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A B S T R A C T   

In this paper, a multistate Bayesian Network (BN) is proposed to model and evaluate the functional performance 
of safety barriers in Oil and Gas plants. The nodes of the BN represent the safety barriers Health States (HSs) and 
the corresponding conditional Failure Probability (FP) values are assigned. HSs are assessed on the basis of 
specific Key Performance Indicators (KPIs) related to the barrier characteristics (i.e., technical, procedural or 
organizational, continuously monitored or event-based characterized). FP values are estimated from failure 
datasets (for technical barriers), evaluated by Human Reliability Analysis (HRA) (for operational and organi
zational barriers) and assigned by expert elicitation (for barriers lacking data or information). For illustration, 
the multistate BN model is developed for preventive barriers and applied to a case study related to the potential 
release of flammable material in the slug catcher of a representative O&G Upstream plant which may lead to 
major accident scenarios (fire, explosion, toxic dispersion). The results from the case study demonstrate that the 
multistate BN model is able to account for the safety barriers HS and their associated functional performance.   

1. Introduction 

Processes in an Oil and Gas (O&G) plant involve inherent hazards, 
which must be kept under control for safe operation. For this, safety by 
design is pursued with the implementation of preventive and mitigative 
safety barriers, for reducing the probability of accidents and mitigating 
their consequences, respectively (ISO 17776). Various approaches have 
been proposed to model the functional performance of safety barriers, 
including simplified risk indexes [11], Monte Carlo simulation [1] and 
Quantitative Risk Assessment (QRA) [31]. The latter is a commonly used 
framework, because of its comprehensiveness [18]. 

QRA is periodically performed throughout the life cycle of the plant 
to evaluate its safety status [26]. However, the techniques currently 
adopted (mainly Bow-Ties) [27] do not allow for a lean incorporation of 
the Knowledge, Information and Data (KID) [51] related to the health 
state of the components and systems, which become available during 
their life through inspections and measurements [4,20,43]. This leads to 
neglecting the degradation of components, equipment and safety 

barriers in the calculation of the risk measures. To equip QRA with the 
capability of incorporating newly available KID, various methodologies 
for this have been proposed in recent years, including Dynamic Risk 
Assessment (DRA) based on statistical failure data [46], Hidden Markov 
Gaussian Mixture Model (HM-GMM) for condition monitoring [44], 
DRA based on Hierarchical Bayesian Analysis [34] and time-dependent 
reliability analysis [17]. 

In this work, we advance further in this direction by proposing a 
multistate Bayesian Network (BN) approach [25,39] that embeds 
different types of KID in the assessment of the degradation of safety 
barriers and their functional performance, within a Living Risk Assess
ment framework. The use of BNs for risk assessment has been rapidly 
spreading [2,3,8,28–30,35,45] and the novelty of the BN modelling here 
proposed is related to the comprehensive evaluation of the multistate 
variables, based on the new KID that becomes available in relation to the 
safety barriers Health States (HS), e.g., in the form of data from the 
monitoring system, information from field inspection and maintenance, 
knowledge analysis from reporting, etc. Different monitoring ap
proaches (i.e., continuous monitoring, safety event reporting) and safety 
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barrier types (i.e., technical, procedural, organizational) are considered 
and, for each of them, a tailored approach is developed to assess the 
barrier HS and the corresponding Failure Probability (FP) (i.e., the 
probability that the safety barrier in a specific HS does not perform its 
function). The probability P(⋅) of a barrier to be in a given HS (i.e., High 
(H), Medium (M), Low (L)) is obtained with reference to specific Key 
Performance Indicators (KPIs) and based on the KID collected at the 
plant during a specific time [14]. The safety barrier FP can, then, be 

computed [16]. 
A case study consisting of a slug catcher of a representative Upstream 

O&G onshore plant is presented to demonstrate the potential of the 
proposed multistate BN model. The results provided by the multistate 
BN model are compared with those obtained through the application of 
the BAseline Risk assessment Tool (BART) [40], which is the reference 
methodology for risk assessment developed and adopted by the global 
energy company Eni. 

List of Acronyms 

ALARP As Low As Reasonably Practicable 
BART BAseline Risk assessment Tool 
BN Bayesian Network 
BT Bow-Tie 
CL Checklist 
DI Design Integrity 
PDMP Piecewise-Deterministic Markov Process 
DRA Dynamic Risk Assessment 
DyPASI Dynamic Procedure for Atypical Scenario Identification 
ERS Emergency Response System 
ESD Emergency Shutdown 
ET Event Tree 
FM Fire Management 
FT Fault Tree 
FP Failure Probability 
H High (health state) 
HEP Human Error Probability 
HRA Human Reliability Analysis 
HS Health State 
I&D Isolation and Depressurization 
KID Knowledge, Information and Data 
KPI Key Performance Indicator 
KPI% KPI percentile 
L Low (health state) 
LOPC Loss Of Primary Containment 
M Medium (health state) 
MooN-G M-out-of-N Good components 
NHEP Nominal Human Error Probability 
OI Operating Integrity 
OS Order Statistics 
PCS Process Control System 
PPS Pressure Protection System 
PSD Process Shutdown 
PSF Performance Shaping Factor 
PSM Probabilistic Safety Margin 
PSMS Process Safety Management System 
PSV Pressure Safety Valve 
QRA Quantitative Risk Assessment 
RI Risk Indicator 
SCS Spill Containment System 
SD Shutdown 
SHIPP System Hazard Identification, Prediction And Prevention 
TM Task Management 
WH Working Hours 

List of Symbols 
V Set of nodes of the Bayesian Network 
N Number of nodes of the Bayesian Network 
E Set of arcs of the Bayesian Network 
Vi
− Set of predecessors of node i ∈ V 

Vi
+ Set of successors of node i ∈ V 

Si Set of states of the event at node i ∈ V 

Si
− Family of states of the predecessors of node i ∈ V 

Si
+ Family of states of the successors of node i ∈ V 

Pi(si) Probability of the event that node i ∈ V is in state si∈ Si 

Pi(si
⃒
⃒Si

− ) Probability of the event that node i ∈ V is in state si∈ Si 

given the states of its predecessors 
R Reliability of a safety barrier evaluated by CL 
T Time horizon 
{H,M,L} Set of HSs of a safety barrier node 
ni Number of incidents counted in a plant in T=1 year 
XKPI Random variable describing the KPI 
xKPI Observed value of XKPI in the range [0,1] 
XHS Random variable describing the HS of a safety barrier 
xHS State of XHS, whose possible states are {H,M,L} 
a Accident scenario 
y Safety parameter 
y(t) Time series of parameter y 
Uj Upper threshold 
Lj Lower threshold 
yref Reference/Nominal value of parameter y 
yγ γ-th percentile of y distribution 
β Confidence of estimation 
ŷγ Estimated percentile 
Φ− 1(⋅) Inverse cumulative distribution function of the standard 

normal distribution 
ZL Low performance KPI threshold 
ZU High performance KPI threshold 
P(xHS|xKPI) Probability of being in state xHS given the assessed KPI 

value xKPI 
{pH,pM,pL} Set of FPs corresponding to the HSs of a safety barrier 

node 
pHSk ,k FP of the k-th barrier when found in HSk∈{H,M,L} 
PLOPC(⋅) Leak probability in one year 
Pign Ignition probability after a LOPC 
Pimm Immediate ignition probability 
Pdel Delayed ignition probability 
Pex Conditional explosion probability 
Pff Conditional FF probability 
PCons(⋅) Probability of each consequence in one year 
λLOPC Frequency of a LOPC accident (events/year) when no 

barrier is in place 
λLOPC,HSk ,k Frequency of a LOPC when the k-th barrier is in place and 

has a given HSk∈{H,M,L} 
B Generic safety barrier 
Q Number of experts 
wq Weight assigned to the q-th expert, q=1,2,…,Q 
λLOPC,q Frequency of a LOPC accident (events/year) when no 

barrier is in place, as evaluated by the q-th expert 
λLOPC,HSk ,k,q Frequency of a LOPC when the k-th barrier is in place 

and has a given HSk∈{H,M,L}, as evaluated by the q-th 
expert 

pHSk ,k,q FP of the k-th barrier when is in place and has a given 
HSk∈{H,M,L}, as evaluated by the q-th expert  
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The remainder of the paper is organized as follows: Section 2 pre
sents the methodology background, introducing the BART procedure 
and the BN modelling features; Section 3 describes the procedure for the 
characterization of the safety barriers and Section 4 shows the appli
cation to the case study; finally, in Section 5 some conclusions are 
drawn. 

2. Methodological background 

2.1. BAseline Risk assessment Tool Methodology 

BART combines a simplified QRA methodology with a Bow-Tie (BT) 
model to identify the potential hazards and evaluate the related risks 
that may arise from the processes and activities carried out in Upstream 
O&G installations [10]. BT provides a graphical representation of acci
dent scenarios, from causes to consequences (ISO 17776). It is comprised 
of a Fault Tree (FT) representing the possible events causing the acci
dent, whose top event is the initiating event of an Event Tree (ET) 
delineating the scenarios that develop from it depending on the failure 
or success of the safety barriers [19,5,12]. 

BT is used in BART to evaluate the actual risk posed by the potential 
accident scenarios whose baseline probability of occurrence is inferred 
from available documentation and databases (for example, the baseline 
yearly PLOPC,0 of a Loss of Primary Containment (LOPC) in a typical O&G 
facility such as that considered in the case study can be assumed equal to 
0.0241 [22]), accounting for the contribution to safety of the safety 
barriers placed in each key equipment unit for preventing and miti
gating the accident escalation. 

The analysis by BART involves:  

1 Modelling the plant and its subdivision into key equipment units 
according to the process flow, the operating conditions and the 
equipment layout; 

2 For each key equipment unit, specifying the consequences from po
tential accidents (e.g., Flash Fire, Jet Fire, Pool Fire, Explosion, Toxic 
Dispersion);  

3 Evaluating the installation baseline risk category (Low, Medium, 
Medium-High, High) in terms of accident frequency and conse
quence severity, by the simplified QRA without considering any 
preventive and mitigative safety barrier in place;  

4 Evaluating the actual risk category by BT methodology, considering 
the preventive and mitigative safety barriers in place (see Section 
2.1);  

5 Suggesting corrective actions for improving the reliability and 
functional performance of the safety barriers in place, or the addition 
of new safety barriers to reduce the overall exposure to risk. 

The specific barrier contribution to safety is inferred from available 
documentation, plant personnel interviews and surveys. In particular, 
surveys are performed by filling checklists (CLs) and to qualitatively 
evaluate the reliability of each barrier. The CL survey is inevitably 
subjective and needs, thus, to be performed in a structured and 
controlled way. However, the BT framework has difficulty in accounting 
for the actual HS of the barriers in the evaluation of the actual risk. 
Finally, the static nature of the FTs and ETs in the BT does not allow to 
easily update the living risk assessment in view of the changes in time of 
the HS of the safety barriers in place. 

2.2. Bayesian Network methodology 

The method proposed in this work is an extension of BART, which 
involves the introduction of BNs to confer specific additional modelling 
capabilities. A BN is a probabilistic graphical based network that is 
represented as a directed acyclic graph [33] consisting of:  

• Nodes V = {1,2, …, N}, which in our case represent events whose 
combinations can lead to an accident; so, each node i represents a 
random event that encodes a set of discrete states Si = {si

1, si
2,…, si

m}

(multistate variables).  
• Directed arcs E ⫅ {(i, j)i, j ∈ V, i ∕= j}, which indicate conditional 

dependencies among nodes. Specifically, the arc (j, i) ∈ E, which 
connects node j ∈ V to node i ∈ V, indicates that the event at node 
i is conditionally dependent on the event at node j. A path is a 
sequence of nodes (i1, i2, …, iη), η > 1, such that (ij, ij+1) ∈ E,
j < η. The first node in the path, i1, is called root node and the node 

iη is called leaf node of the path; the other nodes are called inter
mediate nodes. Since the BN is acyclic, there is no path (i1, i2, …, iη)
, η > 1 such that (ij, ij+1) ∈ E, j < η and i1 = iη. The immediate 
follower nodes of i ∈ V form the set Vi

+ = {j(i, j) ∈ E} and their sets of 
states form the family Si

+ = {Sjj ∈ Vi
+}, whereas its immediate pre

decessor nodes are in the set Vi
− = {j(j, i) ∈ E}, whose set of states is 

the family Si
− = {Sjj ∈ Vi

− }.  
• Conditional Probability Tables (CPTs) assigned to the nodes, which 

quantify the conditional dependencies among nodes in terms of the 
conditional probability Pi(Si

⃒
⃒Si

− ) that node i will be in a particular 
state, given the states of its parent nodes. 

The joint probability of a path of node states (s1, s2,…, sη) in the BN 
leading to the consequence node iη is computed as: 

P
(
s1, s2,⋯, sη) =

∏η

j=1
Pj
(
sj
⃒
⃒sj

−

)
(1)  

2.3. Mapping Bow-Ties into Bayesian Networks 

A BT may be converted into a BN following a specific mapping 
procedure, as described in [7,6] and [27]. The structure of the BN is 
developed from the FT of the BT in such a way that primary events, 
intermediate events and the top event of the FT are represented as the 
root nodes (initiating event node), intermediate nodes (safety nodes) 
and leaf node (consequence node) in the equivalent BN, respectively. 
Then, each safety barrier in the ET of the BT is represented by a safety 
node and the consequences of the accident scenarios of the ET are the 
states of the node. The BNs equivalent to the FT and ET of the BT are, 
then, connected to each other via the top event as a pivot node. Figure 1 

Figure 1. BT-BN mapping scheme adapted from [27]  
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provides a scheme of the mapping procedure adopted. 

3. Safety barriers characterization 

The novelty of the BN model proposed in this work is that each safety 
barrier becomes a node in the BN and is described by the Health State 
(HS) and the Failure Probability (FP). The HS reflects the condition of 
the barrier with respect to its performance in fulfilling the function it is 
designed for. The HS is defined as a multistate variable, which can as
sume values as High (H), Medium (M) and Low (L), corresponding to 
nominal, acceptable and poor performance, respectively. Specifically, a 
safety barrier whose HS is H is considered to be in “as good as new” 
conditions, whereas if its HS is M or L it is considered to run in critical 
conditions (i.e., any further deterioration would prevent the barrier 
from working properly). A set of values {P(H), P(M),P(L)} are defined 
as the probabilities that the HS is found in a specific state {H, M, L}. 
Different approaches can be used to define {P(H), P(M),P(L)} depend
ing on the quality and quantity of the KID available, and to assign to 
each HS, based on specific Key Performance Indicators (KPIs), the 
probability that the barrier fails to perform its function when operating 
in a specific HS {H, M, L}, indicated as pH, pM, pL, respectively. 

Figure 2 shows a conceptualization of the safety barrier character
ization approach, whose details will be provided in the following 
Sections. 

3.1. Health State probability estimation 
The HS reflects the condition of the barrier with respect to the per

formance of its safety function. It is defined as High (H), Medium (M) 
and Low (L), corresponding to nominal, acceptable and poor perfor
mance respectively. In the following paragraphs, a safety barrier whose 
HS is H is considered to be in “as good as new” conditions; a safety 
barrier whose HS is M is here modelled to be in critical conditions (i.e., 
each of its components is critical for it to work properly); a safety barrier 
whose HS is L is here modelled to be in a failed state. 

The probability that the HS of a barrier is H, M or L is quantified on 
the basis of specific KPIs, which are evaluated differently for the 
different safety barrier monitoring strategies (i.e., continuously moni
toring or safety relevant event reporting), as explained in the following 

Sections. In line with [49], a KPI is described by continuous input var
iables XKPI with values xKPI in the range [0,1]. For a specific KPI value 
xKPI of XKPI, there can be uncertainty with respect to the corresponding 
HS {H, M, L} of the barrier. Then, the HS of a safety barrier is described 
by a discrete random variable XHS, whose possible states are {H, M, L}. 
To model the relationship between KPIs and HS {H, M, L}, a probabi
listic model is defined where expert-based prototypical conditions are 
used as anchor points. These points provide the analysts with examples 
of “nominal” assessment, in comparison of which acceptable and poor 
conditions can be assessed with respect to the deviations from the 
nominal anchors. For example, as shown in Table 1 and Figure 3, for the 
state H and anchor points) xKPI = 0 and xKPI = 1, an expert may judge 
xKPI = 0 to belong to HS {H, M, L} with P(xHS|xKPI) =

{0.01, 0.10, 0.89}, respectively, and xKPI = 1 to belong to HS {H, M, L} 
with P(xHS|xKPI) = {0.89, 0.10, 0.01}, respectively. The resulting dis
tributions are shown in Figure 3. The probabilities P(xHS|xKPI) are 
plotted for each HS according to the xKPI values: these distributions have 
been detained by linear interpolation between the anchor points. 
Depending on the kind of information available for the safety barrier of 
interest, several KPIs can be defined. 

3.1.1. KPIs for continuously monitored safety barriers 

Let y (t) = [y(t1), y(t2),…, y(tn)] be the data time series collected at 
the discrete times t1 < t2 < ⋯ < tn from the continuous monitoring of 
the characteristic parameter of a specific safety barrier. Probabilistic 
Safety Margins (PSM) can be used to measure, in probabilistic terms, to 

Figure 2. Barrier characterization concept scheme  

Table 1 
Anchor points for estimation of the safety barriers 
HS probability   

P(xHS|xKPI)  

0 {0.01, 0.10, 0.89}
0.4 {0.01, 0.61, 0.38}
0.7 {0.45, 0.54, 0.01}
1 {0.89, 0.10, 0.01}

Figure 3. Probability distributions P(xHS|xKPI) for the HSs H, M and L  
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which extent the safety parameter y is below an acceptable upper 
threshold value U (or above a lower threshold value L) during the 
monitoring interval [t1, tn] [50]. This is done by calculating the estimate 
ŷγ of the true γ-percentile yγ (usually the 95th percentile) of the distri
bution of the parameter [13], with confidence β (usually 95%): 

γ = P
{

y < yγ
}

(2)  

β = P
{

yγ < ŷγ

}

(3)  

The estimate ŷγ thereby obtained is used to indicate to which extent the 
safety barrier has been in normal (i.e., HS={H}) or degraded (i.e., HS=
{M, L}) conditions during the monitoring interval [t1,tn]. The calculation 
of ŷγ can be done by empirical percentile estimation methods (in case of 
sufficient monitoring data) or by Order Statistics (OS) [37], which 
provides the minimum number S of samples needed to obtain the esti
mate ŷγ with the desired confidence β. Without loss of generality, 
considering the safety parameter y to be limited from above by the upper 
threshold U (the extension to the lower threshold L being straightfor
ward), the m-th member ym of the S samples sorted by descending value 
has a certain probability β of exceeding the unknown true γ− th 
percentile yγ. Then, one can get the level of confidence β that the actual 
value of yγ is less than the value obtained for ym and if ym meets the 
criterion of being less than the threshold U, then the unknown yγ will do 
so, too. 

For an upper threshold U, the PSM can be calculated as [13]: 

PSM =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U − ŷγ

U − yref
if ŷγ ≤ U

0 if ŷγ > U

1 if ŷγ < yref

(4)  

and for the lower threshold L, as: 

PSM =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷγ − L
yref − L

if ŷγ ≥ L

0 if ŷγ < L

1 if ŷγ > yref

(5)  

where yref is a reference value for y, which is typically the nominal value 
of the parameter. 

The PSM thus evaluated is, then, taken as xKPI for the evaluation of 
the probability of continuously monitored technical barriers to be in 
given HS∈{H, M, L} [15]. 

3.1.2. KPIs for event-based safety barriers 

Let us assume that event data from various sources have been 
accumulated for a certain period of time, which can be used for calcu
lating event-based KPIs (for example, number of accidents, alarm 
counts, number of Emergency Shutdowns (ESDs) or Process Shutdowns 
(PSDs)). For each KPI, a specific probabilistic distribution is defined: KPI 
values indicating low performance are made to correspond to the low 
percentiles of said distribution, and KPI values indicating high perfor
mance to correspond to high percentiles of the distribution. For instance, 
let us assume that a particular KPI follows a normal distribution N(μ, σ2)

[41] and its performance is considered poor for KPI values below a 
specific threshold, ZL, and good for KPI values above a different 
threshold, ZU. The parameters μ and σ of the normal distribution can be 
evaluated from the following system of equations: 

⎧
⎪⎪⎨

⎪⎪⎩

ZL − μ
σ = Φ− 1(0.4)

ZU − μ
σ = Φ− 1(0.7)

(6)  

which leads to: 
⎧
⎪⎪⎨

⎪⎪⎩

μ =
Φ− 1(0.7)ZL − Φ− 1(0.4)ZU

Φ− 1(0.7) − Φ− 1(0.4)

σ =
ZU − ZL

Φ− 1(0.7) − Φ− 1(0.4)

(7)  

where Φ− 1(⋅) is the inverse cumulative distribution function of the 
standard normal distribution and the 40th and 70th percentiles are 
chosen from the anchor points reported in Table 1. 

Once the distribution is completely defined, it is possible to associate 
each new KPI score to a percentile (KPI%). The KPI% is, then, taken as 
xKPI for the evaluation of the probability of the safety barrier HS to be 
one of {H, M, L}. 

3.2. Failure Probability Evaluation 

The probability FP that the barrier fails to perform its function in a 
considered period of time when its HS is H, M or L, is indicated as pH,

pM, pL, respectively. Depending on the type of barrier (technical, pro
cedural or organizational) a different procedure has been devised for 
estimating these probabilities:  

• Technical: estimation of failure rates from existing databases, such as 
[38] (see Section 4.2.1);  

• Procedural: estimation of failure rates by Human Reliability Analysis 
(HRA) (see Section 4.2.2);  

• Organizational: estimation of failure rates by Organizational and 
Human Reliability Analysis (OHRA) (see Section 4.2.2). 

When data relative to some specific barriers are missing, the FP 
estimation is done by expert elicitation, as proposed in [16,42]. 

3.2.1. FP assessment for technical barriers 
The FP estimation for a technical barrier for which failure rates can 

be retrieved from existing databases proceeds by first performing a 
functional analysis of the safety barrier by a top-down approach, aimed 
at identifying the components of the barrier and understanding the 
functional logic. For each component of the barrier, a failure rate λ 
encompassing all causes of failure is retrieved from existing databases, 
for example [38]. Since barrier components are periodically inspected at 
regular intervals T, the Probability of Failure on Demand (PFD) for a 
single component can be used as follows (Zio, 2007): 

PFD =
1
2

λ T (8)  

Then, the FP of the whole barrier is calculated, depending on the logical 
architecture which the components are organized in. If the barrier 
logical architecture can be modelled as a MooN-G (M-out-of-N Good 
components) configuration, in practice, the FPs {pH,pM,pL} corre
sponding to the HS {H, M, L} are evaluated assuming that the barrier is 
as good as new (for H), some components of the barrier are in degraded 
conditions (for M), the barrier is in such low functional conditions that it 
cannot perform its function (for L). 

For example, for a safety barrier designed in the 2oo3-G architecture, 
which implies that 2 out of 3 elements must work (G) for the safety 
barrier to fulfill its function, it is pH = λ2T2, when its KPI is indicating 
that HS is H, pM = λ T, if the KPI indicates that one of the three com
ponents is failed resulting in a 2oo2 configuration, and, finally, pL = 1 
when HS = L (failed barrier state). For barriers, whose logical archi
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tecture cannot be modelled as MooN-G systems, other logic methods can 
be used, e.g. FT analysis [21]. FT analysis entails the definition of an 
undesired event (e.g., failure of the barrier) as top event, whose causes 
are decomposed down to the basic events at the level of the system 
components. The probabilities of the basic events are estimated from 
databases [38] and following the Boolean logic of the FT, the probability 
of occurrence of the top event (i.e., the FPs of the barrier) is estimated. 

3.2.2. Failure Probability assessment for organizational and procedural 
barriers 

Procedural and organizational barriers failures are mainly due to 
human errors, whose probabilities can be obtained through HRA [36]. 
Several HRA methods have been developed and used in practice (e.g. 
THERP [32], CREAM [23], SPAR-H [19]), all aimed at the quantification 
of the Human Error Probability (HEP), which is usually considered as 
dependent on Performance Shaping Factors (PSFs) that define the stress 
conditions under which personnel tasks are to be performed. 

In this work, the SPAR-H method for HEP calculation is adopted as 
follows: 

HEP =
NHEP ×

∏n
1PSFu

NHEP ×
( ∏n

1PSFu − 1
)
+ 1

(9)  

where NHEP is the Nominal HEP value, which can be found in (IOGP 
434-5) and PSFu, u = 1, 2,…, n, are the PSF values accounting for, for 
example, workload, stress, time available, training and experience. 
Depending on the effect of the PSFs, pH, pM and pL can be evaluated as 
follows:  

• If the PSFs degrade the HEP, then HEP > NHEP and pH = NHEP when 
the barrier KPI indicates that HS is equal to H, pM = HEP if the KPI 
indicates that HS is M, and finally pL = 1 when the KPI indicates that 
the HS is equal to L (failed barrier);  

• If incidentally the PSFs happen to improve the barrier effectiveness, 
then HEP ≤ NHEP and pH = HEP when the barrier KPI indicates that 

HS is equal to H, pM = NHEP if the KPI indicates that HS is M, and 
finally pL = 1 when the KPI indicates that the HS is equal to L (failed 
barrier). 

3.2.3. Failure Probability assessment for barriers lacking data 

When data are not available, an expert elicitation procedure is 
resorted to quantify pH, pM and pL [42]. In practice, Q experts are 
questioned in order to collect their educated assignment on the FP 
values pHS,q of a safety barrier for the different HS {H, M, L} and, 
then, the expert values are weight-aggregated as: 

pHS =
∑Q

q=1
pHS,qwq (10)   

where wq is the weight assigned to the q-th expert, q = 1,2,…,Q, which 
accounts for various factors influencing his/her credibility (e.g., edu
cation level, professional position and years of experience) ([47]; Zarei 
et al., 2017). The expert relative weights can be obtained by applying 
the Analytic Hierarchy Process (AHP) (Figure 4), with pairwise com
parisons of the trustworthiness of the experts (Yazdi et al., 2017). 

Comparison data are collected into comparison matrices. Each 
element cij of a comparison matrix C should satisfy the constraint cij⋅cji =

1 .The weights relative to the importance for each entry (expert or cri
terion) can be determined by solving an eigenvector problem. More 
precisely, it can be shown that given the matrix of pairwise comparisons 
for the element of interest, the principal eigenvector provides the vector 
of weights, when normalized, and the maximum eigenvalue is a measure 
of consistency of the comparisons entered in the matrix [48]. For com
plete consistency, the maximum eigenvalue, λmax, should be equal to the 
order of the matrix, m. The level of consistency of a given pairwise 
comparison matrix can be measured by a parameter called Consistency 
Ratio (CR), defined as the ratio between the Consistency Index, 
CI = (λmax − m)/(m − 1), and the random index (RI), which is the sta
tistically averaged CI of randomly generated matrices of order m with 
entries artificially forced to be consistent. A consistency ratio of 0.10 or 
less is considered acceptable in many practical applications (Saaty, 
1980). 

4. Case study 

An application of the proposed methodology is presented in this 
Section, with respect to the slug catcher unit of a representative Up
stream O&G onshore plant. The slug catcher receives the incoming 
multiphase flow from the offshore platforms and performs a preliminary 

Figure 4. AHP model for the expert weight elicitation  

Figure 5. Slug catcher BT  
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gas liquid separation, thus representing the first process bottleneck of 
the onshore facility. The results of the application are benchmarked with 
those obtained by BART, whose top event is defined as the LOPC of the 
slug catcher, which can lead to different consequences, namely Flash 
Fire, Jet Fire, Pool Fire and Explosion. BART uses a BT for the LOPC of 
the slug catcher (shown in Figure 5): several hazards (e.g., human error, 
equipment failure and deviation from operating conditions) are 
modelled to lead to the top event “Slug Catcher LOPC” (circle in the 
middle); some preventive safety barriers (e.g., Process Safety Manage
ment System (PSMS), Task Management (TM), Design Integrity (DI), 
Operating Integrity (OI), Process Control System (PCS) and Pressure 
Protection System (PPS)) are considered to reduce the LOPC probability, 
and some mitigative barriers (e.g., Isolation & Depressurization (I&D), 
Fire Management (FM), Emergency Response System (ERS) and Spill 
Containment System (SCS)) are considered to mitigate the effects of the 
accident consequences (final leaves). 

Following the BT-BN mapping procedure of Section 3.1, the BN 
shown in Figure 6 is built. The pivot node “Slug catcher LOPC”, fed by 
the preventive safety barriers nodes, leads to the intermediate nodes 
describing the ignition escalation, fed by the mitigative barriers, and 

ultimately to the consequence node. In what follows, the preventive 
safety barriers are characterized according to the procedures defined in 
Section 4. 

4.1. Preventive safety barriers Health State characterization 

4.1.1. Continuously monitored preventive safety barriers 
The PCS of the slug catcher is a monitored safety barrier that keeps 

the system pressure within the operational range and as close as possible 
to the nominal pressure value. As seen in Section 3.1.1, PSMs can be 
defined as a KPI for HS evaluation. Let us consider the time series y (t)
plotted in Figure 7, consisting of n=1770 data collected over a moni
toring time of one year: the monitored slug catcher works at a nominal 
pressure set at 44 barg. Thresholds are set with respect to the design 
pressure of the slug catcher: the upper threshold (U) at 54 barg; the 
lower threshold (L) at 16 barg. 

Resorting to OS, for γ=95%, β=95% and m=1 (see Section 4.1.1), the 
PSM for the lower (PSML) and the upper (PSMU) thresholds are 
PSML=0.771 and PSMU=0.840. To be conservative, the lowest PSM 
value is used to evaluate the HS probabilities, leading to PPCS(H) = 0.55,
PPCS(M) = 0.44 and PPCS(L) = 0.01. These values are introduced into the 
BN in order to fill the CPT of the PCS. 

4.1.2. Event-based preventive safety barriers 
For the TM of the slug catcher, assuming that its performance follows 

a normal distribution, a KPI has been defined as obeying to a normal 
distribution N(20, 19); the KPI evaluated during operations is KPI =
12.58 based on reporting and the corresponding percentile of the normal 
distribution is KPI = 0.65. Then, as described in Section 4.1, the prob
ability that the barrier is found in a particular HS {H, M, L}, given the 
KPI evaluation is calculated with the probabilistic relationship of 
Figure 2, resulting in PTM(H) = 0.62, PTM(M) = 0.37 and PTM(L) = 0.01.

Likewise, several KPIs and their corresponding distributions have 
been defined for the remaining preventive barriers (namely PPS, PSMS, 
OI and DI) and their HS probability distributions are shown in the CPTs 
in Figure 9. 

4.2. Preventive safety barriers Failure Probability characterization 

4.2.1. Technical preventive safety barriers 
Two technical barriers are implemented for the slug catcher pressure 

safety, namely the PPS and the PCS. The FP {pH, pM, pL} calculation of 
the PPS technical barrier, whose components are assumed to have 
constant failure rates with values estimated from data of available da

Figure 6. BN of the slug catcher LOPC  

Figure 7. Example of pressure trend of the slug catcher in one-year operation. 
Dotted lines show nominal pressure (black), upper and lower thresholds (red) 
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tabases, such as [38], proceeds as described in Section 4.2.1 by firstly 
modelling the logical configuration of the barrier. The PPS of the slug 
catcher is considered to be composed of two Pressure Safety Valves 
(PSVs) (λPSV = 3.8⋅10− 5y− 1, from [38]) in 1oo2 configuration, meaning 
that at least one PSV must work correctly for the overall system success. 
When both PSVs are healthy (HS equal to H), the system preserves its 

1oo2-G architecture and pH,PPS =
λ2

PSVT2

3 = 0.0375; in case one of the PSVs 
is not working (HS equal to M) for any reason (e.g., due to degradation, 
interlock position or failure), the PPS is turned into a 1oo1-G system, 
whose pM,PPS = λT

2 = 0.1504; when both PSVs are failed (HS equal to L) 
pL,PPS = 1.

As for the FP {pH, pM, pL} calculation of the PCS, the FT of a typical 
Supervisory Control and Data Acquisition (SCADA) system operating the 
PCS is considered (Figure 8). 

The PFDAVG values for the components failure are taken from [9] and 
listed in Table 2. 

The evaluated FPs are, therefore, pH,PCS = 0.0024, when HS is equal 

to H, pM,PCS = 0.0182, when HS is equal to M (i.e., redundancies have 
been ignored) and pL,PCS = 1 for HS equal to L. 

4.2.2. Preventive safety barriers with missing data 

No data are available for the non-technical safety barriers of the case 
study. Therefore, the corresponding FPs, pH, pM and pL are evaluated 
resorting to an expert elicitation procedure as described in Section 4.2.3. 
A group of Q = 11 experts has been surveyed: their personal factors 
(education level, professional position and years of experience) are 
scored and used to evaluate their wq (see Table 3). 

According to the aggregation procedure described in Section 4.2.3, 
the values of pH,OI,q and pM,OI,q are computed for each expert q = 1, 2,
…,Q from the answers listed in Table 4. Applying the wq shown in 
Table 3 and Eq. (10), pH,OI = 0.311 and pM,OI = 0.492 are calculated, 
whereas it is assumed that pL,OI = 1. 

In a similar fashion, it is possible to elicit the FP values for the 
remaining non-technical safety barriers (namely TM, PSMS and DI), for 
which no data are available, in order to fill their corresponding CPTs. 
The results of the elicitation process for these barriers are shown in 
Figure 9, where the BN is completed with the CPTs for each preventive 
safety barrier and their effects on the system are considered in the 
consequence node risk assessment. 

4.3. Risk assessment 

Once the barriers have been fully characterized with respect to the 
values of HS, on the basis of the KID collected during a specific moni
toring period (e.g., one year), the probability of the consequences, 
PCons(⋅), can be evaluated following the BN rules (in Appendix A, the 
procedure is described in details). The results provided by the multistate 
BN-based approach with the CPTs of Table 5 are shown in Figure 9. They 
are compared with the results of the BT-based approach of BART, re
ported in Table 6. Both approaches provide coherent risk results (i.e., 
low risk). 

To show the applicability of the proposed multistate BN model for 
Living QRA, let us assume that, after one year of operation of the slug 
catcher, the KID with respect to each safety barrier are collected, thus 
allowing to update the KPIs (resulting in the values listed in Table 7). 
The HSs of each safety barrier are correspondingly updated and fed to 
the BN, which generates the updated risk assessment (Figure 10). 
Without loss of generality, for the KPIs here considered, DI and PPS have 
shown better performance with respect to the previous monitoring 
period of one year, and OI, PCS,TM and PSMS, have shown worse per
formance with respect to the previous monitoring period: then, the final 
probabilities of the consequences Flash Fire, Explosion, Pool Fire, Jet 
Fire have increased from 9⋅10− 7, 1⋅10− 7, 8⋅10− 7, 2⋅10− 7 to 4⋅10− 6, 4⋅ 
10− 6, 3⋅10− 6, 7⋅10− 7, respectively. Few safety barriers have improved 
their KPIs whereas most have worsened their performance, leading to a 
larger consequence probability than at the previous inspection time: this 
is a key information from the Living QRA conditioned on the KID 

Figure 8. Fault Tree of the typical SCADA system [9]  

Table 2 
SCADA components failure data [9]  

Component PFDAVG 

PC 0.0005 
Router 0.0000004 
Comm. Link 0.01 
PLC 0.00015  

Table 3 
Expert scores and weights from the application of the expert elicitation approach  

Expert Job Experience Education wq  

Expert 1 3 3 4 0.20 
Expert 2 2 1 4 0.06 
Expert 3 2 1 4 0.06 
Expert 4 2 2 4 0.10 
Expert 5 2 1 5 0.08 
Expert 6 2 2 4 0.10 
Expert 7 2 1 4 0.06 
Expert 8 2 1 4 0.06 
Expert 9 2 2 4 0.10 
Expert 10 2 1 5 0.08 
Expert 11 2 2 4 0.10  

Table 4 
Expert answers from the application of the expert elicitation approach  

Expert λLOPC,q  λLOPC,H,OI,q  λLOPC,M,OI,q  

Expert 1 5 1 4 
Expert 2 100 30 70 
Expert 3 100 80 90 
Expert 4 100 80 90 
Expert 5 0.14 0.12 0.13 
Expert 6 10000 0.0001 0.01 
Expert 7 20 9 11 
Expert 8 100 25 75 
Expert 9 50000 5000 0.01 
Expert 10 10000 0.0001 0.001 
Expert 11 100000 0.0001 0.01  
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collected on the system, and follow-up decisions can be taken to best 
manage the updated risk conditions. 

5. Conclusions 

In this work, a BN-based modelling approach for living QRA is 

proposed, which allows the dynamic assessment of safety barriers as 
their functional performance changes in time. The added value of the 
approach consists in the accommodation, within the BN framework, of 
multistate variables for describing safety barriers degradation, which is 
described in terms of HS definition and the corresponding FP. The 
analysis of the barriers HS is customized depending on their condition 
monitoring: continuously monitored barriers are described by PSMs, 
which allow accounting for uncertainties through confidence intervals 
and continuously updating KPIs for the HS evaluation; non-continuously 
monitored barriers are described by integral KPIs, each one related to a 
specific distribution of the number of events. FPs are evaluated 
depending on the type of barrier (technical, procedural or organiza
tional), giving the necessary versatility and depth to the BN-based 
approach for realistic barrier modelling. 

This work has shown the capability of BNs to handle multistate 
variables for modelling barrier behaviour under different HSs at 
different times, and calculating the corresponding FPs. HSs and FPs have 
been set relying on KPIs and procedures specifically tailored for each 
safety barrier, and allowing for a deep and realistic analysis of the 
degradation processes. A methodologically and mathematically sound 
set of tools is provided, which allows the treatment of the degradation of 
preventive barriers within a multistate modelling scheme for QRA. 
Application of the proposed approach to the slug catcher of a repre
sentative Upstream O&G onshore plant has shown the benefits of using 
the multistate BNs methodology for the risk assessment of the unit. By 
benchmarking the results with those obtained by the BART methodol
ogy, it has been demonstrated that the BN allows to update the risk 
assessments in light of new KID becoming available, with the added 
value of the multivariate description of safety barriers HSs and FPs, 
describing the barrier performance evolution within a Living Risk 
Assessment framework. 

A further extension of the work that is worth considering is the 
definition of an aggregated plant-level risk evaluation approach, by 
upscaling the here-proposed unit-level methodology (i.e., the slug 
catcher) to the plant level, in order to provide an aggregated risk profile 
for the whole plant where uncertainties and mutual dependencies 

Figure 9. BN complete with safety barriers CPTs  

Table 5 
Preventive safety barriers P(HS) and FP triplets  

Barrier P(HS) FP 

OI {0.48,0.51,0.01} {0.31,0.49,1} 
PSMS {0.01,0.10,0.89} {0.42,0.48,1} 
PCS {0.54,0.45,0.01} {0.002,0.018,1} 
PPS {0.25,0.41,0.34} {0.04,0.15,1} 
TM {0.62,0.37,0.01} {0.01,0.10,1} 
DI {0.18,0.42,0.40} {0.35,0.45,1}  

Table 6 
Risk of each consequence evaluated by both BT-based and BN-based approaches  

Consequence Risk (BT) Risk (BN) 

Flash Fire LOW LOW 
Explosion LOW LOW 
Jet Fire LOW LOW 
Pool Fire LOW LOW  

Table 7 
KPIs (both previous and updated) of the preventive safety barriers  

Safety barrier KPI (previous) KPI (updated) 
DI 0.588 0.608 
OI 0.704 0.646 
PCS 0.771 0.518 
PPS 0.356 0.693 
PSMS 0.002 0.001 
TM 0.822 0.775  
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among equipment and units are accounted for. 
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APPENDIX A 

Given the baseline LOPC probability PLOPC,0, the actualized (reduced) probability of LOPC that accounts for the (positive) contribution of pre
venting is evaluated by total probability theorem, as in [39]. In practice, without loss of generality and for illustration purposes, let us consider the 
action of two preventive safety barriers (i.e., A and B), each one characterized by a set of HS probabilities, {PA(H),PA(M), PA(L)} and {PB(H),PB(M),

PB(L)} respectively, and the corresponding sets of FPs, {pA,H, pA,M, pA,L} and {pB,H,pB,M,pB,L}. The actual LOPC probability PLOPC is then evaluated as: 

PLOPC =
∑

i∈{H,M,L}

∑

j∈{H,M,L}

PA(i)⋅pA,i⋅PB(j)⋅pB,j⋅PLOPC,0 (11) 

Finally, the probabilities of the consequences, FF, EX, PF and JF are evalutated as follows: 

P(FF) = PLOPC⋅PIgn⋅PDel⋅PFF (12)  

P(EX) = PLOPC⋅PIgn⋅PDel⋅PEX (13)  

P(PF) = PLOPC⋅PIgn⋅PImm⋅PPF (14)  

P(JF) = PLOPC⋅PIgn⋅PImm⋅PJF (15)  

where PImm and PDel are probability of immediate and delayed ignition, respectively, PIgn is the ignition probability following a LOPC, PFF the con

Figure 10. Updated BN of the slug catcher LOPC  

Table 8 
Values of the probabilities used in the BN  

Probability Value Reference 

PLOPC,0  0.0241 [22] 
PIgn  0.08 (IP [24]) 

PDel  0.5  
PImm  0.5  
PEX  0.1  
PFF  0.9  
PPF  1/6  
PJF  5/6   
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ditional probability of flash fire in case of delayed ignition, PEX the conditional probability of explosion in case of delayed ignition, PPF the conditional 
probability of pool fire in case of immediate ignition, and PJF the conditional probability of jet fire in case of delayed ignition (values are listed in 
Table 8). 
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