. The one-dimensional MMPP has been proposed for the modeling
of dependent and non-exponential inter-failure times (in contexts as queuing,
risk or reliability, among others). The novel two-dimensional MMPP allows for
dependence between the two sequences of inter-failure times, while at the same
time preserves the MMPP properties, marginally. The generalization is based
on the Marshall-Olkin exponential distribution. Inference is undertaken for the
new model through a method combining a matching moments approach with an
Approximate Bayesian Computation (ABC) algorithm. The performance of the
method is shown on simulated and real datasets representing times and distances
covered between consecutive failures in a public transport company. For the
real dataset, some quantities of importance associated with the reliability of the
system are estimated as the probabilities and expected number of failures at
different times and distances covered by trains until the occurrence of a failure.

Keywords: Markov modulated Poisson process (MMPP), Bivariate process,
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• BMMPP2: Two-state Batch Markov modulated Poisson process

• BVE: Bivariate exponential distribution

• MAP: Markovian arrival process

• MAP2: Two-state Markovian arrival process

• MMPP: Markov modulated Poisson process

• MMPP2: Two-state Markov modulated Poisson process

• MPH: Multivariate Phase-Type distribution

• SPP: Switched Poisson Process

1. Introduction

Transportation means are essential in every day life and, therefore, it is cru-
cial not only to detect failures but also to analyze their nature and the way to
prevent them. Reliability studies associated with aviation, vehicles, rail defects
and ships failures have been considered in a number of articles, see for example
Zhang and Liu (2002); Zhang et al. (2005); Karim (2008); Fang and Das (2005);
Ivanov (2009); Decò et al. (2012); Kim and Song (2018); Wang et al. (2020) or
Xiao-Yang et al. (2021), just to cite a few. In particular, with the rapid develop-
ment of the railway industry and high-speed lines, safety and reliability of train
systems have attracted increasing attention. As a consequence, a number of
studies dealing with trains system failures have been carried out, see for exam-
ple Navas et al. (2017); Kim and Song (2018); Chang et al. (2020), chapters 5,
7 and 10 from Dhillon (2011), or more recently, chapter 6 from Dhillon (2019).
The study by Nelson and O’Neil (2000) revealed the distribution of the percent-
ages of delays due to commuter rail equipment failures. In particular, the 20%
of delays are commonly caused by prime-mover problems, the 13% are caused
by braking system problem and the 7% of delays are caused by problems re-
lated to coach components (as doors) in control cabs. Taking as starting point
a real two-dimensional dataset representing doors’ failures times and covered
distances in a lot of underground trains, this paper presents a novel stochastic
model that captures the main statistical properties observed from data and is
able to provide insight about the system reliability.

Two-dimensional traces (or two-scale data) are not rare in the field of reli-
ability. For example, in the context of warranty data (automobile, automobile
tyres), failures depend on both the age and amount of accumulated usage, see
Eliashberg et al. (1997); Yang and Nachlas (2001); Yang and Zaghati (2002);
Huang et al. (2013, 2015). Other examples different from transportation, where
two-dimensional models are important, include factory equipment, power gen-
eration machines or aircraft, see Sang-Chin Yang and Nachlas (2001). From a
stochastic modeling viewpoint, problems where longevity is measured in terms
of two quantities (age and usage) need to be addressed by bivariate models
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able to capture the existing dependence between the two measures, see Hunter
(1974); Singpurwalla and Wilson (1998); Pievatolo et al. (2003); Ruggeri (2006);
Pievatolo and Ruggeri (2010); D’Amico (2011); Gupta et al. (2017).

In this article we present a novel bivariate stochastic model that is able to
provide a good fit for the two-dimensional dataset considered by Pievatolo et al.
(2003); Pievatolo and Ruggeri (2010). The dataset consists of records of the
failures in trains doors for a period of 8 years. The final goal in those papers
was to detect, before the warranty expired, if the trains were reliable as stated in
the contract with the manufacturer. Here reliability is measured in terms of the
number of failures for a specified time period or a distance covered. Therefore,
when a failure took place, both the reading of the odometer (which quantifies
the number of kilometres covered) and the date of the failure were recorded.
As described in detail in Section 2, both components of the considered dataset
(inter-failure time and distance) present a high linear dependence. Also, neither
the inter-failure times nor the distances covered can be assumed to be generated
by an exponential distribution. Finally, both sequences of inter-failure times and
distances present a non-negligible autocorrelation structure.

In analogous circumstances (non-expontiality, non-negligible autocorrelation
function) but in univariate case, some authors have suggested the use of the
Markovian arrival process (MAP), see for example Buchholz (2003); Klemm
et al. (2003); Ramı́rez-Cobo et al. (2008); Ramı́rez-Cobo and Carrizosa (2012);
Liu et al. (2015); Rodŕıguez et al. (2015); Rodŕıguez et al. (2016a); Ramı́rez-
Cobo et al. (2017). Within the class ofMAPs, it is worth mentioning the Markov
modulated Poisson process (noted MMPP), which constitutes a versatile and
identifiable subclass, see Heffes and Lucantoni (1986); Scott (1999); Scott and
Smyth (2003); Fearnhead and Sherlock (2006); Landon et al. (2013). With the
goal of a proper modeling of the doors’ failures two-dimensional dataset which
results in insight about the reliability of the system, we present in this paper
an extension of the MMPP to the two-dimensional case. The derived stochastic
model has the same good analytic properties as the MMPP, namely, a matrix
representation, non-exponential distributions of the inter-failures times (and
distances), dependence between times and distances, and non-negligible auto-
correlation structures for each component. This last property (non-negligible
autocorrelation), owned by the analyzed dataset, has been never considered by
previous works dealing with bivariate models, to the best of our knowledge.
For simplicity, in this paper we will focus on the two-state MMPP, noted as
MMPP2.

The major contribution of this paper is twofold. On one hand, we propose an
extension of the MMPP2 to the bivariate case, in such a way that the statistical
features previously mentioned are well modeled. Some theoretical properties of
this novel process such as identifiability (or existence of unique representation)
will also be studied. The second main objective is to propose an estimation
approach so that the reliability of the system can be inferred from the observed
data. As it will be seen, the approach will be divided into two steps. The first
one is based on a matching moments method and provides an estimate for a
subset of parameters, linked to the marginal processes. The second step, which
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consists in an ABC algorithm, generates estimates for the remaining parameters.
The paper is structured as follows. Section 2 describes in detail the dataset

that motivates the research. Some descriptive summaries are presented to illus-
trate in clear way the data properties. After a brief review of the MMPP2 and
the bivariate Marshall-Olkin Exponential distribution in Section 3.1, Section
3.2 describes the proposed two-dimensional version of the MMPP2. Section 3.3
addresses the issue of the identifiability of the process, and Section 3.4 provides
a matrix representation for the process. A statistical inference approach for
the new bivariate model is considered in Section 4. The performance of the
algorithm is illustrated via simulated traces in Appendix C. In Section 5 a real
application of the novel approach is considered to model the dataset related to
doors’ failures. In the numerical analyses, the estimation of some conditional
probabilities of the bivariate processes are also considered. Finally, Section 6
presents conclusions and delineates possible directions for future research.

2. Case study

The dataset studied in this paper records failures from 40 underground
trains’ doors, which were delivered to a European transportation company be-
tween November 1989 and March 1991 and all of them were put in service from
20th March 1990 to 20th July 1992. Failure monitoring ended on 31st Decem-
ber 1998. The transportation company was interested in checking the reliability
before the expiration of the warranty so that the cost of possible repairs/fixes
will be carried by the manufacturer.

Figure 1 shows the scatter plots of inter-failure times and distances covered
between the occurrence of two consecutive failures, for four different trains. The
figure shows how as the time between failures increases the kilometres travelled
by the trains between these failures also increases. It is to be expected that
the more time elapses between failures, the more kilometers are covered. In
summary, Figure 1 shows a high linear dependence between the inter-failure
times and distances. Throughout this paper the correlation between these two
magnitudes will be called inter-dependence. On the other hand, Figure 2 shows
the first-lag autocorrelation coefficients of the inter-failure times versus those of
the distances between failures. From the figure, it can be deduced that some
autocorrelation coefficients are different from zero for some trains. For those
trains it will be said that a non-negligible intra-dependence in the sequence
of inter-failures times or distances is observed. Another important feature of
this data is that, neither the inter-failure times, nor the inter-failure distances,
seem to be generated by an exponential distribution, as can be figured out from
Figure 3.

From the previous properties, it would be desirable to find a bivariate pro-
cess, versatile enough to allow for non-exponential spacing (both in time and
distance) between failures, as well as able to model both intra- and inter-
dependence in the observed sequences. We propose in this paper a bivariate
version of the MMPP2 which results in a tractable, analytical model able to
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(a) Train 19 (b) Train 20

(c) Train 35 (d) Train 36

Figure 1: Linear relationship between inter-failure times and distances for four trains

jointly fit the dataset’s components (time and distance) and from which perfor-
mance quantities of interest concerning the reliability of the system are derived
in straightforward manner.

It was said in Section 1 that Pievatolo et al. (2003) and Pievatolo and
Ruggeri (2010) already analyzed this dataset. In the former a univariate non-
homogeneous Poisson process (NHPP) was considered with an ad hoc relation
between time and distance. In the latter paper a bivariate NHPP was consid-
ered. Recently, Ruggeri et al. (2028) used the same data and a univariate NHPP
with 2 parameters to illustrate the properties of their new class of multivariate
priors based on stochastic orders. In this paper we consider a bivariate pro-
cess that, unlike the NHPP, allows for intra-dependence in both the sequences
of times and distances. In addition, we do not make any ad hoc assumptions
regarding any intensity function. Finally, as it will be seen in Section 5 (reli-
ability analysis) we are able to obtain estimates for the joint probability of no
failures which, according to the transportation company’s purposes, constitutes
a measure of crucial importance for the warranty issue.

3. A bivariate two-state Markov Modulated Poisson Process

In this section the two-state bivariate Markov Modulated Poisson Process is
introduced. This model can be considered as an extension of the classical two-
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Figure 2: Fist-lag autocorrelation coefficient of the inter-failure times and distances for each
train

state Markov Modulated Poisson Process (MMPP2). This section is divided
into four parts. The first one is devoted to review the MMPP2 as well as the
Marshall-Olkin bivariate exponential distribution on which the novel bivariate
model is based. Section 3.2 formally introduces the new bivariate process and
an algorithm to simulate traces is described. Section 3.3 considers the problem
of identifiability of the new bivariate model. Identifiability is an important
property in statistical inference ensuring uniqueness of the parameter values for
which the optimal value of the maximizing function is obtained. Finally, Section
3.4 provides a matrix representation of the process as well as some theoretical
quantities of interest.

3.1. Preliminaries

The two-state Markov Modulated Poisson Process, noted MMPP2, is gov-
erned by a two-state underlying Markov process J(t) with infinitesimal generator
Q on {1, 2}. Then, at the end of an exponentially distributed sojourn time in
state i, with mean 1/γi, two possibilities can occur. First, with probability a
if i = 1 (b if i = 2), no failure occurs and the system enters into the other
state j ̸= i. Second, with probability 1 − a if i = 1 (1 − b if i = 2), a failure
is produced and the system continues in the same state. The MMPP2 is also
frequently referred to as a Switched Poisson Process (SPP ), see e.g. van Hoorn
and Seelen (1983).

The MMPP2 can be characterized in terms of rate (or intensity) matrices
{D0,D1} where

D0 =

(
−γ1 γ1a
γ2b −γ2

)
, D1 =

(
γ1(1− a) 0

0 γ2(1− b)

)
. (1)

This definition of the rate matrices implies that Q = D0 +D1.
For a better understanding of the model’s behavior, Figure 4 illustrates a

realization of a MMPP2. It can be seen how states of the process alternate
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(a) Train 35, inter-failure times (b) Train 35, inter-failure distances

(c) Train 36, inter-failure times (d) Train 36, inter-failure distances

Figure 3: QQ-plots of inter-failure times/distances: empirical versus exponential distribution.

until the failure takes place. This alternation of states allows to model non-
exponential times between failures. Note that the inter-failures times are a
random sum of exponential times with different failure rates. Since the ex-
ponential sojourn times are not commonly observed in real datasets (only the
times between failures are), the states of the underlying Markov chain do not
have a concrete meaning in practical situations. However, they constitute a
mathematical artifact to achieve non-exponentiality and intra-dependence.

Figure 4: Transition diagram for a MMPP2. The black lines correspond to transitions without
failures, governed by D0, and the red lines correspond to transitions with failures, governed
by D1.

Next, some quantities in relation to the reliability of the system are pre-
sented. If Tn denotes the time between the (n−1)-th and n-th failures, then the
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inter-failure times, Tns, are phase-type distributed with representation (ϕ,D0),

where ϕ is the stationary probability vector associated with P ∗ = (−D0)
−1

D1,
computed as ϕ = (πD1e)

−1πD1 (see Latouche and Ramaswami (1999) and
Chakravarthy (2010)), where π is the stationary probability vector of Q and e
is a vector of ones. This implies that the cumulative distribution function of Tn

is given by
FTn(t) = 1−αne

D0te, (2)

where αn = ϕ[(−D0)
−1D1]

(n−1) = ϕ. Since the process is stationary ϕ is
defined to satisfy ϕ[(−D0)

−1D1] = ϕ. It is easy to check that for the case of
the MMPP2, ϕ only depends on the probabilities associated with the underlying
process:

ϕ = (ϕ1, ϕ2) =

(
b(1− a)

b(1− a) + a(1− b)
,

a(1− b)

b(1− a) + a(1− b)

)
. (3)

The moments of Tn in the stationary case are given by

µT (r) = E(T r) = r!ϕ(−D0)
−re, for r ≥ 1, (4)

and the auto-correlation function of the sequence of inter-failure times is

ρT (l) = ρ(T1, Tl+1) =
π[(−D0)

−1D1]
l(−D0)

−1e− µT (1)

2(π(−D0)−1e− µT (1))
, for l > 0. (5)

Further details of the properties of the MMPP can be found, for example, in
Fischer and Meier-Hellstern (1993), Rydén (1996a) or Yera et al. (2018).

The construction of the bivariate MMPP proposed in this article is based on
maintaining the same underlying structure of the univariate case, but replacing
the exponential univariate distribution with a bivariate exponential distribution.
As it is known in the literature, there are several options to define a bivariate
exponential distribution and in principle any would serve for the purpose of
simulating the bivariate MMPP. In this paper we have applied the bivariate
Marshall-Olkin exponential distribution, which is a bivariate distribution that
fits into a class of Multivariate Phase Type distributions (MPH∗) proposed
in Kulkarni (1989), see also Chapter 8 in Bladt and Nielsen (2017). The distri-
bution is originally defined in Marshall and Olkin (1967) as follows:

Definition 1. Let X and Y be positive continuous random variables. Then X
and Y are distributed according to the bivariate exponential distribution (BVE)
with parameters λ1, λ2, λ3, noted as (X,Y ) ∼ BV E(λ1, λ2, λ3) if

F̄ (x, y) = P (X > x, Y > y) = exp{−λ1x− λ2y − λ3 max(x, y)},

where λ1, λ2 > 0 and λ3 ≥ 0.

In Marshall and Olkin (1967), basic properties of the BVE are provided. For
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example, the density function is given by

f(x, y) =

 λ1γk exp{−λ1x− γky} if x < y
λ2γt exp{−γtx− λ2y} if x > y
λ3 exp{−(λ1 + λ2 + λ3)x} if x = y

The measure has a singular decomposition with a part that is absolutely contin-
uous with respect to the two-dimensional Lebesgue measure in the first quadrant
and a measure on the half line x = y in the first quadrant. From the definition
it can be shown that X and Y follow exponential distributions with means 1/γt
and 1/γk respectively, where γt = λ1+λ3 and γk = λ2+λ3. Marshall and Olkin
(1967) also deduce the Laplace transform and a formula for the joint moments

E(XY ) =
1

λ1 + λ2 + λ3

(
1

γt
+

1

γk

)
(6)

and for the correlation between X and Y ,

ρ(X,Y ) =
λ3

λ1 + λ2 + λ3
.

The selection of the Marshall-Olkin BVE is also motivated by the fact that the
correlation between the two sequences of failures generated by this distribution,
ρ, is non-negative as it is the case of the empirical correlation observed in the
train failures dataset.

In Kulkarni (1989) and Bladt and Nielsen (2017) the bivariate Marshall-
Olkin exponential distribution is represented as a multivariate phase-type dis-
tribution and denoted as MPH∗. This representation is given by an initial
probability vector and two matrices (α,S,R) as follow:(1, 0, 0),

 −(λ1 + λ2 + λ3) λ2 λ1

0 −γt 0
0 0 −γk

 ,

 1 1
1 0
0 1

 . (7)

In section 3.4 it will be seen that this representation of the bivariate Marshall-
Olkin exponential distribution will make it possible to obtain a matrix repre-
sentation for the bivariate MMPP2.

3.2. The bivariate MMPP2

To formally define the bivariate MMPP, a two-state Markov process J(t)
with generator Q on {1, 2} is considered. When J(t) = i, then it is said that
the process is in state i and this status remains unchanged while J(t) remains in
this state. Specifically, the bivariateMMPP2 behaves as follows: the initial state
i0 ∈ S = {1, 2} is defined according to an initial probability vector α= (α1, α2).
The successive bivariate contributions from each state is given by two bivariate
Marshall-Olkin exponential distributions. The first one models the contributions
from state i = 1. It is characterized by the parameters λ = (λ1, λ2, λ3), and the
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marginal distributions have mean 1/γt1 and 1/γk1 respectively, with

γt1 = λ1 + λ3 and γk1 = λ2 + λ3. (8)

The second BVE associated with state i = 2 has parameters ω = (ω1, ω2, ω3)
and its marginal exponential distributions have mean 1/γt2 and 1/γk2 respec-
tively, with

γt2 = ω1 + ω3 and γk2 = ω2 + ω3. (9)

After the increment of the two bivariate variables two possible state tran-
sitions can occur. First, with probability a if i = 1 (b if i = 2), no failure
occurs and the bivariate MMPP2 enters into the other state j ̸= i. Second, with
probability 1 − a if i = 1 (1 − b if i = 2), a failure is produced and the system
continues in the same state.

Note that the descriptions of the univariate and bivariate process are very
similar. Both have the same underlying process and therefore the same tran-
sition probabilities. Essentially, the difference is in the contribution from each
visit to a state: while in MMPP2 two univariate exponential distributions that
alternate (one for each state) govern the transitions, in the bivariate case one
BVE distribution for each state has to be considered. In other words, the
MMPP2 is extended to the bivariate case by replacing the exponential distribu-
tion by a BVE distribution. Therefore, while the MMPP2 is determined by 4
parameters, the bivariate MMPP2 defined in this paper is fully described by 8
parameters; that is, three parameters associated with the Marshal-Olkin BVE
distribution in state i = 1, λ = (λ1, λ2, λ3); another three parameters associated
with the Marshal-Olkin BVE distribution in the state i = 2, ω = (ω1, ω2, ω3)
and the two probabilities associated with the Markov underlying process (a, b).

Following the notation of the doors’ failures dataset that motivates this re-
search, we will denote by {(T1,K1), ..., (Tn,Kn)} the sample from the bivariate
MMPP2, where T stands for the time elapsing between two consecutive failures
and K denotes the covered distance between such failures. For a better un-
derstanding of the considered process, Figure 5 illustrates a realization of the
bivariate MMPP2, where the sequence of inter-failure times (Ti) are represented
at the top panel while the distances covered (Ki) are depicted in the bottom
panel. From the figure, it can be seen how both sequences have a common
starting point and a common sequence of visited states ({1, 2, 1, 1, ...}).

For a better clarification of the novel bivariate process, Table 1 depicts the
algorithm to generate traces from the bivariate MMPP2.

In summary, the bivariate MMPP2 is defined by two marginal processes
sharing the same underlying Markov process and two bivariate Marshall-Olkin
exponential distributions. Essentially, the two marginal processes are running
alongside, with the same sequence of visited states, the same underlying process
and simultaneous failures, but each with different inter-failures ”time” rates
between failures. The structure of the marginal processes makes it possible to
capture the intra-dependence of the data. On the other hand, the existence of a
single underlying process relating both marginal processes is what brings about
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Figure 5: A realization of the bivariate MMPP2. The top panel depicts the sequence of inter-
failures times and the bottom panel that of distances covered. The black lines correspond to
transitions without failures and the red lines correspond to transitions when a failure occurs.

0. Input: {a, b,λ,ω}
1. Compute ϕ as in (3).

2. Generate p ∼ U(0, 1).

3. If p < ϕ1, set s0 = 1 else s0 = 2.

4. Initialize i = 1, j = 0, t = 0 and k = 0.

5. While i < n repeat:

(a) Generate (X,Y) as a bivariate Marshall-Olkin exponential

distribution (BVE).

If sj = 1, (X,Y ) ∼ BV E(λ) else (X,Y ) ∼ BV E(ω)
(b) Set (ti, ki) = (ti, ki) + (X,Y )
(c) Generate p ∼ U(0, 1).
(d) if (sj = 1 and p < a) or (sj = 2 and p < b), then (there

is no failure) sj+1 = |sj − 3|. Else (there is a failure)

sj+1 = sj and i = i+ 1.
(d) Set j = j + 1.

6. Output: {(t1, k1), ..., (tn, kn)}

Table 1: Algorithm to generate a trace from the bivariate MMPP2

the correlation between the two magnitudes (inter-dependence).

3.3. Identifiability of the bivariate MMPP2

Identifiability problems occur when different representations of the process
lead to the same density functions. It is known that MAPs cannot be identified
in a unique way, which is inconvenient for their statistical estimation, see for
example Bodrog et al. (2008), Ramı́rez-Cobo et al. (2010) and Rodŕıguez et al.
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(2016b). On the other hand, Rydén (1996b) and Yera et al. (2018) prove the
identifiability of the MMPP and BMMPP. For details about identifiability of
the MMPP and its effect on the estimation, Rydén (1996a), Yera et al. (2018)
and Yera et al. (2019) can be reviewed.

In this section the identifiability of the proposed bivariate version of the
MMPP2 will be proved. Let us first define the identifiability notion used in this
paper.

Definition 2. Let B = {λ,ω, a, b} be a representation of a bivariate MMPP2

and let Tn and Kn denote the sequences of times and distances covered between
the (n − 1)-th and the n-th failures. Then, B is said to be identifiable if there
exists no different parameterization B̃ = {λ̃, ω̃, ã, b̃} such that

{(T1,K1), ..., (Tn,Kn)}
d
= {(T̃1, K̃1), ..., (T̃n, K̃n)} for all n ≥ 1, (10)

where T̃i and K̃i are defined in analogous way as Ti and Ki, and where
d
= denotes

equality in distribution.

Theorem 1. Let B = {λ,ω, a, b} and B̃ = {λ̃, ω̃, ã, b̃} be two different, but
equivalent, representations of a bivariate MMPP2. Then λ = λ̃, ω = ω̃ and
(a, b) = (ã, b̃), except for a swap of a by b and λ by ω.

See Appendix A for the proof.

3.4. Matrix representation

This section presents one of the most interesting findings regarding the bi-
variate MMPP2. It is a matrix representation that eases the analytical and al-
gorithmic results in relation to the quantities of interest associated with the pro-
cess. Indeed, the bivariate MMPP2 can be represented by B = {ϕ,D0,D1,R},
where the initial probability vector is obtained from the stationary probability
vector given in (3):

ϕ = (ϕ1, 0, 0, ϕ2, 0, 0)

Note that ϕ1 and ϕ2, defined in (3), only depend on the probabilities associ-
ated with the underlying process. The matrices governing transitions in which
failures do not occur and do occur are given by

D0 =


−(λ1 + λ2 + λ3) λ2 λ1 λ3a 0 0

0 −γt1 0 γt1a 0 0
0 0 −γk1 γk1a 0 0

ω3b 0 0 −(ω1 + ω2 + ω3) ω2 ω1

γt2b 0 0 0 −γt2 0
γk2b 0 0 0 0 −γk2

 ,

12



and

D1 =


λ3(1− a) 0 0 0 0 0
γt1(1− a) 0 0 0 0 0
γk1(1− a) 0 0 0 0 0

0 0 0 ω3(1− b) 0 0
0 0 0 γt2(1− b) 0 0
0 0 0 γk2(1− b) 0 0


respectively. Finally

R =


1 1
1 0
0 1
1 1
1 0
0 1

 .

Remark 1. Note that the previous matrix representation is not a canonical
representation of the process since it is possible to build other matrix represen-
tations that fully describe the process (see Appendix B for an equivalent matrix
representation). The in-depth study of the different matrix representations for
this process and the search for a canonical representation is out of the scope of
this work and will be addressed in the future.

Remark 2. Note that although matrices D0 and D1 are of dimension 6 × 6,
the bivariate MMPP2 is defined by two states. This is because the sojourn time
in each of the two states is modeled through a Marshall-Olkin BVE distribution,
whose representation as a MPH∗ in (7) has three rows. Therefore, while in the
matrix representation of the MMPP2 each state is associated with a column or
a row, in the bivariate MMPP2 there are three rows or columns associated with
each state of the process.

From the matrix representation B = {ϕ,D0,D1,R}, it can be deduced that
(Tn,Kn) follows a multivariate phase type distribution MPH∗ as defined in
Kulkarni (1989) and Bladt and Nielsen (2017), with representation {ϕ,D0,R}.
This result allows for the use of Theorem 8.1.2. in Bladt and Nielsen (2017)
for obtaining the moment-generating function until the occurrence of the first
failure in the bivariate MMPP2. We recall that ∆(a) denotes the diagonal
matrix with vector a as diagonal.

Proposition 1. Let B = {ϕ,D0,D1,R} be a representation of a bivariate
MMPP2 and let A = (T1,K1) be the records related to the first failure. Then
there exists a K > 0 such that the moment-generating function for A (denoted
by H(θ)) exists and is given by

H(θ) = E
(
eAθ

)
= ϕ (−∆(Rθ)−D0)

−1
D1e,

for any θ1, θ2 < K with θ = [θ1, θ2]
t.

Proof. Since A ∼ MPH∗(ϕ,D0,R), then Theorem 8.1.2. in Bladt and Nielsen
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(2017) can be applied directly. Substituting α = ϕ, S = D0 and s = D1e the
result is immediate.

From Proposition 1, the formulae for moments and cross moments of the
process, which are of interest when studying the reliability of the system, are
obtained as follows.

Proposition 2. Let B = {ϕ,D0,D1,R} be a representation of a bivariate
MMPP2. Then, the joint moments of (Ti,Ki) are given by

ηnm = E (Tn
i K

m
i ) = ϕ

(m+n)!∑
i=1

n+m∏
j=1

(−D0)
−1∆(R·σi(j))

 e, (11)

where R·j is jth column of R, σ1, ..., σ(n+m)! are the ordered permutations of

duples of derivatives, and σi(j) ∈ {1, 2} is the ith position of the permutation
σi.

Proof. As the pair of the variables (Ti,Ki) follows a multivariate phase type
distribution MPH∗, Theorem 8.1.5 in Bladt and Nielsen (2017) can be applied

directly to (Ti,Ki). Substituting α = ϕ, and U = (−D0)
−1

the result is
obtained.

Some particular joint moments used in Section 4 for designing the estimation
approach for the bivariate MMPP2 are:

η11 = E(TK) = ϕ(−D0)
−1∆(R[·1])(−D0)

−1R[·2] (12)

+ϕ(−D0)
−1∆(R[·2])(−D0)

−1R[·1]

η21 = E(T 2K) = 2ϕ(−D0)
−1∆(R[.1])(−D0)

−1∆(R[.1])(−D0)
−1R[.2]

+2ϕ(−D0)
−1∆(R[.1])(−D0)

−1∆(R[.2])(−D0)
−1R[.1]

+2ϕ(−D0)
−1∆(R[.2])(−D0)

−1∆(R[.1])(−D0)
−1R[.1]

η12 = E(TK2) = 2ϕ(−D0)
−1∆(R[.2])(−D0)

−1∆(R[.2])(−D0)
−1R[.1]

+2ϕ(−D0)
−1∆(R[.2])(−D0)

−1∆(R[.1])(−D0)
−1R[.2]

+2ϕ(−D0)
−1∆(R[.1])(−D0)

−2∆(R[.1])(−D0)
−1R[.2],

where R[.j] is the jth column of R.

From the expressions previously obtained for η11, η21 and η12 it is not dif-
ficult to deduce a closed expression for the correlation coefficient between the
sequences of times and distances, corr(T,K). In order to show the versatility of
the bivariate MMPP2, Figure 6 depicts four scatter plots of simulated sequences
for different representations.

The next result generalizes Proposition 1 and gives the moment generating
function of the first n failures.
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(a) corr(T,K) = 0.38 (b) corr(T,K) = 0.64

(c) corr(T,K) = 0.84 (d) corr(T,K) = 0.94

Figure 6: Scatter plots of simulated sequences generated from bivariate MMPP2s.

Proposition 3. The moment generating function of the n first consecutive
failures {(T1,K1), (T2,K2), . . . , (Tn,Kn)} is given by

f∗
{(T1,K1),...,(Tn,Kn)}(θ1, ...,θn) = E

e
−

∑n
i=1(Ti,Ki)

 θi1
θi2


= ϕ(−∆(Rθ1)−D0)

−1D1 . . . (−∆(Rθn)−D0)
−1D1e

Corollary 1. With X1 = T1 or X1 = S1 and Y1+n = T1+n or Y1+n = S1+n we
have

E(X1Y1+n) = ϕ(−D0)
−1R[·i]P

n−1(−D0)
−1R[·j]e, n = 1, 2 . . .

where P = (−D0)
−1D1, i = 1 for X1 = T1, i = 2 for X1 = S1, j = 1 for

Y1+n = T1+n, and j = 2 for Y1+n = S1+n.

Remark 3. From Proposition 3 it can be proved that the marginal processes of
the bivariate MMPP2 are univariate MMPP2s represented by the following rate
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matrices:

Bt =

{
D0t =

(
−γt1 γt1a
γt2b −γt2

)
, D1t =

(
γt1(1− a) 0

0 γt2(1− b)

)}
(13)

and

Bk =

{
D0k =

(
−γk1 γk1a
γk2b −γk2

)
, D1k =

(
γk1(1− a) 0

0 γk2(1− b)

)}
.

(14)

Remark 4. Proposition 3 and Corollary 1 have been formulated for the bivari-
ate MMPP2 process, but they hold in the general case of a sequence of correlated
MPH∗ variables. In such case, one needs to consider θ vectors of higher dimen-
sion and make proper substitutions of the random variables. Similarly, Corol-
lary 1 can be extended so that higher powers are considered and more variables
are included.

4. Inference for the bivariate MMPP2

In this section, an approach for estimating the parameters of the bivariate
MMPP2 is proposed. Since, in practice, the complete sequence of visited states
of the underlying Markov process are not observed, the proposed procedure as-
sumes that t = (t1, t2, ..., tn), and k = (k1, k2, ..., kn), are the only available
information. An important issue to take into account is the complication when
applying the likelihood principle to a singular measure. Therefore, the pro-
posed fitting algorithm avoids evaluating or optimizing the likelihood. Indeed,
the algorithm is a two-step approach. In the first one, the rate matrices of
the marginal processes D0t,D1t,D0k,D1k are estimated through a moments
matching method defined by a standard optimization problem. The remaining
parameters are estimated in a second step via an ABC algorithm.

Bodrog et al. (2008) characterizes the MMPP2 by the first three moments
and first-lag auto-correlation coefficient of the inter-failure time distribution,
µT (1), µT (2), µT (3) to the one in (4) and ρT (1) as in (5). This implies that, for
the bivariate MMPP2 considered in this paper, the matrix representation of the
marginal processes as in (13) and (14) will be characterized by a set of eight
moments. Four of them are related to the variable (T ), {µT (1), µT (2), µT (3),
ρT (1)} and the other four to the variable (K), {µK(1), µK(2), µK(3), ρK(1)}.

Carrizosa and Ramı́rez-Cobo (2014), using the results found by Bodrog et al.
(2008), derive a moments matching method for estimating the parameters of a
MAP2, given a sequence of inter-failure times t = (t1, t2, ..., tn). Posterior adap-
tations of this procedure can be found in Rodŕıguez et al. (2016a) and Yera et al.
(2018) to estimate the non-stationary MAP and BMMPP2 respectively. In the
case of the bivariate MMPP2, it is an open problem to represent the process by
a set of moments. However, a moments matching approach similar to the one
in Carrizosa and Ramı́rez-Cobo (2014) can be designed to partially estimate
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its parameters. In particular, the parameters associated with the marginal pro-
cesses D0t, D1t, D0k and D1k in terms of γt1, γt2, γk1, γk2, a and b (see (13) and
(14)), can be estimated as the solution of the following optimization problem:

(P0)


min
γ,a,b

δ0(a, b, γt1, γt2, γk1, γk2)

s.t. γt1, γt2, γk1, γk2 ≥ 0,
0 ≤ a, b ≤ 1,

The objective function in (P0) is

δ0(γt1, γt2, γk1, γk2, a, b) = [ρT (1)(a, b, γt1, γt2)− ρ̄T (1)]
2

+[ρK(1)(a, b, γk1, γk2)− ρ̄K(1)]2

+
∑3

j=1

(
µT (j)(a,b,γt1,γt2)−µ̄T (j)

µ̄T (j)

)2

+
∑3

j=1

(
µK(j)(a,b,γk1,γk2)−µ̄K(j)

µ̄K(j)

)2

,

where µ̄T (i), for i = 1, 2, 3 and ρ̄T (1) denote the empirical moments associated
with the first marginal process (computed from the sample t), whereas µ̄K(i),
for i = 1, 2, 3 and ρ̄K(1) denote the empirical moments associated with the
second one (computed from the sample k). Note that in the previous objective
function, ρT (1) and µT (i), for i = 1, 2, 3 depend on a, b, γt1 and γt2, while ρK(1)
and µK(i) for i = 1, 2, 3 depend on a, b, γk1 and γk2. Probabilities a and b are
common for the two marginal process since both marginal MMPP2s share the
same underlying Markov process. For more details of this procedure, see the
algorithm of Table 2.

0. Input: {µ̄T (1), µ̄T (2), µ̄T (3), ρ̄T (1), µ̄K(1), µ̄K(1), µ̄K(1), ρ̄K(1)}
1. For i = 1, . . . , I repeat:

(a) Randomly select a starting point

{a(i)(0), b(i)(0), γ(i)
t1 (0), γ

(i)
t2 (0), γ

(i)
k1 (0), γ

(i)
k2 (0)}.

(b) Solve (P0)i and save the value of objective function δ
(i)
0

and the solution {â(i), b̂(i), γ̂(i)
t1 , γ̂

(i)
k1 , γ̂

(i)
t2 , γ̂

(i)
k2 }.

2. Obtain j = argmini δ
(i)
0 and set δ0 = δ

(j)
0 , γ̂t1 = γ̂

(j)
t1 , γ̂t2 = γ̂

(j)
t2 , γ̂k1 =

γ̂
(j)
k1 , γ̂k2 = γ̂

(j)
k2 , â = â(j) and b̂ = b̂(j)

3. Output: {â, b̂, γ̂t1, γ̂t2, γ̂k1, γ̂k2}

Table 2: Step 1 in the fitting approach: moments matching method to estimate the parameters
of the marginal components in the bivariate MMPP2

Note that we propose to solve problem (P0) a number I of times, so that the
final solution will be the one that provides the lowest objective function. Each
time, problem (P0) is solved using a different starting point (a(0), b(0), γt1(0), γt2(0), γk1(0), γk2(0))
to avoid getting stuck at a poor local optimum. In practice, I is set to be equal
to 100, which has proven in the numerical experiments to be high enough so as to
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get reasonable solutions. The final solution {â, b̂, γ̂t1, γ̂t2, γ̂k1, γ̂k2} shall be con-
sidered the starting point for the second step in the proposed fitting algorithm,
an ABC approach whose output is the complete set of parameters characterizing
the bivariate MMPP2, that is {a, b,λ,ω}. From the algorithm in Table 2, the
estimated values of a and b are obtained. With regards to the values of λ and ω
note that since γt1 = λ1 + λ3, γt2 = ω1 + ω3, γk1 = λ2 + λ3 and γk2 = ω2 + ω3,
see (8) and (9), the estimated values for λ1 + λ3, λ2 + λ3, ω1 + ω2 and ω2 + ω3

are obtained from the moment matching approach. On the other hand, as it has
been mentioned previously, it is not trivial to evaluate the likelihood function
when a singular measure is involved. On the contrary, it is very straightforward
to generate simulated traces from the bivariate MMPP2, see the algorithm in
Table 1. In this setting, the ABC algorithm turns out suitable, see for example
Csilléry et al. (2010), Marin et al. (2012) and Kypraios et al. (2017). The ABC
algorithm is mathematically well-founded and applied in a wide variety of fields,
but there are some issues that have to be carefully considered for a good per-
formance, as the dimension of the parameter space. The larger the dimension
of the parameter space is, the more simulations are needed since, as Csilléry
et al. (2010) points out, the probability of accepting the simulated values for
the parameters under a given tolerance decreases exponentially when increasing
dimensionality.

In the case of the bivariate MMPP2, estimates for a, b, λ1+λ3 (γt1), λ2+λ3

(γk1), ω1 + ω3 (γt2) and ω2 + ω3 (γk2) are obtained according to the algorithm
of Table 2. Taking into account expressions (8) and (9) and setting prior distri-
butions for λ3 and ω3 as

λ3 ∼ Unif(0,min[γ̂t1, γ̂k1]), ω3 ∼ Unif(0,min[γ̂t2, γ̂k2]), (15)

then, a simple ABC algorithm in terms of only two parameters can be easily
formulated. At each iteration i ∈ 1, . . . , I, values of λ3 and ω3 are generated
from the prior π(·) as in (15). Then, the values of λ1, λ2, ω1 and ω2 are obtained
according to (8) and (9). Then, a sample s(i) = {(t1, k1), . . . , (tn, kn)} from a

bivariate MMPP2 with parameters (â, b̂,λ(i),ω(i)) is simulated according to the
algorithm of Table 1. If the generated sample s(i) is too different from the
observed data s = {(t1, k1), ..., (tn, kn)}, the parameter set is discarded. For
this purpose a distance measure and a tolerance, ϵ > 0, are usually established.
The level of discrepancy between the generated sample at iteration i and the
original sample shall be measured according to

δ1(s
(i), s) =

2∑
l=1,j=1

(
η̄lj(s

(i))− η̄lj(s)

η̄lj(s)

)2

, (16)

where η̄lj , for l, j = 1, 2 denote the first empirical joint moments associated
with the bivariate MMPP2 process (E(TK), E(T 2K), E(TK2)) as in (12). The
rationale for this choice is the fact that for all iterations, the simulated samples
come from a bivariate MMPP2 processes with the same marginal moments (a
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0. Input: {η̄11, η̄12, η̄21, â, b̂, γ̂t1, γ̂k1, γ̂t2, γ̂k2}
1. For i = 1, . . . , I2 do repeat:

(a) Generate (λ
(i)
3 , ω

(i)
3 ) from the prior distribution π(·)

(b) Obtain

λ
(i)
1 = γ̂t1 − λ

(i)
3

λ
(i)
2 = γ̂k1 − λ

(i)
3

ω
(i)
2 = γ̂t2 − ω

(i)
3

ω
(i)
2 = γ̂k2 − ω

(i)
3

(c) Simulate a sample s(i) from the likelihood

f(· | â, b̂,λ(i),ω(i)).
(c) Compute the moments η̄11, η̄12, η̄21 associated with the

generated sample s(i).

(d) Compute δ
(i)
1 (s(i), s) as in (16)

4. The 1% of the sampled values with the smallest differences

from the real data are accepted.

5. The Bayesian estimates are computed as the average of the

accepted values.

6. Output: {â, b̂, λ̂1, λ̂2, λ̂3, ω̂1, ω̂2, ω̂3}

Table 3: Step 2 in the fitting approach: ABC method to estimate the parameters of the
bivariate MMPP2

consequence of constant γ̂t1, γ̂t2, γ̂k1, γ̂t1, â and b̂). Therefore, it makes sense
to include joint moments in the distance measure. From extensive, empirical
experiments it has been observed that η11, η12 and η21 in combination with
the eight marginal moments used in the previous moments matching approach
(µT (1), µT (2), µT (3), ρT (1), µK(1), µK(2), µK(3)ρK(1)) are enough to charac-
terize the parameters of the bivariate process. With respect to the tolerance
level, instead of fixing a specific value of ϵ, we proceed in analogous way by
keeping the 1% of the samples with smallest differences from the original sam-
ple. Finally, the estimated parameters are average values among the selected
proportion. For a summary of the ABC procedure, see the algorithm of Table
3. The performance of the method has been tested through simulated and real
datasets. For a detailed analysis concerning simulated data, we refer the reader
to Appendix C.

5. Reliability analysis of train failures

In this section we address the motivating example for the paper, showing how
the stochastic model introduced in earlier sections can be used to analyze the
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two-dimensional data about train failures and get insights about the reliability
of the system.

In Section 5.1 the fit of the bivariate MMPP2 model is illustrated. The mo-
ments characterizing the process as well as the cumulative distribution functions
for the components (inter-failure and distances) are estimated. Once the good
performance of the bivariate MMPP2 is proven, then Section 5.2 deals with the
estimation of key quantities concerning the reliability of the system.

5.1. Performance of the fitting approach

Consider the real dataset described in Section 2. Train 35 went into opera-
tion on 20/12/90 and, in the almost 8 years, it traveled 359908 km and suffered
47 failures. The average, median, variation coefficient, minimum and maximum
value of the inter-failures times for train 35 are 71.12, 24, 1.92, 1 and 736 days,
respectively, which suggest a right-skewed distribution with a tail longer than
that of an exponential distribution, a fact also deduced from Figure 3. Some-
thing similar occurs with the inter-failures distances, with the average, median,
variation coefficient, minimum and maximum equal to 8778, 3592, 1.6842, 87
and 75998 kilometers. On the other hand, for train 36 there are records between
04/09/90 and 04/09/98, period in which it covered 379709 km and whose doors
failed 51 times. The analysis carried out on the non-exponentiality of the inter-
failures times and distances for train 35 applies also for train 36. Empirically,
the consecutive inter-failure times and distances are not independent since the
first lag autocorrelation coefficients are equal to 0.13 and 0.21, for trains 35
and 36, respectively. There is also inter-dependence among the traces, reflected
by an empirical correlation coefficient equal to 0.97 and 0.93 for trains 35 and
36, respectively. The non-exponentiality of the traces in combination with both
intra- and inter-dependence makes the bivariate MMPP2 proposed in this paper
a suitable model for fitting the data.

The fitting approach described in Section 4 was applied to the dataset de-
scribed in Section 2. In particular, Table 4 and Figure 7 show the performance
of the inference method. Table 4 describes the empirical and estimated values
of the expected time and covered distance between consecutive failures, as well
other marginal and joint moments. The fit of the correlation coefficient be-
tween the inter-failures times and distances is also shown. On the other hand,
Figure 7 shows the fit to the empirical distribution function of the inter-failure
times, P (T < t), and covered distances between failures, that is, P (K < k), see
expression (2).
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Train 35 Train 36
Emp Est biv MMPP Emp Est biv MMPP

µT (1) 71.12 71.07 64.73 63.83
µT (2) 2.33 × 104 2.35 × 104 1.11 × 104 1.07 × 104

µT (3) 1.25 × 107 1.24 × 107 2.64 × 106 2.71 × 106

ρT (1) 0.13 0.13 0.21 0.19
µK(1) 8.78 × 103 8.79 × 103 8.44 × 103 8.23 × 103

µK(2) 2.90 × 108 2.88 × 108 1.83 × 108 1.79 × 108

µK(3) 1.58 × 1013 1.59 × 1013 5.68 × 1012 5.81 × 1012

ρK(1) 0.12 0.12 0.26 0.20
η11 2.54 × 106 2.52 × 106 1.36 × 106 1.22 × 106

η21 1.33 × 106 1.30 × 106 3.22 × 108 2.95 × 108

η12 1.44 × 1011 1.40 × 1011 4.18 × 1010 3.94 × 1010

Corr(T,K) 0.97 0.96 0.93 0.82

Table 4: Empirical and estimated moments by the bivariate two-state MMPP2s for trains 35
and 36.

Figure 7: Estimated cdf (dashed line) under the bivariate MMPP2 versus the empirical cdf
(solid line) of the inter-failures times (left panel) and distances (right panel) for train 35.

5.2. Reliability analysis

Since the main interest of the analysis of the real dataset was on predicting
the reliability of the system, this section is devoted to provide an assortment
of measures of interest. Define NT (t) as the number of failures occurred up to
time t, NK(k) the number of failures occurred until a distance k is covered and
let the joint quantity N(T,K)(t, k) represent the number of cumulative failures
observed up to time t and distance k. Then, the following quantities (either for
train 35 and/or 36) have been predicted:

1. Conditional probabilities of observing a failure before a number of days
t, assuming that a failure has occurred before k kilometers are covered:
P (T < t|K < k).
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2. Expected number of cumulative failures up to t days: E(NT (t)).

3. Expected number of failures for different joint time and distance intervals
[t, t + dt] × [k, k + dk]: E[N(T,K)(t + dt, k + dk) − N(T,K)(t, k)], where
E(N(T,K)(t, k)) is the expected number of cumulative failures up to t days
and k kilometers.

4. Probabilities of observing n failures up to time t, for an assortment of
values of t and n: P (NT (t) = n).

5. Probabilities of observing n failures up to distance k, for an assortment of
values of k and n: P (NK(k) = n).

6. Joint probability of not having failures in future intervals: As it is written,
this is the probability of no failures from time and km = 0 until time t
and km k. This is good for a new train equal to the one you considered
for the analysis. If you think of a future interval for train 35 then you
should write P (N(T,K)(t+ dt, k + dk)−N(T,K)(t, k) = 0).

Since we do not have closed formulae for the previous quantities of interest
(the distribution of the counting processes associated to the bivariate MMPP2 is
an open question), all predictions have been obtained through simulation. Once
the estimated bivariate MMPP2 model is obtained, then traces of the same size
as the real ones (n = 47 for train 35 and n = 51 for train 36) are simulated 1000
times. Estimations of the reliability measures are average values of the sampled
data.

Figure 8 depicts the estimates of the conditional probabilities P (T | K) in
asterisk symbols. Their empirical counterparts (observed frequencies) are de-
picted in square symbols. The proximity between the estimated and empirical
values strengthens the good fit provided by the model. The left panel of Figure
8 concerns train 35, where the probability of having a failure in less than approx-
imately six months given that a failure was observed in less than k ∈ [0, 10000]
km is estimated. The analogous probability is estimated in the right panel, for
train 36 and in a period less than 3 months. The probabilities shown in Figure
8 are of interest from an engineering viewpoint since they allow to infer how
likely is to observe a failure in less than a specific time period (to be fixed by
the engineer), given that the distance covered until the next failure is known to
be less than a given number of kms.

Another measure of interest, from the reliability of the system viewpoint,
is depicted by Figure 9: the estimated expected number of failures in different
intervals, for trains 35 and 36. From the figure, one can observe that train 35
is subject to an abrupt increased failure rate after the initial period and then
heavy intervention likely occurred since the failure rate went down. Train 36
is subject to an increase in the failure rate which decreases later (both changes
occur over long periods of time).

Other quantity of interest is the expected number of failures in joint intervals
of time×distance. Figure 10 depicts such estimated values of the expected
number of failures in different joint time and distance intervals for train 36. It
is interesting to note that a similar behavior to that observed from the Figure
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Figure 8: Comparison between the estimated (asterisk) and empirical (square) values of the
conditional probabilities p(T < t|K < k) for train 35 (left panel) and 36 (right panel).

Figure 9: Estimated average number of failures under the bivariate MMPP2 for train 35 (left
panel) and train 36 (right panel).

was obtained in the previous studies by Pievatolo et al. (2003); Pievatolo and
Ruggeri (2010).

We also provide estimates for the marginal probability functions of the cu-
mulated number of failures (NT (t) and NK(k)). In our context, marginal is
understood as referred to a single component, either time or distance. Figure
11 shows the estimated probability functions for train 35 (top panels) and train
36 (bottom panel) for different values of cumulated failures (n) and an assort-
ment of temporal periods (number of months) and distance ranges (number of
kilometers).

Finally, we consider estimation for the joint probability of no failures, an
information that is not available in the previous works Pievatolo et al. (2003);
Pievatolo and Ruggeri (2010). Tables 5 and 6 show the estimated probabilities
of no failure for several joint intervals [0, T ]× [0,K], for trains 35 and 36 respec-
tively. It is interesting to note how for a given covered distance, the probability
of zero failures decreases with time. However, for a fixed time, the considered
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Figure 10: Estimation of the expected number of failures in different intervals under the
bivariate MMPP2 for train 36.

middle distance intervals are those associated with the highest probability of no
failures.

HH
HHHT

K
105 km 5× 105 km 10× 105 km 30× 105 km 50× 105 km

10 Days 1 0.659 0.480 0.170 0.056
30 Days 0.665 0.607 0.474 0.170 0.056
90 Days 0.452 0.452 0.438 0.167 0.055

180 Days 0.270 0.270 0.269 0.164 0.055
360 Days 0.103 0.103 0.102 0.102 0.053

Table 5: Estimated joint probability of no failure for different joint intervals [0, T ]× [0,K] for
train 35.

6. Conclusions

A bivariate extension of the two-state Markov modulated Poisson process is
considered in this paper. This process allows for the modeling of non-exponential
bivariate traces presenting inter- and intra-dependence, properties that make
the model suitable either in reliability or other real contexts. Some properties
concerning the novel model are shown, in particular the identifiability, inherited
from the marginal processes, and crucial if inference is to be undertaken.
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(a) (b)

(c) (d)

Figure 11: Marginal probability functions of the number of cumulated failures for trains 35
(top panels) and 36 (bottom panels).

HHH
HHT
K

105 km 5× 105 km 10× 105 km 30× 105 km 50× 105 km

10 Days 1 0.689 0.432 0.070 0.012
30 Days 0.783 0.651 0.408 0.067 0.011
90 Days 0.381 0.381 0.346 0.057 0.009

180 Days 0.132 0.132 0.131 0.045 0.008
360 Days 0.015 0.015 0.015 0.015 0.005

Table 6: Estimated joint probability of no failure for different joint intervals [0, T ]× [0,K] for
train 36.

Once the process is properly described, a fitting approach is presented. The
method combines a matching moment approach with an ABC algorithm. The
first step helps alleviating the computational cost inherent in the ABC since the
number of parameters to be estimated go from 8 to 2.

The methodology is illustrated for both simulated and real datasets. In
particular, an application to real failures dataset concerning a public transport
company is presented. Once data are fitted by the bivariate MMPP2, a number
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of quantities of interest to get insight about the reliability of the system are
estimated. The results show the potential of the proposed bivariate model in
the reliability context as well as the correct performance of the fitting method.

Prospects regarding this work concern both theoretical and applied issues.
Some theoretical problems to be considered are as follows. First, we aim to
derive closed expressions for quantities of interest as the joint probabilities in
terms of (T ) and (K) or the joint predictive distributions. Also, it is of inter-
est to obtain probabilities of the counting process NT (t) (NK(k)), number of
failures up to t(k), as in Neuts and Li (1997). A third theoretical problem is
the extension of the process proposed in this paper to its batch counterpart,
where failures can occur in simultaneous way (see Yera et al. (2018, 2019) for
results concerning the batch counterpart of the MMPP2). Also, characterizing
the bivariate MMPP2 by a set of moments is a challenging goal from the in-
ference point of view. From an applied viewpoint, it is of interest to develop a
more sophisticated version of the ABC algorithm, so that a low number of pa-
rameters is sampled, but where the existing dependence between the estimates
from Step 1 and Step 2 is mitigated. It would be important also to estimate
how many failures will occur in future time and km intervals, both in terms of
expected number and probability of no failure in a given [time, km] interval.
Work on these issues is underway. Finally we want to emphasize the generality
of our approach. The important formulas in Section 3 apply to any choice of
bivariate exponential distribution, actually the formulas apply to general MPH⋆

distributions of arbitrary dimensions. This generality also applies to the depen-
dence structure that is only restricted by the general restrictions on the initial
vector and the matrices of the model. In case we have had more relevant vari-
ables in the train data set we could have included those in the modeling with
only a slight additional numerical complexity. Our model is a novel model that
can be applied to reliability models with sequences of correlated multivariate
observations.
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Appendices

Appendix A. Proof of Theorem 1

It is clear that if the representations B and B̄ are equivalent, their respective
marginal MMPP2 will also be equivalent. Since Rydén (1996b) proves that the
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MMPP is identifiable except by permutations of states, the probabilities asso-
ciated with the underlying process for the two marginals are the same (except
by permutation); that is,

a = ã, b = b̃, (A.1)

and the failure occurrence rates of the marginal processes also coincide, (except
by permutation of the vector λ by the vector ω), which implies that,

λj + λ3 = λ̃j + λ̃3, ωj + ω3 = ω̃j + ω̃3, for j = {1, 2}. (A.2)

On the other hand, from (10) it can be proven that the bivariate exponential
distribution associated with B and B̃ are equally distributed. Note that taking
n = 1 in (10), the following equality is obtained:

(T1,K1)
d
= (T̃1, K̃1). (A.3)

(T1,K1) can be rewritten as the sum of N bivariate exponential distribution,
where N − 1 is the number of times the underlying process changes state before
the first failure occurs. On the other hand, since the underlying process is the
same for both processes (A.3) is equivalent to

(X1 + ...+XN , Y1 + ...+ YN )
d
= (X̃1 + ...+ X̃N , Ỹ1 + ...+ ỸN ), (A.4)

and it is possible to take conditional distribution on the initial state and the
number of changes state of the underlying process in (A.4) obtaining

(X1+...+XN , Y1+...+YN |N = 1, s0 = i)
d
= (X̃1+...+X̃N , Ỹ1+...+ỸN |N = 1, s0 = i).

Hence the bivariate exponential distributions associated with B and B̃ have to
be equally distributed and consequently they have the same moments. There-
fore, using (A.2) and (6), the following relationship is obtained

λ1 + λ2 + λ3 = λ̃1 + λ̃2 + λ̃3, ω1 + ω2 + ω3 = ω̃1 + ω̃2 + ω̃3. (A.5)

Then, from (A.2) and (A.5), λi = λ̃i and ωi = ω̃i, for i = {1...3}, which implies
the identifiability of the process in the terms defined in the paper.

Appendix B. Equivalent Matrix Representation

An alternative matrix representation for the bivariate MMPP is given by the
initial probability vector (3):

ϕ =

(
ϕ1

λ2

λ
, ϕ1

λ1

λ
, ϕ1

λ3

λ
, ϕ2

ω2

ω
, ϕ2

ω1

ω
, ϕ2

ω3

ω

)
,
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where λ = λ1 + λ2 + λ3 and ω = ω1 + ω2 + ω3, and the matrices

D0 =



−γt1 0 γt1 0 0 0
0 −γk1 γk1 0 0 0
0 0 −λ λ

ωω2a
λ
ωω1a

λ
ωω3a

0b 0 0 −γt2 0 γt2
0 0 0 0 −γk2 γk2

ω
λλ2b

ω
λλ1b

ω
λλ3b 0 0 −(ω)


,

D1 =


0 0 0 0 0 0
0 0 0 0 0 0

(1− a)λ2 (1− a)λ1 (1− a)λ3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ω2(1− b) ω1(1− b) ω3(1− b)


and

R =


1 1
0 1
0 1
1 1
0 1
1 1

 .

Note that the parameters associated with this alternative representation are
the same than for the previous one but they offer a different arrangement in the
matrix representation.

Appendix C. A simulation study

The aim of this section is to illustrate the behavior of the procedure described
in Section 4 on the basis of two simulated datasets. Each simulated dataset con-
sists of a sequence of 1000 pairs of failures (t,k) = {(t1, k1), (t2, k2), ..., (tn, kn)}
simulated from two different bivariateMMPP2s, whose parameter sets {a, b,λ,ω}
are listed in Table C.7 in the Generator Process columns.

The first example considers a simulated sample from a bivariate MMPP2

with low intra-dependence (both marginal processes present a first lag auto-
correlation coefficient around 0.2) and very high inter-dependence (correlation
between times and distances around 0.9). The second considered trace is from
a bivariate MMPP2 with relatively high intra-dependence (with an autocorrela-
tion for both marginal processes of around 0.4) and a moderate inter-dependence
(correlation between times and distances around 0.7). The results obtained after
running the fitting approach are shown in Table C.7.

The first eight rows in Table C.7 show the parameters of the process (the
real ones under the column Generator Process and the estimated ones under
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Example 1 Example 2
Generator
Process

Estimation
Generator
Process

Estimation

a 0.02 0.02 0.008 0.008
b 0.44 0.44 0.08 0.09

λ1 0.82 0.68 4.11 4.28
λ2 0.40 0.31 1.79 1.62
λ3 1.86 1.84 5.95 5.66

ω1 2.35 × 10−2 2.51 × 10−2 0.12 0.12
ω2 5.27 × 10−3 7.91 × 10−3 0.12 0.12
ω3 0.24 0.22 0.33 0.33

µT (1) 0.58 (0.57) 0.57 0.29 (0.28) 0.28
µT (2) 1.99 (1.92) 1.92 0.88 (0.87) 0.87
µT (3) 20.16 (20.40) 20.42 5.67 (5.63) 5.65
ρT (1) 0.22 (0.21) 0.22 0.41 (0.40) 0.40

µK(1) 0.66 (0.66) 0.65 0.31 (0.32) 0.32
µK(2) 2.38 (2.30) 2.31 0.89 (0.89) 0.90
µK(3) 25.37 (25.78) 25.75 5.72 (5.79) 5.77
ρK(1) 0.21 (0.22) 0.21 0.39 (0.40) 0.39

η11 2.02 (1.99) 1.93 0.69 (0.70) 0.69
η21 20.10 (19.26) 19.98 3.84 (3.90) 3.85
η12 21.27 (21.87) 21.16 3.85 (3.81) 3.88

Cor(T,K) 0.91 (0.90) 0.90 0.76 (0.75) 0.76

running
time

- 219.79 - 213.89

Table C.7: Comparison between the theoretical, empirical (within parentheses) and estimated
values for obtained with the algorithm of Table 2 for two examples.

the column Estimated). The ninth to sixteenth rows depict the marginal em-
pirical moments that characterize marginal processes (theoretical and empirical
in parenthesis in the Generator Process column and estimated ones in the Es-
timation column). The analogous can be found from row 17th to row 19th,
but regarding the joint moments. The penultimate row shows the correlation
between inter-failure times and distances, and finally, the last row shows the
running time (measured in seconds) in an Intel Xeon Six-cores 3.6 GHz with 12
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threads processor with 128Gb of memory ram (for a prototype code written in
MATLAB©).

Some comments arise from the results presented in Table C.7. On one hand,
it should be pointed out the good performance of the method for estimating the
moments of the bivariate process (both marginal and joint) and in particular, the
correlation between the inter-failure times and distances. Parameters a and b are
also well fitted, a fact that also happens for λ3 and ω3 since the ABC approach
is specifically designed in terms of them. However, it has been observed that
estimations for the rest of parameters (λ1, λ2, ω1 and ω2) may be less good for
some cases. Consider for example, the first simulated trace. From Step 1 in
the fitting approach, the values of γt1 = λ1 + λ3 and γk1 = λ2 + λ3 (equal to
2.53 and 2.26) are estimated as 2.53 and 2.25. Since the generated values of λ3

in Step 2 (ABC) are upper-bounded by min{γ̂t1, γ̂k1}, then the results under
the ABC approach will be better or worse depending on the estimates for γt1
and γk1. In the previous example, the final estimation for λ2 turns out slightly
better than that of λ1, as expected. A similar fact occurs in the case of the
parameter ω3.

An additional comment regards the computational time of the proposed fit-
ting approach. For the considered examples, the total running time is around
6 minutes, where the most of computational cost is due to the ABC algorithm.
The matching moment approach defining Step 1 is not expensive from a com-
putational point of view (see Yera et al. (2019)). However, it is known from
the literature that the ABC algorithm is time consuming, in particular for high
values of I2 (number of iterations or number of times where traces are simu-
lated), see Minter and Retkute (2019). In our case, such value, I2, is set as
10000 which provides a good compromise between performance of the inference
approach and computing time.

In order to explore in more depth the results under the ABC algorithm,
consider Figure C.12 and Table C.7. Figure C.12 shows the evolution of the es-
timation of parameter λ3 as the acceptance percentage considered in the ABC
algorithm varies. Note that in left panel (Example 1) the estimated value with
10% acceptance is 1.14, which is very close to the mean value of the prior distri-
bution of λ̂3 (min(γ̂t1, γ̂k1)/2). As the acceptance rate decreases, λ̂3 approaches
to λ3, as expected. A similar behavior can be seen in the right panel (Example
2). Table C.8 shows the whole set of parameters (λ,ω) for different acceptance
rates. Again, it can be seen that as the acceptance percentage decreases, the
estimate becomes more accurate.
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Landon, J., Özekici, S., and Soyer, R. (2013). A markov modulated poisson
model for software reliability. European Journal of Operational Research,
229(2):404–410.

Latouche, G. and Ramaswami, V. (1999). Introduction to matrix analytic meth-
ods in stochastic modeling, volume 5. SIAM.

Liu, B., Cui, L., Wen, Y., and Shen, J. (2015). A cold standby repairable system
with working vacations and vacation interruption following Markovian arrival
process. Reliability Engineering & System Safety, 142:1–8.

Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. J. (2012). Approximate
Bayesian Computational methods. Statistics and Computing, 22(6):1167–
1180.

Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution.
Journal of the American Statistical Association, 62(317):30–44.

Minter, A. and Retkute, R. (2019). Approximate Bayesian Computation for
infectious disease modelling. Epidemics, page 100368.

33



Navas, M. A., Sancho, C., and Carpio, J. (2017). Reliability analysis in railway
repairable systems. International Journal of Quality & Reliability Manage-
ment, 34(8):1373–1398.

Nelson, D. and O’Neil, K. (2000). Commuter rail service reliability: On-
time performance and causes for delays. Transportation Research Record,
1704(1):42–50.

Neuts, M. and Li, J. (1997). An algorithm for the P (n, t) matrices of a continu-
ous BMAP, volume 183 of Lectures notes in Pure and Applied Mathematics,
pages 7–19. Srinivas R. Chakravarthy and Attahiru, S. Alfa, editors. NY:
Marcel Dekker, Inc.

Pievatolo, A. and Ruggeri, F. (2010). Bayesian modelling of train door reliabil-
ity. The Oxford Handbook of Applied Bayesian Analysis. Oxford University
Press, Oxford, pages 271–294.

Pievatolo, A., Ruggeri, F., and Argiento, R. (2003). Bayesian analysis and pre-
diction of failures in underground trains. Quality and Reliability Engineering
International, 19(4):327–336.

Ramı́rez-Cobo, P. and Carrizosa, E. (2012). A note on the dependence structure
of the two-state Markovian arrival process. Journal of Applied Probability,
49:295–302.

Ramı́rez-Cobo, P., Lillo, R., and Wiper, M. (2008). Bayesian analysis of a
queueing system with a long-tailed arrival process. Communications in Statis-
tics—Simulation and Computation, 37(4):697–712.

Ramı́rez-Cobo, P., Lillo, R., and Wiper, M. (2010). Nonidentifiability of the two-
state Markovian arrival process. Journal of Applied Probability, 47(3):630–
649.

Ramı́rez-Cobo, P., Lillo, R., and Wiper, M. (2017). Bayesian analysis of the
stationary MAP2. Bayesian Analysis, 12(4):1163–1194.
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