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Abstract

Models of maintenance problems must handle complex assumptions, allow-
ing, for example, the condition of some assets to be rated directly using multiple
states while in others the condition rating is inferred from that of the components
from which they are assembled. The overall condition inferred, which informs the
maintenance decisions, requires evidential reasoning under uncertainty. This pa-
per uses Bayesian networks to address these challenges with real case studies. We
apply the binary factorisation technique to allow inference of multi-state condition
prediction, and further extend it to predict the condition of an asset with multiple
components. These models are used to recommend inspection decisions such as
which assets to inspect and when to inspect them. Models are also developed to
evaluate the effectiveness of repair interventions and to use this to suggest repair
actions. We show how to model multiple interventions within the asset life cy-
cle considering both repair effectiveness and further deterioration. This modelling
allows us to plan maintenance activities for an asset over its whole life cycle.

Keywords: Condition prediction, Multi-state system, System configuration,
Bayesian networks, Maintenance modelling, Observational and intervention

1. Decisions to Manage Infrastructure Asset

As of 2017, the National Bridge Inventory (NBI) database in the United States
showed that 54,560 bridges (out of a total of 615,002) were reported as structurally
deficient (SD). The associated expenditure for maintenance is considerable - for
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instance, the Organisation for Economic Co-operation and Development (OECD)
estimated that from 2010 to 2030, the annual cost of road and rail maintenance
would be approximately USD 220 billion and USD 50 billion respectively [1].
Furthermore, Heng et al. [2] estimated that with current practices, more than a
third of infrastructure maintenance expenditure is wasted through poor decision-
making. The need for an effective maintenance strategy for managing such deci-
sions is therefore paramount.

With infrastructure asset, an effective maintenance strategy requires careful
planning of both inspection and maintenance activities. Inspection aims to de-
tect any damage and identify the underlying condition of the asset so that future
inspection and maintenance can be scheduled. Alternatively, maintenance is per-
formed to either repair any damaged that has occurred or to improve the overall
condition to help prevent any future damage. These two activities ensure the in-
frastructure asset operates within an acceptable level of safety and reliability. An
effective maintenance strategy is therefore necessary for increasing the expected
life expectancy of structure and reduce its maintenance expenditure [3].

1.1. Inspection Decisions
Inspection activity can be classified into two types: visual inspection and detail

inspection. Visual inspection looks for outward signs of damage, such as missing
fasteners and cracks, which include techniques like fault detection and fault pat-
tern recognition (see a review from Heng et al. [2]). While detail inspection seeks
to determine the conditions of the underlying parts of the infrastructure, which is
often more complicated to perform and generally more expensive. For example,
for a bridge with hidden critical element that cannot be observed visually, we may
need to use intrusive or non-intrusive examination methods to estimate its condi-
tion. We can perform a preliminary assessment by predicting its deterioration to
support the decision on performing detail inspection.

The process of deterioration, such as a bridge deteriorates from a good condi-
tion to a structurally deficient condition, describes the decrease in asset condition
over time. At the same time, historical inspection records provide information
about the previous condition of an asset over time. We can use these records to
infer relevant data to model the deterioration process of an asset. By doing so, we
can predict the condition of an asset by estimating how soon it is likely to deteri-
orate into an unacceptable level in the future. This can support the decisions on
inspection and answer questions like when to inspect the asset or which asset we
should inspect.
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1.2. Maintenance Decisions and Plans
After we identified the damage or condition of an asset from inspection activ-

ity, we can decide its corresponding maintenance activity. Decisions on mainte-
nance activity mainly involve with the selection of repair action and the schedule
of maintenance. Repair actions can range from no action when the asset is in an
acceptable state, to replacement when the asset on the edge of failure, with sev-
eral intermediate actions to restore the asset to a better decay level [4]. We may
want to suggest repair action given an objective, for example, minimum cost or an
acceptable level of system reliability.

The choice of repair action is one of the keys to plan maintenance. Some-
times, from a life-cycle point of view, it is more cost-effective to wait for an asset
to deteriorate further before taking an repair action instead of repairing it imme-
diately. For example, we may have a longer life expectancy to repair an asset in a
worse condition using a major repair action, than repair with minor repair action
in a better state. Planning maintenance over a time horizon concerns with multi-
ple intervention cycles, where each cycle considers the selection of repair action
and the further deterioration after repair. As a result, the maintenance plan can
support decisions like maintenance resource allocation. Or even, together with an
optimisation technique, to provide an optimal selection of repair actions within its
life cycle given an objective.

1.3. Paper Outline
This paper provides solutions to support the decisions addressed above. In

Section 2, we introduce traditional reliability modelling approaches and the ad-
vantages of Bayesian Network (BN) models in supporting complex system mod-
elling and decisions reasoning. Section 3 presents a variety of inspection and
repair decision models using the Bayesian approach. These decision models are
applied from Section 4 to 6 using real-world case studies. The paper ends with
the conclusion in Section 7.

2. Techniques for Reliability Analysis

Fault tree analysis and event tree analysis are two commonly used modelling
techniques when making asset reliability-related decisions. However, they of-
ten fail to model complex interaction between events and the structures of them
increase exponentially with the increase in the number of states or components
[5, 6], which limits their uses in maintenance decisions. Another popular ap-
proach is Markov-based stochastic modelling. A Markov process is a stochastic
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process where the future state only depends on the present state (Markov prop-
erty). For example, Cesare et al. [7], Jiang et al. [8] applied Markov models to
reason the deterioration of an asset with a sequence of state transition, and Shafahi
and Hakhamaneshi [9] use it to model a maintenance management system. We can
also extend it to a semi-Markov process which enables the modelling of an asset
with multiple states where each transition between states follows a different dis-
tribution as shown in Droguett et al. [10]. But as summarised in Yianni et al. [11],
this approach also suffers limitations in maintenance modelling, such as assuming
a fixed discrete time interval and static transition probabilities.

Petri Net (PN) is capable of modelling discrete events with concurrencies and
complex dependencies, and it has drawn more and more attention recently in re-
liability modelling [12, 13]. For example, Andrews [14] modelled the deteriora-
tion, inspection and maintenance processes of a track section with PNs. Also, we
can extend PN to Coloured PN (CPN) to distinguish between tokens, which can
greatly reduce the model space for complex structures. When modelling multiple
components, we can share the same subnet to track multiple components using
different coloured tokens [15]. Le and Andrews [16] used CPN to build a bridge
management system with multiple components. Within each component, the PN
models the non-constant deterioration and maintenance process, which are later
combined as a complete bridge model. These models also support decisions such
as prediction of lifetime condition of components or bridges, or implementation of
a strategy like opportunistic maintenance [15, 16, 11]. To evaluate different main-
tenance strategies and to perform life-cycle cost analysis, Le [15] coupled PN
with a genetic algorithm to optimise the selection of repair actions based on dif-
ferent repair effectiveness and costs. Monte Carlo (MC) simulation is often used
for estimating the transition probabilities within PN. But with the increase in the
number of components and structural hierarchy, the computational cost increases
exponentially. This challenge can be addressed by parallelisation and accelerated
by Graphics Processing Units, either parallelise the PNs with independent subnets
like Chalkidis et al. [17], or parallelise the MC simulations like Yianni et al. [18].

Another alternative technique is BN. In a BN model, causal or influential rela-
tionships between variables are specified by a directed graph and a set of variables.
Its joint probability distribution is calculated using the following equation:

p(X) =

n∏
i=1

p(Xi |parents(Xi)) (1)

Rafiq et al. [19] developed a discrete BN to infer the bridge condition from
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its components, but these conditions were directly given by experts. While Lit-
tlewood and Verrall [20] used continuous BN to learn component failure distri-
butions from data. Reasoning decisions from a BN may require the use of both
discrete variables (e.g. predicted state) and continuous variables (e.g. statistical
distribution) in the same BN [13], this type of BN is called hybrid BN. Many
inference algorithms were developed recently for hybrid BN. For example, an ap-
proximate inference algorithm was proposed in Marquez et al. [21] that combines
dynamic discretisation with propagation algorithm on junction tree. It was applied
to learn components failure with various distributions, and these distributions were
used to diagnose the system performance with the help of discrete variables. This
algorithm was implemented in the tool AgenaRisk [22], and in this paper, we use
this tool for its flexibility and efficiency in BN modelling and inference.

Extended from Marquez et al. [21], a Bayesian-based condition prediction
model that learns asset deterioration process from both data and knowledge was
developed in Zhang and Marsh [23], and was recently validated and further ex-
tended to learn from similar asset groups in Zhang and Marsh [24]. Figure 1
presents a simplified model. The time each asset transits from one state to another
state was modelled following a Weibull distribution. The transition distribution
is inferred from past transition of assets in the same class (e.g. assets 1 to 4 for
transition from Good to Fair). Each prior for shape and scale parameter follows a
triangular distribution, which can be used to express knowledge about the deteri-
oration of this type of asset. For example, if an engineer believes the deterioration
rate of this asset increases over time, we can assign a shape value that is greater
than 1.
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Figure 1: An asset condition prediction model.

We can use the learned transition distributions to infer asset state given an
observation. As an example, an asset rated by three states is modelled using a
categorical variable with two transitions from Good to Fair (TGood→Fair) and from
Fair to Poor (TFair→Poor) is shown in the same figure. Each transition is modelled
by a separate parameter learning model. We assume deterioration progresses with
the sequence of the rating system, that is, the transition from Good to Poor must
go through the transition of Fair. Hence, denotes intervention time as T , in this
example, the expression for the predicted state node becomes i f (T < TGood→Fair,
“Good”, i f (T < TFair→Poor, “Fair”, “Poor”)). Assuming the starting state of
this asset is a Good condition, the query from T will first visit TGood→Fair. In
the probability density function of this node, only 27.993% of the area of this
distribution is smaller than 24, that means, 72.007% of this asset will still stay at
Good state. For those transit to Fair, only 43.004% will further transit to the Poor
state showed in TFair→Poor, that is, 27.993%*43.004% = 12.038%. This gives us
the condition prediction distribution as shown in node predicted state.

Based on the condition prediction model discussed above, this paper develops
a variety of Bayesian-based decisions models to manage infrastructure asset. We
show not only we can model complex structures efficiently, but also reason a wide
range of inspection and maintenance-related decisions. Further, we demonstrate
the use of these models using real-world case studies.
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3. Bayesian Networks for Asset Maintenance Modelling

In this section, we extend the condition prediction model proposed in Zhang
and Marsh [23, 24] to a range of BN models that can address various asset main-
tenance problems. Section 3.1 shows how to infer asset inspection conditions effi-
ciently and with complex dependencies. Section 3.2 gives two models to support
the process of making repair decisions. Section 3.3 shows how to plan mainte-
nance activities with multiple intervention cycles. This section is further sum-
marised in Section 3.4.

3.1. Models for Inspection Decisions
The aforementioned model can infer an component’s condition distribution

given an intervention interval. This subsection discusses how to perform inference
more efficiently when we have a higher number of states and how to model assets
that are assembled by multiple components.

3.1.1. Binary Factorisation for Multi-State Component
Figure 1 shows a simple example with only three states. In practice, we often

have a much larger number of states, such as a component is graded by a 10-point
scale in the NBI dataset (see Weseman [25]). With the increase in the number of
state, the number of parent nodes for predicted state node increases correspond-
ingly. In a BN, a node that has too many parents results in a very large Condi-
tional Probability Table (CPT), which leads to computational complexity for its
inference. Especially for continuous variables like the transition distribution, this
complexity increases sharply since dynamic discretisation algorithm discretises
each distribution into dozens of states [26]. If, say 30 states were discretised for
each transition, for the NBI dataset, the predicted state would have 9 transition
parents, leading to a request of 309 entries for the CPT.

To reduce the inference complexity, here we adopt the binary factorisation
modelling technique proposed in Neil et al. [27]. This technique converts the ag-
gregation structure in the BN into a binary tree structure (for example, from Figure
2 (a) to (b)) that aims to ensure all nodes in the BN have no more than two contin-
uous nodes as parents. In our model, the intervention time node and all transition
nodes are continuous variables. Therefore, for the first transition, we build a tem-
poral Boolean node (showed in dotted line) to query if the component transits to
worse states given the intervention time. The following temporal Boolean nodes
have the same structure, only with an additional link from the previous temporal
node in the form of a Markov model. It will transit to worse states only if the pre-
vious state is transited to the current state and current transition is smaller than the
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Figure 2: Condition prediction of a multi-state component: (a)model with aggregation; (b)binary
factorised model; (c)plate model.

intervention time. For example, denotes node transit to state after Good as tGood,
the second temporal transition node is true when (tGood = True)∧(T > TFair→Poor).
At last, all the temporal nodes are linked to the predicted state node. This creates
a much smaller CPT than the one with the aggregation structure: these temporal
nodes are discrete variables with only two states for each. If the rating system
has n states, the binary factorised model reduces the CPT size of an aggregated
structure from 30(n−1) to 2(n−1). In the example in Figure 2, it reduces from 303 to
23, and for the NBI example, it can reduce the space from 309 to 29.

This modelling technique is employed in the rest of the paper. Figure 2 (c)
gives an example of how to represent the model in (b) using a modified plate
model to make the models more readable: a square indicates that there are mul-
tiple variables inside the square with the same structure. The index shows the
number of variables with the same structure. The temporal nodes are omitted but
represented by the dotted lines, indicating the model is binary factorised.
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3.1.2. Assets with Multiple Components
The condition of an asset with multiple components can be evaluated in vari-

ous ways depending on the type of interaction between its components, such as in
parallel, series, and their variants. Dynamic Fault Trees (DFTs) is one of the most
notable frameworks in modelling these system configurations. Marquez et al. [26]
represent the DFTs in the form of event-based BN structure to model parallel and
series system. The transition distribution of an asset system is characterised by its
components’ transitions using an arithmetic function, such as maximum function
for a parallel configuration and minimum function for a series configuration.

However sometimes, decision makers are more interested in evaluating the
state of an asset from the state of its components, rather than directly from the
transition distribution of its components. For example, in the US, one criterion
in determining whether a bridge is structurally deficient is a condition rating of 4
or less for any of its structures, including deck, superstructure, substructure and
culvert (if exists). We can consider each structure as a subsystem of the bridge,
and they are assembled with a parallel configuration.

In a simple case where assets are rated by binary states (for example, working
or fail), we can model them as traditional FT with a Boolean node in the BN. An
AND gate can be used to model the relationship of a parallel system. It represents
the event fails if all the components in the system fail. Similarly, an OR gate can be
used to model the relationship of a series system. It represents the event fails when
at least one of the components fails. The Boolean node is constructed with a com-
parative statement to express these logic gates and can be used to perform static
FT analysis. For example, for a binary-state asset that is evaluated by the states of
two components C1 and C2 in parallel, we can define: Asset ∼ i f (C1 ==“Fail”
&&C2 ==“Fail”, “Fail”, “Working”). With BN tools like AgenaRisk [22], this
expression for the Boolean operator can be automatically transformed to a corre-
sponding CPT for inference in the BN. The joint probability distribution of the BN
model that has a collection of independent cause variables Component C consists
of Component Ci, where i = 1, 2, . . . , n as the parents of the asset’s state Y:

p(C,Y) = p(Y |C)
n∏

i=1

p(Ci). (2)

Therefore, together with the prior/posterior probability of component state (as-
signed directly from inspection data or learned from the parameter learning model
explained earlier), we can get the state distribution of a binary-state asset with
parallel or series configuration after inference. Thought we could extend the if-
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else statement in a Boolean node into a collection of logic expressions (nested
if-else statements) in a categorical node to evaluate multi-state asset, the process
for defining these logic expressions becomes tedious with the increase in the num-
ber of state.

Instead, for a multi-state asset that is evaluated by multi-state components,
functions such as maximum or minimum can be used to describe the relationships
between states of components and state of the asset. To do that, we can represent
the states with numerical scales rather than simply using categorical states. Here,
their states are modelled with a set of ordinal continuous intervals. The discrete
variable (state of components and assets) is mapped onto a continuous scale that
is bounded (from 0 to 1) and monotonically ordered. The reason for expressing
them on an ordinal scale is that asset states are ordered. For example, in the NBI,
State 8 represents a closer condition to State 9 than State 7 to State 9. Given the
number of asset states, we can discretise the numerical scale accordingly. Hence,
the binary-state system becomes one of the special cases with an interval of 0.5.
Figure 3 presents a three-state scale example: the interval between each state is
0.333. Thus, Good state belongs to the interval of [1, 0.667) and Fair state belongs
to the interval of [0.667, 0.333) and so forth.

Figure 3: Multi-state asset system assembled by parallel components.

With these numerically scaled states, we now can use maximum and minimum
functions. Since the states, for example, Good to Poor, are mapped to ordered
numerical bounds from high to low, and their states are mutually exclusive, the
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probability of asset under maximum or minimum function becomes the maximum
or minimum state scale of their components and then re-marginalised. Figure 3
presents an example of two components assembled in parallel. The CPT generated
from the maximum function for asset 4 is given in Table 1. The probability of the
asset follows the sequence of logic: if either component is in Good state, the asset
is in Good state, or if either component is in Fair state, the asset is in Fair state,
otherwise, the asset is in Poor state.

Table 1: CPT for an asset with two components that are assembled in parallel.

Component 1 Poor Fair Good
Component 2 Poor Fair Good Poor Fair Good Poor Fair Good

Asset 1
Poor (0 - 0.333) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fair (0.333 - 0.667) 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
Good (0.667 - 1) 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0

3.2. Models for Repair Decisions
When the state of an asset has been identified, we would like to decide what re-

pair action to perform. This subsection develops two types of supports for making
these repair decisions: one for suggesting maintenance actions based on historical
repair usage, which is built upon a type of BN called an observational model; one
for evaluation of repair effectiveness, which is built upon a type of BN called an
intervention model. Both models are built with a common cause with confounder
causal structure, which represents a situation that an event is causally affecting
both the cause and the effect [28, 29].

3.2.1. Observational Model: Historical Frequency of Repair Action
Given an observed condition of an asset, maintainers may want to know under

the same scenario, what action would other maintainers take. Figure 4 presents an
example observational model for a three-state asset. Three repair actions are in-
cluded for illustration purpose, this variable is the child node of the observed asset
state since historically, the decision on repair action depends on the current state
of the asset. These two nodes together become the parent nodes of the repaired
state. In addition, we also include a constraint node to evaluate if the repaired
state is still in Poor condition.
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Figure 4: Observational model for repair action suggestion from historical frequency.

The CPT of current state node is uniformly distributed, but in most cases, this
node is observed. In this example, it is observed with a Poor condition. The
CPT of repair action depends on the observed state. Its entries are adopted from
the historical frequency of repair action usage or expert judgement. For example,
when the asset is inspected with a Fair condition, in the repair history, 30% of
maintainers took no action, 60% used minor repair, and 10% applied major re-
pair. Similar procedure is applied to specify the CPT of the repaired state about
maintenance effectiveness. This example assumes the available actions are im-
perfect maintenance, and different actions have different effects in restoring asset
state depending on its current state. For example, in history, 99% of assets in
Fair conditions repaired by major repair actions were restored to Good conditions
while 1% didn’t have any effect; 50% of them successfully restored asset in Poor
condition to Good condition, and 45% to Fair condition but 5% failed to improve
its current state. The constraint node is an observable Boolean node with a logical
expression i f (Repaired S tate == “Poor”, “True”, “False”), and its equivalent
CPT is shown in the figure. The False state is observed in this node to prevent the
repaired state from being in a Poor condition.

By observing the state of the asset and the constraint to prevent asset from
being in an unreliable condition, with this observational model we can infer the
repair action frequency that was taken in history or from expert experience. In
Figure 4, for an asset that is currently in Poor condition, in order to avoid its
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repaired condition still in the Poor condition, in history, 1.635% of maintainers
took minor repair action and 98.365% repaired with major repair.

3.2.2. Intervention Model: Effectiveness of Maintenance
An intervention model can be used to answer questions such as what is the con-

dition distribution of an asset if a specific repair action was taken. The distribution
implies imperfect maintenance that not all actions can restore asset condition to a
specific state, but a collection of states probabilistically.

Figure 5 presents an example of how to transform an observational model
(Figure 4) into an intervention model for repair action evaluation. Followed the
suggestions from Constantinou et al. [30], in the intervention model, the link from
the cause should be removed. In the observational model, this link is used to ex-
plain the observation for repair intervention; while in the intervention model, we
need to remove it in order to avoid inferring posterior probability for cause (cur-
rent state node) when performing intervention (observed). Though technically
this does not have an impact on the example in Figure 5 because both current
state node and repair action node are observed. It is still necessary to remove this
correlation because the current state could be predicted instead of being observed
(see an example later given in maintenance planning). With this link, the model
will wrongly reason backwards and have an impact on the current state. Further-
more, the constraint node becomes unobservable; it acts as an indication of the
intervention impact.

Figure 5 shows an example of estimating the impact of an intervention. Most
CPTs for the transformed intervention model remain the same as those in the
observation model, except for the CPT of the repair action. The repair action
node becomes independent from current state node and is observed. Hence, like
the current state node, its CPT is uniformly distributed. For an asset in a Poor
condition, performing a minor repair only has a 30% probability restoring the
asset to Fair condition yet 70% probability staying in the Poor condition. Hence,
in this case, we may suggest using major repair action instead.

In this subsection, we modelled a simplified relationship between repair ac-
tions and asset state. The model can be extended to describe more complex main-
tenance assumptions, such as some repair actions are only applicable to restore
asset in a specific range of state, or repair actions depend on the states of multiple
components. We can also include more constraints, such as costs and expected
service time, to provide a reference for making maintenance decisions under a
more practical scenario. These complex decisions are later discussed in Section 5
using a real example. Also, by considering the intervention model as a fragment
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Figure 5: Converting an observational model to an intervention model for repair effectiveness.

model, we can form multiple fragments to model multiple maintenance decisions.
Together with the condition prediction model from Section 3.1, we can plan the
maintenance over a time period, and further, perform analysis such as life cycle
analysis.

3.3. Models for Maintenance Planning
Intervention model from the last subsection gives us a tool to evaluate the re-

pair effectiveness but does not explicate decisions should be taken to optimise the
use of resources automatically. An adequate approach is needed to formalise the
process of making these decisions, especially with the increase in complexity in
decisions making of many problems, such as a situation where future decisions de-
pend on past decisions [31]. In this subsection, the maintenance decision process
is modelled as an object (fragment) that contains the intervention model together
with the condition prediction model. By modelling multiple objects that are ar-
ranged sequentially, it allows us to model decision processes over a finite time
period and perform analysis such as a life-cycle cost analysis.

For critical infrastructure, inspection and maintenance are often performed
periodically. Therefore, to model a lifetime maintenance process, we can model
multiple intervention processes that are either carried out with a fixed time interval
of a dynamic time interval. Each intervention process is represented as an object
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that consists of the decision on repair action and its further deterioration till the
next intervention. We can connect multiple intervention processes in the form of
sequentially organised BN objects. In each object, the posterior of predicted state
becomes the prior of the predicted state of its next object (next intervention). The
repair action is a decision node, it is determined by the state of the asset’s further
deterioration (for example, the most probable state or a state is above a certain
percentage) from the last intervention. The repair cost is cumulatively calculated
depending on the current repair action. By performing multiple cycles of this
model, we can estimate the life cycle cost of this asset that considers both repair
decisions and further deterioration.

Different from the model in Figure 2, where an asset is assumed to be in a
specific condition (hard evidence, for example, 100% in Good condition); the re-
pair action cannot guarantee perfect maintenance. Hence, the repaired state is
probabilistically distributed (soft evidence). The previous binary factorisation,
therefore, becomes a special case when the repaired state is 100% in the Good
condition. In fact, this only applies to the situation for complete replacement,
while for imperfect maintenance with a probability distribution, we need to per-
form multiple levels of binary factorisations.

Assume asset can be rated among {n, . . . , 1} states, where state n is the perfect
state and State 1 is the worst state, we have n − 1 transitions. By dividing the
factorisation into n−1 blocks, where each block represents a factorisation process
that start with one of the possible states. Given an intervention time, for state i,
we perform a binary factorisation with the Markov property (for example, transit
to state after i − 1 only depends on transit to state after i) that evaluate whether
the asset will deteriorate to state {i, . . . , 1}. We model this process by a collection
of temporal Boolean nodes from transit to state after i, to transit to State 1. In the
block for state i, all temporal Boolean nodes are aggregated to form a temporal
predicted state node representing the state distribution if the repaired state is in
state i. The repaired state node contains a message about the probability distri-
bution of each state. Together with the temporal predicted state nodes, they are
aggregated to form an ultimate predicted state node representing the state distri-
bution of this asset.

To define the CPT for the final predicted state node, we first need to determine
the predicted probability for each state. For repaired state and the final predicted
state, we have a collection of state distributions represented as Prepair,i and Ppredict, j

respectively, where
n∑

i=1
Prepair,i = 1 and

n∑
j=1

Ppredict, j = 1. For the temporal predicted

state that starts with repaired state i, its probability of deteriorate to state j is
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represented as pi, j , where
i∑

j=1
pi, j = 1, and i ≥ j. Therefore, the probability of the

ultimate predicted state in state j is:

Ppredict, j =

n∑
i= j

pi, jPrepair,i (3)

Figure 6: Multiple binary factorisations for the repaired state distributed probabilistically due to
imperfect maintenance.

Figure 6 shows how we can decompose the factorisation for an asset that is
rated by four states: Good, Fair, Poor and Fair. Hence, three transitions (the
index n − 1 = 3). For the repaired state that is in Good condition, followed the
procedure in Section 3.1, its deterioration is binary factorised with three temporal
nodes about its step-wise transitions given the observation of intervention time.
These temporal nodes are gathered together to evaluate the further deterioration of
asset under the circumstance that the repaired state is in Good condition. Similar
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procedures are performed to evaluate the deterioration of the asset state in Fair
state and Poor state respectively. A collection of temporal predicted states for
asset starts with various repaired states is linked, together with the probability
distribution of the repaired state to infer the ultimate predicted state. For example,
to evaluate the probability of this asset in Poor condition, Equation 3 is employed,
where j = 2 and n = 4. We need to combine three situations, where each situation
is multiplied by the probability of it being in that repaired state: in 48 months, the
probability of repaired state in Good state deteriorates to Poor state, the probability
of repaired state in Fair state deteriorates to Poor state, and the probability of
repaired state in Poor state stays in the Poor state. Hence, we have 18.51% ∗
20% + 29.29% ∗ 60% + 59.76% ∗ 15% = 30.24%.

This model can be used to estimate the life cycle of asset maintenance and
identify potential risk and expenditure. To further utilise this model, we can in-
corporate maintenance strategy to select optimal repair action and to decide inter-
vention time interval. For example, by setting constraints to activate repair actions
(e.g. some repair actions can be only used when the asset is in a particular state
range), with objectives like minimum overall repair cost in the whole life cycle or
ensuring asset state is above a certain level for safety reason, this forms a mathe-
matical optimisation problem. It can be tackled by a range of techniques, such as
heuristic algorithms, to decide which repair action to select at what time. Together
with our model, we can perform analysis like optimal life cycle cost analysis to
give more valuable suggestion when planning maintenance activities.

3.4. Summary
This section presents several BN models that can be used to manage asset

maintenance-related decisions, including:

1. A model that predicts asset condition at a given time. This model incorpo-
rates binary factorisation to enable efficient inference with multiple sates. A
second extension of the model is to use the condition of the components to
infer the overall state of an asset.

2. Two repair decision Bayesian models. One can suggest repair action based
on the historical actions, while the other one reasons the effect of selected
repair action.

3. A model considers both asset deterioration and repair effectiveness over
its life cycle. This model uses the repair model as an object so that, with
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multiple sequential objects, we can model the life cycle of an asset through
several cycles of repair and further deterioration.

4. Case Study Part 1: Inspection Decisions

The challenge in making inspection decisions is to inspect a suitable asset at a
suitable time. Understanding asset states from its deterioration is the foundation
to recommend these decisions. Section 3.1 shows how we can model and infer-
ence multi-state asset with multiple components efficiently. This section provides
applications of these models for a variety of inspection decisions using the NBI
database from the US. Section 4.1 presents an application of condition predic-
tion for a system with multiple components, and Section 4.2 shows how to reason
inspection decisions from the predicted condition.

4.1. Structural Deficiency Evaluation
According to the Federal Highway Administration Bridge Preservation Guide,

one of their common failure modes for bridge deficiency is structural deficient
[32]. A deficient bridge has a higher possibility than a normal bridge in leading to
a major structural event, such as bridge collapsion. This suggests the importance
of imperative interventions. A non-culvert bridge is defined as SD either: i) a
condition rating of 4 or less for any of its structures, including deck, superstructure
and substructure, or ii) an appraisal rating of 2 or less for structural evaluation, or
iii) an appraisal rating of 2 or less for waterway adequacy [25].

In this subsection, we like to use the predicted condition of each structure to
estimate the probability of this bridge deteriorates into SD in a future time. The
prediction can provide valuable information for decision making when planning
inspection or repair. One of the criteria in resulting SD is any of its structures are
considered as in Poor condition. Therefore, we can consider the structures of this
bridge are arranged in series. Accordingly, we can model it using the OR gate
from Section 3.1.2, where the system fails when any of the subsystems fall below
condition 4.

The structural evaluation investigates if a bridge’s loading capacity is signif-
icantly below its design standards. For structures other than culverts, the rating
of structural evaluation is specified by the lowest rating between superstructure,
substructure and a comparing rating between Average Daily Traffic (ADT) and
inventory rating. ADT and inventory rating are both fixed variables, where ADT
encodes the average daily traffic volume of the bridge, for example, 3222 vehicles;
inventory rating represents the load level that allows a structure to operate for an
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indefinite period of time, for example, MS 12.5 (MS is a measure for loading ca-
pacity). By using the specification table provided in Weseman [25], we can gather
the comparing rating, for example, a rating is coded as 6 given 3222 ADT and MS
12.5 inventory rating. Since the determination of the structural evaluation rating
is the lowest score among those ratings, we can also model these criteria using an
OR gate. A bridge is also SD when its waterway frequently overtops the bridge.
The inspector often evaluates it from the on-site inspection. Similar to structures
like a deck, we can learn its patterns from the inspection data and predicted the
condition distribution of its adequacy in a future time.

Figure 7: Structural deficiency evaluation.

Together, we can use a logical expression to combine the information using a
Boolean node. It is true when one of the structures are rated 4 or less, or structural
evaluation is rated 2 or less, or waterway adequacy is rated 2 or less. The exam-
ple in Figure 7 is a non-culvert bridge that has an ADT of 3222, and a permitted
loading capacity of MS 12.5. Its current conditions of deck, superstructure, sub-
structure and waterway are rated as 7, 6, 7 and 5 respectively. This model predicts
the probability of this bridge becomes structural deficient in the next 48 months is
35.92%. This evaluation is useful in determining which bridge is in higher risk of
becoming SD. Further, by reasoning this model backwardly, we can recommend
inspection decisions, including the time to inspect, and the priority (among other
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bridges) for inspection, which will be discussed in the following subsection.

4.2. Inspection Decisions Reasoning

Figure 8: Deck condition distribution over time.

This subsection shows how we can make use of the condition prediction to
support inspection decisions. Previously we’ve show that we can predict the con-
dition distribution of a structure over a finite time frame. This structure could
be a component, or an asset assembled by multiple components. Figure 8 shows
an example of a new deck’s predicted condition distribution over the next 300
months without interventions. The transition distributions are learned from the
NBI dataset. With the increase in time, it is natural to see the trend of deteri-
oration: the probability of S9 (perfect state) gradually decreases along with the
increase of S8, and S8 decreases along with the increase of S7, and so on. For
example, in around 90 months, the possibility of this deck still in S9 is nearly 0%.
However, sometimes, decision-makers are more interested in knowing how reli-
able this structure is over a period of time. We can use this information to identify
assets with higher risk so we can plan accordant action to mitigate the risk.

For failure distributions like Weibull distribution are asymmetric. Reliability
measures such as MTTF or MTBF use mean to describe failure mode are therefore
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not suitable. Instead, we would be more interested in the overall reliability. Failure
rate function f (t) measures how fast a structure will deteriorate. By taking its
integral, we have its cumulative distribution function F(t), which represents the
failure probability that a random variable t takes on a value less than or equal to
t. Since we are more interested in how reliable the structure is, we can take the
complementary cumulative distribution function to form the reliability function
R(t) as shown in Equation 4.

R (t) = P (T ≥ t) =

∫ ∞

t
f (x) dx = 1 − F(t) (4)

The reliability function measures the probability of an asset survives before
moment t. To evaluate the reliability for a multi-state system, first, we need to
define a level of acceptable conditions. For example, defined in FHWA [32], in
the NBI dataset, structure states with a rating of 7, 8, or 9 are classified as Good
condition, with a rating of 5 or 6 are Fair condition, and the rest are Poor condition
(equivalent to SD). We can use this type of information to measure the reliability
of an asset stays in these conditions without failing to other levels. A Boolean
node (a constraint) is therefore added as a child node of the predicted condition. It
has a logical expression stating that this node is true when the predicted condition
is greater than the acceptable level (e.g. the predicted condition ≥ S 7 for structure
staying in Good condition). By observing this constraint as true and removing the
observation on intervention time node, after inference, we get the reliability R(t)
of this structure from the posterior distribution of intervention time node.

Figure 9 shows four examples with two decks and each has two acceptable
levels. One level has a higher standard that requires the structure in Good con-
dition (≥ S 7), and the other one accepts the structure in or above Fair condition
(≥ S 5). Naturally, within the same decks, the reliability of a deck in or above
Fair condition is always higher than the one in Good condition. For example, in
48 months, Deck A condition ≥ S 5 has a reliability 0.78, condition ≥ S 7 has a
reliability of 0.61; Deck B condition ≥ S 5 has a reliability 0.85, condition ≥ S 7
has a reliability of 0.63. With the reliability, we can make inspection decisions
including to prioritise assets for inspection and to determine a suitable time for
inspection.

To prioritise assets for inspection based on their risks in deteriorating into an
unacceptable level, we need to set a failure limit first. An example of a failure
limit is set at 0.8 in Figure 9, where we want to ensure the reliability of the decks
is above 0.8. To ensure deck condition ≥ S 7, we can see both Deck A and B
require intervention around 25 months. However, for condition ≥ S 5, we can see

21



Figure 9: Reliability of decks.

an apparent distinction between Deck A and B: Deck A requires intervention at
around 40 months while B at around 70 months. This distinction reveals that Deck
A has a higher risk in failing to Poor condition than Deck B. We can, therefore, to
prioritise the inspection for Deck A over Deck B.

Another decision is to evaluate the suitability of inspection time. Most bridges
in the US are inspected every 24 months, while in GB, bridges are visually in-
spected every 12 months and detailed inspected every 72 months. In current prac-
tice, most inspections are performed at fixed time intervals. We can improve this
situation by tailoring inspection time for each structure using the reliability func-
tion inferred from the developed models. Using the same example in Figure 9,
to prevent deck condition from failing to Poor condition with a reliability of 0.8,
Deck A urges for an inspection to see if repair is needed at around 40 months,
while Deck B is around 70 months.

5. Case Study Part 2: Repair Decisions

Given an asset condition, we may want to recommend repair action to satisfy
a range of objectives. It is a challenge since a repair action may only be suitable
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for a specific condition of a specific asset. Different repair actions may also come
with different restoring capability and cost. With the observational model from
Section 3.2.1, by extending it with a set of constraint nodes, we can reason the
frequency of each repair decision made in history. The decision maker can refer
it as what action is usually taken in history. Another decision is to evaluate the
effectiveness of maintenance, which is enabled by the intervention model from
Section 3.2.2. This can help decision maker understand the potential repaired
condition and resource usage.

These maintenance decisions are introduced aligned with the background of
bridge deck maintenance in the US. Table A.1 (in Appendix) from Michigan De-
partment of Transportation [33] is a typical guideline for maintenance of concrete
bridge deck that has epoxy coated rebar. This table is built upon deck deteriora-
tion data and expert knowledge from experienced engineers. Together with the
deck condition, this table can provide guidance for repair action selection.

The bridge deck condition is evaluated by the condition of its top surface and
bottom surface. Available repair actions vary from its current condition. For ex-
ample, deck patching is only applicable when its top surface is rated not less than
State 5 and bottom surface not less than State 4. The repairing capacity also varies,
for example, deck patching can improve the condition of a deck top surface by 1
point with an expected service life of 3 to 10 years. While for shallow concrete
overlay, it can improve top surface to State 9 or 8 with an expected service life
of 20 to 25 years when it was rated at a State 4 or 5; 10 years when it was rated
at a state less than 3. However, most actions cannot repair deck bottom surface -
it can only be replaced. Additionally, Table A.2 (in Appendix) shows the related
repaired costs listed in Winn and Burgueo [34], which were gathered from the
author’s personal communication with the engineers. Information about the area
of an individual deck can be retrieved from the NBI database: structure length is
recorded in Item 49 and deck width is in Item 52 (see Weseman [25] for details).

5.1. Repair Action Recommendation
The repair option depends on the condition of both deck top surface and bot-

tom surface. Its CPT is derived from Table A.1, where each repair action has an
uniform distribution if more than one option is applicable under the required con-
ditions. For example, if the condition of deck top surface is rated at State 5 and the
bottom surface is rated at State 4 from the most recent inspection, the applicable
actions include deck patching, shallow concrete overlay, and HMA overlay with
a waterproofing membrane. These three actions each has a 1/3 probability, and
other actions have 0 in the CPT. The CPT for the repaired condition is generated
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Figure 10: Maintenance action recommendation.

by columns under potential result in the table, with an uniform distribution if there
is more than one possible result. For example, if an epoxy overlay is performed,
the top surface will restore to condition 9 with a 0.5 probability and condition 8
with a 0.5 probability. However, the bottom surface will stay as the same condi-
tion from the last inspection since this repair action has no effect on it. Similarly,
the expected service life is modelled using a partitioned expression from the re-
pair actions and top and bottom deck surface conditions. For example, shallow
concrete overlay action on deck top surface with a condition 4 and bottom surface
with a condition 4, it has an anticipated service life that expressed by a uniform
distribution with a lower bound of 20 and upper bound of 25. While for a deck
with a condition 3 on its top surface, its anticipated life is only 10 years.

To reason repair action that was usually taken, three types of constraints are
modelled, showed in Figure 10. These constraints are all modelled using Boolean
nodes with logical expressions. The structural deficiency is true when either the
repaired deck top or bottom surface has a rating less or equal to 4. The decision
makers set the expected service life about how many years they anticipate the
deck will survive. The cost of repair action can be modelled using a partitioned
expression, where each repair option is modelled by the compound of cost per unit
(see Table A.2), and its area. Decision makers suggest the cost constraint about
how much budget is allowed.

The example in Figure 10 is based on a deck with its top surface that is in-
spected with a rating of 6 and the bottom surface with a rating of 7. The length
of this deck is 57.7 f t and width is 31.8 f t. The decision maker does not want
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the repaired deck becomes structurally deficient and wishes the service time to
be greater than eight years with a cost less than $100,000. After inference of
the model, in history, under the same constraints, 77.78% of maintainers repaired
with epoxy overlay and 22.22% repaired with deck patching. This model rules out
repair options that weren’t taken by other maintainers in the past automatically,
which makes the decision-making process for evaluating repair action easier. But
if we want to estimate the effectiveness of different maintenance action only, we
need an intervention model.

5.2. Repair Action Evaluation
Intervention analysis can help decision maker prioritise repair actions depends

on the evidence. In Table A.1, interventions for deck condition contain both im-
perfect and perfect maintenance. For example, HMA Cap action can imperfectly
restore deck top surface to State 8 with a 0.5 probability and State 9 with a 0.5
probability while the replacement is a perfect repair action that restore both deck
top and bottom surface to a new condition. To reason the effectiveness of repair
actions directly, in the intervention model, we need to manipulate the intervention
independently from its causes.

To convert an observational model into an intervention model, we only need
to remove the links from causes (the two observed state variables about deck sur-
face in Figure 10) that enter the intervention variable. The reason is, in the ob-
servational model, the use of repair action explains the historical frequency of
actions taken under the observed conditions [30]. The repair options become a set
of maintenance suggestions that are distributed probabilistically inferred from the
posterior probabilities. While in the intervention phase, the repair action should be
selected: only one action can be performed in each intervention. Only by remov-
ing the links from the parents we can remove the implication from past decisions,
and directly show the effectiveness of repair action on manipulating structure re-
paired condition. At the same time, the constraints from the observational model
all become unobservable in the intervention model to show the associated result
of repair actions.

6. Case Study Part 3: Maintenance Planning

Planning maintenance over a finite time horizon is valuable in the maintenance
strategy design phase. It can benefit the allocation of resource and investment
decision-makings. This section shows how to utilise the developed models to
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evaluate strategy effectiveness. We illustrate this with a simplified maintenance
strategy for life-cycle cost analysis.

Since inspection and repair activities for bridges are performed periodically
with a time interval, to perform life cycle cost analysis over a finite time horizon
on bridges, we can discretise the time horizon into several cycles. For simplicity,
we illustrate this idea using a fixed interval of every two years over a hundred-
year lifetime. However, notes that it is possible to implement with a dynamic
intervention schedule by integrating with an optimisation technique.

In each intervention cycle, we model the repair decision-making process to-
gether with its deterioration process. Intervention model from Section 5.2 is em-
ployed to infer the effectiveness of repair. To model multiple intervention cycles
sequentially, we can use the predicted structure condition in the current interven-
tion as the input for the next intervention cycle. This can be modelled by multiple
sequentially arranged BN objects developed from Section 3.3, where the predicted
state at intervention i will become the prior of previous state node at intervention
i + 1, and used to reason the repaired condition as well as to predict its further
deterioration as shown in Figure 11. In this model, the condition of a structure is
a future condition that can cannot be directly observed but predicted with a proba-
bilistically distributed condition using the deterioration learning models. The em-
ployment of multiple binary factorisations discussed in Section 3.3 resolves the
problem raised from the inference complexity. The cost of all actions is recorded
using a cumulative cost function and sequentially becomes the prior of the previ-
ous repair cost node in the next intervention cycle.

Within an asset’s life cycle, a structure is usually maintained multiple times.
The choice of repair option is a decision node that relies on the anticipated condi-
tions post-repair from the last intervention cycle. A maintenance strategy is used
to decide what action we should take at what time. To convey the idea of how
to use the proposed method to evaluate the effectiveness of maintenance strategy,
we implemented several simplified strategies. Each strategy only consists of three
repair options: if the deck conditions fall into the trigger condition of the repair
options, one type of repair action from Table A.1 will be performed; otherwise, if
the deck conditions satisfy the trigger condition of replacement, deck replacement
will be performed; otherwise, no action will be taken.
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Figure 11: Life-cycle cost analysis from multiple sequentially organised BN objects.
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Figure 12: Deck top and bottom surface conditions with repairs in a 100 years horizon.

Figure 12 shows the change of deck top and bottom surface conditions (with an
initial state of S7 and S6 respectively) over the next 100 years. The maintenance
strategy implemented here comprises of maintenance action HMA Cap and deck
replacement. If the state of deck top surface deteriorates to a state of 4 or 5 and
the bottom surface is in a state of 2 or 3, or the deck top surface deteriorates to a
state less or equal to 3, and the bottom surface is in a state of 2 or 3, HMA Cap
is triggered. Since HMA Cap is a temporal repair action with a short expected
service life of 1 to 3 years, as the footnote in Table A.1 instructed, the deck is
scheduled for replacement in the next five years. For example, in year 14, the top
surface is predicted with a state of 3 same as the bottom surface. Therefore, an
HMA Cap is performed that restores the condition of the top surface to 8 while
the bottom surface remains the same. After five years, the deck is replaced with
both top and bottom surface back to S9. In the next 100 years, implementing this
maintenance strategy requires three HMA Cap actions and three replacements.
Together with the cost presented in Table A.2, for a 57.7 f t length and 31.8 f t
width deck, we estimated it has an overall repair cost of $ 392,201.33.
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Figure 13: Repair cost with different maintenance strategy in the next 100 years.

Different repair action based strategies are evaluated, and their cumulative
costs are presented in Figure 13. Epoxy overlay and patching are the two most
costly strategies since they prefer to repair deck top surface while they are still
in fair conditions. Other approaches share similar costs. Among them, HMA
Overlay with waterproofing membrane strategy has the lowest cost. Though deck
replacement strategy (only repair with replacement) has a lower cost than some
strategies, the deck stays in poor condition most of the time. In some cases, keep-
ing structures staying in better conditions throughout its lifetime, even in the cost
of a higher expenditure, is still desired due to safety and reliability reason.

The repair decisions in this example are triggered by the structures’ conditions
only. However, in practice, usually there are more constraints when deciding the
maintenance decisions, such as repair action availability, cost and reliability. This
form a multi-criteria decision problem. Our model gives a framework to inte-
grate deterioration prediction with repair decisions. Together with an optimisa-
tion technique, by giving a set of constraints, we can make optimal decisions for
maintenance. For example, together with the model shown in Figure 11, we can
use a Genetic Algorithm to generate a maintenance strategy that takes both asset
deterioration and maintenance effectiveness into consideration. We can therefore
optimally select different maintenance actions to restore an asset condition to a
suitable condition at a suitable time with an objective of minimum cost and high
level of reliability. The strategy can be implemented in the decision node repair
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options in Figure 11 and to estimate its life cycle cost for maintenance planning.

7. Conclusion

This paper presents a series of novel BN models and shows the uses of them
in supporting a range of maintenance-related decisions. These models are further
applied using the case studies of bridge maintenance in the US. These models
support decisions in several cases including:

1. Structural evaluation of an asset that is assembled by multiple components,
where the condition of each component is predicted from multiple deterio-
ration models. With the posterior distribution from the prediction models,
we can perform reliability analysis to prioritise asset to inspect and to sug-
gest inspection time given a reliability threshold.

2. Given an inspection result, we can infer what repair action is usually per-
formed in history, or we can show the effectiveness of different maintenance
actions. We can use them as a reference when making repair decisions.

3. By combining models of repair and deterioration over several maintenance
cycles, we can evaluate the effectiveness of different maintenance strategy
over a time horizon. We can use it to perform life cycle analysis.

We also point out the potential to combine the developed models with an op-
timisation technique when planning maintenance activities. Multi-criteria and
multi-objective decision making have been intensively studied in maintenance
problems with satisfying performance (see de Almeida et al. [35] for a review).
As a future step, with constraints like cost, asset state and reliability, and objec-
tives like a certain level of reliability or minimum cost, we would like to find the
optimal selection of repair over some time.
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Appendix A

Table A.1: Bridge Deck Preservation Matrix - Decks with epoxy coated rebar [33].

Deck Condition Repair Options Potential Result Expected Life
(years)

Top Bottom Top Bottom
≥ 5 N/A Hold or Seal Cracks No Change No Change 1 to 4

> 5 Epoxy Overlay 8, 9 No Change 10 to 15
≥ 4 Deck Patch Up by 1 No Change 3 to 10

4 or 5 4 Shallow Concrete Overlay 8, 9 No Change 20 to 25
HMA Overlay with Water-
proofing Membrane

8, 9 No Change 8 to 10

2 or 3 HMA Capa 8, 9 No Change 2 to 4
≤ 3 4 or 5 Shallow Concrete Overlay 8, 9 No Change 10

HMA Overlay with Water-
proofing Membrane

8, 9 No Change 5 to 7

2 or 3 HMA Capa 8, 9 No Change 1 to 3
Replacement with Epoxy
Coated Rebar Deck

9 9 60+

a Hot Mix Asphalt (HMA) Cap for deck improvement. After HMA Cap, deck replacement should
be planned in the next 5 years.

Table A.2: Repair cost for bridge deck with epoxy coated rebar [34].

Repair Options Unit Price Notes
Patching $32/ f t2 Includes hand chipping
Epoxy Overlay $3.80/ f t2

HMA Overlay/Cap $1.25/ f t2 An extra $5/ft2 if the repair includes waterproofing
membrane

Shallow Concrete Overlay $25/ f t2 Includes joint replacement and hydro
Deck Replacement $70/ f t2 Includes removal of the old deck and new railings
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