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Point process-based approaches for the reliability analysis of

systems modeled by costly simulators

G. Perrina

aCOSYS, Université Gustave Eiffel, 77420 Champs-sur-Marne, France

Abstract

This paper addresses the issue of guaranteeing the good functioning of physical systems
using expensive simulators. More precisely, it is interested in the construction of bounds
allowing to majorise with a specified confidence the probability of occurrence of undesired
events. In this context, this paper presents two algorithms: a first one allowing to build
a bound higher than this probability at a fixed number of simulator evaluations; a second
one allowing to reduce as much as possible this bound by adding in an optimized way new
simulator evaluations. The efficiency of these algorithms is finally illustrated through the
analysis of several test functions.

Keywords: risk analysis, surrogate modeling, Gaussian process regression, quantile
estimation, error control

1. Introduction

The reliability analysis of complex systems is increasingly based on simulation. In this work,
we focus on the analysis of one of these systems, whose description can be characterized
by a vector of d continuous parameters, noted x = (x1, . . . , xd) ∈ X ⊂ R

d. We assume
that there are uncertainties about these parameters, which may be epistemic or stochastic,
and which can be dealt with by probability theory. Thus, the input vector is modeled by
a random vector X, and we assume that its distribution has a known probability density
function (PDF) fX with respect to the Lebesgue’s measure. On the other hand, we note
y the measurable function such that the system’s failure domain can be characterized by
F = {x ∈ X | y(x) < 0}. By construction, the probability of system failure, denoted pf , is
given by:

pf := PX(y(X) < 0) =

∫

F

fX(x)dx. (1)

In this paper, function y is seen as the output of a numerically expensive deterministic
"black box": for every x in X, the value of y(x) is unique, and it can be calculated using a
simulator that can take a long time to evaluate. In this type of configuration, the calculation
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of pf is usually based on sampling techniques. For instance, if {X(ω1), . . . ,X(ωℓ)} denote ℓ
independent realizations of X, the Monte Carlo (MC) approach [26, 1] approximates pf by

its empirical estimate, ℓ−1
∑ℓ

i=1 1y(X(ωi))<0, where 1y(x)<0 is equal to 1 if y(x) < 0 and zero
otherwise. By construction, the squared value of the variation coefficient of this estimator is
equal to ℓ−1(1/pf − 1). In other words, to guarantee an estimate of pf with good precision,
i.e. with a relatively low coefficient of variation, very large values of ℓ are needed when pf is
low (say pf < 10−3 for a rare event).

Over the last few decades, specific techniques have therefore been developed to estimate pf
from a limited number of code evaluations. First of all, the well-known first- or second-order
reliability methods (FORM/SORM) directly approach the boundary of F in the form of a
linear or polynomial second-order function [14, 24, 7, 20]. More advanced approximations of
failure domains were also introduced, based on support vector machine (SVM) techniques
[31, 29, 17] or on generalized least squares linear regression [30, 16] for instance. Nevertheless,
given an approximation of F , it is generally difficult to evaluate the difference between pf
and its approximation.

Methods based on reducing the variance of the estimator were also introduced. Among
them, the importance sampling approach introduces another random vector in the Monte
Carlo method, so that the mean of the estimator is still equal to pf , but its variance is
much smaller than that in the classical Monte Carlo case [26]. Alternatively, the splitting
techniques [2, 8] divide the rare event into a series of less rare events, so that the variance of
the aggregate estimator is much lower than that of the direct estimator. However, for these
two techniques to be effective, practical problems must be solved: the choice of the random
vector for importance sampling, and the conditional sampling for splitting techniques (see
[3] for advice on the control of rare event probability estimators).

To bypass some of these problems, most techniques for estimating rare events are cur-
rently based on a surrogate model, i.e. an easy to calculate mathematical approximation
of y. Among these surrogate models, the Gaussian process regression (GPR) method, or
kriging, proposes to model y as a particular realization of a Gaussian stochastic process
Y ∼ GP(µ,Σ), whose mean function µ and covariance function Σ are estimated on the
basis of the responses of a Design of Experiments (DoE) computed using true function y
[27, 19, 28, 13]. Under that formalism,

pf = PX (Y (X) < 0 | Y = y) , (2)

which amounts at saying that pf is a particular realization of the random variable P Y
f :=

PX (Y (X) < 0 | Y ). Assuming that Y is a good approximation of y, pf can then be approx-
imated by the mean value p̂f of P Y

f (or possibly by p̃f := PX (µ(X) < 0)), which can be
rewritten as:
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p̂f = EY

[
P Y
f

]
= EX

[
Φ

(
− µ(X)√

Σ(X,X)

)]
, Φ(u) =

∫ u

−∞

1√
2π

exp

(
−v2

2

)
dv. (3)

Sampling techniques can finally be used to estimate p̂f (or p̃f) without requiring any addi-
tional evaluation of expensive function y.

A key aspect in this estimation of pf is the optimization of the DoE used to estimate the
statistical properties of Y . When interested in estimating a failure probability, it is important
to notice that Y is only used to predict if y(x) is smaller or greater than 0. Thus, Y
has to be particularly precise in areas where y is close to 0. Depending on the sampling
method considered for the estimation of p̂f (or p̃f), this motivated the introduction of several
adaptive approaches for the optimization and the enrichment of this DoE (see for instance
[11, 23, 6, 25, 12] for more details on the coupling of GPR and Monte Carlo approach, and
[18, 5, 36, 35] for more details on the coupling of GPR and splitting techniques).

However, replacing true function y by an accurate surrogate can still lead to an inaccurate
estimation of pf [21]. Thus, to correctly anticipate the risks of deterioration of the system, it
was proposed in [10] (and then completed in [34, 15, 37, 38]) to only use the surrogate model
to approximate the Optimal Importance Density. In that case, the estimator of pf is written
as a product of two terms. The first one is a direct estimator of the failure probability based
on the surrogate model only, and the second one is a factor correcting the bias, which relies
on additional evaluations of true function y. Nevertheless, the numerical cost of estimating
this second term may be relatively large, which may limit the use of these approaches when
the number of calls allowed for y is very low.

Alternatively, in line with the works achieved in [33], we propose in this paper to work on the
construction of confidence bounds to failure probability estimates. More precisely, instead
of working on the estimation of the mean value of P Y

f , which may lead to a prejudicial

underestimation of pf , we are interested in the construction of a robust estimator Q̂α,β of
the (1-α) quantile of P Y

f , noted qα, so that:

PY (P
Y
f < qα) = 1− α, (4)

PQ̂α,β

(
PY

(
P Y
f ≤ Q̂α,β | Q̂α,β

)
≥ 1− α

)
≥ 1− β, (5)

where β ∈ (0, 1) is a chosen constant. By construction, estimator Q̂α,β depends on two
constants: α characterizes the risk associated to the replacement of y by its surrogate Y ,
and β controls the fact that only finite-dimensional samples of Y (x) are available for its

construction (see Figure 1 for a graphical illustration of the meanings of α, β, qα and Q̂α,β).
Therefore, for α, β ∈ (0, 1) and a fixed number of evaluations of y, the first objective of
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Figure 1: Graphical illustration of the meanings of α, β, qα and Q̂α,β on a synthetic example.

this paper is to propose an algorithm allowing us to construct this estimator. This algo-
rithm couples results associated with (1) order statistics, (2) the Gaussian process regression
formalism, and (3) a particular Marked Poisson Process.

The second objective of this paper is to propose a strategy adapted to the former algorithm
to sequentially minimize the dependence of Q̂α,β on the replacement of y by Y . In particular,
we would like this enrichment to make it possible to manage two pathological configurations
in rare events: the case where no point of the initial experimental design for the construction
of Y belongs to the failure domain ; the case where the failure domain is multimodal.

The outline of this work is as follows. Section 2 presents the algorithm we propose for bound-
ing the failure probability at a fixed budget. Then, Section 3 describes a stepwise uncertainty
reduction procedure to sequentially improve the quality of the bound, and Section 4 presents
numerical results. At last, Section 5 concludes the paper.

Notations

The notations that will be used in the rest of the paper are the following:

• a, b will correspond to deterministic scalars.

• a, b will correspond to deterministic vectors.

• (Ω,A,P) will correspond to a probability space.

• A,B will correspond to random variables.

• A,B will correspond to random vectors.

• For all ω, ω′ in Ω, A(ω) and B(ω′) will be particular realizations of A and B.

4



• GP(µ,Σ) will correspond to the distribution of a Gaussian process whose mean function
is µ, and whose covariance function is Σ.

2. Bounding the failure probability at a fixed budget

The objective of this section is to propose an algorithm for constructing an upper bound
with controlled precision for the probability of failure pf at a fixed and limited budget. By
fixed and limited budget, we mean that the maximum information for constructing this
bound is a finite number ℓ of model evaluations, such that ℓ ≪ 1/pf . In that case, direct
approaches such as the Monte Carlo method cannot be applied, and indirect approaches
based on the introduction of a surrogate model must generally be introduced. In that
prospect, the formalism of the Gaussian process regression is considered in this work: y is
seen as a sample path of a stochastic process defined on a probability space (Ω,A,P), which
is assumed Gaussian for the sake of tractability. By conditioning this Gaussian process by
the ℓ available code evaluations, it is therefore possible to define very interesting predictors
for the value of y in any non-observed point of X. This predictor of function y at any x in
X, which is written Y (x), is Gaussian by construction,

Y ∼ GP(µ,Σ),

and we refer to [27, 28] for further details about the expressions of the conditioned mean, µ,
and of the conditioned covariance function, Σ.

As explained in Introduction, under that formalism, pf is a particular realization of the
random variable P Y

f = PX (Y (X) < 0 | Y ). As a consequence, constructing a bound for pf
with confidence α amounts at computing the quantile of level 1−α of P Y

f . As the distribution
of P Y

f is non explicit, this quantile estimation is not easy, and generally requires having access
to a set of independent realizations of P Y

f . However, in our case, each realization of P Y
f is

defined by a failure probability associated with a particular realization of random process Y .
Consequently, only estimates of these realizations are available in practice, which introduces
another source of uncertainty that needs to be well controlled for pf to be bounded with the
desired precision. But the construction of these estimates is a problem in itself, because the
projection of a particular realization of Y into a large number of input points is often made
impossible for computational reasons.

Addressing these two issues is the subject of the two following subsections. Assuming that
is is possible to construct an estimator for each realization of P Y

f , section 2.1 will first show
how order statistics can be used to construct an upper bound for pf with controlled precision.
Section 2.2 will then explain how the Poisson process theory can help us to construct these
estimators from the projection of Y into a small number of input points.

2.1. Order statistics

For ω ∈ Ω, let Y (ω) be a realization of Y , Y (x;ω) be the projection of Y (ω) in any input
vector x in X, and P Y

f (ω) := PX(Y (X;ω) < 0) be the associated realization of P Y
f .
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In addition, let X n be a random set of n > 1 points chosen (independently or not) in X and

P̂ Y,Xn

f (ω) be an estimator of P Y
f (ω) relying on the elements of X n. For instance, X n can be

chosen equal to {X(i), 1 ≤ i ≤ n}, where X
(1), . . . ,X(n) are n independent copies of X,

and P̂ Y,Xn

f (ω) can be defined by :

P̂ Y,Xn

f (ω) =
1

n

n∑

i=1

1Y (X(i);ω)<0. (6)

For θ ∈ Ω, this allows us to define P̂ Y,Xn

f as the random variable associated with Y and X n,

so that for each realization Y (ω) of Y and each realization X n(θ) of X n, P̂ Y,Xn

f (ω, θ) is a

realization of P̂ Y,Xn

f .

For m > 1, we now introduce m independent copies of Gaussian process Y , noted Y1, . . . , Ym,
and m independent copies of random set X n, written X n

1 , . . . ,X n
m. For 1 ≤ j ≤ m, we then

write P̂j := P̂
Yj ,Xn

j

f the associated independent random variables. These random variables
are supposed to be sorted in ascending order:

P̂1 ≤ P̂2 ≤ . . . ≤ P̂m. (7)

From basic statistics, for 1 ≤ j ≤ m and α ∈ (0, 1), we therefore have:

P(P̂j > qα) =

j−1∑

u=0

(
m

u

)
(1− γ)m−uγu, (8)

where γ := P(P̂ Y,Xn

f ≤ qα). The value of qα, which is defined by Eq.(4), is unfortunately
unknown, which makes it difficult to estimate γ. However, reminding that by definition of
qα, P(P Y

f ≤ qα) is equal to 1−α, it is possible to bound the value of γ by a quantity γ⋆ that

depends on the conditioned probability P(P̂ Y,Xn

f ≤ P Y
f | P Y

f ≥ qα) :

γ = P(P̂ Y,Xn

f ≤ qα | P Y
f ≤ qα)P(P

Y
f ≤ qα) + P(P̂ Y,Xn

f ≤ qα ≤ P Y
f )

≤ 1× (1− α) + P(P̂ Y,Xn

f ≤ P Y
f ∩ P Y

f ≥ qα)

≤ 1− α(1− P(P̂ Y,Xn

f ≤ P Y
f | P Y

f ≥ qα)) =: γ⋆.

(9)

As qα is still unknown, γ⋆ is also unknown in the general case. But depending on the choice
of the estimator for P Y

f (ω), asymptotic values can be proposed for γ⋆. For example, if we

consider again for P̂ Y,Xn

f (ω) the Monte Carlo estimator provided by Eq. (6), the central limit
theorem allows us to write that:

√
n(P̂

Y,Xn
j

f (ω)− P Y
f (ω))

L−→ N
(
0, P Y

f (ω)(1− P Y
f (ω))

)
, ω ∈ Ω. (10)

Hence, for this choice of estimator, P(P̂ Y,Xn

f ≤ P Y
f | P Y

f ≥ qα) becomes close to 1/2 when n
is high enough, and constant γ⋆ can be replaced by 1− α/2.
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Assuming that the value of γ⋆ is known, and noticing that γ 7→∑j−1
u=0

(
m
u

)
(1− γ)m−uγu is a

decreasing function, we can now write:

P(P̂j > qα) ≥
j−1∑

u=0

(
m

u

)
(1− γ⋆)

m−uγu
⋆ . (11)

Hence, by choosing j⋆(α, β) as the minimal index such that
∑j⋆(α,β)−1

u=0

(
m
u

)
(1 − γ⋆)

m−uγu
⋆ ≥

1− β, it can be seen that P(P̂
Yj⋆(α,β),X

n
j⋆(α,β)

f > qα) ≥ 1− β. Using Eq.(4), it comes:

P
P̂

Yj⋆(α,β),X
n
j⋆(α,β)

f

(
PY

(
P Y
f ≤ P̂

Yj⋆(α,β),X
n
j⋆(α,β)

f | P̂ Yj⋆(α,β),X
n
j⋆(α,β)

f

)
≥ 1− α

)
≥ 1− β. (12)

Thus, replacing P̂
Yj⋆(α,β),X

n
j⋆(α,β)

f by Q̂α,β in Eq.(12), we eventually obtain the searched result
of Eq.(5).

2.2. Choice of the estimator

In the former section, the result of Eq.(12) has been illustrated on the case where P̂ Y,Xn

f (ω)

corresponds to the classical Monte Carlo estimator of P Y
f (ω). In that case, for any ω ∈ Ω, as

the squared value of the variation coefficient of P̂ Y,Xn

f (ω) is proportional to 1/(P Y
f (ω)n), high

values of n can be required for this estimator to be reasonable when considering low values
of P Y

f (ω). In practice, this would mean that to numerically calculate P̂ Y,Xn

f (ω), we need to

project Y (ω) in a very high number of points (between 100/P Y
f (ω) and 1000/P Y

f (ω) for in-
stance), which is often not possible due to computational reasons (memory and conditioning
problems).

It is then necessary to propose a new estimator for each realization of P Y
f that would be

based on the projection of each particular sample path of Y into a much smaller number
of input vectors. For this purpose, following the works achieved in [32], it is interesting to
notice (see Appendix for the proofs) that for q > 1, if P1, . . . , Pq are q independent copies of
a Poisson process of parameter − log (PX(Y (X;ω) < 0)),

P̂ Y,Xn

f (ω) :=

(
1− 1

q

)∑q
k=1 Pk

(13)

defines an estimator of P Y
f (ω) = PX(Y (X;ω) < 0), and it verifies

EXn

[
P̂ Y,Xn

f (ω)
]
= P Y

f (ω), VarXn
(P̂ Y,Xn

f (ω)) = P Y
f (ω)2(P Y

f (ω)−1/q − 1). (14)

Moreover, the Poisson distribution is known to be well approximated by a Gaussian distri-
bution as soon as its parameter is greater than 10. Thus, assuming that P Y

f (ω) ≤ 0.1, once
−q log(P Y

f (ω)) > 10, that is to say once q ≥ 5, it is reasonable to assume that
∑q

k=1 Pk

follows a Gaussian distribution, from which we deduce that:

7



log
(
P̂ Y,X
f (ω)

)
∼q>5 N

( −q log(P Y
f (ω)) log(1− 1/q),

−q log(P Y
f (ω)) log(1− 1/q)2

)
, ω ∈ Ω. (15)

In the same manner than for the former Monte Carlo estimator, this means that P(P̂ Y,Xn

f ≤
P Y
f | P Y

f ≥ qα) becomes close to 1/2 when q is high enough, leading to a value of γ⋆ close
to 1 − α/2. However, while Y (ω) was to be projected in approximately 100/P Y

f (ω) points
for the Monte Carlo approach to give relevant results, it only needs to be projected in
E [
∑q

k=1 Pk] = −q log(P Y
f (ω)) points in average, which is clearly much more accessible from

a computational point of view.

2.3. Practical construction of the Poisson-based estimator

For any t > 0, let P (t) be a Poisson process of parameter t. Hence, to construct the estimator
presented in Eq. (13), we need to be able to generate realizations of a Poisson process of
parameter − log (PX(Y (X;ω) < 0)). The result of Proposition 1 gives us a way to achieve
this goal in a very natural way.

Proposition 1. For any ω in Ω,

P (− log (PX(Y (X;ω) < 0))) = sup {i; Zi ≥ 0} , (16)

where (Zi)i≥0 is the decreasing random walk so that for all i ≥ 1 and z ∈ R:

Z0 = +∞, P(Zi+1 ≤ z | Zi) = P(Z ≤ z | Z ≤ Zi), (17)

with Z := Y (X;ω).

In order to generate realizations of the estimator presented in Eq. (13), it is thus sufficient
to launch in parallel on the same instance of the random process Y several draws of the
random walk defined by Eq. (17). If we combine this generation method with the results of
Section 2.1 concerning the order statistics, we obtain a procedure for constructing a particular
realization of Q̂α,β, which is summarized in Algorithm 1. This algorithm is based on four
constants : α, β ∈ (0, 1) are chosen according to Eq.(12) to control the risk of underestimation
of probability of interest pf , ℓ is the dimension of the initial design of experiments for the
construction of the GPR-based surrogate model of y, and q is the number of copies of the
decreasing random walk. In the following, α and β will be fixed to 0.1. Noticing that

45−1∑

u=0

(
45

45− u

)
(1− (1− 0.1/2))45−u(1− 0.1/2)u ≈ 0.90056,

we then choose m = j⋆(α, β) = 45 to minimize the number of tested sample paths. ℓ will be
adapted to the dimension of the input space X, and we propose to gradually increase q until
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the maximal value of the coefficients of variation of the m estimators is less than a given
constant c (in the application section, this leads to values of q between 100 and 1000).

Algorithm 1: Construction of a particular realization of Q̂α,β.

Choose α, β, ℓ, q, nmax ;
Compute m = j⋆(α, β) ;
Let Y ∼ GP(µ,Σ) be the GPR-based surrogate model associated with y based on ℓ
evaluations of y ;
for 1 ≤ j ≤ m do

Sample q independent realizations of X, noted X(ω1), . . . ,X(ωq) ;
Sample one realization of the Gaussian vector (Y (X(ω1)), . . . , Y (X(ωq))), noted
(y1, . . . , yq) ;
Define Yj(ω) := Y | Y (X(ωk)) = yk, 1 ≤ k ≤ q ;

Initialize : niter = 0, X̂ j = {X(ω1), . . . ,X(ωq)}, Ŷj = {y1, . . . , yq} ;
for 1 ≤ k ≤ q do

z = yk, P
j
k = 0 ;

while z>0 and niter ≤ nmax do

increment niter = niter + 1 ;
draw at random a realization of X, denoted by x

⋆ ;
draw at random a realization of Yj(x

⋆), denoted by y⋆ ;
if y⋆ < z then

z = y⋆, P j
k = P j

k + 1 ;
Yj(ω) = Yj(ω) | Yj(x

⋆) = y⋆ ;

X̂ j = X̂ j ∪ {x⋆}, Ŷj = Ŷj ∪ {y⋆} ;

end

end

end

p̃j :=
(
1− 1

q

)∑q

k=1 P
j

k

;

end

Return max1≤j≤m p̃j .

Remarks on Algorithm 1.

• The m realizations p̃j being independent, their construction can be made completely
parallel.

• As we are only interested in the maximum of p̃1, . . . , p̃m, once the loop j associated
with Yj has converged, it is possible to break each other loop j′ as soon as

∑q
k=1 P

j′

k is
greater than

∑q
k=1 P

j
k . This can allow us to drastically reduce the total computational

time associated with the construction of a realization of Q̂α,β .

• For the sake of simplicity, we propose in Algorithm 1 to directly generate the new
candidates for X according to its density fX . When considering very small probability

9
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Figure 2: Concentration of the points generated by Algorithm 1 on the low values of y (with nmax = +∞).

of system failure, this can result in a very long execution time for the algorithm. In
order to accelerate its convergence, it can be necessary to use sequential Monte Carlo
simulation techniques instead [22].

• If the ℓ available values of y are strictly positive, it may very well happen that EY [P
Y
f ] is

much smaller than pf . In this case, the risk of having a very (even too) high execution
time for the presented algorithm is also strong. This explains the presence of the
maximum number of iterations nmax. By stopping a loop of the algorithm before its
convergence, we obtain a value of Pk which will be smaller than what it should have
been, leading to an overestimation of Q̂α,β , i.e. to a more protective bound for pf .

2.4. Distribution of the generated points

In addition to the realization of Q̂α,β, Algorithm 1 provides a series of sets noted
(
X̂ j, Ŷj

)m
j=1

.

For each j, the elements of Ŷj are particular projections of Y in the elements of X̂ j . Looking
at Property 2, Corollary 1, and Figure 2, it is interesting to notice that the smaller pf , the

more concentrated around 0 the elements of Ŷj are likely to be. In other words, for small
values of pf , the elements of X̂ j will be concentrated in areas where there is a high probability

of obtaining a low value for Y . Hence, the elements of X̂ j will naturally show the regions
of input space X that need to be particularly well covered by evaluations of y, in order to
minimize the impact of replacing y by Y . As this consideration will play a central role in
the next section, we denote by L(X) the (non-trivial) distribution over the input space of

any element of these sets X̂ j.

Proposition 2. Let Z be a real-valued random variable with continuous CDF FZ and (Zi)i≥0

be the decreasing random walk defined by Eq.(17). If Z̃ is a positive element of (Zi)i≥0 chosen
at random,

10



P(Z̃ ≤ z) = 1− log(FZ(z))

log(FZ(0))
, z ≥ 0. (18)

Corollary 1. For each 1 ≤ j ≤ m, let ŷ be a point randomly chosen in Ŷj such that ŷ ≥ 0.
In the case nmax = +∞, we have :

P(ŷ ≤ z) = 1− log (PX(Yj(X;ω) ≤ z))

log
(
P

Yj

f (ω)
) . (19)

3. Stepwise uncertainty reduction

Estimator Q̂α,β aggregates at least two sources of uncertainty: the variability in the sample
paths of Y due to the substitution of the computer code by its GPR-based surrogate model,
and the variability in the different copies of the decreasing random walk associated with each
sample path. While it is possible to control the second source of uncertainty by increasing
the value of q, new code evaluations are needed to decrease the first source of uncertainty.
In that prospect, different strategies can be found in the literature to sequentially choose the
positions of the new evaluation points in order to minimize this first source of uncertainty.
For instance, following [11], the new point can be chosen as the solution of the following
optimization problem:

x
⋆ := arg min

x∈S(n)

|µ(x)|√
Σ(x,x)

, (20)

where S(n) gathers n ≫ 1 iid samples of X. However, it can be noticed that such a
pointwise strategy does not take into account in its selection criteria the fact that the new
evaluation point will bring additional information in its neighbourhood. In contrast, Stepwise
Uncertainty Reduction (SUR) techniques propose to select the new evaluation point that
minimizes the expected value of a well chosen measure of the uncertainty. For instance,
noticing that the random variable 1Y (X)<0 has conditional variance α(X)(1− α(X)) with

α(X) := EY

[
1Y (X)<0 | X

]
= Φ

(
−µ(X)√
Σ(X,X)

)
, (21)

the quantity EX [α(X)(1− α(X))] characterizes the uncertainty due to the replacement of y
by its GPR-based surrogate model Y . Here, function Φ is the CDF of the standard Gaussian
random variable introduced in Eq.(3). Hence, as proposed in [4], the new point x

⋆ can be
searched as:

x
⋆ = arg min

x∈S(n)
Eξ(x) [EX [αc(X, ξ(x))(1− αc(X, ξ(x))) | ξ(x)]] , (22)

αc(X, ξ(x)) := EY

[
1Y (X)<0 | Y (x) = ξ(x), ξ(x),X

]
,
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with ξ(x) a Gaussian random variable with mean µ(x) and variance Σ(x,x). In the following,
we will refer to the selection criteria associated with Eqs. (20) and (22) as "Pointwise
criterion" and "SUR criterion" respectively.

These two criteria have been and continue to be of great use in the sequential improvement
of a GPR-based surrogate model. However, they are not particularly suited to the Poisson
process that we use for the estimation of Q̂α,β. Indeed, they do not really take into account
a central aspect of the proposed procedure, which is the ability of Gaussian process Y to
correctly sort different values of the input vectors from their respective values of true function
y. To better stick to this characteristic of Algorithm 1, we propose to search x

⋆ as the point
that will minimize the risk of misclassification. That is the point such that the probability
to have at the same time Y (x) > Y (x′) and µ(x) < µ(x′) is minimum for any value of x
and x

′. And to focus the criterion on the sub-domain of X mainly explored by Algorithm 1,
it is proposed that x and x

′ be drawn according to the distribution L(X) defined in Section
2.4:

x
⋆ = arg min

x̂∈S(n)
PY,X,X′ (Y (X) > Y (X ′), µ(X) < µ(X ′) | Y (x̂) = µ(x̂)) , X,X ′ ∼ L(X).

(23)
In other words, by introducing this new criterion that will be referred to as "Proposed
criterion" in the following, the objective is to give priority to the points that are difficult to
classify in the high probability areas for the draws of the Poisson process under consideration.
And by looking at the misclassification all along the sample path of the decreasing random
walk, we also would like to avoid an over-sensitivity of the results to a poor initial construction
of the surrogate model.

Proposition 3. For all x̂ in X,

PY,X,X′ (Y (X) > Y (X ′), µ(X) < µ(X ′) | Y (x̂) = µ(x̂))

=
1

2
EX,X′

[
Φ

(
−|µ(X)− µ(X ′)|

s(X,X ′, x̂)

)]
,

(24)

with:

s2(X,X ′, x̂) := Σ(X ,X) + Σ(X ′,X ′)− 2Σ(X ,X ′)− (Σ(X , x̂)− Σ(X ′, x̂))
2

Σ(x̂, x̂)
. (25)

Another important feature of the proposed criterion is that it can be seen as a direct post-
processing of the points generated by Algorithm 1 at previous step, when the resolution of the
SUR problem defined by Eq. (22) can be numerically costly (see [9] for more details on how

to solve this optimization problem in practice). Indeed, using Proposition 3, if X̂ :=
⋃m

j=1 X̂ j

gathers all the generated input points, new point x
⋆ can be searched as:
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x
⋆ = argmin

x̂∈X̂

∑

x,x′ ∈ X̂\x̂
x 6= x

′

Φ

(
−|µ(x)− µ(x′)|

s(x,x′, x̂)

)
. (26)

Finally, the procedure we propose for the sequential estimation of the failure probability
bound Q̂α,β is summarized in Algorithm 2. Here, the stopping criterion is a maximum
number of code evaluations, which is a constraint that is often present when studying costly
simulators. Alternative criteria could have been proposed, based on convergence analyses of
the values of Q̂α,β for instance.

Algorithm 2: Sequential estimation of the failure probability bound Q̂α,β.

Choose α, β, ℓ, q, nmax, nadd and compute m = j⋆(α, β) ;
Let Y ∼ GP(µ,Σ) be the GPR-based surrogate model associated with y based on ℓ
evaluations of y ;
for 1 ≤ r ≤ nadd do

Run Algorithm 1, recover qr := Q̂α,β and X̂ =
⋃m

j=1 X̂ j ;

Solve optimization problem 26, recover x
⋆ ;

Update the surrogate model : Y = Y | Y (x⋆) = y(x⋆) ;

end

Return (q1, . . . , qnadd
).

Remark. The expected number of elements of X̂ is −mq log(pf). For pf = 10−6, m = 45
and q = 100 (which approximately corresponds to the values considered in the application
section), this gives around 6.2×104 elements. To solve Eq. (26), this means that we need to
evaluate function Φ in around 1

2
(6.2× 104)3 ≈ 1.2× 1014 points, which is clearly prohibitive.

In order to solve this problem for a more reasonable cost, we propose to consider only a
subset of potential pairs for x and x

′, which leads to the simplified optimization problem:

x
⋆ = argmin

x̂∈X̂

∑

x,x′∈S(n;x⋆)

Φ

(
−|µ(x)− µ(x′)|

s(x,x′, x̂)

)
, (27)

where S(n;x⋆) gathers n distinct pairs of elements randomly chosen in X̂ \x̂. In the appli-
cation section that follows, this value of n will be chosen equal to 103.

4. Applications

We list at least four objectives for the application section. First, we would like to check on
difficult numerical cases that Q̂α,β is higher than failure probability pf with high probability,

when p̂f = EY

[
P Y
f

]
= EX

[
Φ

(
− µ(X)√

Σ(X,X)

)]
may strongly underestimate it. To this end,

we also introduce the following estimation of p̂f :
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Example Function y d pf ℓ nadd

1 Oscillating function 1 0.0109 10 12
2 Branin 2 0.00196 20 100
3 Hartmann 6 0.000949 300 100

Table 1: Characteristics of the three analyzed numerical functions (see Appendix for the expressions of the
functions).

m̂ :=
1

ntest

ntest∑

i=1

Φ

(
− µ(X(ωi))√

Σ(X(ωi),X(ωi))

)
, (28)

where X(ω1), . . . ,X(ωntest) denote ntest ≫ 1 iid realizations of X (ntest will be chosen
equal to 106 in the following). The second objective is to compare the trade-offs between
exploration and exploitation for the three introduced section criteria. Then, this section aims
at quantifying the efficiency of the proposed selection criteria to make bound Q̂α,β converge
to the true value of pf from above. At last, the proposed algorithms are applied to a study
close to real engineering applications, for which the true value of pf is however unknown, in
order to better highlight the potential contributions of such an approach.

4.1. Analytical examples

4.1.1. Presentation of the test cases

The adaptive estimation of bound Q̂α,β will be first illustrated on three numerical appli-
cations, whose characteristics are listed in Table 4.1.1. None of the presented examples
will actually be costly to evaluate, which makes possible the performance analysis of the
proposed algorithms. In particular, the reference values for pf are estimated using a crude
Monte Carlo approach based on 106 code evaluations.
On purpose, each function presents several local minima, and the value of ℓ is in each case
chosen much smaller than 1/pf , so that no training point belongs to the failure domain at
the initial step (with high probability). To get sound comparisons between the different
selection criteria, the results presented in the next sections are averaged over 10 repetitions
of the whole procedures.

4.1.2. Analysis of the results

The comparison results for the oscillating and the Branin functions are summarized in Figures
3 and 4. Focusing on the graphs of Figure 3, strong differences can be noticed between the
results associated with the three selection criteria. For the oscillating function, when the
pointwise strategy seems to focus on a unique region around the global minimum, a better
balance between exploration and exploitation is observed for the SUR criterion, and even
more for the proposed procedure, which adds points in priority in low value areas for y but
also where there may be a high risk of misclassification. Similar observations can be made for
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(a) Pointwise crit., Q2 = 0.916 (b) SUR crit., Q2 = 0.982 (c) Proposed crit., Q2 = 0.992

(d) Pointwise crit., Q2 = 0.924 (e) SUR crit., Q2 = 0.966 (f) Proposed crit., Q2 = 0.986

Figure 3: Comparison of the GPR-based surrogate models after adding nadd new code evaluations. In each
subfigure, function y is represented in red (in solid line for the oscillating function and in dotted line for the
Branin function), the blue stars indicate the positions of the ℓ initial training points, and the green circles
indicate the positions of the new code evaluations. For the oscillating function, the grey area corresponds
to the 95% prediction interval provided by the surrogate model, when the contour lines associated with the
conditioned mean are in black solid line for the Branin function. Here, Q2 is the classical metric of learning
performance on test data calculated as one minus the predictive residual error sum of squares (PRESS)
divided by the total sum of squares (TSS).

the Branin function. Depending on the initial design, only one or two out of the three regions
of failure are found on average with the pointwise strategy, when these three regions are well
covered by the SUR and the proposed selection criterion. And once again, we observe that
the proposed criterion tends to spread out the evaluation points more widely in the input
space in order to allow a better global classification.
The same kinds of observations can be made when looking in Figure 4 at the convergence of
m̂ and Q̂α,β with respect to nadd. Indeed, as the pointwise strategy is struggling to find all

the minima, m̂ does not converge to pf , while the values of Q̂α,β remain very high. Different
results are obtained for the SUR and the proposed selection criteria: m̂ converges to pf and

interesting values are quickly obtained for Q̂α,β. However, differences can also be noticed
between these two approaches. As the SUR criterion explores less the input space to focus
more on the contours of the failure domain, the convergence speed of m̂ is on average quicker.
But the convergence of Q̂α,β seems to be a bit quicker for the proposed criterion, which is
not surprising, since this criterion was built specifically for this purpose.
The third example in dimension six allows us to emphasize the importance of exploration
when analyzing multimodal functions. Indeed, for this example, we see in Figure 5 that
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Figure 4: Convergence with respect to the number of added points nadd of the estimators m̂ and Q̂α,β

depending on the chosen selection criterion.
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Figure 5: Convergence with respect to the number of added points nadd of the estimator m̂ depending on the
chosen selection criterion. For the reference value estimated with a Monte Carlo approach, IC 95% stands for
95% confidence interval. For the two compared criteria, the mean and the extreme (minimal and maximum)
values are associated with 10 repetitions of the whole sequential procedure.
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Figure 6: Distribution of the obtained values of p̃j and Q̂α,β obtained during the sequential procedure pre-
sented in Algorithms 1 and 2. Subfigure (a) compares for the SUR and the proposed criteria the distributions

of all the values of Q̂α,β obtained during the 10 repetitions of the sequential procedure. For a particular
initial design of experiment, subfigure (b) compares the influence of the choice of the selection criterion on
the distribution of 100 values of the estimators p̃j of P Y

f after having added nadd points.

the SUR strategy has difficulties to make the mean estimator converge, when the results are
more satisfying for the proposed criterion (the results associated with the pointwise selection
criterion being not relevant enough, we decided not to show them for this example). More
prejudicial, if we look at Figure 6(a), we see that during the 10 repetitions of the nadd steps

of the proposed sequential procedure, around 50% of the obtained values of Q̂α,β are inferior

to pf . On the contrary, when considering the proposed selection criterion, the values of Q̂α,β

are, as required, higher than pf with high probability during the whole sequential procedure.
In addition, Figure 6(b) shows 100 independent realizations of the estimator of pf that can
be obtained using Algorithm 1 after having added nadd points to a particular initial design
of experiments using Algorithm 2. In line with previous conclusions, we see in this figure a
nice dispersion of these realizations around the true value pf when the proposed criterion is
considered, which is not the case when considering the SUR criterion.

4.2. Industrial example

The fourth application deals with the reliability analysis of a spherical containment vessel, in
which detonation experiments are carried out. More precisely, a spherical explosive charge
is placed at the geometric center of the vessel. Once it is ignited, a non regular transient
pressure is observed on the inner surface of the containment vessel, which puts the system
into vibration. We then monitor the displacement during the experiment of each point of
the system, and record the maximum value of this displacement as the quantity of interest.
For confidential reasons, only few numerical values will be provided for this last example.

Two codes are coupled to simulate this experiment. The first code is a simplified version of
a detonation code. It takes as inputs the radius of the explosive charge, and three constants
associated with the behavior law of the explosive. The difference between the true value of
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the radius and its nominal value is noted x1, while the uncertainties on the parameters of
the behavior law are noted x2, x3, x4. Given values for x1 to x4, the detonation code then
provides the time evolution of the inner pressure, which is denoted by ypress(x1, x2, x3, x4).
The second code is a damped oscillator characterized by the following second order linear
differential equation:

ü+ 2(x5 + x5)(x6 + x6)u̇+ (x6 + x6)
2u = ypress(x1, x2, x3, x4). (29)

The quantities x5 and x6 correspond to the nominal value of the attenuation coefficient and
to the natural pulsation of the structure, when x5 and x6 are potential fluctuations around
these nominal values. As an illustration, time evolutions of ypress and u can be found in
Figure 7 for several values of the input vector x := (x1, . . . , x6). The quantity of interest is
therefore given by:

y(x) := s−max
t≥0

u(t;x), (30)

with s a given threshold. Vector x is seen as a random vector to model the fact that its
values are known in an uncertain way, and we then try to quantify the risk that u is greater
than s, i.e. to calculate the probability that y is smaller than 0 to stick to the notations
of the previous sections. To this end, we first computed the value of y in ℓ = 50 points
uniformly chosen in the input space. None of these values of y was below 0. We then
launched Algorithm 1 with m = 100 and q = 100, which allowed us to obtain m = 100
approximations of pf . The smallest and largest values obtained for these 100 realizations
were 0.00144 and 0.0053 respectively. In order to reduce this uncertainty on pf , Algorithm
2 was run, with α = β = 0.1, nmax = 3000, q = 100 and nadd = 50. Thus, looking at
Figure 8, which represents the dispersions of m = 100 approximations of pf with respect to
several values of nadd, we notice that adding new code evaluations changes the mean of the
estimates but also the range of admissible values for pf . The proximity between the boxplots
at nadd = 25 and nadd = 50 then seems to indicate that the algorithm has converged relatively
well in terms of reducing the uncertainty associated with the surrogate model. At this stage,
the main contributor to the uncertainty seems to be linked to the dispersion of the estimator
itself. By increasing q from 100 to 1000 (third and fourth boxplots from the left respectively),
we can then strongly reduce this uncertainty, to obtain a quite reasonable dispersion of values
for pf . In particular, after post-processing the realizations of the Poisson process associated
with the estimation of pf using Eq. (11), we can say that P(0.00505 > qα=0.1) ≥ 90%, where
we remind that qα=0.1 is the 90%-quantile of P Y

f . It is important to note that this increase
in q does not require any additional calls to the code. Finally, to go further in terms of
dispersion reduction, it would be necessary to increase q again, but probably also to add
new evaluations of y.

5. Conclusion and prospects

This paper focuses on the guarantee by simulation of the correct functioning of complex
systems. These guarantees are most often based on the fact of being able to ensure that
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Figure 7: Evolution of ypress and u for three different values of x.
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Figure 8: Comparison of the dispersions obtained on the estimates of pf as a function of the number of
points added nadd and the value of q.
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the probability of occurrence of undesired events is lower than a risk that is considered
acceptable. With this objective, this paper proposes a method to bound this probability
with a specified confidence, while requiring only a reduced number of calls to the code used
to simulate the behavior of the studied system. This method is based on the substitution of
the potentially numerically costly code by a GPR-based surrogate model, the use of order
statistics, and the exploitation of a dedicated Poisson process. One point that should be
emphasized is that the method is intuitive, which makes it easy to implement.
In addition, a sequential strategy is proposed, allowing us to refine this boundary by adding,
in an optimized way, new learning points for the surrogate model. In particular, it should be
noted that this strategy proposes a natural compromise between exploration and exploita-
tion, allowing to avoid a too strong sensitivity of the results to the fact that the predictive
capacities of the initial surrogate model may not be very good. The interest of such an
approach compared to already existing methods is finally illustrated on a series of numerical
examples.
When the total number of code evaluations is fixed, it would nevertheless seem interesting,
in terms of perspectives for this work, to progress on the choice of the number of code
evaluations dedicated to initial learning, noted ℓ in this paper, and the number of code
evaluations dedicated to sequential improvement, noted nadd.

Appendix

Proof of Proposition 1

Let (Zi)i≥0 be a decreasing random walk so that for all i ≥ 1 and z ∈ R:

Z0 = +∞, P(Zi+1 ≤ z | Zi) = P(Z ≤ z | Z ≤ Zi), (31)

with Z a real-valued random variable with continuous CDF FZ . We can then associate to
this random walk the results of Proposition 4 and Corollary 2.

Proposition 4. For all t > 0,

P (t) := sup {i; − log (P(Z ≤ Zi|Zi)) ≤ t} (32)

is a Poisson random process with parameter t.

� Proof: By construction, for all i ≥ 0, P (Z ≤ Zi+1 | Z ≤ Zi) is a random variable that
is uniformly distributed over [0, 1], such that Si+1 := − log(P(Z ≤ Zi+1|Z ≤ Zi)) follows an
exponential law with parameter 1. Therefore, for all t > 0, P (t) := sup {i; S1 + . . .+ Si ≤ t}
is a Poisson process with parameter t. Noticing that:
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S1 + . . .+ Si = −
i∑

k=1

log(P(Z ≤ Zk|Z ≤ Zk−1))

= − log

(
i∏

k=1

P(Z ≤ Zk|Z ≤ Zk−1)

)

= − log (P(Z ≤ Zi | Zi)) ,

(33)

we eventually find the searched result. �

Corollary 2. For t > 0 and q ≥ 1, if P1, . . . , Pq denote q independent copies of P (t), the

random variable Πq :=
(
1− 1

q

)∑q
k=1 Pk

verifies:

E [Πq] = e−t, Var(Πq) = e−2t(et/q − 1). (34)

� Proof:

We have:

E [Πq] =

(
E

[(
1− 1

q

)P (t)
])q

=

(
+∞∑

k=0

(
1− 1

q

)k
e−ttk

k!

)q

= e−t

(
+∞∑

k=0

((
1− 1

q

)
t

)k
e−(1−

1
q )t

k!

)q

= e−t.

E
[
Π2

q

]
=

(
E

[(
1− 1

q

)2P (t)
])q

=

(
+∞∑

k=0

(
1− 1

q

)2k
e−ttk

k!

)q

= e
qt
(
−1+(1− 1

q )
2
)



+∞∑

k=0

((
1− 1

q

)2

t

)k
e−(1−

1
q )

2
t

k!




q

= e−2t+t/q ,

from which we deduce the searched result.
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�

Applying the results of Property 4 and Corollary 2 with Z = Y (X;ω) and t = − log (PX(Y (X;ω) < 0)),
we obtain:

P (− log (PX(Y (X;ω) < 0))) = sup {i; Zi ≥ 0} . (35)

Hence, if P1, . . . , Pq denote q independent copies of Poisson process P (− log (PX(Y (X;ω) < 0))),
which are based on the projection of deterministic function Y (ω) in a total number of n

points of X gathered in Xn, P̂
Y,Xn

f (ω) :=
(
1− 1

q

)∑q
k=1 Pk

defines an estimator of P Y
f (ω) =

PX(Y (X;ω) < 0), and it verifies the equalities of Eq. (14).

Proof of Proposition 2

Lemma 1. Let Z be a real-valued random variable with continuous CDF FZ . If (Zi)i≥0 is
the decreasing random walk defined by Eq.(17), for all z ∈ R, i ≥ 1, we have:

P(Zi ≤ z) = FZ(z)

i−1∑

k=0

| log(FZ(z))|k
k!

. (36)

Proof of Lemma 1.
The result is straightforward for i = 1.
Let us assume that the expression is true for all 1 ≤ k ≤ i. For all z, z′ ∈ R, we have:

P(Zi+1 ≤ z | Zi = z′) =

{
1 if z′ ≤ z,
FZ(z)
FZ(z′)

otherwise.
(37)

Hence, if fZi
is the PDF of Zi, we have:

fZi
(z) =fZ(Z)

(
i−1∑

k=0

| log(FZ(z))|k
k!

−
i−1∑

k=1

| log(FZ(z))|k−1

(k − 1)!

)

= fZ(z)
| log(FZ(z))|i−1

(i− 1)!
.

Then, using Eq. (37), it comes:
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P(Zi+1 ≤ z) = E [P (Zi+1 ≤ z | Zi)]

=

∫ z

−∞

P(Zi+1 ≤ z|Zi = y)fZi
(y)dy +

∫ +∞

z

P(Zi+1 ≤ z|Zi = y)fZi
(y)dy

=

∫ z

−∞

fZi
(y)dy +

∫ +∞

z

FZ(z)

FZ(y)
fZi

(y)dy

= P(Zi ≤ z) + FZ(z)

∫ +∞

z

fZ(y)

FZ(y)

| log(FZ(y))|i−1

(i− 1)!
dy

= P(Zi ≤ z) +
FZ(z)

i!
[−| log(FZ(y))|n]+∞

z

= FZ(z)
i−1∑

k=0

| log(FZ(z))|k
k!

+ FZ(z)
| log(FZ(z))|i

i!

= FZ(z)
i∑

k=0

| log(FZ(z))|k
k!

.

Proof of Property 2.
Let Ẑ be an element of (Zi)i≥0 chosen at random. It comes:

P(Z̃ ≤ z) = 1− P(Ẑ ≥ z | Ẑ ≥ 0)

= 1− P(Ẑ ≥ z)

P(Ẑ ≥ 0)

= 1−
∑+∞

i=1 P(Zi ≥ z)∑+∞

i=1 P(Zi ≥ 0)
.

(38)

Then, for all z ≥ 0,

+∞∑

i=1

P(Zi ≥ z) =
+∞∑

i=1

+∞∑

k=i

FZ(z)
| log(FZ(z))|k

k!

=

+∞∑

k=1

k × FZ(z)
| log(FZ(z))|k

k!

= | log(FZ(z))|
+∞∑

k=1

FZ(z)
| log(FZ(z))|k−1

(k − 1)!

= | log(FZ(z))|
+∞∑

k=0

FZ(z)
| log(FZ(z))|k

k!

= | log(FZ(z))|,

(39)

which completes the proof.
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Proof of Corollary 1

The result of Corollary 1 is a direct consequence of Property 2 when replacing Z by Y (X;ω)
and writing P Y

f (ω) = PX(Y (X ;ω) ≤ 0).

Proof of Property 3

For x,x′, x̂ in X, we remind that:




Y (x)
Y (x′)
Y (x̂)


 ∼ N






µ(x)
µ(x′)
µ(x̂)


 ,




Σ(x,x) Σ(x,x′) Σ(x, x̂)
Σ(x′,x) Σ(x′,x′) Σ(x′, x̂)
Σ(x̂,x) Σ(x̂,x′) Σ(x̂, x̂)




 . (40)

It comes:

Y (x′)− Y (x) | Y (x̂) = µ(x̂) ∼ N
(
µ(x′)− µ(x), s2(x,x′, x̂)

)
, (41)

s2(x,x′, x̂) = Σ(x,x) + Σ(x′,x′)− 2Σ(x,x′)− (Σ(x, x̂)− Σ(x′, x̂))2

Σ(x̂, x̂)
, (42)

so that:

PY,X,X′ (Y (X) > Y (X ′), µ(X) < µ(X ′) | Y (x̂) = µ(x̂)) ,

= EX,X′

[
1µ(X)<µ(X ′)PY (Y (X ′)− Y (X) < 0 | X,X ′, Y (x̂) = µ(x̂))

]
,

= EX,X′

[
1µ(X)<µ(X ′)Φ

(
µ(X)− µ(X ′)

s(X,X ′, x̂)

)]
,

= EX,X′

[
Φ

(
µ(X)− µ(X ′)

s(X,X ′, x̂)

)
| µ(X) < µ(X ′)

]
PX,X′ (µ(X) < µ(X ′)) ,

=
1

2
EX,X′

[
Φ

(
µ(X)− µ(X ′)

s(X,X ′, x̂)

)
| µ(X) < µ(X ′)

]
,

=
1

2
EX,X′

[
Φ

(
−|µ(X)− µ(X ′)|

s(X,X ′, x̂)

)]

(43)

Expression of the analyzed numerical functions

The oscillating function corresponds to the function:

y :

{
[0, 1] → R

x 7→ (x+ 1) sin(6πx2) + 1.92.
(44)

The Branin function corresponds to the function:

y :

{
[0, 1]2 → R

x 7→
(
15x2 − 5

4π2 (15x1 − 5)2 + 3x1−1
π

− 6
)2

+ 10
(
1− 1

8π

)
cos(15x1 − 5) + 10.

(45)
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The Hartmann function corresponds to the function:

y :

{
[0, 1]6 → R

x 7→ −∑4
i=1 αi exp

(
−∑6

j=1Aij(xj − Pij)
2
)
,

(46)

α = (1.0, 1.2, 3.0, 3.2),

A =




10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


 ,

P = 10−4




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


 .
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