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A B S T R A C T   

In the safety analyses of passive systems for nuclear energy applications, computationally demanding models can 
be substituted by fast-running surrogate models coupled with adaptive sampling techniques; for speeding up the 
exploration of the components and system state-space and the characterization of the conditions leading to 
failure (i.e., the system Critical failure Regions, CRs). However, in some cases of non-smoothness and multi
modality of the state-space, the existing approaches do not suffice. In this paper, we propose a novel method
ological framework, based on Finite Mixture Models (FMMs) and Adaptive Kriging (AK-MCS) for CRs 
characterization in case of non-smoothness and/or multimodality of the output. The framework contains three 
main steps: 1) dimensionality reduction through FMMs to tackle the output non-smoothness and multimodality, 
while focusing on its clusters defining the system failure; 2) adaptive training (AK-MCS) of the metamodel on the 
reduced space to mimic the time-demanding model and, finally, 3) use of the trained metamodel provide the 
output for new input combinations and retrieve information about the CRs. 

The framework is applied to the case study of a generic Passive Safety System (PSS) for Decay Heat Removal 
(DHR) designed for advanced Nuclear Power Plants (NPPs). The PSS operation is modelled through a time- 
demanding Thermal-Hydraulic (T-H) model and the pressure selected for characterizing the PSS response to 
accidental conditions shows a strong non-smooth and multimodal behavior. A comparison with an alternative 
approach of literature relying on the use of Support Vector Classifier (SVC) to cluster the output domain is 
presented to support the framework as a valid approach in challenging CRs characterization.   

1. Introduction 

Let us assume a system behavior can be modelled with a mathe
matical Input/Output (I/O) representation Y = f(X), where the input 
X ∈ DX⊂RM represents a given system operational configuration and 
whose output Y ∈ DY⊂R reflects the system condition/state. For safety/ 
reliability assessment, it is necessary to identify the critical combina
tions of inputs values (system design and/or operational parameters), 
which lead the system to failure. In mathematical terms, a specific 
combination of input parameters x is critical, if the resulting output 
value is higher (lower) than a predefined threshold, y = f(x) ≥ (≤)Ythres, 
representing the limit value for the system operation. These combina
tions define the so-called Critical failure Region (CR), i.e., CR =

{x ∈ DX⊂RM : y = f(x) ≥ (≤)Ythres}, whose identification and charac
terization can be addressed with computational methods: see, e.g., ([14, 
65, 83, 84] and [85]). In these methods, the time-demanding models 
typically adopted to simulate the system behavior cannot be directly 
used to numerically test the system under the many conditions that need 
to be considered, because the computational cost would be prohibitive 
for the high number of code runs required. Therefore, new advanced 
computational methods are being sought to reduce the cost of compu
tation. On one side, fast-running metamodels may be exploited to mimic 
the behaviour of the time-demanding, original codes and replace them 
in the analysis. On the other side, adaptive sampling strategies may be 
adopted to intelligently trace the CR boundary (i.e., the system limit 
surface), with the minimum waste of computational time for drawing 
and simulating samples far from the CR. 
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Symbols 

AAV Activation Valve flow area 
AMSIV Main Steam Isolation Valve flow area 
α Lagrange multiplier 
b Classifier bias parameter 
C Constant 
DX Input domain 
DY Output domain 
DELAV Delay of Activation Valve opening 
DELMSIV Delay of Main Steam Isolation Valve closure 
d Distance 
E Expected value 
Eex Energy exchanged 
Eex,% Percentage of energy exchanged 
f Generic model function 
Φ Mapping function for the Support Vector Classifier 

Construction 
Hjm Hellinger distance 
I Encoding of information in the  

Minimum Message Length 
i Input combination index 
j Cluster index 
k Number of components  

in the FMMs approximation 
ker Kernel 
l Classifier label 
M Problem original dimensionality 
m Input variable index 
μ Mean value 
μŷ Mean value of a metamodel prediction 
Ncand Number of best  

candidates in AK-MCS procedure 
NMCS Number of samples generated  

by Monte Carlo Sampling 
Ntrain Number of training samples 
Nval Number of validation samples 
NC% Non-condensable gases percentage 
n Iteration number 
nfin Final number of iterations 
ξ Slack term for penalization 
p Probability distribution 
pmax Maximum value of pressure 
π Set of weights 
π Probability Density Function weight 
π̂ Weight estimate 
pmax Maximum value of pressure 
Q Q-function in the FMM approximation 
Q Predictivity indicator 
R Problem reduced dimensionality 
σ Standard deviation 
σ ŷ Estimation error of a metamodel prediction 
t Mixture parameters estimate index 
Θ Set of mixture parameters 
Θ̂ Estimate of the mixture parameters 
Θ Probability Density function parameters 
Θ̂ Probability Density function parameters estimate 
U U learning function 
W Conditional expectation of the set of FMMs labels 
w Vector of hyperplane coefficients 
w Conditional expectation of the FMMs labels 
X Generic input 
XR Generic input vector of reduced dimensionality 

X Set of model input vectors 
X ∗ Input vectors of the set of best candidates 
X Krig Set of input vectors to be evaluated with the Kriging 

metamodel 
X train Set of training input vectors 
X SVC

train Set of training input vectors for the Support Vector 
Classifier 

X val Set of validation input vectors 
x Model input vector 
x Model input parameter 
Y Generic output 
Ythres Threshold output value 
Y ∗ Outputs of the set of best candidates 
Y train Set of training outputs 
Y FMM

train Set of training outputs for the FMMs approximation 
Y SVC

train Set of training outputs for the Support Vector Classifier 
construction 

Y val Set of validation outputs 
Ŷ Set of metamodel predictions 
Ŷ val Set of predictions of the validation outputs 
y Model output 
ŷ Metamodel prediction output 
ŷSVC Support Vector Classifier prediction output 
yval Average validation output value 
Z Set of FMMs labels 
z FMMs label vector 
z Component of the FMMs label vector 

Acronyms 
AE AutoEncoders 
AIC Akaike Information Criterion 
AK-MCS Adaptive Kriging Monte Carlo Sampling 
ALK Active Learning Kriging 
ASM Active Subspace Method 
AV Activation Valve 
BE-TH Best Estimate Thermal Hydraulic 
BIC Bayes Information Criterion 
CR Critical (failure) Region 
CV Cross-Validation 
DBSA Distribution-Based Sensitivity Analysis 
DHR Decay Heat Removal 
DS Directional Sampling 
EFF Expected Feasibility Function 
E-HX Emergency Heat Exchanger 
EM Expectation Minimization 
EMO Evolutionary Multimodal Optimization 
FC Failure Criterion 
FMM Finite Mixture Model 
FORM First Order Reliability Method 
GA Genetic Algorithm 
GP Gaussian Process 
I/O Input/Output 
IS Importance Sampling 
KDE Kernel Density Estimation 
LAR Least Angle Regression 
LHS Latin Hypercube Sampling 
LOO Leave-One-Out 
LS Line Sampling 
MAIS Multimodal Adaptive Importance sampling 
MCMC Markov Chain Monte Carlo 
MCS Monte Carlo Sampling 
MfEGRA Multifidelity Efficient Global Reliability Analysis 
ML Maximum Likelihood 
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One of these innovative techniques, known as AK-MCS [24], 
exploiting Kriging metamodeling coupled with adaptive sampling, has 
been proposed and widely applied for the CRs characterization of sys
tems whose behavior has been assumed to have accommodating prop
erties of regularity, such as continuity and smoothness [83, 84]. 
However, several engineering problems showing non-smooth and/or 
multimodal functional behavior can be found, e.g., in structural and 
mechanical engineering phenomena like snap-through, buckling or 
others [13, 36, 57], challenging traditional smooth metamodels, like 
Kriging, and possibly lead to large estimation errors [60]. 

One possible approach developed in recent years to tackle non- 
smoothness and multimodality, proposes a clustering of the output domain 
[6]. This allows separating the different output clusters or, even more 
generally, to distinguish the regions of different behaviors and to isolate 
potential discontinuities. For this purpose, a classifier (also called 
state-selecting model) represents a solution allowing to identify the 
output clusters (or states), which can be treated separately through 
different metamodel approximations. In particular, in [60], the “two-
stage surrogate modelling” technique is proposed: after determining the 
domain partitions (e.g., by expert judgment or by an unsupervised 
clustering technique) and constructing a Support Vector Classifier (SVC) 
[86], a metamodel is trained for each partition considered interesting to 
explore. Then, a new input combination (x) whose output needs to be 
predicted (and identified if critical or not) is, first, classified with the 
SVC (1st stage) and, then, evaluated by the metamodel specifically 
constructed for the region x belongs to (2nd stage). In the field of reli
ability assessment (resp., failure probability estimation), [14] propose an 
algorithm combining the First Order Reliability Method (FORM) and an 
Adaptive Kriging-based Importance Sampling (AK-IS) strategy to deal 
with multiple failure regions characterized by low probability and by 
complex, non-linear limit states. In [93] a two-step algorithm is also 
developed: in the first step, Active Learning Kriging (ALK) is utilized to 
recognize the most probable (possibly disconnected) failure region(s) of 
the system; in the second, Kernel Density Estimation (KDE) is employed 
to build an instrumental density function for IS: the ALK metamodel is 
then iteratively updated by means of the training points thereby 
generated by IS. In [68] the objective of estimating small probabilities of 
multimodal failure regions is tackled by an efficient combination of 
AK-MCS, k-Means clustering algorithm, and Markov Chain Monte Carlo 
(MCMC) techniques. [16] introduce the Multifidelity Efficient Global 
Reliability Analysis (MfEGRA) method, based on a two-stage adaptive 
sampling criterion that employs a multi-fidelity Gaussian process sur
rogate to leverage multiple information sources with different fidelities 
(which allows targeting also several, disconnected failure boundaries). 
[94] and [95] develop an active learning method combining Kriging 
metamodels (ALK) and Importance Sampling (IS) to analyze systems 
with very small failure probabilities and multiple failure regions: in 

particular, evolutionary algorithms from the field of multimodal optimi
zation are used to find all the local and global most probable points on the 
(surrogate) failure boundaries at each iteration of the metamodel 
training process. [96] presents an Adaptive Multi-Fidelity sparse Poly
nomial Chaos-Kriging (AMF-PCK) metamodeling for the global approx
imation of aerodynamic data, which proves useful for the efficient 
uncertainty analysis and optimization of expensive multimodal engi
neering problems. In this approach, low-fidelity computations are used 
to build the PCK model as a trend for the high-fidelity function and to 
capture the relative importance of sparse polynomial bases selected by 
Least Angle Regression (LAR). Then, high-fidelity model evaluations are 
employed to adaptively refine a scaling PCK model within an adaptive 
framework based on correction polynomial expansion-Gaussian process 
modeling. Finally, in [98] the performance of AK-MCS in dealing with 
multiple failure regions of small probability is improved by combination 
with Directional Sampling (DS). As a remark, notice that the identifi
cation of multiple CRs, which is the task of interest in the present paper, 
is different from the estimation of the system failure probability, which 
is, instead, the task of the (advanced) techniques reviewed above. The 
goal in the former task is to identify and characterize the combinations 
of values of PSS design and/or operational input variables which lead to 
functional failure, that is strictly related to the PSS thermal-hydraulic 
behavior. The objective of the latter task is, instead, to propagate the 
uncertainty affecting the computer code (e.g., its models, correlations, 
parameters, …) onto the output of interest and estimating of the func
tional failure likelihood. In this work, we are not performing uncertainty 
propagation nor failure probability estimation. 

A different approach consists in circumventing the dimensionality 
problem by means of feature selection [32]. Indeed, any metamodel, in 
general, greatly benefits from a dimensionality reduction ([4, 31, 83, 84, 
88] and [47, 85]). Moreover, if the analysis is restricted only to those 
input parameters significantly affecting the output clusters of interest (e. 
g., the clusters connected with the system failure), also the specific issue 
of output multimodality can be overcome [60]. Feature selection tech
niques for dimensionality reduction usually rely on many computer 
simulations, which might become an issue, when the system model is 
time demanding. Alternatively, Sensitivity Analysis (SA) methods can be 
employed to achieve the same goal of feature selection by ranking the 
inputs in terms of their contribution to the model output [12, 81]. 
Several SA techniques are available in literature and they can be sub
divided into Local and Global methods [76], with the latter being more 
suitable for dimensionality reduction, since they quantify the contri
bution of each input to the variability of the output over the entire range 
of values of both the input and the output [20]. Global SA can be also 
divided into Regression-Based Sensitivity Analysis (RBSA) methods, also 
known as non-parametric techniques [73], such as Standardized 
Regression Coefficients (SRCs) or Partial Correlation Coefficients (PCCs) 

MML Minimum Message Length 
MSIV Main Steam Isolation Valve 
NPP Nuclear Power Plant 
PCA Principal Component Analysis 
PCC Partial Correlation Coefficient 
PCK Polynomial Chaos Kriging 
PCP Parallel Coordinates Plot 
PDF Probability Density Function 
PRESS Predicted Residual Sum of Squares 
PV Pressure Vessel 
PSS Passive Safety System 
QI Quality Indicator 
RBSA Regression-Based Sensitivity Analysis 

RMSE Root-Mean-Square Error 
SA Sensitivity Analysis 
SBO Station Black-Out 
SPLOM Scatter PLOt Matrix 
SRC Standardized Regression Coefficient 
SRV Safety Relief Valve 
SS Subset Simulation 
SVC Support Vector Classifier 
TCR Truncated Candidate Region 
T-H Thermal Hydraulic 
TPI Transient Performance Indicator 
VBSA Variance-Based Sensitivity Analysis  
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[72]; Variance-Based Sensitivity Analysis (VBSA) methods, such as 
Sobol’ method [3, 62, 74]; and Distribution-Based Sensitivity Analysis 
(DBSA) methods, also known as moment-independent methods [12], 
such as δ indicator [10], input saliency [49], Hellinger distance [30] and 
Kullback-Leibler divergence [30]. However, both the RBSA and VBSA 
methods, in general, suffer from the output function non-smoothness 
and/or multimodality (as explained in detail in Section 3.1). On the 
other hand, DBSA methods become suitable to overcome this issue [11]: 
for example, when based on Finite Mixture Models (FMMs), they pro
vide a natural “clustering” of the output (e.g., subdividing the data in 
groups of large safety margin, low safety margin, failure) that can be 
used to calculate the SA indexes [15, 21]. A synthetic comparison of 
different SA approaches is reported in Table 1. 

In particular, FMMs are a flexible and powerful modeling tool for 
univariate and multivariate data, providing a formal approach to un
supervised learning for statistical pattern recognition. Indeed, FMMs 
analyze a set of output variables (training set), each one assumed to be 
generated by a certain random model, i.e. a certain distribution of the 
mixture (also called component). Then, it infers the distributions pa
rameters and identifies the distribution that originated each training 
output, leading to a clustering of the training output variables. More
over, FMMs can be used in support of DBSA methods, aiming at iden
tifying the most relevant input variables affecting the output clusters 
and, hence, performing a feature selection [21]. Then, the choice of the 
most appropriate model space (i.e., the space generated by a linear 
combination of known distributions of a specific kind) and the extrac
tion of the right number of components to approximate the output 
multimodal distribution remain the challenging tasks to be inferred. 
Different metrics, based on Maximum Likelihood (ML) estimation, have 
been developed in the past to guide the model space selection: Minimum 
Message Length (MML) [89], Akaike Information Criterion (AIC) [1] 
and Bayes Information Criterion (BIC) [78]. 

In the present paper, we investigate a novel framework that employs 
FMMs for the selection of relevant features to be used as inputs to AK- 
MCS for the CRs characterization of a generic Passive Safety System 
(PSS) of a Nuclear Power Plant (NPP), based on an Emergency Heat 
eXchanger (E-HX) designed for the Decay Heat Removal (DHR) after the 
reactor shut down due to an accident initiation (e.g., Station Black-Out 
(SBO)). The application of the proposed framework to a PSS of a NPP is 
motivated by the growing interest in PSSs employed in advanced NPPs 
to provide the main safety functions, e.g., reactivity control, decay heat 
removal and fission product containment, and the need of determining 
the conditions leading them to failure for safety analysis [34]. This leads 
to the necessity of developing methods for CRs characterization, within 
a more general reliability assessment, to identify the limits of the safe 
operation of the system ([14, 65, 83, 84]; [85], [100], [101], 64, 99]). 

In all these works the underlying system function to approximate 
has, in general, smoothness and unimodality properties. This is also the 
case in a previous work by the authors [67], where the amount of energy 
exchanged by a PSS during an accidental transient (Eex) is used to 
evaluate the success of the PSS intervention. In that case, the AK-MCS 
technique has proved its capability of successfully replacing the orig
inal BE-TH code to model the system response with increasing accuracy 
in proximity of Ythres. However, in the case here considered, we tackle 
the problem of the PSS output measuring the maximum pressure value 
(pmax) reached in the Pressure Vessel (PV), which shows a strong non-
smooth and multimodal behaviour. Thus, poor results would be obtained 

if traditional AK-MCS procedure were applied in this case. To address 
this problem, we develop a novel framework, inspired by that of [84], 
which comprises three steps: i) “dimensionality reduction” carried out 
through a DBSA method supported by FMMs, to tackle the output 
non-smoothness and multimodality; ii) “iterative metamodel training” 
based on AK-MCS, to substitute the computationally expensive model 
simulations on the reduced input space by means of an accurate Kriging 
metamodel; iii) “CRs representation and information retrieval” for 
evaluating a large number of new input combinations with the Kriging 
model obtained at the previous step to retrieve useful information about 
the CRs and graphically represent them. The benefit of the proposed 
framework is twofold: i) speeding up the calculation with respect to the 
use of the Best-Estimate Thermal-Hydraulic (BE-TH) code available for 
the analysis of the PSS behaviour, and ii) overcoming the issue of the 
non-smoothness and multimodality of the PSS state-space. A comparison 
(in terms of estimation accuracy and computational cost) with an 
alternative state-of-the-art approach of different nature, i.e., not relying 
on FMMs-based DBSA but on an SVC to cluster the output domain [60], 
is presented to show that the proposed framework is valuable for chal
lenging CRs characterization. 

The rest of the paper is organized as follows: in Section 2 the case 
study is briefly presented with a focus on the pressure output distribu
tion in the state-space; Section 3 offers an exhaustive description of the 
novel framework for CRs exploration in case of output multimodality, 
whereas, in Section 4, the framework is applied to the PSS described in 
Section 2 to prove its effectiveness; in Section 5, a comparison with the 
strategy of clustering the output domain with a classifier is carried out 
and, finally, in Section 6 some conclusions are drawn. 

2. Case Study 

The generic PSS considered is a DHR system based on natural cir
culation and we consider its operation in case of reactor shutdown 
during a SBO accident, to prevent over-pressurization and over-heating 
in the PV. A schematic view of the PSS is shown in Fig. 1. 

At the beginning of the SBO accident, the steam produced in the PV 
(initially operating in steady state conditions at around 70 bar) is no 
longer sent to the steam turbine, due to the simultaneous closure of the 
Main Steam Isolation Valve (MSIV) and opening of the Activation Valve 
(AV), but instead it is directed to the E-HX through the PSS steam line. 
The steam is condensed inside the E-HX, which is completely submerged 
in a pool, and flows back to the PV through the PSS condensate line. For 
further details about the PSS components and operation see [46] 

For the reliability analysis of the PSS, five input parameters x = (x1,

x2, x3, x4, x5), with xm that is the generic m-th input parameter (m = 1,
…5), have been identified by the authors through expert judgement as 
most influential to the system response during SBO accident (Table 2). 
Uniform probability distributions have been considered to span their 
ranges of variation and, thus, explore the possible combinations of 
values in the search for those of the CRs. The corresponding interval 
bounds have been chosen based on rough sensitivity calculations driven by 
expert judgment to obtain a satisfactory balance between two “competing 
objectives”: on one side, the ranges should be large enough to allow a 
detailed analysis and deep exploration of the failure regions (i.e., to 
include a relevant number of combinations to failure); on the other side, 
they should not be too wide, to avoid wasting time in searching way far 
from the CR. 

The PSS response is measured in terms of the amount of decay heat 
removed during an accidental transient lasting about 8h. If the heat is 
not removed adequately, temperature and pressure may dangerously 
rise inside the PV and if the pressure increases beyond the Safety Relief 
Valve (SRV) set-point assumed at 75.5 bar, the SRV opens to discharge 
the vapor inside the NPP containment building (not simulated in the 
model). Two output parameters (Y1, Y2), are considered as Transient 
Performance Indicators (TPIs) [66] to evaluate the PSS functional 
response, where Y1 is the total amount of energy removed by the PSS 

Table 1 
Comparison among different SA methods to tackle non-smoothness or 
multimodality  

Method Low cost Non-smoothness Multimodality 
RBSA YES NO NO 
VBSA NO YES NO 
DBSA NO YES YES  
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(Eex), and Y2 is the maximum value reached by the pressure evolution 
inside the PV (pmax). 

Table 3 lists the values of the input and output parameters for the 
reference transients, i.e., the “reference conditions” of nominal func
tioning of the PSS (note that the total energy exchanged is indicated as 
percentage Eex,% with respect to the value obtained in reference 
conditions). 

In reference conditions, the functions that the system needs to pro
vide are: 1) to ensure Eex,% > 90%, and 2) to keep pmax below 75.5 bar. 
Therefore, two Failure Criteria (FC) are identified: 1) “Low heat 
removal”, if Eex,% < 90% [66]; 2) “Steam release in the containment”, if 
pmax > 75.5 bar (i.e., the pressure increase in the PV causes the SRV to 
open, which leads to vapor release in the NPP containment). In [67], the 
authors have proposed a metamodel-based AK-MCS framework for the 
characterization of the CRs for Eex,% output, with respect to the FC “Low 
heat removal”; in this present paper instead, the analysis of the CRs 
related to pmax, that shows a non-smooth and multimodal behaviour, has 
required the development of a suitable exploration framework. In this 
case, the successful operation of the PSS will be defined when pmax 
< 75.5 bar; otherwise, the system fails providing its function. 

A RELAP5-3D model of the PSS has been developed in cooperation by 
University of Pisa and Politecnico di Torino to simulate the generic PSS 
connected to a simplified reactor pressure vessel [46]. Each transient 
simulation takes about 4.30h on a PC with CPU Intel Core i7-7500U CPU 
@ 2.70GHz dual core. 

The Probability Density Function (PDF) of pmax is illustrated in Fig. 2, 
based on a collection of the outcomes of 200 RELAP5-3D simulations. At 
least two output modes can be identified and hence two corresponding 
clusters are defined: a first cluster with low pressure values (70.0 bar), 
which is associated to the majority of the simulations collected; if the 
decay heat was correctly removed, the pressure should never increase 
during the accidental transient and hence pmax coincides with the pres
sure value at the beginning of the transient, i.e., pmax = 70.0 bar. A 
second cluster is concentrated around Ythres = 75.5 bar; if the MSIV 
closes before the AV opening, the decay heat cannot be removed through 
the E-HX and the vapor builds up in the PV, causing the pressure to rise. 
In this case, a quite short time interval is sufficient, in which the PV 
remains without outlets for vapor discharge to cause a sharp pressure 
increase towards Ythres, with consequent SRV opening. Finally, very few 

Figure 1. PSS system simplified sketch.  

Table 2 
Range of variation of the inputs.  

Input  Symbol Range of 
variation 

AV flow area (%) AAV  0 ÷ 100  
AV opening delay (sec) DELAV  0 ÷ 720  
MSIV residual flow area (%) AMSIV  0 ÷ 0.15  
MSIV closure delay (sec) DELMSIV  0 ÷ 7200  
Non-condensable gases percentage in the 

PSS steam line 
(%) NC%  0 ÷ 40   

Table 3 
I/O reference conditions.  

Variable 
symbol 

AAV  DELAV  AMSIV  DELMSIV  NC%  Eex,%  pmax  

Reference 
Value 

100% 0 sec 0.00 
% 

0 sec 0 % 100% 70.0 
bar  Figure 2. pmax multimodal distribution.  
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points fall in the middle region showing intermediate values of pressure. 

3. The Proposed Exploration Framework 

We propose a novel framework, inspired by [84], for exploring the 
state-space of a system, for which a time-demanding computational 
model is available and the output is a non-smooth and multimodal 
function of the input. Firstly, the general idea and purpose of the 
framework is introduced and, then, the details of the steps concerning its 
implementation are expanded into the following subsections (3.1, 3.2 
and 3.3). 

The main goal is to iteratively run a (possibly low) number of real 
model simulations to construct an accurate metamodel not suffering for 
the output non-smoothness and multimodality. Then, the metamodel is 
exploited to predict the outputs values for a large number of input values 
combinations, which are then manipulated to retrieve information 
about the CRs characteristics (Fig. 3). In short, the first step, i.e., 
“dimensionality reduction”, aims at identifying the input parameters 
most affecting the output distribution, specifically those related to the 
output clusters in correspondence of the failure threshold and, thus, 
related to the CRs. For this we resort to a DBSA method supported by 
FMMs technique. The second step, i.e., “iterative metamodel training” 
aims at iteratively constructing an accurate and fast-running metamodel 
to use for simulation on the reduced input space in place of the real 
model, with specific attention to the boundary of the CRs (limit surface). 
The metamodel accuracy is verified (e.g., exploiting a validation set) 
and, then, in the third step, i.e., “CR representation & information 
retrieval”, the metamodel is employed to generate the output values for 
a large number (several thousands) of new input combinations, which 
are manipulated to retrieve information about the CRs, like their num
ber and shape, and, finally, to graphically represent them by exploiting 
high-dimensional data visualization techniques, like scatter plots or 
Parallel Coordinates Plot (PCP). 

3.1 Dimensionality Reduction 

The purpose of dimensionality reduction is to find a lower- 
dimensional subspace of variables, i.e., XR ϵ DXR ⊂RR (where R < M is 
the reduced dimensionality of the problem), to build a reduced model 
still capable of correctly representing the system behavior [29, 32, 51]. 
In several research fields involving data-driven modeling, it has been 
shown that the use of many input variables/parameters often degrades 
the performance of empirical (regression) models [5, 7, 9, 38, 87]. In 
general, this is due at least to three reasons: i) irrelevant, 
non-informative variables result in an empirical model which is not 
robust; ii) when the empirical model handles many parameters, a large 
number of observation data is necessary to properly span the 
high-dimensional input space for accurate multivariable interpolation; 
and iii) many input features unnecessarily increase the complexity of the 
data-driven (regression) model. From the point of view of exploring the 
state-space for CRs characterization (which is of interest in the present 
paper), reducing the dimensionality allows tackling two issues. First, a 
more effective I/O training set can be defined to construct a more 

accurate metamodel ([4, 31, 84, 84, 88] and [47, 84]). In previous 
works, some of the authors have already verified the effectiveness of 
dimensionality reduction for improved metamodel training, in the 
presence of relatively high-dimensional input spaces (i.e., M ≥ 20). For 
example, in ([84] and [85]) a power network model involving M = 20 
inputs has been reduced to R = 4 for effectively identifying the electrical 
feeders’ failure times and magnitudes leading the system to the most 
critical state, i.e., the one with the largest quantity of energy not sup
plied to the consumers. Also, in [83] the long-running model of a 
next-generation, lead-cooled fast nuclear reactor involving M = 32 in
puts (28 parameters related to system neutronics and physics and 4 
parameters associated to components’ mechanical failures) has been 
reduced to, again, R = 4, in order to precisely bound the regions of 
reactor safe operation at an affordable computational cost. Second, in 
case of non-smooth and/or multimodal output specific attention must be 
given to the input variables mostly contributing to the definition of the 
output clusters corresponding to system failure conditions: by so doing, 
also the specific problem of output multimodality can be overcome [60]. 
In this paper, we are particularly concerned with this latter issue. 

Several examples are available in literature on how to carry out a 
dimensionality reduction: in particular, three classes of strategies have 
been proposed. Feature selection aims at optimally identifying a subset of 
the available model input variables and parameters, most representative 
for capturing and describing the overall system behaviour [32, 71]. A 
feature selection technique can be seen as the combination of a (possibly 
burdensome) search algorithm for proposing multiple diverse feature 
subsets, along with an evaluation metric (e.g., a regression error), which 
scores the different feature subsets with respect to their representa
tiveness [23, 97]. Instead, feature extraction aims at identifying a set of 
“new” features (i.e., new input parameters or variables), generated by 
transformations of the initial ones (in other words, generating a new, 
lower-dimensional input subspace as a linear or nonlinear function of the 
original one) [33]. Some of the most effective and widely used feature 
extraction techniques are Principal Component Analysis (PCA) ([35, 
43]; [61, 91]), the Active Subspace Method (ASM) [18, 26] and 
AutoEncoders (AEs) [37, 58, 70, 90]. Finally, Sensitivity Analysis (SA) 
methods have the same objective as feature selection, but they achieve it 
by ranking the input parameters and variables according to their influ
ence on the outputs of the model [12, 76, 81]. In this paper, SA-based 
techniques are chosen for two reasons: i) as for feature selection, they 
retain a subset of the original input parameters/variables (without per
forming any transformation on them), which allows a more direct 
physical interpretation of the PSS critical regions (coherently with the 
main scope of the work) and ii) differently from feature selection ap
proaches, they do not require the solution of typically burdensome 
optimization problems to search for the best and most representative 
subset of inputs (which is a relevant issue in the presence of 
long-running codes). Among the SA techniques, it is possible to identify 
two families: Local and Global. The Local approach to SA considers small 
variations of each input parameter around its nominal value, whereas 
Global SA allows to quantify the contribution of an input to the vari
ability of the output, computed over the entire range of both the input 
and the output [76]. Global SA offers higher capabilities than Local SA, 
especially when model responses are not regular (e.g., non-linear and 
non-monotonic), but at a higher computational cost [20]. Global SA 
methods can be divided into three categories [12]: 1) RBSA methods, 2) 
VBSA methods and 3) DBSA methods. RBSA or non-parametric methods 
[73] exploit regression techniques to fit a regression model on a set of 
I/O relations and to use the regression coefficients as indices of sensi
tivity. RBSA methods are typically the simplest ones, also associated to 
the lowest computational cost, but their performance strongly depends 
on the output form which is often required to be linear. Indeed, if the 
regression model does not fit the underlying I/O relationships (e.g., in 
case of non-smoothness), the SA performs poorly. VBSA methods [75] 
quantify the contribution of each input parameter (first-order effect) and 
each possible two- or high-order interaction among multiple parameters 

Figure 3. Flow diagram of the proposed framework.  
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to the total output variance. The ratio of such contribution to the total 
variance is taken as sensitivity coefficient [69]. VBSA methods are the 
most widespread, because they do not introduce any hypothesis on the 
model since they do not carry out any approximation of it. Anyway, 
VBSA methods are unable to distinguish between output structures (i.e., 
how the output values are organized in the state-space) with identical 
global variances, but different distributions and spatial organizations 
[69]. Thus, they may suffer for output multimodality since, by defini
tion, the calculation of variance in case of a multimodal variable is not 
trivial. On the other side, DBSA or moment-independent methods (e.g., 
Hellinger distance, Kullback-Liebler divergence etc.) [20] rank the input 
variables most affecting the entire output distribution and they may 
overcome the issue of non-smoothness and multimodality, if the output 
distribution is properly approximated, despite its irregular form, by 
means of FMMs technique [21]. FMMs are classically implemented for 
pattern recognition to approximate the output distribution, even in case 
of multimodality, by identifying the output clusters (corresponding to 
the different output modes) and, hence, representing the output as a 
linear combination of known distributions, also called components (e.g., 
Gaussian, Exponential, etc.). Anyway, FMMs can be also adopted as a 
support for SA: indeed, the output clustering is mapped to the input 
space and, in the end, the contribution of each input to the clustering of 
the output is ranked according to the different DBSA methods. 

FMMs application for SA entails following at the beginning the same 
procedure adopted in case of the more general pattern recognition: the 
primary goal is to find the appropriate type and number of components 
(k) to approximate the output distribution, given a set of I/O relations 
(see Appendix A). The best k is historically determined through the 
application of the Expectation Minimization (EM) algorithm [19]. 
However, classical EM presents several drawbacks: it is a local method, 
thus, it is sensitive to initialization and, for certain kinds of mixtures, it 
may converge toward an estimate at the boundary of the parameter 
space where the likelihood is unbounded [28]. For the case study of pmax,

we propose the SNOB algorithm, introduced for the first time in [89] 
and, then, updated through the years and implemented in MATALAB by 
[80]. It exploits the MML inference criterion: 

I
(
Θ|Y FMM

train

)
= I(k) + I(π) +

∑k

j=1
I(Θj) + I

(
Y

FMM
train |Θ

)
, (1)  

where Y FMM
train = {y1,…, yn} are the output values of the transients 

simulated and Θ = {π1,…, πk, Θ1,…,Θk} are the mixture parameters 
(πj and p(y

⃒
⃒Θj) are the weight and PDF of the j-th component, respec

tively). The output approximation is encoded in a message, which 
comprises all its terms. The lower is the encoding of this information, i. 
e., I(Θ

⃒
⃒Y FMM

train ), the lower is the message length and, hence, the more 
accurate is the output distribution approximation with that mixture of 
components [44]. In particular, I(k) represents the encoding of the 
number of components (k), I(π) the encoding of the weights (π), 
∑k

j=1I(Θj) the encoding of the component parameters (Θj) and 
I(Y FMM

train
⃒
⃒Θ) the encoding of the data. All these terms are logarithmic and 

in the most favorable situations they could assume negative values. To 
sum up, the MML criterion (1) is a trade-off between the complexity of 
the model and the goodness of fit [63]; indeed, when a new component 
is added, the encoding of the new component parameters increases the 
message length, whereas the term I(Y FMM

train
⃒
⃒Θ) reduces it due to the 

improved fit quality. 
The SNOB algorithm allows the user to choose among several types 

of distributions (i.e., model space), e.g., Gaussian, Weibull, Exponential 
etc. The algorithm automatically finds the best k according to the dis
tribution types and provides in output the MML metric that can be used 
to justify the model space selection. The solution associated to the lowest 
MML value is the most accurate for the case study. 

Once the parameters of the mixture of models are known, the output 

distribution is completely characterized: some of the clusters obtained 
may be representative of safe conditions, whereas others represent 
failure conditions. For Global SA, the focus is shifted to the input space 
and the output clustering is exploited to cluster also the inputs. The PDFs 
of each input variable (xm) with the conditioning on the different j-th 
clusters are constructed, i.e., p(xm

⃒
⃒ Θjm), and, then, the difference be

tween p(xm
⃒
⃒ Θjm) and the input common distribution, i.e., p(xm) is 

measured according to one of the DBSA methods introduced before (e.g., 
Hellinger distance, Kullback-Liebler divergence). These measures allow 
ranking the input variables contribution to the different output clusters, 
with special attention to the clusters of interest, e.g., those related to the 
failure of the system, and, finally, the most important inputs are 
selected. 

3.2 Iterative Metamodel Training (AK-MCS) 

After reducing the number of input parameters through the dimen
sionality reduction, a surrogate metamodel is constructed to approxi
mate the real model I/O relationships on the reduced input space, i.e., 
Y = f(XR), where XR ϵ DXR ⊂RR (R < M is the dimensionality of the 
reduced space). Among the several options available in literature [42], 
we resort to Gaussian Processes (GPs) and particularly to one specific 
category of GPs: the Kriging metamodels [45]. Kriging metamodels can 
fit numerous response functions without adding further complexity and 
they are non-stationary, which is useful for the specific aim of the pre
sent work of characterizing CRs, because the metamodel can be refined 
in proximity of the CR limit surface. This can be achieved by training the 
Kriging with simulations whose outputs are concentrated nearby the 
limit surface and, indeed, adaptive training strategies have been recently 
developed to this aim. In the present paper, the metamodel-based 
AK-MCS framework developed in [84] is followed. A Kriging meta
model is initially built according to a small I/O training set, i.e., 
{X train, Y train}in, whose simulations have been generated by Latin 
Hypercube Sampling (LHS) [56]. Then, the metamodel refinement is 
carried out through the AK-MCS iterative procedure, which consists of 
the following steps [67], for each n-th iteration (the algorithm is also 
sketched in Fig. 4 for the sake of clarity):  

1 Construction: a Kriging metamodel is constructed with the available 
I/O training set {X train, Y train} defined on the reduced space.  

2 Generationof random inputcombinations: a large number NMCS of 
new input configurations X = (x1,…, xNMCS ) is generated by means 
of LHS, so as to evenly span the input space. 

3 Metamodel Evaluation: the Kriging metamodel is exploited to esti
mate the output corresponding to the X input combinations: Ŷ =

(ŷ1,…, ŷNMCS
). 

4 Convergence check: convergence of the metamodel refinement pro
cess can be verified up to an a priori-defined convergence (e.g., a 
certain error metric) or stopping criterion (e.g., a limit on the 
computational budget, expressed in terms of a maximum number of 
BE-TH code simulations). Several criteria have been introduced to 
adaptively verify the convergence of the kriging training process. [8, 
24] have introduced the Expected Feasibility Function (EFF) as a 
quantitative indicator of the trade-off between a detailed, refined 
search in proximity of the failure threshold and a more thorough, 
global exploration of the overall system state-space: the iterations are 
stopped when the largest value the EEF over the input space falls 
below a predefined limit (e.g., EFF < 0.001 in [8]). [24] adopts the 
the U-learning function (2) to improve the modeling performance of 
Kriging preferably across the failure surface. The smaller U(x), the 
higher the metamodel accuracy and precision in the region close to 
the limit state (correspondingly, the higher the advantage in 
including the simulation result corresponding to x in the current 
DoE). In this respect, when the smallest value of U(x) over the input 
space exceeds a predefined threshold (e.g., U(x) > 2 in [17, 24]), the 
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algorithm stops. However, it has been demonstrated that in several 
contexts, the EEF and the U-learning function (2) converge slowly to 
the failure region [22, 24]. Thus, other metrics have been intro
duced, relying on cross-validation to quantify both the kriging 
modelling performance and the convergence rate of the adaptive 
training process. In practice, the entire DoE {X , Y } is divided into 
a training set {X train, Y train} and a validation set {X val, Y val} with 
the following properties: {X train, Y train} ∩ {X val, Y val} = ∅ and 
{X train, Y train} ∪ {X val, Y val} = {X , Y }. The kriging regression 
model is, then, built using the training subset and its prediction ca
pabilities are quantified using the validation set. The leave-one-out 
(LOO) algorithm is a particular case, in which the training set is 
selected as {X , Y }\xi. In [2] the mean squared error is estimated by 
a LOO approach and is termed Predicted REsidual Sum of Squares 
(PRESS). Instead, in [22, 84] an error factor is computed by LOO 
cross-validation to assess the uncertainty affecting the failure prob
ability values produced by kriging, and to quantify its prediction 
performance and convergence rate of the adaptive training 
procedure. 
In this paper, we use only the computational cost as a stopping criterion 
(i.e., we set a maximum number of simulations foreseen for the 
metamodel training): this choice is motivated by the significant 
computational effort typically associated to the dimensionality 
reduction phase carried out before this step (Section 3.1) and by the 
relevant amount of time needed to carry out a single transient 
simulation in the present application (i.e., around 4.3h on average). 
Nevertheless, it is important to notice that, even if a rigorous 
convergence/stopping criterion is not used, the evolution of the 
metamodel accuracy with the iterations is still checked by means of 
an a priori-defined (typically small-sized) validation set {X val, Y val}, 
made by Nval I/O relations: this allows to have at least a rough idea of 
the kriging performance during and at the end of the training pro
cess. Further (numerical) implementation details are reported in 
Section 4, devoted to the application results.  

5 Selection: if convergence at step 4 is not verified, the best candidate 
subset X ∗⊂X of input combinations is added to the Kriging training 
set by evaluating the corresponding outputs Y ∗ with the long- 
running model. The Ncand best candidates are selected among X 

according to their learning function values. U-function [24, 84] has 

been chosen for the analysis among the several options available in 
literature [92]: 

U(x) =
Ythres − μŷ (x)

σŷ (x)
, (2)  

where U(x) measures the distance, expressed in terms of metamodel 
standard deviation σ ŷ(x) between the mean value of the metamodel 
prediction μŷ(x), corresponding to x and the failure threshold Ythres. 
In general, the smaller is the U-function value, the closer is the 
predicted output to the limit surface and, hence, the higher the in
terest in adding that point to {X train, Y train}. The best candidate 
inputs need to be spread over the domain, but it might occur that, 
due to the correlation, the points with the lowest U values result to be 
all restricted to the same portion of the input domain, providing a 
small amount of information when added to {X train, Y train}. Some 
techniques can be implemented to overcome this problem: e.g., in 
[84] it is proposed to cluster the input domain to evenly “spread” the 
candidates over it. 

Once the best candidates have been selected and sent in input to 
the real model which evaluates the corresponding output, {X train,

Y train} is updated and steps 1 to 5 are repeated until step 4 is 
verified. 

A large amount of works has been devoted, in the last few years, to 
the intelligent, iterative improvement of the AK-MCS algorithm. Only 
few of the most relevant techniques are listed hereafter: the Adaptive 
Kriging-Importance Sampling (AK-IS) [25]; the Meta Adaptive 
Kriging-Importance Sampling2 (MetaAK-IS2) [14], which combines 
AK-IS and Meta-IS [22]; the Active learning and Kriging-based SYStem 
reliability method (AK-SYS) [27]; the Adaptive Kriging-Line Sampling 
(AK-LS) [53]; the AK-Subset Simulation (AK-SS) [39] and the AK-Subset 
Simulation-Importance Sampling (AK-SS-IS) [82]; the Polynomial Chaos 
Kriging (PCK) [77]; the AK-MCSi algorithm, employing sequential MCS 
and multipoint enrichment techniques to allow parallelization [50]; the 
Active Learning Kriging-Kernel Density Estimation-Importance Sam
pling (ALK-KDE-IS) [93]; the ALK-Evolutionary Multimodal 
Optimization-Importance Sampling (ALK-EMO-IS) [94] and the 
ALK-Multimodal Adaptive Importance Sampling-Truncated Candidate 

Figure 4. Flow diagram of the iterative metamodel training algorithm (AK-MCS).  
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Region (ALK-MAIS-TCR) [95]; the Multifidelity Efficient Global Reli
ability Analysis (MfEGRA) method [16]; the Adaptive Multi-Fidelity 
sparse Polynomial Chaos Kriging (AMF-PCK) technique [96] and the 
Adaptive Kriging-based Directional Sampling (AK-DS) [98]. The objec
tive of all the methods listed above is the efficient propagation of un
certainties, physically described by different probability distributions, 
through the (expensive) system models, for the accurate and precise 
estimation of (small) failure probabilities. On the contrary, as already 
highlighted in the Introduction, in this work we are not performing any 
uncertainty propagation nor probability estimation, but rather we carry 
out an inverse analysis for identifying and characterizing – in a multi
modal landscape – the combinations of values of the design and/or 
operational input variables driving a particular type of nuclear safety 
system to failure, i.e., the so-called failure region). 

3.3 CR Representation & Information Retrieval 

The Kriging metamodel obtained at the end of the procedure 
described in Section 3.2 must provide predictions of the output with 
satisfactory level of accuracy, especially in proximity of the CRs limit 
surfaces; this can be verified with an external validation set. Thus, a 
large number of new input combinations x (e.g., several thousands) is, 
then, generated, by LHS and provided in input to the metamodel; the 
critical ones, i.e., ŷ = f(x) ≤ Ythres, are exploited for characterizing the 
shape and cardinality of the CRs [67]. In mathematical terms, this is 
equivalent to solving the inverse problem x = f − 1(ŷ), with ŷ ≤ Ythres. 
Once this is done, CRs can be graphically represented by means of 
high-dimensional data visualization techniques, like scatter plots or 
Parallel Coordinates Plot (PCP). 

In brief, scatter plots show the two-dimensional projections of the 
CRs over all possible pairs of inputs (this is useful to visualize the shape 
of the CRs). Moreover, in case of many input parameters involved, 
multiple scatter plots can be collected together in the so-called Scatter 
PLOt Matrix (SPLOM), providing a more complete view [79]. 

On the other hand, PCP [40] allows representing all the critical input 
combinations in a unique plot: all the M input variables (coordinates), 
normalized on their respective ranges, are reported on vertical axes and 
lined up horizontally; then, each input combination is represented by a 
horizontal line connecting the corresponding input variables values on 
the vertical axes. In this way, the analyst is provided with exemplary 
patterns of typical critical conditions for the system operation. 

4. Application 

The framework illustrated in Section 3 has been applied for the 
characterization of the CRs of the PSS introduced in Section 2. In the 
following Sections, the relevant steps of this application are illustrated in 
detail with reference to the characterization of the CRs relative to the 
multimodal output variable “maximum pressure value inside the PV” 
(pmax). 

4.1 Dimensionality Reduction 

With the aim of defining the I/O training set to construct an accurate 
metamodel for the approximation of the PSS response with respect to 
pmax output, the input vector dimensionality has been reduced from M 
to R (R < M = 5); hence, a reduced model dealing with the reduced 
input vector XR ϵ DXR ⊂RR can be constructed. The DBSA method sup
ported by FMMs technique has been implemented to tackle pmax non- 
smoothness and multimodality (see Fig. 2) by identifying the different 
output clusters and, finally, selecting the most relevant inputs contrib
uting to the output distribution. In particular, the analysis has been 
restricted only to those input parameters significantly affecting the 
output clusters connected with the critical conditions, i.e., those with 
pmax around 75.5 bar. 

A total of 200 RELAP5-3D simulated transients have been used for 
the FMMs development (see Appendix A) with the SNOB algorithm, 
introduced in Section 3.1. The SNOB algorithm is based on the EM and 
selects the best number of components (k), guided by the MML criterion 
(see equation (1)). 

The goal of the FMMs application is not to approximate the 
pmax distribution in the best way possible, whatever the number of 
components, but to obtain a good fit while ensuring that the k compo
nents reproduce the underlying physics of the problem. The SNOB al
gorithm gives the optimal fitting of the pmax multimodal distribution 
with k = 3 Gaussian distributions (whose characteristic parameters, i.e., 
mean value μ and standard deviation σ are reported in Table 4). In order 
to rank the most relevant inputs by means of one of the DBSA methods 
introduced in Section 3.1, firstly, it is necessary to assign each output 
variable in the set of 200 RELAP5-3D simulations to the cluster that 
generated it. In particular, it is assumed that the sample yi belongs to the 
j-th cluster, if it returns the highest probability value when substituted 
into the PDF expression of that cluster. 

The three Gaussian distributions and their related output clusters are 
reported in Fig. 5. A “low-pressure” cluster on the left is associated with 
the system safe conditions (in green in Fig. 5) and is approximated by a 
Dirac’s delta distribution. It represents the pmax concentration around 
70.0 bar, corresponding to all those transients in which the decay heat is 
correctly removed by the PSS and the pressure never increases (122 
simulations out of 200). Thus, in these simulations, pmax is always equal 
to the pressure value at the beginning of the transient, i.e., 70.0 bar. The 
remaining 78 outputs are almost equally split among the “medium- 
pressure” cluster in the middle (safe conditions, but with lower safety 
margin) and the “high-pressure” cluster on the right (critical condi
tions). They are associated to two Gaussian distributions (respectively 
orange and red in Fig. 5), with the second that is more peaked. Both 
clusters include transients in which the pressure initially increases 
beyond 70.0 bar, due to the AV delayed opening with respect to the 
MSIV closure: this causes the PV to remain without vapor outlets. The 
only difference is that pmax values in the “high-pressure” cluster reach 
Ythres = 75.5 bar, causing the SRV opening, whereas in most of the 
transients assigned to the “medium-pressure” cluster the pressure in
creases without reaching Ythres. 

The output clustering performed is exploited to identify those input 
variables that most affect the output clusters (DBSA) by constructing the 
PDF of each input xm conditioned on each j-th cluster, i.e., p(xm

⃒
⃒ Θjm). In 

particular, the conditional PDFs are constructed by assigning the input 
variables belonging to the set of 200 RELAP5-3D simulations to the same 
cluster of the associated outputs; then, the PDF p(xm

⃒
⃒ Θjm) is created 

using only the xm inputs assigned to the j-th cluster. In this way, it is 
possible to measure the difference between p(xm

⃒
⃒ Θjm) and the original 

(unconditional) input distribution of xm, i.e., p(xm), and to use this dif
ference to rank xm. For the case study, the Hellinger distance method for 
SA [20, 30] is adopted: 

Hjm =

[
1
2

∫ ( ̅̅̅̅̅̅̅̅̅̅̅
p(xm)

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p
(
xm
⃒
⃒ Θjm

)√ )2
dxm

]1/2

, (3)  

with Hjm that needs to satisfy the inequality 0 ≤ Hjm ≤ 1. The quantity 
Hjm represents the importance of the m-th input in affecting the j-th 
cluster of the output distribution: the higher the Hjm value with respect 
to the one of the other input parameters, the greater the relative 
importance of xm. 

Table 4 
FMMs components parameters.  

Cluster name  μ [bar]  σ [bar]  
Low-pressure (green) 70.0 1E-3 
Medium-pressure (orange) 72.6 2.48 
High-pressure (red) 75.9 0.04  
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For the analysis of pmax, special attention is paid to the “high-pres
sure” cluster, since it is the one connected with the failure of the PSS 
function (critical conditions). Hence, for each input parameter, the 
corresponding Hjm value referred to this cluster (i.e. with j = 3) is 
exploited as a sensitivity index. Fig. 6 reports a comparison between the 
H3m values calculated for each of the five input parameters. 

As it can be deduced from Fig. 6, the two valves operation delays, i.e., 
DELAV and DELMISV , mostly affect pmax “high-pressure” cluster and hence 

they are more likely to generate those scenarios in which the pressure 
increases towards Ythres, with the consequent SRV opening. Therefore, 
the problem dimensionality is reduced from M = 5 to R = 2, and a 
reduced model (dealing with a reduced input vector) is obtained: i.e., 
f(XR) = Y, with XR ϵ DXR ⊂RR and Y still equal to pmax.

4.2 Iterative Metamodel Training (AK-MCS) 

After the dimensionality reduction previously presented, the input 
parameters used to model the generic PSS behaviour with respect to pmax 
are only DELAV and DELMSIV ; thus, a Kriging metamodel has been built to 
mimic the RELAP5-3D model I/O relationships on a reduced space of 
dimensionality R = 2. 

For the purpose of CRs exploration, the fact that pmax can approach 
Ythres = 75.5 bar only if DELAV > DELMSIV , with a quite significant in
terval of time between the two valves actions, has led to adjust the range 
of variation of DELMSIV from DELMSIV = 0 ÷ 7200 sec to DELMSIV =

0 ÷ 480 sec: this has allowed to be coherent with DELAV = 0 ÷ 720 sec 
(see Table 2) and to avoid sampling far from the limit surface. 

Following the criterion proposed in [52], who suggests a number of 
training simulations Ntrain ≥ 10R, the Kriging metamodel has been 
initially constructed with an I/O training set {X train, Y train}in of 25 
RELAP5-3D runs (obtained in correspondence of input values generated 
by LHS). In particular, the construction has been performed by means of 

Figure 5. pmax clustering according to k = 3 Gaussian distributions.  

Figure 6. Hellinger distance for each input parameter (xm) evaluated with 
respect to the high-pressure cluster. 
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the UQLab Software Framework for Uncertainty Quantification [54]. 
UQLab provides a straightforward parametrization of the Kriging [48]: 
constant, linear, polynomial, or arbitrary trends, related to elliptic and 
separable correlation kernels, based on many possible one-dimensional 
distribution families (e.g., Gaussian, Exponential, Matérn, or 
user-defined). The hyperparameters can be estimated through the 
Cross-Validation (CV) or the ML methods using different optimization 
techniques (local or global). The best Kriging setting for the specific 
study of pmax output has been established by testing different Kriging 
features with the CV procedure. In particular, the Kriging best setting 
has resulted to be:  

Ø Trend type: Ordinary  
Ø Family of correlation functions: Exponential  
Ø Type of correlation functions: Ellipsoidal  
Ø Estimation method: CV  
Ø Optimization method: Genetic Algorithm (GA) 

Then, the Kriging metamodel has been adaptively refined with a 
focus on the CR limit surface by enriching {X train, Y train} within the 
AK-MCS framework introduced in Section 3.2. The AK-MCS procedure 
has been here tailored to the specific case study of the PSS introduced in 
Section 2, in relation to the pressure output evolution during a SBO 
accident. The details of the steps concerning the AK-MCS application are 
reported in what follows, for each n-th iteration:  

1 Construction: a Kriging metamodel is constructed with the available 
I/O training set {X train, Y train}, which increases its size with the 
iterations. The metamodel accuracy is improved specifically near 
Ythres = 75.5 bar.  

2 Generationof random inputcombinations: NMCS = 10.000 new input 
combinations X = (x1,…, xNMCS ) (of reduced dimensionality R = 2) 
are sampled with LHS (see the input ranges defined at the beginning 
of this Section).  

3 Metamodel evaluation: the sampled input combinations X are run 
through the Kriging metamodel to predict the corresponding output 
values (i.e., maximum vessel pressure): Ŷ = (ŷ1,…, ŷNMCS

).  
4 Convergence check: a convergence or stopping criterion regarding 

the computational cost has been defined. The maximum number of 
simulations foreseen for the metamodel training has been set to 100, 
due to the significant computational cost associated to the dimen
sionality reduction procedure carried out before (200 RELAP5-3D 
simulations required). Thus, considering that {X train, Y train}in is 
constituted by 25 simulations, only 75 simulations can be iteratively 
added during the AK-MCS procedure; when the size of {X train,

Y train} reaches its maximum value, the procedure stops.  
5 Selection: if the convergence criterion at step 4 is not verified, new I/ 

O simulations related to the so-called best candidate subset, i.e., 
X ∗⊂X , are conducted, and the corresponding inputs and outputs 
{X

∗,Y ∗} are added to {X train, Y train} to refine the metamodel. The 
Ncand best candidates X ∗ are randomly selected among the 
X combinations according to their U-function values (see equation 
(2)), in order to choose them close to Ythres. They should present a low 
U value, but at the same time not be “clustered” in the same area of 
the input space (i.e., too similar to each other). Actually, combina
tions that are close in the input space share similar U values and, 
hence, the candidates should be selected not only according to the 
Ncand lowest U values, because they would all be restricted in the 
same area of the domain, instead of spanning the whole input space. 
Thus, Ncand = 7 or 8 candidates are added at each n-th iteration, 
according to the same rationale presented in [67]. Once 
X ∗combinations have been selected and the corresponding 
RELAP5-3D transients simulated with the RELAP5-3D code to obtain 
the output Y ∗, {X train, Y train} is enriched and steps 1 to 5 are 
repeated until convergence at step 4 is verified. 

The AK-MCS procedure has been stopped at iteration nfin = 10, when 
the maximum number (100) of RELAP5-3D simulations allowed for the 
construction of the training set {X train, Y train} has been reached. The 
evolution of the metamodel accuracy with the iterations has been fol
lowed through the introduction of an a priori-defined validation set 
{X val, Y val}, made by Nval I/O relations. Some recommendations about 
how to determine the best Nval can be found in [41, 55, 91], but no 
definitive guidelines are available. Considering the available computa
tional budget, a validation set of 50 RELAP5-3D simulations with the 
outputs mainly distributed around Ythres has been constructed to mea
sure the accuracy increase, especially in proximity of the limit surface. 
The metamodel has been used to predict the outcomes Ŷ val = (ŷ1,…,

ŷNval
) corresponding to the Nval input combinations of the validation set 

(X val); then, the accuracy has been quantified through Quality In
dicators (QIs), comparing Ŷ val to the real outputs evaluated with the 
RELAP5-3D model. The closer the Kriging prediction to the RELAP5-3D 
output, the better the QI value calculated and the higher the accuracy. 
The QIs adopted are the following: the well-known Root-Mean-Square 
Error (RMSE) and two different predictivity indicators, namely respec
tively Q1, defined in [41], and Q2 presented by [48]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nval

i=1

(

ŷi − yi

)2

N

√
√
√
√
√
√ , (4)  

Q1 = 1 −

∑Nval
i=1

(

ŷi − yi

)2

∑Nval
i=1

(

yval − yi

)2, (5)  

Q2 =
Nval − 1

Nval

⎛

⎜
⎝

∑Nval
i=1

(

ŷi − yi

)2

∑Nval
i=1

(

yval − yi

)2

⎞

⎟
⎠, (6)  

where yi is the i-th output of the set {X val, Y val}, ŷi is the corre
sponding Kriging prediction and yval is the mean value of all the vali
dation outputs evaluated with the RELAP5-3D model. RMSE and Q2 
should be as low as possible, whereas Q1 tends to 1 as the prediction 
accuracy increases. The RMSE has the same unit of measure of the 
physical quantity of interest (pmax) and, hence, it can be directly 
compared to the maximum pressure to understand whether the level of 
accuracy is satisfactory. It can be also normalized (NRMSE) dividing it 
by yval. Q1 and Q2 have similar expressions and, differently from RMSE, 
they also account for the variability of yi in the set. 

The progressive increase in accuracy is shown by the trends of the 
three QIs illustrated in Fig. 7. All the QIs considered show a significant 
improvement at the beginning; then, in the successive iterations, the 
relative improvement becomes negligible. Also for this reason, stopping 
the AK-MCS procedure at iteration nfin = 10 represents a reasonable 
choice. 

The three QI values at the end of the AK-MCS procedure are reported 
in Table 5. The RMSE at the last iteration is satisfactory, indeed RMSE =

0.35 bar is really low if compared to the pmax values in the simulated 
transients (pmax = 70.0 ÷ 76.5 bar). Moreover, a final NRMSE = 0.46% 
is remarkable, since it can be taken, in the first instance, as a measure of 
the percentage error of the Kriging predictions. For what concerns Q1 
and Q2, they show a significant improvement during the successive it
erations, but their final values are not so satisfactory, especially for the 
final Q1 which lies far from 1. This is probably due to the very low 
variability of the validation set chosen for the analysis: indeed, most of 
the pmax values of Y val are spread on a range of only 2 bar around 
Ythres = 75.5 bar. 
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4.3 CR Representation & Information Retrieval 

The Kriging metamodel obtained at the end of the AK-MCS procedure 
has been demonstrated to present a high accuracy, especially in prox
imity of Ythres: thus, it can be used for CR characterization instead of the 
more time-demanding RELAP5-3D model. For this purpose, 10.000 new 
input combinations have been generated by LHS and, then, predicted 
with the metamodel to: (i) find the critical ones, i.e., ŷ = f(x) ≥ Ythres; 
and (ii) retrieve useful information about the CRs (like their number and 
shape). 

One single CR has been identified (see Fig. 8); moreover, given that 
the analysis has been restricted only to two parameters after dimen
sionality reduction, no high-dimensional data visualization techniques 
like SPLOM or PCP (see Section 3.3) were needed. The CR has been 
represented in the two-dimensional input space through a scatter plot, in 
which green diamonds indicate combinations leading to safe operation 
(pmax is kept < 75.5 bar), whereas red crosses represent the critical 
input combinations of PSS functional failure. 

A triangle-shaped CR has been identified, showing the direct influ
ence of both DELAV and DELMSIV on the FC “Steam release in the 
containment”; indeed, it is evident that pmax may exceed 75.5 bar only 
when the MSIV closes before the opening of the AV, i.e., when DELMSIV <

DELAV (as introduced in Section 2). This occurs because the PV remains 
without vapor discharge outlets and, hence, the vapor builds up causing 
the PV over-pressurization. Also, Fig. 8 shows that not always DELMSIV <

DELAV leads the PSS to fail its function: e.g., even if the MSIV is supposed 
in its reference conditions (i.e., DELMSIV = 0 sec), if DELAV < 50 sec, 

pmax remains below Ytresh. In general, the higher DELMSIV , the lower the 
chances to lead to functional failure: eventually, if DELMSIV > 380 sec 
failure is never reached, whatever the value assumed by DELAV . 

A word of caution is in order with respect to the results included in 
Fig. 8. The comparatively large size of the failure region (red crosses) 
with respect to the safe one (green diamond) does not necessarily mean 
that the PSS under analysis is “prone” to failure, since such type of 
conclusion can only be based on the quantitative assessment of the 
probability of occurrence of the corresponding input combinations (which 
is not performed in the present paper). In fact, the probability of func
tional failure of the PSS is strongly dependent on: (i) the structure and 
characteristics of the system itself, and (ii) the (data- and/or expert- 
based) probability density functions of the PSS input variables. In this 
work, as mentioned in Section 2, the PSS parameters are not described by 

Figure 7. QIs evaluated with respect to a given validation set.  

Table 5 
QIs values at the end of the AK-MCS procedure.  

Quality indicator RMSE [bar] NRMSE [%] Q1  Q2  

Final value 0.35 0.46% 0.56 0.43  

Figure 8. CR for pmax output.  
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realistic probability distributions, since the objective is not to perform a 
reliability assessment of the PSS, but to show how the FMMs-based 
adaptive Kriging procedure can be exploited for the thorough explora
tion, identification and characterization of multi-modal critical regions. 

5. Comparison with the Results obtained with SVC þ AK-MCS 

An alternative approach to tackle the output non-smoothness and 
multimodality is represented by the use of a classifier. Given an I/O 
training set, the training outputs are clustered (e.g., by expert judge
ment) to separate the regions of different output behaviours (also called 
partitions). The same clusters are identified also in the input domain by 
simply assigning the training inputs to the same clusters of the corre
sponding output values. In this way, a classifier can be built according to 
these clustered I/O relations and, then, a new input combination x can 
be classified to one of the different input domain partitions. Multiple 
metamodels can be fitted to each cluster in the input and output space to 
obtain a better approximation (rather than constructing a unique met
amodel for the whole space). Thus, the new combination x is predicted 
according to the specific metamodel developed for the partition x be
longs to. 

We have here applied this approach to the PSS presented in Section 
2, with respect to pmax output, by resorting to one of the most popular 
classifiers, i.e., SVC [86]. The results have been compared to the ones 
obtained with the framework of Section 4. In particular, a hard SVC (i.e., 
where one input combination cannot belong to different domain parti
tions) has been trained within the “two stage-surrogate modelling” 
technique introduced in [60]. A new input combination x whose output 
needed to be predicted (and identified as critical or not) has been, first, 
classified with the hard SVC (1st stage); then, the corresponding output 
has been predicted with the metamodel specifically built for the parti
tion (cluster) which x is classified to (2nd stage). 

At first, two output domain partitions have been identified according 
to expert judgement: a “low-pressure” region corresponding to pmax =

70.0 bar (which occurs in most of the transients simulated, see Section 
2), and a “high-pressure” region with pmax > 70.0 bar, representing 
those transients in which the pressure rises. Thus, a binary classification 
results: i.e., given a certain input combination x, the corresponding label 
assigned by the classifier is li = { − 1, + 1}, with the li = − 1 that is 
associated to the low-pressure region and li = 1 that represents the 
high-pressure region. 

The SVC has been constructed (see Appendix B) according to the two 
output domain regions identified, thanks to an I/O training set and their 
corresponding labels {X SVC

train, Y SVC
train}. The same training set of 200 

RELAP5-3D simulations adopted for the FMM-based approach (see 
Section 4.1) has been used (122 with li = − 1 and 78 with li = 1). 
Indeed, the criterion introduced in [6], which proposes convergence 
points instead of a far more expensive validation set to quantify the 
accuracy of the SVC, has proven that at least 180 simulations were 
necessary to construct an initial, but sufficiently accurate SVC for the 
case study. Then, a Kriging metamodel has been built to predict pmax 
only in the “high-pressure” region, because it was not worth exploring 
also the “low-pressure” region with constant pmax (70.0 bar). Then, a 
metamodel has been constructed with an I/O training set {X train,

Y train} made by the same I/O relations collected for the SVC training, 
but taking only those classified as belonging to the high-pressure region 
(78 simulations out of 200). In this case, no dimensionality reduction has 
been carried out and, hence, the metamodel is used to mimic the 
RELAP5-3D model on the original input space of dimensionality M = 5, 
i.e., f(X) = Y, with X ϵ DXM ⊂RM. Thus, X train is a set of 
five-dimensional input combinations. 

The Kriging metamodel has been adaptively refined in proximity of 
Ythres = 75.5 bar with a sort of AK-MCS procedure (see Section 3.2), 
conveniently adjusted to be coupled with SVC. At each n-th iteration, 
NMCS = 100.000 new input combinations X = (x1,…, xNMCS ) have been 

generated by LHS and classified by the SVC according to the two regions 
identified (1st stage). Only the combinations classified as belonging to 
the high-pressure region, i.e., X Krig⊂ X , have been then evaluated with 
the Kriging metamodel to find the corresponding outputs (2nd stage). 
The most interesting input combinations among X Krig, in terms of 
learning function U value (7-8 candidates at each iteration), have been 
selected for simulation with the RELAP5-3D model and added to {X train,

Y train} for the metamodel refinement. This procedure is repeated until 
the level of accuracy of Kriging predictions becomes satisfactory. The I/ 
O relations simulated at each iteration to enrich the metamodel training 
set {X train, Y train} have been labelled and exploited to enrich also the 
classifier training set {X SVC

train, Y SVC
train}. This procedure is called SVC+AK- 

MCS, hereafter. 
The idea is to exploit the same number of RELAP5-3D simulations, i. 

e., the same computational budget, as the one used for the novel 
exploration framework implemented in Section 4.2 (FMM+AK-MCS), to 
refine both the Kriging metamodel and the SVC within SVC+AK-MCS 
framework, with the aim of fairly comparing the final Kriging accuracy. 
The initial metamodel training set {X train, Y train}in has been adaptively 
enriched together with {X SVC

train, Y SVC
train}, up to the limit of the available 

300 simulations (the same limit as FMM+AK-MCS). Thus, starting from 
{X

SVC
train, Y SVC

train} made by 200 I/O samples (the same used for the FMMs 
application), 100 simulations have been added (only 82 of them could 
have been used for the Kriging training) and the Kriging training set size 
has been simultaneously increased from 78 to 160. The Kriging accuracy 
has been quantified with respect to a validation set of the same size of 
the one used in Section 4.2 (i.e., 50 I/O relations). Again, the validation 
set is constituted by samples mainly distributed around Ythres, to verify 
the metamodel accuracy improvement with specific attention to the area 
close to the limit surface. Table 6 reports the values of three QIs (RMSE, 
Q1 and Q2) computed on this validation set according to the Kriging 
metamodel obtained at the end of SVC+AK-MCS procedure. 

All the QIs values are worse than those obtained by the FMM+AK- 
MCS framework (see Table 5). For example, the RMSE and NRMSE are 
more than twice larger, and Q1 is even 3.5 times lower, meaning that 
the accuracy of the Kriging metamodel at the end of the SVC+AK-MCS 
procedure is lower. Indeed, Fig. 9 shows how the adaptive exploration 
framework applied in Section 4, based on FMM+AK-MCS, outperforms 
the SVC+AK-MCS procedure in terms of Q1 and Q2, after six iterations (i. 
e., with 270 simulations rather than 300) and, for what concerns the 
RMSE, after one iteration (i.e., with 233 simulations rather than 300). 

A final consideration is in order with respect to the results obtained 
by the proposed methodology, in particular with reference to the 
dimensionality reduction step carried out above (Sections 3.1 and 4.1). As 
already mentioned, parameterizing and training a metamodel becomes 
hard or even intractable as the number M of input parameters increases 
(in particular, when M > 20), a well-known problem often referred to as 
curse of dimensionality (see, e.g., [47, 88]); similar challenges arise in the 
presence of high-dimensional model outputs [4, 31]. However, in the 
case study here considered (Section 2), the number of input variables 
selected by expert judgment is quite small (i.e., equal to 5), which allows 
in principle: i) the construction of a relatively small-sized DoE still able to 
evenly cover the entire input space; and ii) a satisfactorily accurate, 
precise, and fast (iterative) training of the kriging surrogate model 
(Sections 3.2 and 4.2). In light of this, the dimensionality reduction step 
may not seem essential here. However, the improved performance of the 
DBSA-based AK-MCS supported by FMMs (employing a reduced input 
space of size R = 2 < M = 5) with respect to the SVC + AK-MCS 

Table 6 
QIs at the end of SVC+AK-MCS iterative procedure.  

Quality indicator RMSE [bar] NRMSE [%] Q1  Q2  

Final value 0.85 1.12% 0.16 0.82  
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(employing the full input space of size M = 5) demonstrates the 
advantage of the dimensionality reduction also in this case (see Figure 7 
and Figure 9, respectively): this is particularly true when the analyst 
needs to approximate non-smooth and multimodal distributions by meta
models and, then, restrict the state-space to the input parameters 
affecting only the output clusters connected with system failure (which is 
of interest in the present application). 

6. Conclusions 

There is a growing interest in PSSs applications to increase the safety 
level of advanced NPPs: in this light, the CRs characterization of PSSs 
becomes of paramount importance to discover the combinations of 
factors leading them to critical conditions. The adoption of innovative 
computational methods, like fast-running surrogate metamodels 
coupled with adaptive sampling techniques, represents a promising way 
to replace computationally demanding models and speed up the explo
ration of components and systems state-spaces, especially for the char
acterization of their CRs. However, a significant issue may be 
represented by the irregularity of the state-space, e.g., in case of non- 
smoothness and/or multimodality of the system response. To this pur
pose, we have developed a novel adaptive exploration framework, based 
on FMM and AK-MCS, capable of tackling the state-space non-smoothness 
and multimodality, while searching for the system CRs. 

The proposed framework consists of three steps: i) “dimensionality 
reduction”, relying on a DBSA method (specifically, Hellinger distance 
in the present work), supported by FMMs technique to approximate the 
non-smooth and multimodal output distribution and, then, restrict the 
analysis only to the input parameters affecting the output clusters con
nected with system failure; 2) “Iterative metamodel training”, based on 
the AK-MCS technique for the construction of an accurate Kriging 
metamodel to replace the typically long-running system model codes 
and predict the system response on a space of reduced dimensionality. 

The metamodel is trained with a possibly small number (e.g., few hun
dreds) of time-demanding code runs; 3) “CR representation and infor
mation retrieval”, using the Kriging metamodel obtained at the previous 
step to predict a large number of new input combinations and retrieve 
useful information about the system CRs. The CRs can be, then, visual
ized by exploiting high-dimensional data visualization techniques 
(specifically, scatter plots in the present work). 

The framework has been applied to the exploration of the CRs of a 
generic PSS of an NPP, designed for DHR in case of reactor shut down 
(due to a SBO accident, in this work) in order to provide limits for the 
system safe operation. In particular, the DHR system here considered is 
modelled through a time-demanding BE-TH code (RELAP5-3D model) 
and the success of its operation has been analyzed with respect to one 
output of interest, i.e., the maximum value of pressure reached inside 
the reactor PV (pmax). 

The analysis of the PSS CRs relative to the FC “Steam release in the 
containment” (i.e., pmax > 75.5 bar) has required the application of the 
FMM-based exploration framework, due to the strong non-smooth and 
multimodal distribution of the pressure output. The FMMs technique has 
been shown capable of approximating pmax distribution by identifying 
three different clusters, associated to three different kinds of responses 
with respect to the failure limit of 75.5 bar. Also, the Hellinger distance 
method for SA has been exploited to select the input parameters most 
affecting the output cluster associated to critical conditions. By so doing, 
the analysis has been restricted to two relevant input parameters out of 
the five ones initially identified: DELAV (i.e., the delay of Activation 
Valve opening) and DELMSIV (i.e., the delay of Main Steam Isolation 
Valve closure). Then, the AK-MCS technique has allowed the adaptive 
construction of an accurate Kriging metamodel (with increased accuracy 
nearby the Ythres = 75.5 bar) to replace the time-demanding RELAP5-3D 
model on the reduced input space (two-dimensional), by resorting to a 
limited number of simulations (specifically, 300 in this work). Thanks to 
dimensionality reduction, the Kriging metamodel has managed to 

Figure 9. QIs evolution in FMM+AK-MCS strategy compared with the QIs values at the end of SVC+AK-MCS.  
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correctly predict the output pmax, despite the non-smoothness and mul
timodality of its distribution (e.g., NRMSE < 0.5% when evaluated with 
respect to a validation set constructed around Ythres). 

A comparison with an alternative state-of-the-art approach to tackle 
the non-smoothness and multimodality of a system response (not relying 
on FMMs-based DBSA) has been carried out. Output domain regions 
with different behaviors have been identified and, then, both the output 
and input space have been partitioned. An SVC has been trained and 
coupled with the AK-MCS technique, within the innovative “two-stage 
surrogate modelling” strategy proposed in [60]. First, a new input 
combination is assigned to the correct domain partition, then, the cor
responding output is predicted to identify if it is critical or not. The re
sults, in terms of metamodel accuracy, have been compared with those 
obtained by the FMM-based exploration framework proposed in this 
work, considering the same computational budget (i.e., same number of 
RELAP5-3D simulations). The strategy adopting an initial dimension
ality reduction based on a DBSA method supported by FMMs out
performed the one relying on SVC. This represents a strong statement in 
support of dimensionality reduction techniques when dealing with the 
metamodel-based exploration of abrupt, irregular, and disconnected 
state-spaces. 

Also, it is worth acknowledging that the proposed framework in
herits the intrinsic limitations of the techniques employed. Actually, if 
the number of parameters identified after the dimensionality reduction 
is not sufficiently low to be managed by a Kriging metamodel, which 
suffers high-dimensionality and irregular output behavior, the success of 
the entire framework may be compromised. 

Finally, a closing remark is due with respect to the importance and 
usefulness of the framework here developed, by discussing its possible 
applicability within the reliability and risk analyses traditionally per
formed for nuclear systems and components. As already said, the main 
objective of the proposed framework is to thoroughly explore, find and 
characterize those input configurations (i.e., combinations of phenome
nological events and/or components failure modes and/or design parameters 
values) which drive the PSS to critical states (i.e., to fail its function). 
Instead, for a proper evaluation of the risk of failure of the PSS, we 

would need to assess the likelihood of such hazardous and severe con
figurations (which is typically obtained by representing the uncertainties 
in the PSS system behavior and modeling by probability density functions 
and propagating them through the deterministic T-H code). This is 
beyond the scope of the present study. Yet, research is envisaged to 
combine the FMMs- and Kriging-based iterative exploration framework 
here proposed with state-of-the-art stochastic simulation techniques for 
the accurate and precise evaluation of the PSSs functional failure prob
ability (e.g., Importance sampling-IS, Markov Chain Monte Carlo- 
MCMC, Subset Simulation-SS, Line Sampling-LS), with emphasis on: i) 
abrupt, multi-modal, possibly disconnected system state-spaces to be 
probed (like the one of interest in the present article) and ii) those 
challenging cases where the size of the critical region is quite small and 
its location is far from the nominal design [16, 77, 93–96, 98]. 
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Appendix A – Finite Mixture Models (FMMs) 

Here is provided a description of FMMs construction through the classical EM Algorithm [28]. Let assume a set of n output variables Y FMM
train = {y1,

…,yn}, the generic yi is said to follow a k-component finite mixture distributions if its PDF can be written as: 

p(yi|Θ) =
∑k

j=1
πjpj
(
yi|Θj

)
, (7)  

where {πj, j= 1, .., k} are the mixing parameters or weights, Θj are the parameters of each j-th component and Θ = {π1,…πk, Θ1, …, Θk} is the 
complete set of mixture parameters; being probabilities, πj must satisfy: 

∑k

j=1
πj = 1. (8) 

Considering the set of samples Y FMM
train , the log-likelihood corresponding to a k-component mixture is: 

logp
(
Y

FMM
train |Θ

)
= log

∏n

i=1
p(yi|Θ) =

∑n

i=1
log
∑k

j=1
πjp
(
yi|Θj

)
, (9)  

and the related ML estimate reads: 

Θ̂ = argmax
Θ

{ logp(Y train|Θ) }. (10)  

Θ̂ cannot be found analytically since it implies to solve a non-linear equations system. Hence, the solution is provided through the application of EM 
Algorithm which interprets Y FMM

train as a set of incomplete data. The “missing part” is represented by a set of labels, i.e., Z = {z(1),…, z(n)}, associated 
to the yi values numbered n, where each i-th label is a binary vector, i.e., z(i) = {z(i)1 , …, z(i)k }, whose components are all zeros except for z(i)j = 1, i.e., 
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the z(i) component associated to the j-th distribution of the mixture that has generated yi. Now, the complete log-likelihood for the estimation of Θ̂ can 
be written as: 

logp
(
Y

FMM
train , Z |Θ

)
=
∑n

i=1

∑k

j=1
z(i)j log

[
πjp
(
yi|Θj

)]
. (11) 

The EM Algorithm provides a sequence of estimates {Θ̂(t) with t= 0, 1, 2…} through the alternate realization of two steps, until some conver
gence criterion is satisfied:  

Ø E-step: given the Y FMM
train estimate through the current Θ̂(t), and considering that logp(Y FMM

train , Z
⃒
⃒Θ) is linear with respect to Z , the conditional 

expectation of the log-likelihood is computed through the construction of the so-called Q -function by simply evaluating the conditional expec
tation, i.e., W ≡ E[ Z | Y FMM

train , Θ̂(t)], and plugging it into logp(Y FMM
train , Z

⃒
⃒Θ) :

Q (Θ, Θ̂(t)) ≡ E
[

logp
(
Y

FMM
train , Z |Θ

)
| Y

FMM
train , Θ̂(t)

]
= logp

(
Y

FMM
train , W|Θ

)
. (12)  

Knowing that z(i)j coefficients are of binary kind, Bayes law can be expoited to calculate their conditional expectation: 

w
(i)
j ≡ E

[
z(i)j | Y

FMM
train , Θ̂(t)

]
= Pr

[
z(i)j = 1 | yi, Θ̂(t)

]
=

π̂ j(t)p
(

yi|Θ̂j(t)
)

∑k
m=1 π̂m(t)p(yi|Θ̂tm(t))

, (13)  

where πj and w(i)
j are the respectivey the a priori probability and a posteriori probability, after observing yi, that z(i)j = 1.  

Ø M-step: the mixture parameters are updated, under the constraints introduced by (8), according to: 

Θ̂(t+ 1) = argmax
Θ

{Q(Θ, Θ̂(t))} (14)   

Appendix B – Support Vector Classifiers (SVC) 

Here is provided a description of SVC construction process in case of binary classification, i.e., when only two classes have been identified [59]. Let 
us assume Ntrain training input combinations of dimension M in the form X SVC

train = {xi ϵ RM, i= 1,… Ntrain} and the corresponding labels Y SVC
train 

= {ySVC
i = li = { − 1, +1}, i= 1,⋯, Ntrain} indicating the class of each combination. SVC classification is carried out according to the separating 

hyperplane that maximizes its distance (also known as margin) from the closest training combinations. The separating hyperplane can be defined as: 
{

x ϵ RM : wT x+ b
}
, (15)  

where w is the vector of hyperplane coefficients and b is the bias. The perpendicular distance of any input combination from this hyperplane is: 

d(xi) =
|wT xi + b|
‖ w ‖

. (16) 

It turns out that maximizing the margin corresponds to the minimization of the norm of w under some constraints. Therefore, determining the 
separating hyperplane reduces to the following optimization problem: 

min
w

1
2

‖ w‖2, subject to ySVC
i

(
wT xi + b

)
− 1 ≥ 0, i = {1,⋯,Ntrain}, (17)  

where the constraints ensure that no samples can lie inside the area covered by the margin. The optimization problem is convex and it can be solved by 
introducing the Lagrange multipliers. After some algebra, the final optimization problem becomes: 

min
α

−
1
2
∑Ntrain

i=1

∑Ntrain

j=1
αiαjySVC

i ySVC
j xT

i xj +
∑Ntrain

i=1
αi , subject to

∑Ntrain

i=1
αiySVC

i = 0, αi ≥ 0, i = {1,⋯,Ntrain}. (18) 

After finding the Lagrange multipliers {αi, i= 1,…Ntrain} and the bias b, the SVC classification of a new configuration can be expressed in terms of 
training input combinations: 

ŷSVC
(xi) = l(xi) = sign

(
∑Ntrain

i=1
αiyixT

i x+ b

)

. (19) 

In some situations the optimization problem becomes unfeasible. A new solution is provided by allowing misclassifications, i.e. by relaxing the 
inequality constraints through the introduction of the so-called slack terms ξi, which measures the distance of the misclassified sample from its actual 
class. A penalized objective function is obtained in which the slack terms are minimized. Two final expressions are obtained according to the type of 
penalization:  

Ø Linear penalization 
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min
α

−
1
2
‖ w‖2 + C

∑Ntrain

i=1
ξi subject to ySVC

i

(
wT xi + b

)
≥ 1 − ξi, i = {1,⋯,Ntrain}. (20)   

Ø Quadratic penalization 

min
α

−
1
2
‖ w‖2 +

C
2
∑Ntrain

i=1
ξ2

i subject to ySVC
i

(
wT xi + b

)
≥ 1 − ξi, i = {1,⋯,Ntrain}. (21)   

In the case where the data are not linearly separable, the training combinations are mapped into a higher dimensional space referred to as feature 
space and, therefore, the construction of the optimal separating hyperplane is shifted to this new space. A new classification formula is given by the 
sign of the following expression: 

wT Φ(x) + b =
∑Ntrain

i=1
αiySVC

i Φ(xi)
T Φ(x) + b, (22)  

where Φ(•) is the mapping function and hence the components of x in the feature space are (Φ1(x), …ΦM(x)). The expression in equation (22) shows 
how, if one is able to calculate the inner product of the two vector images in the feature space, i.e., Φ(xi)

TΦ(x), no further cumbersome operations need 
to be carried out in that space. This operation is named “kernel trick” since it is conducted thanks to kernel functions. Several examples of kernel 
functions are available in literature (e.g., Polynomial, Gaussian, Exponential etc.). Once the kernel function k has been chosen, the final classification 
reads: 

ŷSVC
(xi) = l(xi) = sign

(
∑Ntrain

i=1
αiyi ker(xi, x)+ b

)

. (23)  
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