
 - 1 - 

Novel General Active Reliability Redundancy Allocation Problems and Algorithm 

 

Wei-Chang Yeh 

Integration and Collaboration Laboratory 

Department of Industrial Engineering and Engineering Management 

National Tsing Hua University 

yeh@ieee.org 

Abstract: The traditional (active) reliability redundancy allocation problem (RRAP) is used to maximize 

system reliability by determining the redundancy and reliability variables in each subsystem to satisfy 

the volume, cost, and weight constraints. The RRAP structure is very simple, that is, redundant 

components are parallel in each subsystem, and all subsystems are either connected in series or in a bridge 

network. Owing to its important and practical applications, a novel RRAP, called the general RRAP 

(GRRAP), is proposed to extend the series-parallel structure or bridge network to a more general network 

structure. To solve the proposed novel GRRAP, a new algorithm, called the BAT-SSOA3, used the 

simplified swarm optimization (SSO) to update solutions, the small-sampling tri-objective orthogonal 

array (SS3OA) to tune the parameters in the proposed algorithm, the binary-addition-tree algorithm (BAT) 

to calculate the fitness (i.e., reliability) of each solution, and the penalty function to force infeasible back 

to the feasible region. To validate the proposed algorithm, the BAT-SSOA3 is compared with state-of-

the-art algorithms, such as, particle swarm optimization (PSO) and SSO, via designed experiments and 

computational studies. 

Keywords: Reliability Redundancy Allocation Problems (RRAPs); Simplified Swarm Optimization 

(SSO); Binary-Addition-Tree Algorithm (BAT); Small Sampling; Orthogonal Array (OA); 

Mixed-Integer Nonlinear Programming  

1. INTRODUCTION 

To date, two main strategies have been implemented to improve system/network reliability: 1) 

increase each component reliability and/or 2) adapt redundant components in subsystems [1]. The 

traditional (active) reliability redundancy allocation problem (RRAP) using redundant components in 

parallel is a well-known optimization problem for enhancing the system reliability effectively and 

economically [2-10]. Hence, RRAP is common in real-life applications, such as the Internet of Things 
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[11] and wireless sensor networks [12]. RRAP determines the redundancy variables (integer variables) 

and reliability variables (floating variables) in each subsystem to optimize the system reliability in 

satisfying the resource consumption nonlinear constraint, such as the volume, cost, and weight [1-12]. 

The main structure in the traditional RRAP is series-parallel, that is, subsystems are in series and 

the components are parallel to each subsystem [1-12]. In fact, series-parallel networks are not common, 

and instead, it is more reasonable that most network structures depend on their practical applications [1]. 

To the best of our knowledge, no research has discussed the general RRAP (GRRAP) by considering the 

general subsystem structure. 

After generalizing the network structure from series-parallel to any structure, the major challenge is 

calculating the network reliability [1], which is NP-hard [13]. System/network reliability is the success 

probability that the entire system/network is still functioning. In traditional RRAP, the reliability of each 

network is simple and can be easily calculated manually [1-12]. However, it turns to a binary-state 

network reliability problem after generalizing to any type of network structure. Hence, to calculate the 

binary-state network reliability, the binary-addition-tree algorithm (BAT) proposed by Yeh is adapted 

here to achieve the abovementioned goal [14]. 

After applying the algorithm to calculate the binary-state reliability, the next step is to determine the 

number and reliability of the redundant components. The variable representing the number of redundant 

components is called redundancy variable, and that representing the reliability of redundant components 

is called reliability variable. The original RRAP is a mixed-integer nonlinear programming problem in 

which each redundancy variable is an integer, each reliability variable is a floating-point number, and the 

objective and constraints are nonlinear [7, 15]. 

The traditional RRAP is NP-complete [15], and scholars have considered numerous algorithms to 

solve RRAP from various viewpoints [1-12]. These algorithms are mainly categorized as follows. 

1. Exact-solution algorithms, such as column generation approach [16, 17] and branch-and-bound 

[18], are only available for small-sized RRAPs to obtain optimal solutions in an acceptable 

amount of time. 

2. Heuristic algorithms [8], such as surrogate constraints algorithm [19], require derivatives that 
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are not easily derived and extensive computational efforts to obtain near-optimal solutions for 

medium-sized RRAPs. 

3. Artificial Intelligent (AI) algorithms, such as simplified swarm optimization (SSO) [5, 22, 23], 

particle swarm optimization (PSO) [20], hybrid swarm optimization (HSO) [2, 3, 23], genetic 

algorithms (GA) [7], artificial immune algorithm (IA) [4], artificial bee colony algorithm (ABC) 

[6, 21], and PSSO (combining both PSO and SSO) [23], are used to reduce the computational 

burden for obtaining approximated solutions for larger RRAPs. 

 

Among these algorithms, AI algorithms have gained much attention as they can improve the 

efficiency and solution quality of existing algorithms, resulting in good-quality solutions for solving large 

practical problems [2, 3, 4, 5, 6, 20, 21, 22, 23]. 

Among various AI algorithms, SSO first proposed by Yeh [20, 23] is attractive because it is easy to 

understand and implement, efficient, in most cases, effective in obtaining high-quality solutions, simple 

to code using different computer languages, and sufficiently flexible to be used with other algorithms 

(hybrid algorithms) [2, 3, 5, 22, 23]. Hence, the goal of this study is to extend the traditional RRAP to 

GRRAP and solve the novel GRRAP based mainly on BAT and SSO [1].  

The remainder of this paper is organized as follows. Section 2 introduces the traditional RRAP, 

BAT, SSO, and penalty functions. Section 3 presents the proposed BAT-connected vectors, novel small-

sampling tri-objective orthogonal array (SS3OA), and the proposed new BAT-SSOA3 hybrid with the 

boundary condition differentiated from the cost constraint, BAT, and SS3OA. In Section 4, a 

comprehensive comparative study on the performance of the proposed BAT-SSOA3 and existing methods 

adapted from the traditional RRAP is presented. Finally, the conclusions are presented in Section 5. 

2. RRAP, BAT, SSO, AND PENALTY FUNCTION 

The traditional RRAP s generalized to GRRAP, and the proposed BAT-SSOA3 is based on BAT, 

SSO, and penalty functions to solve the GRRAP. Hence, before presenting the proposed BAT-SSOA3, 

the required notations, the traditional RRAP, and the reasons for generalizing RRAP, basic BAT, simple 
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SSO, and a common penalty function are introduced briefly in the following subsection.  

2.1 Notations 

The notations used in the study are listed below. 

Nvar : number of subsystems/redundancy variables/reliability variables. 

Nsol : number of solutions. 

Ngen : number of generations  

I : number generated from interval I randomly. 

ni : redundancy variable in subsystem i for i = 1, 2,…, Nvar. 

ri : reliability variable in subsystem i for i = 1, 2,…, Nvar. 

n : n = (n1, n2, ..., nNvar) 

r : r = (r1, r2, ..., rNvar). 

Xk : Xk = (nk, rk) = (xk,1, xk,2, …, x2k,Nvar) for k = 1, 2, …, Nsol. 

Pk : pBest of the kth solution Pk = (p1, p2,… p2Nvar) for k = 1, 2, …, Nsol. 

G : gBest G = (g1, g2,… g2Nvar) which is the best solution among all solutions. 

PgBest : PgBest = G 

Rs(n, r) : system/network reliability under n and r. 

Rp(n, r) : penalized system/network reliability under n and r. 

gv(n, r) : volume constraint under n and r. 

gc(n, r) : cost constraint under n and r. 

gw(n, r) : weight constraint under n and r. 

F(•) : fitness function of solution •. 

•ub : upper bound of •, e.g., Vub, Cub, Wub 

2.2 Reliability Redundancy Allocation Problem 

RRAP is an important mechanism that gradually emerges in the early stages of planning, designing, 

and controlling systems/networks [24]. The traditional RRAP has a maximum of five subsystems, that is, 

Nvar  5. n = (n1, n2, . . ., nNvar) and r = (r1, r2, . . ., rNvar) are assigned as the vectors formed by redundancy 

and reliability variables, respectively, where 0  r1, r2, r3, r4, r5  1, and n1, n2, n3, n4, n5 = 1, 2, …, 10 [2, 

3, 4, 5]. The general model for RRAP can be defined using mixed-integer nonlinear programming as 

follows [2, 3, 4, 5, 24]: 

Maximize Rs(n, r)  (1) 
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Subject to gv(n, r) = 
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Eq. (1) is the objective of maximizing the system reliability Rs(n, r) of the RRAP. Eqs. (2) – (4) are 

nonlinear constraints for the volume, cost, and weight, respectively. 

The four benchmark RRAPs are depicted in Fig. 1 [2, 3, 4, 5, 24], and the corresponding data, that 

is, i105, i, wi
2

iv , wi, Vub, Cub, and Wub, for the series system shown in Fig. 1(1) and the bridge system 

shown in Fig. 1(3) are listed in Table 1. 

 
 

 
(1) The series system (2) The series-parallel system 
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(3) The complex (bridge) system (4) The over-speed protection system 

Figure 1. Four benchmark RRAPs. 

 

Table 1. Data used in Fig. 1(1) and 1(3) [2, 3, 4, 5, 24]. 

Subsystem i i105 i wi
2

iv  wi Vub Cub Wub 
1 
2 
3 
4 
5 

2.330 
1.450 
0.541 
8.050 
1.950 

1.5 
1.5 
1.5 
1.5 
1.5 

1 
2 
3 
4 
2 

7 
8 
8 
6 
9 

110 175 200 

 

The following property was first proposed in [2, 3] to perform a local search to improve the solution 

quality, including the adjustment of an infeasible solution to a feasible solution.  

Property 1: Let the values of both ni and rk be constants for i  j  {1, 2, …, Nvar}. Rs(n, r) is maximized 
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Example 1. Let CUB=191, n = (3, 2, 2, 3, 3), and r = (0.77946645, 0.87173278, 0.90284951, 0.71148780, 

0.78781644). Eq. (17) is implemented to improve the value of the last reliability variable, 

i.e., r5, in r. After that, we have new r = r* = (0.77946645, 0.87173278, 0.90284951, 

0.71148780, 0.7878166527), Rs(n, r) = .93168229721527107 is increased to Rs(n, r*) = 

0.9316823242437, and gc(n, r) = 174.999954 is also increased to gc(n, r*) = 

174.99999999999997. 

 

Many comprehensive works on RRAPs can be found in the existing literature, and the details can 

be found in [2, 3]. As shown in Fig. 1, each benchmark is relatively simple and cannot satisfy many 

networks for a particular purpose in practical life. Hence, there is a need to extend the traditional RRAP 

to a general RRAP to meet all types of networks in real life. 

The analytical solution for Fig. 1(3) is given by Eq. (6), which shows that it is difficult to calculate 

the network reliability even for the small-sized benchmark, as shown in Fig. 1(3). Thus, a general RRAP, 

although important, is difficult to solve [3]. 

3 5 3 5 3 3 51 2 4 1 4 2 1 2 4 1 2

5 3 5 3 5 3 51 2 4 1 4 2 4 1 2 4

1 2 3 4 1 4 5 2 3 5 1 2 3 4 1 2 3 5

1 2 4 5 1 3 4 5 2 3 4 5 1 2 3 4 5

( , )  

               2

n n n n n n nn n n n n n n n n n n

s

n n n n n n nn n n n n n n n n n

R r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r

=  +  +   +   −    −   

−    −    −    +    

n r
. (6) 

2.3 Binary-Addition-Tree Algorithm 

Yeh [14] proposed the first BAT algorithm, which was based on binary addition, to find all possible 

vectors (solutions) in the solution space. X = (x1, x2, …., xNvar) was assigned as the vector, and the current 

coordinate xi as the state of ai. Note that xi is either 0 or 1 for i = 1, 2, …, Nvar in the binary-state network, 

which is the structure of the general RRAP. The two main principles of implementing the (forward) BAT 

are as follows: 
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1. If xi = 0, xi is changed to 1, and a new vector is obtained. For example, vector X = (0, 0, 1) is 

updated to (1, 0, 1) if xi = x1 = 0, that is, 001 is updated to 101 by adding 1 to the first coordinate 

using binary addition, where X is the current vector and (1, 0, 1) is the new X. 

2. If xi = 1, xi is changed to 0, and proceeds to the next coordinate, that is, x(i+1), to repeat the first 

principles above. For example, (1, 0, 1) is updated to (0, 1, 1), that is, 101 is updated to 011 by 

adding 1 to the first coordinate using binary addition. 

 

Each vector obtained from the BAT following the first step above corresponds to a subnetwork, and 

all obtained vectors do not need to be stored, saving computer memory. However, in the proposed BAT-

SSOA3, any vector is stored, if there is a path connecting the input and output in its corresponding 

subnetwork. The BAT pseudocode is given as follows [14, 25, 26]: 

Algorithm: BAT 

Input: A network G(V, E) with the input node 1 and the output node n. 

Output: All vectors without duplications. 

STEP B0. Let Nvar-tuple X be a vector zero and i = 1. 

STEP B1. If xi = 1, let xi = 0. Otherwise, let xi = 1, i = 1, and go to STEP B1. 

STEP B2. If i < Nvar, let i = i + 1 and go to STEP B1. Otherwise, halt. 

 

STEP B0 initializes X = 0 and i = 1. STEP B1 implements two principles, and STEP B2 implements 

the stopping criterion. The time complexity for the BAT is O(2m+1) to determine all possible vectors from 

vector zero to vector one [25], where m = Nvar. Through the use of the pseudocode, the BAT is easy to 

code, efficient to execute, and effective in saving computer memory. 

For example, Fig. 2. is an activity-on-arc bridge-binary-state network. After implementing the BAT, 

we can have all vectors X = (x1, x2, x3, x4, x5), as shown in columns x1, x2, x3, x4, and x5 of Table 2. The 

details of the other columns and the last row are provided in Section 3.1. 
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1 4
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s t
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a2
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a4

a5

 
Figure 2. The bridge Network 

Table 2. All vectors obtained from the BAT. 

iteration x1 x2 x3 x4 x5 connect? Pr(x1) Pr(x2) Pr(x3) Pr(x4) Pr(x5) 
5

1

Pr( )i

i

x
=

  

1 0 0 0 0 0        

2 1 0 0 0 0        

3 0 1 0 0 0        

4 1 1 0 0 0        

5 0 0 1 0 0        

6 1 0 1 0 0        

7 0 1 1 0 0        

8 1 1 1 0 0        

9 0 0 0 1 0        

10 1 0 0 1 0 Y 0.95 0.10 0.15 0.80 0.25 0.002850 

11 0 1 0 1 0        

12 1 1 0 1 0 Y 0.95 0.90 0.15 0.80 0.25 0.025650 

13 0 0 1 1 0        

14 1 0 1 1 0 Y 0.95 0.10 0.85 0.80 0.25 0.016150 

15 0 1 1 1 0 Y 0.05 0.90 0.85 0.80 0.25 0.007650 

16 1 1 1 1 0 Y 0.95 0.90 0.85 0.80 0.25 0.145350 

17 0 0 0 0 1        

18 1 0 0 0 1        

19 0 1 0 0 1 Y 0.05 0.90 0.15 0.20 0.75 0.001013 

20 1 1 0 0 1 Y 0.95 0.90 0.15 0.20 0.75 0.019238 

21 0 0 1 0 1        

22 1 0 1 0 1 Y 0.95 0.10 0.85 0.20 0.75 0.012113 

23 0 1 1 0 1 Y 0.05 0.90 0.85 0.20 0.75 0.005738 

24 1 1 1 0 1 Y 0.95 0.90 0.85 0.20 0.75 0.109013 

25 0 0 0 1 1        

26 1 0 0 1 1 Y 0.95 0.10 0.15 0.80 0.75 0.008550 

27 0 1 0 1 1 Y 0.05 0.90 0.15 0.80 0.75 0.004050 

28 1 1 0 1 1 Y 0.95 0.90 0.15 0.80 0.75 0.076950 

29 0 0 1 1 1        

30 1 0 1 1 1 Y 0.95 0.10 0.85 0.80 0.75 0.048450 

31 0 1 1 1 1 Y 0.05 0.90 0.85 0.80 0.75 0.022950 

32 1 1 1 1 1 Y 0.95 0.90 0.85 0.80 0.75 0.436050 

SUM            0.941763 

 

To validate the performance of the BAT, it is compared with the breadth-search-first algorithm (BFS) 

[14], universal generating function method (UGFM) [26], depth-search-first algorithms (DFS) [26], QIE 

[14], recursive BFS-based SDP (RSDP) [14], and binary-decision diagram (BBD) [27]. Hence, a BAT 
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implemented in the proposed BAT-SSOA3 to calculate the reliability of the general RRAP. 

2.4 Simplified Swarm Optimization 

The first SSO integrated both evolutionary computation and swarm intelligence, which was also 

proposed by Yeh [20, 23]. Like most AI, all solutions are randomly initialized in the first generation [2, 

3, 5, 11, 20, 22, 23]. xi,j is assigned as the jth variable of the ith solution for i = 1, 2, …, Nsol and j = 1, 

2, …, Nvar. The basic idea of SSO is to update xi,j for all i and j based on the ith variable of the best 

solution among all the solutions, that is, G = PgBest (called gBest), the best solution in its own evolution 

history, that is, Pi (called pBest), itself, and a new random feasible value according to the probability cg, 

cp, cw, and cr, where cg + cp + cw + cr = 1 [20, 23]. The SSO update mechanism is described as follows 

[20, 23]: 

[0,1]

, [0,1]

,

[0,1],

[0,1]

if  ρ [0, )

if  ρ [ , )
  
if  ρ [ , )

if  ρ [ ,1]

j g g

i j g g p p

i j

g p g p w wi j

g p w

g c C

p c c c C
x

c c c c c Cx

c c cx

  =


 + =
= 

 + + + =
  + +


. (7) 

The SSO pseudocode is presented as follows [20, 23]: 

Algorithm: SSO 

STEP S0. Generate Pi = Xi randomly, calculate F(Pi) = F(Xi), let t = 1, and find gBest such that F(Pi)  

F(PgBest) for i = 1, 2, …, Nsol. 

STEP S1. Let i = 1. 

STEP S2. Update Xi based on Eq. (7). 

STEP S3. If F(Pi) < F(Xi), let Pi = Xi and go to STEP S4. Otherwise, go to STEP S5. 

STEP S4. If F(PgBest) < F(Pi), let gBest = i. 

STEP S5. If i < Nsol, let i = i + 1 and go to STEP S2.  

STEP S6. If t < Ngen, let t = t + 1 and go to STEP S1. Otherwise, G = PgBest is the final solution. 

 

The flowchart of the SSO is shown in Fig. 3 [20, 23]. 
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Let i =1

Let j = 1

Generate [0,1]  

N

N

N

N

Y

N

Y

No

<Cg Replace xi,j with gjY

<Cp Replace xi,j with pi,jY

>Cw Reset xi,j randomlyY

j<Nvarj = j + 1

Xi is better than Pi Pi = Xi

i<Nsol i = i + 1Y

Halt?Halt Y

N

N

Xi is better than GG = Xi Y

Initialize Pi = Xi 

randomly and find G

 
Figure 3. SSO flowchart. 

SSO has been widely implemented to solve many real-life problems, including disassembly 

sequencing problems [28], training artificial neural networks (ANNs) [29], high-dimensional 

multivariable and multimodal numerical continuous benchmark functions [30], parallel-machine 

scheduling problems [31], dispatch problems [32], RAP/RRAP [1, 2, 3], data mining [33], and allocation 

and design of RFID networks [34].  

Owing to its simplicity and flexibility, SSO has been hybrid with simulated annealing [1], GA [5], 

PSO [22], ANN [29], bacterial foraging algorithm [35], and artificial bee colony [36]. Furthermore, SSO 

outperforms PSO, GA, EDA, and ANN in both efficiency and effectiveness (solution quality) based on 

the computation results [1, 5, 22, 29, 35, 36]. Hence, SSO is adapted in this study to solve the GRRAP. 

2.5 Penalty Function 

There are only three constraints: volume, cost, and weight. If any solution violates any of these 
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constraints is infeasible. To guide solutions to unexplored areas near the boundary of the solution space 

to obtain an optimal or near-optimal solution, the most common approach is to implement a penalty 

function for these problems with few constraints [2, 3, 5, 6, 21, 22]. The most common penalty function 

is as follows: 

3

ub ub ub( ,  ) ( ,  ) , , ,  1
( ,  ) ( ,  ) ( ,  )

p s

v c w

V C W
R R Min

g g g

        
=                 

n r n r
n r n r n r

.  (8) 

The system/network reliability Rs(n, r) of any infeasible solution is replaced by the penalty function 

Rp(n, r) in the proposed BAT-SSOA3. 

Example 2. Assume that Rs(X) = .9316, gv(X) = 199, gc(X) = 174.9, and gw(X) = 30.9 and let VUB = 

200, CUB = 175, and WUB = 30. Thus,  

3

ub ub ub( ) ( ) , , ,  1
( ) ( ) ( )

p s

v c w

V C W
R X R X Min

g X g X g X

        
=                 

 

= 0.8525. (9) 

3. THE PROPOSED BAT-SSOA3 

There are four major innovations in the proposed BAT-SSOA3. 

1. Select parameters and terms in Eq. (7) based on the training using small samples for all test 

problems in the proposed SS3OA; 

2. Calculate the reliability using the connected vectors obtained from the BAT; 

3. Update G using the boundary update. 

4. Add the redundancy variable ni and reliability variable ri as variable xi = (ni + ri) to reduce 

the update time. 

 

These four parts are discussed and proposed in this section to improve the SSO for mixed-integer 

nonlinear programming problems. 

3.1 BAT-Connected Vectors in Calculating Network Reliability 

All vectors in the solution space can be obtained after implementing the BAT [14, 25, 26, 27], as 
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discussed in Section 2.3. To ensure optimal use of computer memory, BAT uses only one vector from the 

beginning to the end of the entire process. However, this advantage is modified in which all connected 

vectors are saved to calculate the reliability of the GRRAP without finding all connected vectors every 

time the objective function is calculated. 

A vector X is considered connected if its corresponding G(X) is connected, that is, there is a path 

from the input node to the output node in G(X). An example is assigning nodes 1 and 4 as the input and 

output nodes, respectively. Fig. 4(1) and 4(2) show G(X) and G(Y), where X = (0, 0, 1, 0, 1) and Y = (0, 

0, 1, 0, 1). In addition, X is disconnected, and Y is connected. 

1 4

3

2

s t

x1=0

x2=0

x3=1

x4=0

x5=1

 

1 4

3

2

s t

x1=1

x2=0

x3=1

x4=0

x5=1

 
(1) G(X) and X = (0, 0, 1, 0, 1) (2) G(Y) and Y = (0, 0, 1, 0, 1) 

Figure 4. Examples of connected vectors. 

In the proposed BAT, all connected vectors, for example, vectors 10, 12, 14 – 16, 19, 20, 22 – 24, 

26 – 28, 30 – 32, which are marked “Y” in the column titled “connect?” in Table 2, are stored to calculate 

the system/network reliability for each solution at each generation. Pr(xi) denotes the probability when 

the state of ai = xi, and 

5

1

Pr( )i

i

x
=

  is the probability of the connected vector X = (x1, x2, x3, x4, x5). 

For example, using the data listed in the second last row of Table 2, Pr(X) = 0.95  0.90  0.85  

0.80  0.75 = 0.436050, where Pr(x1) = 0.95, Pr(x2) = 0.90, Pr(x3) = 0.85, Pr(x4) = 0.80, and Pr(x5) = 0.75. 

Finally, the sum of the probabilities of all complete vectors, that is, 

5

1

Pr( )i

X i

x
=

  = 0.941763 for all 

connected vectors X, is the reliability. 

In addition, prior to calculating the reliability, each test problem needs to run the BAT once only to 

have all the connected vectors. 

3.2 Small-Sampling Tri-Objective Orthogonal Array 

Setting and tuning parameters systematically and efficiently without exploring all possible 
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combinations are important for most AI. The proposed small-sampling tri-objective orthogonal array 

(SS3OA) is based on an orthogonal array (OA) and small sampling and has three goals:  

1. Tune parameters (i.e., Cg, Cp, and Cw) in SSO systematically. 

2. Decide which items (i.e., items 1–4 in Eq. (7)) can be removed to efficiently obtain a better 

solution quality. 

3. Avoid misleading and overfitting in using the OA. 

 

An OA is an array in the design of experiments [1, 37], and it is used to study several factors 

simultaneously to determine the best combination of factor levels efficiently without trying all possible 

combinations. It arranges factors, such as cg, cp, and cw, in the proposed SS3OA in columns and trys in 

rows, such that each column is orthogonal to the other columns. La(b
c) is a standard OA notation with a 

trys, b levels, and c factors. To test whether it is better to have higher, medium, and low levels of the 

corresponding factors, each parameter has three levels: 1, 2, and 3, which correspond to large, medium, 

and low, respectively. 

L9(3
3) shown in Table 3 is used in the proposed SS3OA, and the related level values are shown in 

Table 4. 

Table 3. Example L9(3
3) and the levels of each factor. 

Try Factor 1 Factor 2 Factor 3 
1 1 1 1 
2 1 2 2 
3 1 3 3 
4 2 1 2 
5 2 2 3 
6 2 3 1 
7 3 1 3 
8 3 2 1 
9 3 3 2 

 

Table 4. Three levels and the related probabilities. 

 cg cp cw 
1 0.6 0.30 0.30 
2 0.4 0.25 0.20 
3 0.2 0 0 

 

In addition, to achieve our second goal, we tested removing the second, third, and/or fourth items 
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in Eq. (7) and set some levels to zero. For example, cp and cw at level 3 denote that the new updated 

variable is either from G (the first item in Eq. (7)) or from a newly generated feasible random number 

(the fourth item in Eq. (7)).  

For example, after listing Cg = cg, Cp = cg + cp, and Cw = Cp + cw in Tables 3 and 4, Table 5 was 

obtained. In Table 5, Trys 0 and 1 had Cw > 1.0, which indicates that cr = 0, that is, no random feasible 

value is generated to replace the related variable. Trys 2, 5, and 8 had Cg = Cp, which indicates that the 

role of pBest is completely removed, that is, Item 2 is discarded in Eq. (1). Runs 2, 4, and 6 had Cp = Cw, 

which indicates that the third item in Eq. (1) is removed. 

Table 5. Three levels and the related probabilities. 

Try Factor 1 Factor 2 Factor 3 cg cp cw Cg Cp Cw 
0 1 1 1 0.6 0.30 0.30 0.60 0.90 1.20 
1 1 2 2 0.6 0.25 0.20 0.60 0.85 1.05 
2 1 3 3 0.6 0 0 0.60 0.60 0.60 
3 2 1 2 0.4 0.30 0.20 0.40 0.70 0.90 
4 2 2 3 0.4 0.25 0 0.40 0.65 0.65 
5 2 3 1 0.4 0 0.30 0.40 0.40 0.70 
6 3 1 3 0.2 0.30 0 0.20 0.50 0.50 
7 3 2 1 0.2 0.25 0.30 0.20 0.45 0.75 
8 3 3 2 0.2 0 0.20 0.20 0.20 0.40 

 

After performing all nine Tries, the next step for the SS3OA is to average these fitness values based 

on the levels of each factor. For example, in Table 6, the first three values below Try 8, that is, 0.9997044, 

0.9999069, and 0.9957876, are the averages of the fitness values based on Levels 1, 2, and 3. That is, 

0.9997044 = (0.9997173 + 0.9995158 + 0.9998801)/3 as 0.9997173, 0.9995158, and 0.9998801 are 

obtained based on Level 1 of Factor 1 (i.e., cg); 0.9999069 = (0.9999575 + 0.9998977 + 0.9998655)/3 as 

0.9999575, 0.9998977, and 0.9998655 are obtained based on Level 2 of Factor 1; 0.9957876 = 

(0.9991318 + 0.9998328 + 0.9883984)/3 as 0.9991318, 0.9998328, and 0.9883984 are obtained based on 

Level 3 of Factor 1. In addition, 0.9999069 is the best among the three averages. Hence, there is a new 

Try, that is, Try 9, whose level for Factor 1 is Level 2, that is, cg = 0.4. Similarly, the levels for Factors 2 

and 3 are levels 2 and 1 in Try 9, respectively. 
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Table 6. Average fitness values based on levels. 

 Try Fitness 
 0 0.9997173 
 1 0.9995158 
 2 0.9998801 
 3 0.9999575 
 4 0.9998977 
 5 0.9998655 
 6 0.9991318 
 7 0.9998328 
 8 0.9883984 

cg 1 0.9997044 
 2 0.9999069 
 3 0.9957876 

cp 1 0.9996022 
 2 0.9997488 
 3 0.9960480 

cw 1 0.9998052 
 2 0.9959572 
 3 0.9996365 

 

To achieve our third goal for the proposed SS3OA, traditional parameters could either be trained 

from a problem and implemented to test other problems, or trained from all test problems and tested on 

all problems again. The former could result in misleading information, whereas the latter could result in 

overfitting. Nrun is assigned as the number of runs for each test problem. To overcome both issues in the 

proposed SS3OA, we only train five independent runs for all problems. 

3.3 Boundary Update 

Based on experience and from literature, SSO is powerful in global searches, but may be weak in 

local search. The boundary update is derived by differentiating the cost function, as shown in Eq. (5), 

and was first proposed in [2, 3]. Owing to their effectiveness, some SSO algorithms have already 

implemented boundary updates to improve the local search of SSO [2, 3]. Hence, the boundary update is 

also adapted in the proposed SS3OA; however, it limited the update of one variable in G at each 

generation as it required more time to implement Eq. (5). 

The pseudocode for the proposed boundary update to update the current G is as follows: 

Algorithm: Boundary_Update 

STEP U0. Let the integer remainder of gen/Nvar be i and G = (g1, g2, …, gNvar). 

STEP U1. Update gi to g* based on the boundary condition listed in Eq. (1). 

STEP U2. If new G, say G*, is improved, let G = G*; otherwise, keep G and discard the update. 
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Note that boundary updates have been used in other (continuous) SSO variants, as in [2, 3]. 

However, they are first used in the traditional (discrete) SSO, which update solutions simply based on 

Eq. (7) in the proposed BAT-SSOA3. 

3.4 Affixation Solution Structure 

Both the redundancy variables (integer variables) and reliability variables (floating-point variables) 

are included in traditional RRAP and the proposed GRRAP. Thus, we need two different update 

mechanisms, that is, one for integer variables and one for floating-point variables, to update different 

types of variables. To simplify the update mechanism to reduce runtime, the proposed BAT-SSOA3 

combines two different types of variables. For example, if ni and ri are from the same subsystem, they 

could be added, that is, (ni + ri), to create one floating-point variable. For instance, in Example 1 where 

n = (3, 2, 2, 3, 3) and r = (0.77946645, 0.87173278, 0.90284951, 0.71148780, 0.78781644), they can be 

combined to form X = n + r = (3.77946645, 2.87173278, 2.90284951, 3.71148780, 3.78781644).  

3.5 Pseudocode of the Proposed BAT-SSOA3 

The detailed procedure for the proposed BAT-SSOA3 is as follows: 

STEP 0. Based on SS3OA, run the proposed BAT-SSOA3 five times for each test problem, and each 

run has nine different parameter settings, as shown in Table 5. Find the combination that 

has the highest average for the last G in all test problems and in all five runs with nine 

settings. 

STEP 1. Run BAT and store all connected vectors. 

STEP 2. Generate Pi = Xi = (ri + ni) randomly, calculate Rp(Pi) = Rp(Xi) based on the penalty function 

and connected vectors obtained from BAT, let t = 1, and find G such that Rp(Pi)  Rp(G) for 

i = 1, 2, …, Nsol. 

STEP 3. Let i = 1. 

STEP 4. Update Xi based on Eq. (7) if Xi  G. Otherwise, update Xi based on the proposed boundary 

update. 
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STEP 5. If Rp(Pi) < Rp(Xi), let Pi = Xi. Otherwise, go to STEP 7. 

STEP 6. If Rp(G) < Rp(Pi), let G = Pi. 

STEP 7. If i < Nsol, let i = i + 1 and go to STEP S2.  

STEP 8. If t < Ngen, let t = t + 1 and go to STEP S1. Otherwise, PgBest is the final solution. 

 

It is trivial that the SSO in the proposed BAT-SSOA3 is similar to the traditional SSO, as in STEPs 

2–8, except that 

1. SS3OA is implemented to select the values of Cg, Cp, and Cw, and determine which terms in Eq. 

(7) must be discarded or kept as in STEP 0. 

2. The connected vectors determined and stored in the BAT are used to calculate Rp(Xi) in STEP 

1. 

3. The penalty function is adopted to calculate Rp(Xi) in STEPs 2 and 4. 

4. G is updated using the proposed boundary update. 

5. All solutions, including Xi, Pi, and G, are constructed using the affixation solution structure, as 

discussed in Section 3.4. 

4. Numerical examples 

Figure 5. Twelve test problems. 

To evaluate the algorithm performance and solution quality of the proposed BAT-SSOA3 for the 
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proposed general RRAPs, two experiments, Ex1 and Ex2, are included in this study. In addition, 12 test 

problems, shown in Fig. 5, are used to validate the performance of the BAT-SSOA3 by comparing it with 

other state-of-the-art algorithms. Note that the 12 problems are well-known binary-state networks in the 

network research area [14, 25, 26, 27]. 

4.1 Test Environment 

Each subsystem in each test problem of the two experiments can have a maximum of 10 identical 

components in parallel. The corresponding constants of the ith arc in each network, which are i105, i, 

wi
2

iv , and wi in Eq. (2)–(4), are similar to those of the th subsystem in Table 1, where  

 = 
5 if the remainder of /5 is zero

the reminder of /5 otherwise

i

i





. (10) 

For example, in the 6th arc of each network for all test problems, i105 = 2.330, i = 1.5, wi
2

iv  = 1, and 

wi = 7, which are all copied from the 1st subsystem in Table 1, as the remainder of 6/5 is 1. 

The three upper bounds of constraints Vub, Cub, and Wub are also based on Table 1, such that  

•ub,new = Nvar  •ub,old/5. (11) 

For example, in a network with nine arcs (Fig. 5(4)), Vub = 9  110/5 = 198, Cub = 9  175/5 = 315, and 

Wub = 9  200/5 = 360 as Vub = 110, Cub = 175, and Wub = 200 in Table 1. 

Ex 1 had ten settings for the proposed BAT-SSOA3, that is, there are ten different BAT-SSOA3, 

whereas Ex 2 had six algorithms. Hence, there were 10 + 6＝ 15 algorithms, including the proposed 

BAT-SSOA3 in Ex 1 and Ex 2.  

All the algorithms in both Ex 1 and Ex 2 are programmed in C++ using Dev C++5.11, carried out 

on an Intel Core i9-9900K @3.60 GHz PC with 48 GB memory Windows 10 (runtime unit is in CPU 

seconds). In addition, for a fair comparison, in each test, Nrun = 100 and Ngen = 1000, which is also the 

stopping criterion, Nsol = 100, and all algorithms had the same calculation number of fitness (reliability). 

Moreover, to easily observe the convergent trend, we separated Ngen = 1000 into four equal-size 

generations, that is, 1–250, 251–500, 501–750, and 751–1000, and recorded their corresponding results. 
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Moreover, the 250th, 500th, 750th, and 1000th generations are called stages 0, 1, 2, and 3, respectively, in 

the rest of the tables. 

4.2 Ex 1 

Ex 1 mainly tests and verifies the benefit of the proposed SS3OA, which not only systematically 

selects the values of Cg, Cp, and Cw but also efficiently decides which terms in Eq. (7) should be retained 

or discarded. The BAT-SSOA3 with the best parameter settings and terms in Eq. (7) from SS3OA, of Ex 

1 for all test problems are adopted in Ex 2 for comparison with other algorithms. 

As discussed in Section 3.2, there are only five runs for each test problem in the proposed SS3OA, 

where each problem had (9+1) different parameter settings, as shown in Tables 7–9. 

Note that in these tables, stages 0, 1, 2, and 3 represent the 250th, 500th, 750th, and 1000th generations, 

respectively. The bold values are the best among the nine trials. The number in bold indicates the best 

result among the nine tests of the same stage for the same test problem. For example, based on Table 7, 

0.999781 is the best among the nine tests in test problem 1 at stage 0. 

Based on the results listed in Tables 7 and 8, the average of the best final G or the mean averages 

obtained from BAT-SSOA3 are from Try 3, that is, Cg = 0.4, Cp = 0.7, and Cw = 0.9. In addition, Try 3 

had a greater number of averages for the best final G and had the best mean averages listed in Tables 7–

9. In contrast, these tries with cr = 0, that is, Tries 0 and 1, are already in local optima and convergence 

in the first stage. The largest cr indicates the worst solution quality for all aspects; for example, cr = 0.6 

for Try 8 (the worst) and cr = 0.5 for Try 6 (the second worst). Hence, it is not appropriate to discard the 

fourth item in Eq. (7), and a larger value for cr. The reason is that a smaller/zero cr indicates a smaller/zero 

chance to escape the local trap after the solution is trapped; larger cr indicates a larger divergence and 

leaves the optimum far away. 

Based on Table 9, Cg = 0.40 was preferable, for all stages, as an average cg indicates high reliability. 

Hence, a middle value of Cg indicates an improved probability of obtaining a better solution. However, 

for both cp and cw, the best levels were not fixed values. For example, cp was better when levels were 2, 

2, 1, and 1 for stages 0–3, respectively, and cw was better when levels were 1, 3, 3, and 3 for stages 0–3, 
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respectively  

As discussed in Section 3.2, to decide whether to adapt and implement Cg = 0.4, Cp = 0.7, and Cw = 

0.9 in Ex 2 for the proposed BAT-SSOA3, the average based on the levels of each factor, which are 

summarized in Table 9, must be determined. Thereafter, all settings are completed to determine the best 

levels for cg, cp, and cw for obtaining the best solutions listed in Table 10. 

Table 7. Average of the best G for each test problem in each stage for five runs. 
stage Try 1 2 3 4 5 6 8 9 10 11 12 15 average 

0 0 0.99911 0.999527 1 0.999629 0.999414 0.999983 0.999936 0.999731 0.999539 0.999997 0.999999 0.999745 0.999717 

 1 0.999599 0.999811 0.999999 0.999494 0.999553 0.999995 0.999913 0.999753 0.996897 0.999987 0.999959 0.999228 0.999516 

 2 0.999781 0.99991 1 0.999939 0.99986 0.999999 1 0.999923 0.999302 0.999998 0.999999 0.999852 0.99988 

 3 0.999701 0.999957 1 0.999957 0.999982 1 1 0.999977 0.999969 1 1 0.999946 0.999958 

 4 0.99978 0.999948 1 0.999933 0.999911 0.999998 0.999997 0.999889 0.999582 0.999999 0.999996 0.999739 0.999898 

 5 0.999773 0.999918 1 0.999843 0.999945 0.999997 0.999996 0.999862 0.99946 0.999998 0.999995 0.999599 0.999865 

 6 0.999735 0.999798 1 0.999523 0.998638 0.999976 0.99981 0.999441 0.996502 0.999967 0.999983 0.99621 0.999132 

 7 0.99978 0.999915 1 0.999942 0.999753 0.999996 0.999993 0.99978 0.999513 0.999999 0.999996 0.999325 0.999833 

 8 0.999588 0.999541 0.99999 0.998404 0.986951 0.999304 0.992515 0.999157 0.913531 0.999967 0.999156 0.972676 0.988398 

 9 0.999767 0.999963 1 0.999954 0.999984 1 1 0.999978 0.999969 1 1 0.999959 0.999965 

1 0 0.99911 0.999527 1 0.999629 0.999414 0.999983 0.999936 0.999731 0.999539 0.999997 0.999999 0.999745 0.999717 

 1 0.999599 0.999811 0.999999 0.999494 0.999553 0.999995 0.999913 0.999753 0.996897 0.999987 0.999959 0.999228 0.999516 

 2 0.999781 0.999936 1 0.999952 0.999958 0.999999 1 0.999956 0.999675 0.999999 0.999999 0.999884 0.999928 

 3 0.999715 0.999967 1 0.999959 0.999983 1 1 0.999982 0.999974 1 1 0.999951 0.999961 

 4 0.99978 0.999962 1 0.999965 0.999971 0.999999 0.999998 0.99995 0.999826 0.999999 0.999997 0.999879 0.999944 

 5 0.999774 0.999931 1 0.99991 0.99997 0.999999 0.999997 0.999934 0.999521 0.999998 0.999998 0.999775 0.999901 

 6 0.999748 0.999922 1 0.999857 0.99923 0.999985 0.999836 0.999441 0.998901 0.999996 0.999983 0.999333 0.999686 

 7 0.99978 0.999963 1 0.999957 0.999864 0.999999 0.999999 0.999915 0.999657 0.999999 0.999997 0.999813 0.999912 

 8 0.999708 0.999541 0.999996 0.998692 0.986951 0.999879 0.998737 0.999157 0.973943 0.999972 0.999156 0.987048 0.995232 

 9 0.999767 0.999967 1 0.999958 0.999985 1 1 0.999984 0.999973 1 1 0.99962 0.999966 

2 0 0.99911 0.999527 1 0.999629 0.999414 0.999983 0.999936 0.999731 0.999539 0.999997 0.999999 0.999745 0.999717 

 1 0.999599 0.999811 0.999999 0.999494 0.999553 0.999995 0.999913 0.999753 0.996897 0.999987 0.999959 0.999228 0.999516 

 2 0.999781 0.999957 1 0.999952 0.999967 0.999999 1 0.999968 0.999766 0.999999 0.999999 0.999884 0.999939 

 3 0.999757 0.99997 1 0.999962 0.999985 1 1 0.999985 0.999976 1 1 0.999959 0.999966 

 4 0.99978 0.999967 1 0.999965 0.999979 1 0.999999 0.999961 0.999873 1 0.999999 0.999895 0.999951 

 5 0.99978 0.99994 1 0.999922 0.99997 0.999999 0.999999 0.999934 0.999729 0.999999 0.999998 0.999775 0.999921 

 6 0.99976 0.999922 1 0.999897 0.999439 0.999993 0.999836 0.999583 0.998901 0.999996 0.999983 0.999333 0.99972 

 7 0.99978 0.999963 1 0.999961 0.99991 0.999999 0.999999 0.999944 0.999789 0.999999 0.999998 0.999883 0.999936 

 8 0.999753 0.999541 0.999998 0.999045 0.986951 0.999879 0.998737 0.999375 0.990369 0.999972 0.999876 0.990021 0.99696 

 9 0.99978 0.99997 1 0.999966 0.999985 1 1 0.999985 0.999975 1 1 0.999968 0.999969 

3 0 0.99911 0.999527 1 0.999629 0.999414 0.999983 0.999936 0.999731 0.999539 0.999997 0.999999 0.999745 0.999717 

 1 0.999599 0.999811 0.999999 0.999494 0.999553 0.999995 0.999913 0.999753 0.996897 0.999987 0.999959 0.999228 0.999516 

 2 0.999781 0.999963 1 0.99996 0.999968 0.999999 1 0.999968 0.999893 1 1 0.999884 0.999951 

 3 0.999758 0.99997 1 0.999966 0.999985 1 1 0.999986 0.999976 1 1 0.99996 0.999967 

 4 0.999782 0.99997 1 0.999965 0.999979 1 0.999999 0.999978 0.999906 1 0.999999 0.999895 0.999956 

 5 0.99978 0.99994 1 0.999924 0.99997 0.999999 1 0.999934 0.999729 0.999999 0.999998 0.999857 0.999928 

 6 0.999767 0.999924 1 0.999907 0.999782 0.999996 0.999989 0.999624 0.999714 0.999996 0.999984 0.999333 0.999835 

 7 0.99978 0.999963 1 0.999967 0.999912 0.999999 0.999999 0.99996 0.999806 1 0.999999 0.999883 0.999939 

 8 0.999776 0.999541 0.999998 0.999045 0.989012 0.999879 0.998737 0.999375 0.990369 0.999972 0.999876 0.997185 0.99773 

 9 0.999781 0.99997 1 0.999966 0.999985 1 1 0.999985 0.999975 1 1 0.999968 0.999969 

 

Table 8. Average of the average G for each test problem in each stage for five runs. 
stage Try 1 2 3 4 5 6 8 9 10 11 12 15 average 

0 0 0.997963 0.999078 0.982713 0.999367 0.998115 0.999967 0.990083 0.994797 0.987132 0.996593 0.998744 0.987148 0.994308 

 1 0.998412 0.998405 0.999967 0.994694 0.989406 0.999908 0.99938 0.99783 0.992692 0.996846 0.99965 0.996275 0.996955 

 2 0.999742 0.999827 1 0.999842 0.99962 0.999997 0.999939 0.999757 0.99869 0.999996 0.99999 0.999066 0.999705 
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 3 0.999631 0.999899 1 0.999925 0.999951 1 0.999998 0.999966 0.999876 1 1 0.999931 0.999931 

 4 0.999732 0.999874 1 0.999831 0.999782 0.999997 0.999986 0.999801 0.999301 0.999997 0.999991 0.999246 0.999795 

 5 0.99975 0.999809 0.999999 0.999742 0.99955 0.999986 0.999952 0.999794 0.998519 0.999995 0.999965 0.999271 0.999694 

 6 0.999649 0.999673 0.999997 0.999327 0.996441 0.999891 0.997705 0.998369 0.991468 0.99994 0.999833 0.992929 0.997935 

 7 0.999682 0.999803 1 0.99988 0.999381 0.999988 0.999977 0.999391 0.998756 0.999994 0.999986 0.998755 0.999633 

 8 0.999322 0.9977 0.999911 0.996349 0.904061 0.830335 0.881246 0.9601 0.679505 0.974904 0.96735 0.767328 0.913176 

 9 0.999449 0.999911 1 0.999837 0.999963 1 0.999998 0.999969 0.999936 1 1 0.999945 0.999917 

1 0 0.997963 0.999078 0.982713 0.999367 0.998115 0.999967 0.990083 0.994797 0.987132 0.996593 0.998744 0.987148 0.994308 

 1 0.998412 0.998405 0.999967 0.994694 0.989406 0.999908 0.99938 0.99783 0.992692 0.996846 0.99965 0.996275 0.996955 

 2 0.999756 0.999859 1 0.999918 0.999763 0.999999 0.999994 0.999859 0.999465 0.999998 0.999997 0.999483 0.999841 

 3 0.999645 0.999906 1 0.99995 0.999962 1 0.999998 0.999974 0.999906 1 1 0.999942 0.99994 

 4 0.999735 0.999906 1 0.999902 0.999913 0.999999 0.999994 0.999901 0.999706 0.999999 0.999994 0.999652 0.999892 

 5 0.999755 0.999845 1 0.999877 0.999806 0.999993 0.999986 0.999875 0.999053 0.999996 0.999984 0.999615 0.999815 

 6 0.999694 0.999789 0.999999 0.999701 0.998647 0.999971 0.99878 0.998914 0.996751 0.999975 0.999953 0.995509 0.998974 

 7 0.999745 0.999931 1 0.999927 0.999799 0.999997 0.999995 0.999847 0.999511 0.999998 0.999993 0.999592 0.999861 

 8 0.999566 0.99836 0.999988 0.998144 0.972585 0.999152 0.97471 0.992516 0.885962 0.99963 0.997258 0.930947 0.979068 

 9 0.999536 0.999942 1 0.999933 0.999969 1 0.999999 0.999978 0.999952 1 1 0.999953 0.999938 

2 0 0.997963 0.999078 0.982713 0.999367 0.998115 0.999967 0.990083 0.994797 0.987132 0.996593 0.998744 0.987148 0.994308 

 1 0.998412 0.998405 0.999967 0.994694 0.989406 0.999908 0.99938 0.99783 0.992692 0.996846 0.99965 0.996275 0.996955 

 2 0.999764 0.99987 1 0.999931 0.999777 0.999999 0.999995 0.999912 0.999665 0.999999 0.999998 0.999657 0.999881 

 3 0.999673 0.999934 1 0.999957 0.999964 1 0.999998 0.999979 0.999923 1 1 0.999945 0.999948 

 4 0.999735 0.999943 1 0.999939 0.999938 0.999999 0.999995 0.999929 0.999767 0.999999 0.999995 0.999682 0.99991 

 5 0.999757 0.999882 1 0.999896 0.999834 0.999997 0.999995 0.999881 0.999289 0.999998 0.999989 0.999715 0.999853 

 6 0.999701 0.999857 1 0.999812 0.999042 0.999979 0.999675 0.999182 0.997212 0.999984 0.999953 0.99715 0.999296 

 7 0.999754 0.99994 1 0.999952 0.999883 0.999998 0.999997 0.999875 0.999637 0.999999 0.999996 0.999752 0.999899 

 8 0.999579 0.998769 0.999989 0.998559 0.980343 0.999264 0.977615 0.996147 0.94226 0.999865 0.997964 0.939424 0.985815 

 9 0.999673 0.999946 1 0.999936 0.99997 1 0.999999 0.999979 0.999953 1 1 0.999957 0.999951 

3 0 0.997963 0.999078 0.982713 0.999367 0.998115 0.999967 0.990083 0.994797 0.987132 0.996593 0.998744 0.987148 0.994308 

 1 0.998412 0.998405 0.999967 0.994694 0.989406 0.999908 0.99938 0.99783 0.992692 0.996846 0.99965 0.996275 0.996955 

 2 0.999766 0.999874 1 0.999932 0.999854 0.999999 0.999997 0.999937 0.999747 0.999999 0.999998 0.99975 0.999904 

 3 0.99971 0.999958 1 0.99996 0.999966 1 0.999999 0.99998 0.999946 1 1 0.999947 0.999955 

 4 0.999738 0.999947 1 0.999947 0.999956 0.999999 0.999996 0.999942 0.999815 0.999999 0.999999 0.999697 0.99992 

 5 0.999759 0.999926 1 0.999899 0.999909 0.999998 0.999998 0.999886 0.999595 0.999998 0.999991 0.999777 0.999895 

 6 0.999721 0.999901 1 0.99983 0.999339 0.999988 0.999859 0.999391 0.998258 0.999991 0.999971 0.998011 0.999522 

 7 0.999755 0.999956 1 0.999956 0.999901 0.999998 0.999998 0.999893 0.999713 0.999999 0.999997 0.999783 0.999912 

 8 0.999613 0.999201 0.999993 0.998571 0.982176 0.999536 0.991803 0.99642 0.966812 0.999865 0.998793 0.954321 0.990592 

 9 0.999692 0.999946 1 0.999946 0.999972 1 0.999999 0.999979 0.999954 1 1 0.999957 0.999954 

 

Table 9. Average based on levels of each factor 
   stage   

 Try 0 1 2 3 
 0 0.9997173 0.9997173 0.9997173 0.9997173 
 1 0.9995158 0.9995158 0.9995158 0.9995158 
 2 0.9998801 0.9999282 0.9999394 0.9999513 
 3 0.9999575 0.999961 0.9999663 0.9999669 
 4 0.9998977 0.9999439 0.9999515 0.999956 
 5 0.9998655 0.9999006 0.9999205 0.9999275 
 6 0.9991318 0.9996859 0.9997202 0.9998347 
 7 0.9998328 0.999912 0.9999355 0.9999391 
 8 0.9883984 0.9952316 0.9969596 0.9977304 

cg 1 0.9997044 0.9997204 0.9997242 0.9997281 
 2 0.9999069 0.9999352 0.9999461 0.9999501 
 3 0.9957876 0.9982765 0.9988718 0.9991681 

cp 1 0.9996022 0.9997881 0.9998013 0.9998396 
 2 0.9997488 0.9997906 0.9998009 0.9998036 
 3 0.9960480 0.9983534 0.9989398 0.9992031 

cw 1 0.9998052 0.9998433 0.9998578 0.9998613 
 2 0.9959572 0.9982361 0.9988139 0.9990710 
 3 0.9996365 0.9998526 0.9998703 0.9999140 
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Table 10. Final decision for parameter setting. 
stage Factor 1 Factor 2 Factor 3 cg cp cw Cg Cp Cw 

0 2 2 1 0.4 0.25 0.3 0.40 0.65 0.95 
1 2 2 3 0.4 0.25 0 0.40 0.65 0.65 

2 & 3 2 1 3 0.4 0.35 0 0.40 0.75 0.75 

 

To further verify the effectiveness of the proposed SS3OA, we performed 25 additional runs for each 

test problem, including a new one, that is, Try 9, based on the setting listed in Table 10. The results shown 

in Tables 7 and 8 confirm that Try 3 is still the best among tries 0–8. However, Try 9, based on the setting 

listed in Table 9, outperformed Try 3 for all stages except stage 0, even though the difference can only be 

determined from the eight digits after the decimal point (see Table 11). 

Hence, Try 9 is adapted and compared with other state-of-the-art algorithms in Ex 2. In addition, the 

setting is used in the algorithms implemented in Eq. (7), when comparing with the proposed BAT-SSOA3. 

Table 11. Average of the best G for each test problem in each stage for 30 runs. 
stage Try 1 2 3 4 5 6 8 9 10 11 12 15 average 

0 0 0.999553 0.999787 1 0.999818 0.999871 0.999995 0.999936 0.999754 0.999743 0.999999 0.999999 0.999745 0.9998499 

 1 0.999599 0.99989 1 0.999603 0.999553 0.999996 0.999995 0.999799 0.999237 0.999996 0.999995 0.999371 0.9997528 

 2 0.999781 0.999959 1 0.999962 0.999902 0.999999 1 0.999957 0.99991 0.999999 0.999999 0.999892 0.9999467 

 3 0.999775 0.999967 1 0.999975 0.99999 1 1 0.999984 0.999973 1 1 0.999971 0.9999698 

 4 0.99978 0.999963 1 0.999961 0.999915 0.999999 0.999999 0.999936 0.999763 0.999999 0.999999 0.999762 0.9999229 

 5 0.999783 0.999945 1 0.999942 0.999945 0.999999 0.999998 0.999897 0.999689 0.999999 0.999999 0.999833 0.9999191 

 6 0.999735 0.999866 1 0.99991 0.999622 0.999995 0.999945 0.999641 0.998406 0.999993 0.999983 0.998001 0.9995913 

 7 0.99978 0.99995 1 0.999943 0.999924 0.999998 0.999998 0.999936 0.999671 0.999999 0.999998 0.999828 0.9999187 

 8 0.999636 0.999703 0.999998 0.999707 0.995993 0.999937 0.994148 0.999157 0.997015 0.999979 0.999801 0.985417 0.9975409 

 9 0.999779 0.999969 1 0.999973 0.999992 1 1 0.999987 0.99997 1 1 0.999974 0.9999704 

1 0 0.999553 0.999787 1 0.999818 0.999871 0.999995 0.999936 0.999754 0.999743 0.999999 0.999999 0.999745 0.9998499 

 1 0.999599 0.99989 1 0.999603 0.999553 0.999996 0.999995 0.999799 0.999237 0.999996 0.999995 0.999371 0.9997528 

 2 0.999783 0.999963 1 0.999964 0.999964 0.999999 1 0.99997 0.999922 1 0.999999 0.999918 0.9999568 

 3 0.999775 0.999972 1 0.999975 0.999991 1 1 0.999987 0.999974 1 1 0.999976 0.9999711 

 4 0.99978 0.99997 1 0.999967 0.999977 0.999999 0.999999 0.999969 0.999885 1 0.999999 0.999922 0.9999556 

 5 0.999783 0.999961 1 0.999965 0.99997 0.999999 0.999999 0.999934 0.99988 0.999999 0.999999 0.99988 0.9999475 

 6 0.999767 0.999933 1 0.99991 0.999623 0.999995 0.999996 0.999868 0.999061 0.999996 0.999991 0.999333 0.9997894 

 7 0.999783 0.999963 1 0.99996 0.999929 0.999999 0.999999 0.999945 0.999829 0.999999 0.999999 0.999828 0.9999362 

 8 0.999709 0.999814 0.999998 0.999707 0.999284 0.999979 0.999816 0.999315 0.997015 0.999979 0.999835 0.997129 0.9992984 

 9 0.999779 0.999971 1 0.999974 0.999993 1 1 0.999989 0.999973 1 1 0.999976 0.9999716 

2 0 0.999553 0.999787 1 0.999818 0.999871 0.999995 0.999936 0.999754 0.999743 0.999999 0.999999 0.999745 0.9998498 

 1 0.999599 0.99989 1 0.999603 0.999553 0.999996 0.999995 0.999799 0.999237 0.999996 0.999995 0.999371 0.9997527 

 2 0.999783 0.999967 1 0.999967 0.999978 1 1 0.999973 0.999942 1 0.999999 0.999918 0.9999604 

 3 0.999775 0.999972 1 0.999975 0.999993 1 1 0.999987 0.99998 1 1 0.999976 0.9999719 

 4 0.99978 0.999972 1 0.999968 0.999982 1 1 0.999977 0.999911 1 1 0.999922 0.9999591 

 5 0.999783 0.999961 1 0.999967 0.99997 0.999999 1 0.999934 0.999893 1 0.999999 0.99988 0.9999488 

 6 0.999775 0.999933 1 0.99991 0.999739 0.999997 0.999996 0.999868 0.999311 0.999998 0.999994 0.999333 0.9998210 

 7 0.999784 0.999963 1 0.999964 0.999955 0.999999 0.999999 0.999945 0.999854 0.999999 0.999999 0.999883 0.9999455 

 8 0.999753 0.999814 0.999999 0.999726 0.999284 0.999979 0.999816 0.999375 0.997015 0.999985 0.999876 0.997129 0.9993126 

 9 0.999779 0.999976 1 0.999974 0.999993 1 1 0.999989 0.999974 1 1 0.999979 0.9999723 

3 0 0.999553 0.999787 1 0.999818 0.999871 0.999995 0.999936 0.999754 0.999743 0.999999 0.999999 0.999745 0.9998499 

 1 0.999599 0.99989 1 0.999603 0.999553 0.999996 0.999995 0.999799 0.999237 0.999996 0.999995 0.999371 0.9997528 

 2 0.999783 0.999968 1 0.999968 0.999978 1 1 0.999975 0.999942 1 1 0.999918 0.9999608 

 3 0.999778 0.999972 1 0.999975 0.999994 1 1 0.999987 0.999981 1 1 0.999977 0.9999724 
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 4 0.999782 0.999972 1 0.999969 0.999983 1 1 0.999981 0.999927 1 1 0.999922 0.9999614 

 5 0.999784 0.999964 1 0.999967 0.99997 0.999999 1 0.999941 0.999893 1 0.999999 0.99992 0.9999531 

 6 0.999781 0.999933 1 0.999912 0.999839 0.999997 0.999999 0.999868 0.999714 0.999998 0.999994 0.999711 0.9998956 

 7 0.999784 0.999967 1 0.999971 0.999972 0.999999 1 0.999963 0.999888 1 1 0.999927 0.9999559 

 8 0.999776 0.999814 0.999999 0.999886 0.999284 0.999979 0.999816 0.999375 0.997015 0.999996 0.999876 0.997867 0.9993903 

 9 0.999784 0.999976 1 0.999976 0.999993 1 1 0.999989 0.999976 1 1 0.999979 0.9999731 

4.3 Ex 2 

There are no existing algorithms for the proposed general RRAP. To demonstrate its performance in 

Ex 2, we modified well-known and important traditional RRAP-related algorithms by adding connected 

vectors obtained from the BAT to calculate the reliability, that is, BAT-SSO, BAT-BSO, BAT-nSSO, , 

BAT-ifSSO, BAT-PSO, and BAT-PSSO. 

The update mechanism of each algorithm used for comparison in Ex 2 is as follows: 

UM0: Eq. (1). 

UM1: 
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, (12) 

l= [ 0.5,0.5]

gen
0.0005 ρ

genBest
−  . (13) 

UM2: The boundary update as discussed in Section 3.3. 

UM3: Similar to UM1, but replacing Eq. (13) with Eq. (14). 

l= [0,1]

gen

-100 gen
ρ exp( )

N


 . (14) 

UM4: 

1) Randomly select and reinitialize two floating-point variables in G. 

2) Randomly select one floating-point variable, for example rj, and reset the value of rj based on Eq. 

(5). 

UM5 (for PSO): 
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where w = 0.9, c1 = c2 = 2. 

Xi = 
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Summary of the updated mechanism for each algorithm is listed in Table 12. 

Table 12. Updated mechanism of each algorithm. 

Algorithms gBest 
Not 

gBest 

Integer 

variables 

Floating 

variables 

All 

variables 
BAT-SSOA3 UM2 UM0    

BAT-SSO     UM0 
BAT-BSO UM4 UM0    
BAT-nSSO   UM0 UM1  
BAT-ifSSO   UM0 UM3  
BAT-PSSO   UM0 UM5  
BAT-PSO     UM5 

 

Table 13. Average of the best G for each test problem, stage, and algorithm for 30 runs. 
S* A* P*1 P*2 P*3 P*4 P*5 P*6 P*8 P*9 P*10 P*11 P*12 P*13 average 

0 s 0.999767 0.999972 1 0.999971 0.999991 1 1 0.999985 0.999969 1 1 0.999967 0.9999685 

 g 0.999768 0.999827 1 0.999904 0.999862 1 1 0.999958 0.999744 1 0.999999 0.999796 0.99990483 

 i 0.999626 0.999872 1 0.999816 0.999787 0.999997 0.999997 0.999842 0.999316 0.999993 0.999987 0.999758 0.99983258 

 n 0.999776 0.999963 1 0.999956 0.999958 0.999999 0.999999 0.999945 0.999827 1 0.999999 0.999849 0.99993925 

 p 0.999316 0.992367 0.999913 0.998211 0.969406 0.99957 0.999188 0.984995 0.990263 0.999396 0.999342 0.978414 0.99253175 

 o 0.999723 0.999911 1 0.99994 0.999908 1 1 0.999903 0.999774 0.999998 0.999999 0.99988 0.99991967 

 a 0.999779 0.999969 1 0.999973 0.999992 1 1 0.999987 0.99997 1 1 0.999974 0.99997042 

1 s 0.999777 0.999972 1 0.999972 0.999992 1 1 0.999985 0.999976 1 1 0.99998 0.99997117 

 g 0.999759 0.999945 1 0.999906 0.999937 1 1 0.999934 0.999867 0.999999 1 0.999898 0.99993708 

 i 0.999683 0.999872 1 0.999816 0.999787 0.999998 0.999999 0.999895 0.999316 0.999995 0.999998 0.999758 0.99984308 

 n 0.999778 0.999967 1 0.999964 0.999988 1 1 0.999975 0.999949 1 1 0.999956 0.99996475 

 p 0.999316 0.994956 0.999913 0.992612 0.972539 0.998027 0.999337 0.970658 0.958064 0.996443 0.999334 0.980504 0.98847525 

 o 0.999763 0.999941 1 0.999948 0.999967 1 1 0.999939 0.999836 1 0.999999 0.999892 0.9999405 

 a 0.999779 0.999971 1 0.999974 0.999993 1 1 0.999989 0.999973 1 1 0.999976 0.99997158 

2 s 0.99978 0.999972 1 0.999973 0.999992 1 1 0.999985 0.999978 1 1 0.999981 0.99997175 

 g 0.999776 0.999959 1 0.999856 0.999936 1 1 0.999881 0.999727 0.999998 1 0.999908 0.99992008 

 i 0.999683 0.999922 1 0.999898 0.9998 0.999998 0.999999 0.999903 0.999316 0.999998 0.999998 0.999758 0.99985608 

 n 0.99978 0.999967 1 0.999967 0.999989 1 1 0.999983 0.999954 1 1 0.99996 0.99996667 

 p 0.999316 0.994956 0.999913 0.992612 0.972539 0.998027 0.999121 0.995891 0.978625 0.996443 0.987458 0.980504 0.99128375 

 o 0.999769 0.999941 1 0.999952 0.999967 1 1 0.999961 0.999934 1 0.999999 0.999892 0.9999515 

 a 0.999779 0.999976 1 0.999974 0.999993 1 1 0.999989 0.999974 1 1 0.999979 0.99997233 

3 s 0.999781 0.999973 1 0.999976 0.999992 1 1 0.999987 0.999979 1 1 0.999981 0.99997242 

 g 0.999756 0.999742 1 0.999825 0.999863 1 1 0.999943 0.999832 0.999993 0.999999 0.999898 0.99990425 

 i 0.999708 0.999922 1 0.999898 0.9998 0.999998 0.999999 0.999903 0.999467 0.999999 0.999998 0.999796 0.999874 

 n 0.999783 0.999969 1 0.999969 0.999989 1 1 0.999985 0.999957 1 1 0.99997 0.99996867 

 p 0.999316 0.994956 0.999957 0.992612 0.980807 0.998027 0.999121 0.975144 0.978625 0.999774 0.987458 0.980504 0.99052508 

 o 0.999769 0.999941 1 0.999953 0.999976 1 1 0.999961 0.999934 1 0.999999 0.999902 0.99995317 

 a 0.999784 0.999976 1 0.999976 0.999993 1 1 0.999989 0.999976 1 1 0.999979 0.99997308 
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S*: stage 

A*: algorithm 

P*: problem 

 

The result of Ex 2 contrasts the best final gBests obtained from the proposed BAT-SSOA3 with the 

best parameter setting obtained from Ex 1. In Ex 2, we focus on the comparisons among the best solutions 

obtained from all the abovementioned algorithms.  

BAT-SSO, BAT-gSSO, BAT-ifSSO, BAT-nSSO, BAT-PSO, BAT-PSSO, and BAT-SSOA3 are 

assigned as algorithms s, g, i, n, p, o, and a, respectively. The obtained average of the best gBests is 

shown in Table 13, and the best among all the algorithms is written in bold. The first row of Table 13 lists 

stages 0–3; the second row lists the algorithms, that is, s, g, i, n, p, o, and a; columns 3–15 indicate the 

averages of the best gBests for problems 1–12, respectively; and the last column lists the average of the 

values from columns 3 to 15. 

To evaluate the performance, including the efficiency and effectiveness (i.e., solution quality) of the 

proposed BAT-SSOA3, as in Ex 1, and these performed in all existing algorithms for the RRAP, we only 

provided the best of the final gBests for each problem and algorithm in Table 13 [1, 2, 3, 4, 5, 6]. 

Based on the average of the best final gBest averages, that is, the last column in Table 13, the 

proposed algorithm BAT-SSOA3, that is, algorithm a, showed better performance than the others for all 

stages in all cases. In addition, the proposed algorithm outperformed the other algorithms for all stages 

except problems 1, 10, and 15.  

Surprisingly, BAT-SSO, which simply used Eq. (7) to update variables after using the affixation 

solution structure, was the second best. Hence, Eq. (7) is also powerful for floating-point variables; 

however, this is not consistent with the conclusions found in the literature. The main reason is that the 

SSO parameters, that is, Cg, Cp, and Cw, are all adapted from Try 9, which is the best among Try 0–9 in 

the proposed SS3OA, as discussed in Ex 1. In addition, the results obtained from Try 3 in Ex 1 are better 

than those of SSO. Therefore, this observation further confirms that the proposed SS3OA in BAT-SSOA3 

is powerful for tuning the parameters and selected items in Eq. (1).  

Based on the data listed in Table 13, we have the following observations: 

1. In general, BAT-SSOA3 >> BAT-SSO >> BAT-nSSO >> BAT-gSSO >> BAT-PSSO >> BAT-
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ifSSO >> BAT-PSO, where A >> B means that A is better than B in terms of solution quality. 

2. The difference between BAT-SSOA3 and BAT-SSO is the boundary update. Hence, the 

boundary is helpful in improving the solution quality. 

3. The differences among BAT-SSO, BAT-nSSO, BAT-ifSSO, and BAT-PSSO is the way the 

floating-point variables are updated. As BAT-SSO >> BAT-nSSO >> BAT-PSSO >> BAT-

ifSSO, UM 0 >> UM 1 >> UM 5 >> UM 3 in the updated floating-point variables. 

4. The difference between BAT-PSSO and BAT-PSO is the updated integer variable. Hence, UM 

0 >> UM 5 in the updated integer variable as BAT-PSSO >> BAT-PSO. 

5. As BAT-SSOA3 >> BAT-BSO, and the difference is the way gBest is updated, UM 2 >> UM 

4 in the updated gBest. 

 

Hence, based on the discussion above for both Ex 1 and Ex 2, the proposed BAT-SSOA3 with 

parameter settings from Ex 1 can balance both global and local searches for improving solution quality 

compared with previously published RRAP algorithms. 

5. Conclusions 

The serial-parallel or bridge structure RRAP is not practical and reasonable for all types of 

applications in real-life networks. Thus, a novel RRAP called GRRAP is proposed to address this problem. 

A new BAT-SSOA3, integrated BAT-connected vectors, SS3OA, boundary update, penalty function, and 

affixation solution structure are used to solve the proposed GRRAP in this study. 

The proposed BAT-SSOA3 is highly efficient and effective. One of the major difficulties in the 

proposed general RRAP is the calculation of its objective function, that is, the reliability of a general 

binary-state network. However, after the implementation of the BAT algorithm, the difficult binary-state 

network reliability can be easily solved by adding the probabilities of all connected vectors without 

tedious and complicated calculation on reliability, which is the objective function in the GRRAP. 

Moreover, the proposed BAT-connected vector can be implemented in any existing algorithm as an 

analytical tool or function to calculate all types of binary-state networks. 

The SS3OA can be systematically and efficiently used to obtain the best parameters and the most 
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suitable updated mechanism for Eq. (7). The use of the boundary condition also provides a significant 

improvement in the solution quality after comparison with other algorithms. In addition, the affixation 

solution structure combines a pair of different types of variables into one variable to reduce the runtime 

by half. The penalty function avoids boundary obstacles occurring in the feasible solution space and 

strengthens the ability of SSO variants to solve problems. 

Based on the fair and complete comparisons of experimental results from Ex 2, as discussed in 

Section 4.2, the solution quality of BAT-SSOA3 outperforms and is superior to well-known related 

methods, which use BAT to calculate reliability. The penalty function avoids boundary obstacles and the 

affixation solution structure reduces the update time by half. In future studies, the proposed BAT-SSOA3 

will be extended to warm-standby RRAP [38], cold-standby RRAP [2, 39-41], multi-objective RRAP [5, 

42], multi-state RRAP [43-46], and different optimization problems with more variables or larger-scale 

benchmarks. 
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