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Abstract  
Safety barriers are to be designed to bring the largest benefit in terms of accidental scenarios 
consequences mitigation at the most reasonable cost. In this paper, we formulate the problem of the 
identification of the optimal performance parameters of the barriers that can at the same time allow 
for the consequences mitigation of Natural Technological (NaTech) accidental scenarios at 
reasonable cost as a Multi-Objective Optimization (MOO) problem. The MOO is solved for a case 
study of literature, consisting in a chemical facility composed by three tanks filled with flammable 
substances and equipped with six safety barriers (active, passive and procedural), exposed to NaTech 
scenarios triggered by either severe floods or earthquakes. The performance of the barriers is 
evaluated by a phenomenological dynamic model that mimics the realistic response of the system. 
The uncertainty of the relevant parameters of the model (i.e., the response time of active and 
procedural barriers and the effectiveness of the barriers) is accounted for in the optimization, to 
provide robust solutions. Results for this case study suggest that the NaTech risk is optimally 
managed by improving the performances of four-out-of-six barriers (three active and one passive). 
Practical guidelines are provided to retrofit the safety barriers design. 

 
Keywords:  Process safety, NaTech accidents, Safety barriers, Dynamic modeling, Robust Multi-
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Acronyms 
ETA Event Tree Analysis 

MOO Multi-Objective Optimization 

NSGA-II Non-dominated Sorting Genetic Algorithm II 

MODEA Multi-Objective Differential Evolution Algorithm 

MOPSO Multi-Objective Particle Swarm Optimization 

MSSA Multi-objective Salp Swarm Algorithm 

HD Hyperarea Difference 

PFD Probability of Failure on Demand 

WDS Water Deluge System 

PFP Passive Fire Protection 

ETI Emergency Team Intervention 

PSV Pressure Safety Valve 

FWS Foam-Water Sprinkler 

MOEA Multi-Objective Evolutionary Algorithm 

IE Initiating Event 

LOC Loss of Containment 

TFM Time of Final Mitigation 

TTF Time To Failure 

FTA Fault Tree Analysis 

RFTA Reverse Fault Tree Analysis 

PDF Probability Density Function 

CR Crossover Rate 

MR Mutation Rate 

 

Symbols  

𝑖 Index of safety barrier 

𝑗 Index of natural event 

𝑠 Index of escalation scenario 

𝑑 Index of decision variable 

𝑜 Index of objective function 

𝑝 Index of Pareto Front 

𝜙 Performance modification factor 

𝑓 Objective function 

𝑃 Probability of the escalation scenario 



 

 

Δ௙ Measure of the perturbation of the objective function 

𝐻𝐷௣ Hyperarea Difference of the p-th Pareto Front 

𝐸௣ Set of solutions of the p-th Pareto Front 

𝐼௣
௔ Zone of influence of the a-th solution of the p-th Pareto Front  

𝜇(𝐼௣) Measure of the uniformity of the solutions of the p-th Pareto Front 

𝐺(𝐸௣) G-Metric of the p-th Pareto Front 

𝑀ଷ,௣
∗  𝑀ଷ

∗ Zitzler metric of the p-th Pareto Front 

𝑅௦௨௠,௣ Aggregation of the rankings of the p-th Pareto Front 

𝑡௥,௜  Response time of the i-th safety barrier 

𝛾௜ Heat radiation reduction factor of the i-th safety barrier 

𝜎௬ Yield strength 

𝜎௘ Equivalent stress 

Πୱ Performance metric of the s-th scenario 

Π Global performance metric 

𝐶் Cost of the improvement 

𝜔 Parameter for the desired level of robustness of the solutions 

𝛿ௗ  Min-max normalization of the variation of the d-th decision variable 

 

1.  Introduction 

Accidental scenarios triggered by Natural events and impacting on Technological installations 
(NaTech scenarios) [1] are a primary concern for industry, due to their probability of escalation to 
severe consequences and the difficulties of recovery [2]. Safety barriers are installed for preventing 
technological accidents and mitigating their consequences. To account for their possible performance 
degradation, due to the impact of natural events, a performance modification factor 𝜙 is introduced 
to consider the probability that the barrier is unavailable due to the direct impact of an occurred natural 
event [3]. The performance modification factor is commonly estimated by expert elicitation [4] and 
modulates the safety barrier availability, and, eventually, the probability of the accident scenario 
escalation to severe consequences. 
Recent research efforts have introduced specific NaTech risk assessment and management 
frameworks [5]. However, no methodology has been proposed for identifying the set of improvements 
to the safety barriers of a given system, whose performance degrades in time, to manage the risk 
arising from NaTech scenarios. This may also inform retrofitting actions to improve the safety 
barriers design. 
In the present work we propose a novel comprehensive framework for the identification of the safety 
barriers whose design improvement brings the largest benefit of NaTech scenarios mitigation at the 
lowest cost. The work is formulated as a Multi-Objective Optimization (MOO) problem to find the 
optimal values of the safety barriers performance parameters (namely, the Probability of Failure on 
Demand (PFD) and the performance modification factor). A tailored phenomenological dynamic 



 

 

model is used to realistically simulate the response of the system when impacted by the NaTech 
scenario. The MOO searches for the optimal decision variables (the barriers performance parameters) 
that optimize a set of objective functions (the mitigative power of the system and the cost of the 
improvements) under constraints (the allowed values of the performance parameters) [6]. To give due 
account to the uncertainty of some parameters of the dynamic model used for the assessment of the 
NaTech scenario evolution (i.e., the response times of active and procedural barriers, and the 
effectiveness of the barriers), an additional constraint is added to the MOO problem, which ensures 
the achievement of a robust Pareto Front (PF), whose solutions are only marginally affected by the 
uncertain parameters perturbation [7]. To find the algorithm most suited to solve this problem, four 
different consolidated MOO algorithms have been benchmarked: Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) [8], Multi-Objective Differential Evolution Algorithm (MODEA) [9] (which 
are state-of-practice evolutionary algorithms), Multi-Objective Particle Swarm Optimization 
(MOPSO) [10] and Multi-objective Salp Swarm Algorithm (MSSA) [11] (which are state-of-practice 
swarm intelligence algorithms). Each one releases a set of Pareto-optimal solutions, that compose the 
PFs [12], which are compared with respect to three metrics of literature [13], namely the Hyperarea 
Difference (HD) [14], which corresponds to the area dominated by the PF, the G-metric [15], which 
accounts both for the level of domination of the PF points and for their distribution in the solution 
space, and the 𝑀ଷ

∗ Zitzler metric (𝑀ଷ
∗) [16], which accounts for the extension of the PF in the solution 

space. Eventually, the most suited algorithm to solve the problem is used to obtain the robust PF, 
which is used to find the safety barriers that are pivotal to get the maximum mitigative power with 
the lowest cost: by so doing, the analyst is provided with all the information needed to retrofit the 
design to these outcomes and, therefore, properly manage the NaTech risk. 
An application of the proposed framework is shown with respect to a case study of literature [3] that 
consists of a chemical facility composed by three tanks and equipped with 𝑖 = 1,2,3,4,5 different 
safety barriers (active, passive and procedural), respectively: Water Deluge System (WDS), Passive 
Fire Protection material (PFP), Emergency Team Intervention (ETI), Foam-Water Sprinkler system 
(FWS) and Pressure Safety Valve (PSV). In [4], a group of 38 experts are asked to assess the impact 
of floods and earthquakes (𝑗 = 1,2, respectively) on the availability of the 𝑖 = 1,2,3,4,5 safety 
barriers, in order to estimate their performance modification factor 𝜙௝,௜ and calculate its effect on the 

Probability of Failure on Demand (𝑃𝐹𝐷଴,௜), that is the probability that the barrier is found unavailable 

upon demand. This latter is here finally used to estimate the probability 𝑃௝,௦ of the 𝑠 = 1,2, … , 𝑆 

escalation scenarios triggered by the j-th natural event. For this, we develop an Event Tree Analysis 
(ETA) that drives the simulations of a dynamic model of literature [17] for determining the structural 
integrity of the tanks when impacted by the NaTech scenario. The safety barriers parameters to be 
improved for reaching the safety goals are identified by the proposed MOO-based framework and 
practical guidelines are provided to retrofit the safety barriers design for optimally managing the risk 
arising from the considered NaTech scenarios. 
The remainder of the paper is organized as follows: Section 2 illustrates the proposed framework; 
Section 3 presents the case study; Section 4 shows the results of the application of the proposed 
method to the case study; in Section 5, conclusions are drawn. 
 

 

 



 

 

2.  The Multi-Objective Optimization framework 

We consider a set of 𝑁 safety barriers, whose contribution to the mitigation of the accidental scenario 
escalation is typically assessed with a site-specific phenomenological dynamic model, in which each 
barrier is characterized by 𝑃𝐹𝐷଴,௜, which is modified by 𝜙௝,௜ (𝑗 = 1, 2, … , 𝐽 and 𝑖 = 1, 2, … , 𝑁), that 

is the probability that the i-th safety barrier is not available due to the direct impact of the j-th natural 
hazard [4] as follows: 

 Active barriers: 

 𝑃𝐹𝐷௝,௜ = 1 + ൫𝜙௝,௜ − 1൯൫1 − 𝑃𝐹𝐷଴,௜൯ (1) 

   

 Passive barriers: 

 𝑃𝐹𝐷௝,௜ = 𝜙௝,௜           (2) 

since, for passive barriers, 𝑃𝐹𝐷଴,௜ = 0 [3]. 

 Procedural barriers: the definition must be tailored on the specific safety procedure; as an 
example, the performance of ETI (hereafter considered in the case study) should consider both 
𝑃𝐹𝐷௝,ா்ூ and the Time of Final Mitigation (TFM) of the NaTech scenario: 

i. 𝑃𝐹𝐷୨,ா்ூ = 1 + (𝜙௝,ா்ூ − 1)(1 − 𝑃𝐹𝐷଴,௜) (similarly to an active barrier). 

ii. 𝑇𝐹𝑀 ≫ 𝑇𝐹𝑀଴, to take into account the hindrance coming from the unfavorable 
environmental conditions [3], where 𝑇𝐹𝑀଴ is the value typically considered for 
conventional scenarios. 

The proposed optimization framework is comprised of the following steps: 

1. Define a MOO problem to search for the optimal values of 𝜙௝,௜ and 𝑃𝐹𝐷଴,௜ in terms of cost 

and mitigative power of the system, while also accounting for the uncertainties in the 
estimation of the mitigative power; 

2. Identify the MOO algorithm most suited for the problem by comparing four state-of-practice 
algorithms (namely, NSGA-II, MODEA, MOPSO and MSSA) with respect to three metrics 
(namely, HD, G-metric and 𝑀ଷ

∗); 

3. Analyze the robust PF (released by the most suited algorithm) to identify the safety barriers 
that are pivotal to get the maximum mitigative power with the minimum cost and provide 
practical guidelines to retrofit the safety barriers design to the requirements in the parameters. 

2.1. MOO problem definition 

The first step of the framework requires the definition of the MOO problem, which is composed of: 

 A set of decision variables 𝑑 = 1,2, . . . , 𝐷 (i.e., 𝑃𝐹𝐷଴,௜ and 𝜙௝,௜ of each barrier). 

 A set of objective functions (𝑓௢, with 𝑜 = 1,2): a measure of the mitigative power of the 
system, evaluated with a tailored site-specific phenomenological dynamic model, and the total 



 

 

cost of the improvements, determined with a dedicated analysis to identify the set of actions 
necessary to improve 𝑃𝐹𝐷଴,௜ and 𝜙௝,௜. 

 A set of constraints 𝑐 = 1,2, … , 𝐶, that are problem-specific, and consist in: 

 The allowed values of the safety barriers performance parameters; 

 A maximum allowed perturbation of the o-th objective: 

 𝛥௙೚
≤ 𝜔 (3) 

where the parameter 𝜔 can be set to achieve the desired level of robustness of the 
solutions and Δ௙೚

 is a measure of the perturbation of the o-th objective, defined as in 

[7]: 

 
𝛥௙೚

=
ห𝑓௢

௣
− 𝑓௢ห

𝑓௢
 (4) 

where 𝑓௢
௣ is the worst (i.e., highest) value of 𝑓௢ that can be obtained perturbing the 

uncertain parameters within their uncertainty range. This allows finding only the 
robust solutions, here defined as those marginally affected by the perturbation of the 
uncertain parameters. 

 

2.2 Identification of the most suited algorithm  

Different MOO algorithms can be used (those considered in the present work are described in the 
Appendix, being state-of-practice algorithms that do not add novelty to the framework) and 
benchmarked on the MOO problem defined in Section 2.1, neglecting the robustness (Eq. (3)) for the 
sake of computational time saving. The set of 𝑝 = 1,2,3,4 PFs released by the selected MOO 
algorithms are compared with respect to: 

1. HD, which is defined as the area dominated by each PF, and calculated as follows [18]: 

 

𝐻𝐷௣ =  ෍ ቀ1 − 𝑓ଵ,௣
௔ ቁ ቀ𝑓ଶ,௣

௔ାଵ − 𝑓ଶ,௣
௔ ቁ + ቀ1 − 𝑓ଵ,௣

௔ ቁ ቀ1 − 𝑓ଶ,௣
௔ ቁ

ேௌ೛

௔ୀଵ

 (5) 

where 𝑓ଵ,௣
௔  and 𝑓ଶ,௣

௔  are the values (after a min-max normalization) of the objective 

functions for the a-th solution of the p-th PF, respectively, and 𝑁𝑆௣ is the total number of 

solutions in the p-th PF. Then, the ranking 𝐻௣ is obtained by sorting them with respect to 

𝐻𝐷௣ in descending order. 

2. G-Metric, which accounts both for the level of domination of the points of one PF with 
respect to the others and for their distribution in the objective space, and is calculated as 
follows [15]: 



 

 

a. Normalize all the PFs with a min-max normalization using the maximum and 
minimum values of the two objective functions of the union 𝐶 = ⋃ 𝐸௣

ସ
௣ୀଵ , where 

𝐸௣ represents the set of solutions of the p-th PF. 

b. Divide the PFs in 𝐾 levels 𝐿௞ that represent levels of complete domination (i.e., 
all the solutions of the PFs in level 𝐿௞ାଵ are dominated by at least one solution of 
the PFs in level 𝐿௞). 

c. For each level 𝐿௞ and for each 𝐸௣ ∈ 𝐿௞: 

i. Eliminate all solutions 𝑎 ∈ 𝐸௣ dominated by any other solution belonging 

to a PF of the same level. 

ii. For each solution 𝑎 ∈ 𝐸௣, find the set of solutions (𝑄௔) that belong to its 

zone of influence 𝐼௣
௔, which correspond to the solutions 𝑢 with 𝑑(𝑢, 𝑎) ≤

𝑈, where 𝑑(𝑢, 𝑎) is the distance from 𝑎 and the radius 𝑈 is empirically 
determined. 

iii. Calculate the measure of the uniformity of the distribution of the solutions 
(𝜇(𝐼ா೛

)) as follows: 

 

𝜇൫𝐼ாು
൯ = ෍ 2 න ඥ𝑈ଶ − 𝑑(𝑢, 𝑎)ଶ 𝑑𝑄௔

ொೌ

ேௌ೛

௔ୀଵ

     (6) 

d. For each 𝐸௣ ∈ 𝐿௞, calculate the value of the G-Metric as follows: 

 
𝐺൫𝐸௣൯ = 𝜇 ቀ𝐼ா೛

ቁ + ෍ 𝜇௠௔௫(𝐿௞∗)

௄

௞∗ୀ௞ାଵ

 (7) 

where  𝜇௠௔௫(𝐿௞∗) is the maximum value of 𝜇൫𝐼ாು
൯ for all 𝐸௣ ∈ 𝐿௞∗. Finally, the 

ranking 𝐺௣ is obtained by sorting them with respect to 𝐺(𝐸௣) in descending order. 

3. 𝑀ଷ
∗, which accounts for the extension of the PF in the objective space and is calculated as 

follows [16]: 

 
𝑀ଷ,௣

∗ = ට(𝑚𝑎𝑥൛𝑓ଵ,௣ൟ − min൛𝑓ଵ,௣ൟ) + (𝑚𝑎𝑥൛𝑓ଶ,௣ൟ − min൛𝑓ଶ,௣ൟ) (8) 

Then, the ranking 𝑀௣ is obtained by sorting them with respect to 𝑀ଷ,௣
∗  in descending order. 

To find the most suited algorithm, the individual rankings produced by the three metrics are summed 
in 𝑅௦௨௠,௣, without any preference weight:  

 𝑅௦௨௠,௣ = 𝐻௣ + 𝐺௣ + 𝑀௣ (9) 

and, then, sorted in descending order to find the algorithm most suited to the problem. 



 

 

The identified algorithm is then used to solve the MOO problem of Section 2.1 with the inclusion of 
the robustness constraint of Eq. (3), releasing a robust PF whose solutions are each constituted by a 
set of optimal values of 𝑃𝐹𝐷଴,௜ and 𝜙௝,௜. 

 

2.3 Pareto front analysis and practical design guidelines 

To find which performance parameters have to be improved, the Probability Density Function (PDF) 
of the difference between the initial values of 𝑃𝐹𝐷଴,௜ and 𝜙௝,௜ and those of the solutions of the robust 

PF are calculated and analyzed. Then, the following guidelines can be complied to inform the 
retrofitting of the safety barriers design by targeting the expectations of the results of the robust PF: 

 To reach the value of 𝑃𝐹𝐷଴,௜ equal to one of those leading to the robust PF solutions, a Reverse 

Fault Tree Analysis (RFTA) [19] can be used, by setting the top event probability equal to the 
desired value of 𝑃𝐹𝐷଴,௜ and finding the probabilities of the basic events that allow obtaining 

it ([20], [21]); 

 To reach the value of 𝜙௝,௜ equal to one of those leading to the robust PF solutions, a site-

specific analysis is needed, since it is strongly affected by the specific environmental 
conditions of the site and by the type and safety function of the barrier. As an example, we 
can mention the analysis performed to target WDS: since the unavailability of this barrier 
during NaTech scenarios is mostly due to the loss of external power [22], the installation of a 
backup power unit on site, if not already present, would lead to an improvement of 𝜙௝,ௐ஽ௌ. 

 

3.  Case study 

3.1. Overview 

The layout of the considered chemical facility of literature [3] is shown in Fig. 1. It is composed of 
two atmospheric tanks (T1 and T2) that store liquid flammable substances and one pressurized vessel 
(P1) that contains liquid petroleum gas. The chemical facility is exposed to severe floods and 
earthquakes, here assumed, without loss of generality, both with a return period of 500 years, and 
characterized by a prototypical flood water depth of The chemical facility is exposed to severe floods 
and earthquakes, here assumed, without loss of generality, both with a return period of 500 years, 

and characterized by a prototypical flood water depth of 2 𝑚 and a peak ground acceleration of 4.9
௠

௦మ
, 

respectively. For the sake of brevity, the proposed framework is applied (and the results shown) only 
with respect to NaTech scenarios triggered by earthquakes; therefore, in what follows, the index j is 
dropped throughout the analysis. 

 



 

 

 

Fig. 1. Layout of the considered case study [3]. 
 

The considered Initiating Event (IE) of the NaTech scenario consists in a Loss of Containment (LOC) 
of T1 that leads to a pool fire affecting P1 and T2, and occurs at time 𝑡 = 0 𝑠. The safety barriers 
designed and implemented in P1 and T2 to withstand the escalation of the accidental scenario are 
listed in Tab. 1. Among these, WDS, FWS and PSV are active, PFP is passive, and ETI is a procedural 
barrier. ETI is considered to be in common between the two tanks, meaning that it will only be 
optimized once by the MOO algorithm. 
 

Safety Barrier Classification P1 T2 Description 

1) Water deluge system (WDS) Active X  Water delivery during fire 

2) Passive fire protection material (PFP) Passive X  Coating fireproof material 

3) Pressure safety valve (PSV) Active X X Valve designed to relieve excess pressure 

4) Emergency team intervention (ETI) Procedural X X Emergency firefighter team intervention 

5) Foam-Water Sprinkler system (FWS) Active  X Foam delivery during fire 

 

Tab. 1. Safety barriers considered in the case study. 

The values of 𝜙௜ of these safety barriers in case of earthquake, which result from a survey involving 
38 experts, are taken from [4] and are used to modify the performance of the barriers as described in 
Section 2. 
The ETs shown in Fig. 2 and Fig. 3 delineate the different scenarios initiated by the IE, spooned by 
the success or failure of the safety barriers and involving P1 and T2, respectively. Each scenario 
involving P1 is, then, combined with each scenario involving T2, as in the example of Fig. 4, to obtain 
the 𝑆 = 128 scenarios involving both tanks and to calculate their probability 𝑃௦. 
 



 

 

                                      

Fig. 2. ET that delineates the scenarios involving P1.  

 

Fig. 3. ET that delineates the scenarios involving T2.  

 

 



 

 

                                 

Fig. 4. Example of combination of the scenarios involving P1 and T2.  

 

3.2. The phenomenological dynamic model 

A phenomenological dynamic model of literature [17] has been tailored to the case study to evaluate 
the NaTech scenario evolution after the IE and determine the system mitigative power. This model, 
whose steps are reported in the flowchart of Fig. 3, allows estimating the structural integrity of the 
two tanks (whose physical properties are reported in Tab. 2) when hit by the fire triggered by the IE. 

 
Tank Volume Thickness Diameter Specific Heat Density Storage Mass Op. pressure Yield strength 

P1 105 𝑚ଷ 0.007 𝑚 2.6 𝑚 
0.5

𝑘𝐽

𝑘𝑔 ∙ 𝐾
 7900

𝑘𝑔

𝑚ଷ
 

52 𝑡𝑜𝑛 8.34 𝑏𝑎𝑟 235 𝑀𝑃𝑎 

T2 4300 𝑚ଷ 0.01 𝑚 32 𝑚 
0.5

𝑘𝐽

𝑘𝑔 ∙ 𝐾
 7900

𝑘𝑔

𝑚ଷ 
3000 𝑡𝑜𝑛 1 𝑏𝑎𝑟 235 𝑀𝑃𝑎 

 
Tab. 2. Physical properties of the tanks. 



 

 

 
                                                                     Fig. 3. Flowchart of the dynamic model. 

Each one of the safety barriers implemented in the system contributes to the mitigation of the 
accidental scenario after its response time 𝑡௥,௜, as described in Tab. 3. 

 

Safety Barrier Mitigative Action Response Time Uncertainty Range 

1) WDS 
Reduction of the heat radiation by a factor 

𝛾ௐ஽ௌ = 0.5 [20]. 

𝑡௥,ௐ஽ௌ = 220 𝑠 

([23], [24]) 

𝑡௥,ௐ஽ௌ ∈ [182, 272] s ([23], [24]) 

𝛾ௐ஽ௌ ∈ [0.35, 0.85] [20] 

2) PFP 
Reduction of the vessel temperature increase 

(thermal properties from [25]). 

𝑡௥,௉ி௉ = 0 𝑠 - 

3) PSV 
Increase of the system tolerance to 

overpressure. 

𝑡௥,௉ௌ௏ = 6.5 𝑚𝑠 

[26] 

𝑡௥,௉ௌ௏ ∈ [5.9, 7.8] ms [26] 

 

4) ETI 
Reduction of the heat radiation by a factor 

𝛾ா்ூ = 0.6 [20]. 

𝑡௥,ா்ூ = 780 𝑠 [27] 𝑡௥,ா்ூ ∈ [420, 1020] s [27] 

𝛾ா்ூ ∈ [0.45, 0.95] [20] 

5) FWS 
Reduction of the heat radiation by a factor 

𝛾ௐ஽ௌ = 0.5 [20]. 

𝑡௥,ிௐௌ = 220 𝑠 

([23], [24]) 

𝑡௥,ிௐௌ ∈ [182, 272] s ([23], [24]) 

𝛾ிௐௌ ∈ [0.35, 0.85] [20] 

 

Tab. 3. Safety barriers mitigative action and uncertainty range of the parameters. 

 



 

 

The mitigative power of the safety barriers is firstly mapped into a performance metric that represents, 
for each s-th scenario, the minimum structural integrity among the tanks: 

 
𝛱௦(𝑡) = 𝑚𝑖𝑛

௕
ቆ

𝜎௬,௕,௦(𝑡) − 𝜎௘,௕,௦(𝑡)

𝜎௬,௕,௦(𝑡)
ቇ (11) 

where 𝜎௬,௕,௦(𝑡) and 𝜎௘,௕,௦(𝑡) are, respectively, the yield strength and the equivalent stress at time t of 

the b-th tank in the s-th scenario, and then, into a “global” performance metric, which weights the Π௦ 
of failure scenarios (i.e., scenarios in which at least one of the tanks fail) with their probability of 
occurrence 𝑃௦ : 

 

𝛱 = ෍ ቆන 𝛱௦(𝑡) 𝑑𝑡
௧ୀ்ிெ

௧ୀ଴

ቇ ∙ 𝑃௦

ே೑

௙ୀଵ

         (12) 

where 𝑁௙ is the number of failure scenarios and 𝑇𝐹𝑀 = 400 𝑚𝑖𝑛 [3].  

Since the mitigative power has to be maximized, the 𝑓ଵ to be minimized is written as follows: 

 
𝑓ଵ =

1

𝛱
         (13) 

In other words, we can say that the MOO will search for those safety barriers performance parameters 
capable of reducing the occurrence of the failure scenarios most harming the tanks structural integrity 
(i.e., the worst-case scenarios).  
 

3.3. Cost of the improvements of the safety barriers 

The costs of the improvement of 𝑃𝐹𝐷଴,௜ and 𝜙௜ (𝐶௉ி஽,௜ and 𝐶థ೔
, respectively), are considered 

asymptotically larger starting from a minimum of 𝑃𝐹𝐷଴,௜,௜௡ and 𝜙௜,௜௡, that 𝑃𝐹𝐷଴,௜ and 𝜙௜ take as their 

initial value as in [28]: 

 
𝐶௉ி஽,௜(𝑃𝐹𝐷଴,௜) =

𝐴௜

𝑃𝐹𝐷଴,௜
 (14) 

 
𝐶థ,௜(𝜙௜) =

𝐵௜

𝜙௜
 

(15) 

The total cost for the improvements is calculated as in Eq. (16): 

 
𝐶் = න 𝐶௉ி஽,௜൫𝑃𝐹𝐷଴,௜൯ 𝑑

௉ி஽బ,೔,೔೙

௉ி஽బ,೔

𝑃𝐹𝐷଴,௜ + න 𝐶థ,௜(𝜙௜) 𝑑𝜙௜

థ೔,೔೙

థ೔

 (16) 

where 𝐴௜ and 𝐵௜ are constants that are estimated, as listed in Tab. 4, assuming that: 

 Active barriers:  

 The cost for the improvement of 𝑃𝐹𝐷଴,௜ of active barriers is of the same order of magnitude 

of the initial cost of the safety barrier, leading to 𝐴ௐ஽ௌ = 3 ∙ 10ସ, 𝐴ிௐௌ = 10ହ € [29] and 
𝐴௉ௌ௏ = 5 ∙ 10ଷ € [30]; 



 

 

 The cost of the improvement of 𝜙ௐ஽ௌ and 𝜙ிௐௌ amounts to the cost of the installation of 
an auxiliary energy source on site, since they rely on external energy sources that are often 
unavailable during NaTech scenarios [22], leading to 𝐵ௐ஽ௌ = 𝐵ிௐௌ = 5 ∙ 10ସ €. The 
improvement of 𝜙௉ௌ௏ is assumed to be effective upon the installation of an additional 
pressure relief device, leading to 𝐵௉ௌ௏ = 5 ∙ 10ଷ € [30]. 

 Passive barriers: the impact of the earthquake on PFP can cause cracking of the fireproof layer 
[31], which degrades its performance and can lead to complete failure. Therefore, 𝜙௉ி௉ can 
be improved with an increase of its thickness, leading to 𝐵௉ி௉ = 6 ∙ 10ସ € [32]. 

 Procedural barriers:  

 The improvement of 𝑃𝐹𝐷଴,ா்ூ can be achieved with the installation of additional fire 

detection and warning equipment, leading to 𝐴ா்ூ = 10ସ €; 

 Since the earthquake can lead to the disruption of the water supply [33], 𝜙ா்ூ can be 
improved with the installation of an underground water tank, leading to 𝐵ா்ூ = 10ସ €. 

Safety Barrier 𝑷𝑭𝑫𝟎,𝒊,𝒊𝒏 𝝓𝒊,𝒊𝒏 𝑨𝒊 𝑩𝒊 

1) WDS 0.0433 0.75 3 ∙ 10ସ € 5 ∙ 10ସ €  

2) PFP - 0.25 - 6 ∙ 10ସ € 

3) PSV 0.01 0 5 ∙ 10ଷ €  5 ∙ 10ଷ € 

4) ETI 0.1 0.85 10ସ € 10ସ € 

5) FWS 0.0053 0.5 10ହ €  5 ∙ 10ସ €  

 

Tab. 4. Values of 𝑃𝐹𝐷଴,௜,௜௡, 𝜙௜,௜௡, 𝐴௜  and 𝐵௜ . 

Finally, 𝑓ଶ to be minimized is defined in Eq. (17): 

 𝑓ଶ = 𝐶்         (17) 
 

 

4.  Results 

The framework described in Section 2 has been applied to the case study presented in Section 3.  
Step 1: the MOO problem has been defined as described in Section 2.1. The decision variables are 
the values of 𝑃𝐹𝐷଴,௜ and 𝜙௜ of the safety barriers, leading to a total of 𝐷 = 11 decision variables. The 

objective functions are defined and calculated as presented in Section 3.2 and Section 3.3, the 
robustness constraint of Eq. (3) is set to 𝜔 = 0.15 (that is a problem-specific value here empirically 
set, without loss of generality) and the adopted constraints for 𝑃𝐹𝐷଴,௜ and 𝜙௝,௜ are reported in Tab. 5. 

 



 

 

Safety Barrier Constraints 

1) 𝐖𝐃𝐒 𝑃𝐹𝐷଴,ௐ஽ௌ ≤ 4.33 ∙ 10ିଶ  , 𝜙ௐ஽ௌ ≤ 0.75 

2) 𝐏𝐅𝐏 𝑃𝐹𝐷଴,௉ி௉ = 0  , 𝜙௉ி௉ ≤ 0.25 

3) 𝐏𝐒𝐕 𝑃𝐹𝐷଴,௉ௌ௏ ≤ 0.01 , 𝜙௉ௌ௏ = 0 

4) 𝐄𝐓𝐈 𝑃𝐹𝐷଴,ா்ூ ≤ 0.1 , 𝜙ா்ூ ≤ 0.85 

5) 𝐅𝐖𝐒 𝑃𝐹𝐷଴,ிௐௌ ≤ 5.3 ∙ 10ିଷ , 𝜙ிௐௌ ≤ 0.5 

 
Tab. 5. Constraints of the MOO problem. 

Step 2: the simplified MOO problem is solved employing four algorithms, with the following settings 
(see Appendix for further details): 

1) NSGA-II: NP୒ = 110, CR୒ = 0.1, MR = 0.15 [34]. 

2) MODEA: NP୑ = 110, CR୑ = 0.1, F = 0.5 [9]. 

3) MOPSO: NP୔ = 53, NR୔ = 200, w = −0.35 [35]. 

4) MSSA: NPୗ = 50, NRୗ = 200 [11]. 

The PFs released by the four algorithms are shown in Fig. 4. 

 



 

 

   

Fig. 4. PFs released by NSGA-II (top-left), MODEA (top-right), MOPSO (bottom-left) and MSSA (bottom-right). 

MODEA is identified as the algorithm most suited for the case study, since it is ranked first by all of 
the three metrics of Section 2.2 (Fig. 5 and Tab. 6), with the following values: 𝐻𝐷ெை஽ா஺ = 0.2529, 
𝐺(𝐴ெை஽ா஺) = 0.7406, 𝑀ଷ,ெை஽ா஺

∗ = 0.2647, which are larger than those of all the other algorithms. 

 

     

Fig. 5. Results of HD (left), G-Metric (center) and 𝑀ଷ
∗ (right). 

 

 



 

 

 

Metric MOGA MODEA MOPSO MSSA 

𝑯𝑫 0.2470 0.2529 0.2491 0.2509 

𝑮(𝑨) 0.0114 0.7406 0.2174 0.0305 

𝑴𝟑
∗  0.2218 0.2647 0.2618 0.2517 

 

Tab. 6. Numerical results of HD, G-Metric and 𝑀ଷ
∗. 

In Fig. 6, the robust PF provided by MODEA is compared with the PF shown in Fig. 4 (top right). 

 

Fig. 6. Comparison between the robust (orange squares) and non-robust (blue stars) PFs released by MODEA. 

It can be seen that when the uncertainty of some relevant parameters of the dynamic model is duly 
propagated throughout the analysis, a minimum cost (equal to 1.86 ∙ 10ହ€) bounds the domain of the 
possible optimal solutions (orange squares), and that, incidentally, it is larger than the solution with 
the same performance of the non-robust PF (blue stars), whose cost is equal to 1.65 ∙ 10ହ€: this means 
that neglecting the uncertainties in the phenomenological model would lead to an underestimation of 
the cost to optimally manage the risk arising from NaTech scenarios or, conversely, an optimistic 
estimation of the performance when the underestimated budget is allocated, exposing the facility to 
severe consequences of the NaTech scenario. 



 

 

Step 3: In Fig. 7, the histograms of the PDF of 𝛿ௗ (i.e., the min-max normalization of the variation of 
the d-th decision variable from its initial value) of 𝜙௉ி௉, 𝜙ா்ூ, 𝜙ிௐௌ, 𝑃𝐹𝐷଴,௉ௌ௏,்ଵ and 𝑃𝐹𝐷଴,௉ௌ௏,்ଶ 

(i.e., the parameters that are to be improved the most) are built from both the robust and non-robust 
PF of MODEA (Fig. 4 and Fig. 6, respectively). 

 

Fig. 7. Histograms of the PDF of 𝛿ௗ from the robust (orange) and non-robust (blue) PF of MODEA. 

 

From the results presented it is possible to conclude that: 

 The performance parameters of PFP, FWS and PSV (of both tanks) are of utmost importance, 
and the decision maker should allocate resources for their improvement, whose amount can 
be estimated following the guidelines provided in Section 3.3.  

 The uncertainty of the dynamic model parameters cannot be neglected, since, without the 
robustness constraint, ETI would result to deserve an improvement, whereas PFP would not. 
This discrepancy between the non-robust and the robust solutions (in which, instead, PFP is 
identified as one of the barriers to be improved the most, at the expense of ETI), is due to the 
necessary assumptions on the uncertainty in the response time, that is large for ETI and null 
for PFP, leading to a much larger uncertainty on Π if ETI is preferred over PFP. Therefore, 



 

 

without considering the uncertainties, no resources would be allocated to improve PFP, 
leading to a larger uncertainty on the mitigative power and, therefore, to a larger risk of severe 
consequences in case of earthquake; whereas, improving the parameters following the 
expectations of the robust PF leads to solutions that are less affected by the uncertainties, 
allowing a proper management of the NaTech risk. 

 

5.  Conclusions 

In this work, a novel MOO framework has been presented to identify the improvements on the 
safety barriers performance parameters necessary to obtain the largest mitigation of a NaTech 
scenario at the lowest cost. The accidental scenario evolution is assessed with a dynamic 
phenomenological model able to calculate a tailored performance metric, defined to represent the 
mitigative power of the system. Also, the uncertainty of the parameters of the dynamic model is 
accounted for with the introduction of a constraint for robust optimization. Different MOO 
algorithms are benchmarked to find the most suited to address the problem of identifying a robust 
PF, composed only by solutions that are only marginally affected by the uncertain parameters 
perturbation. 
The proposed framework has been tested on a case study of literature regarding a chemical facility 
exposed to NaTech scenarios caused by earthquakes. The results obtained show the capability of the 
framework in identifying the safety barriers whose improvement is most relevant to optimally 
manage the risk arising from NaTech scenarios. Furthermore, when giving due account to the 
uncertainty in the dynamic model parameters, the improvement of the performance of the passive 
barrier becomes necessary to obtain robust optimal solutions, whereas this would have been 
overlooked if the decision would have been taken neglecting such uncertainty. 
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Appendix. MOO algorithms 

Non-dominated Sorting Genetic Algorithm II 

NSGA-II is a Multi-Objective Evolutionary Algorithm (MOEA) comprised of the following steps 
[8]: 

1. Generate an initial random population 𝑝௚ୀଵ (of size 𝑁𝑃ே) of candidate solutions, which are 
vectors (also called chromosomes) whose components are the decision variables. The index 
g represents the generation number. 

2. While the maximum number of generations is not reached: 

a. Generate an intermediate population 𝑝௚ᇲ
 by applying the tournament selection operator to 

the parent population 𝑝௚. 

b. Generate an offspring population 𝑜௚ by applying the evolution operators of crossover 

(with rate 𝐶𝑅ே) and mutation (with rate 𝑀𝑅) to the intermediate population 𝑝௚ᇲ
. 

c. Combine the parent and offspring population to obtain a union population 𝑢௚. 

d. Evaluate the fitness of the chromosomes of 𝑢௚. 

e. Select the first NP chromosomes of 𝑢௚ based on non-domination and crowding distance 
(with respect the values of the objective functions) to be the new parent population 𝑝௚ାଵ. 

Multi-Objective Differential Evolution Algorithm 

MODEA is a state-of-practice MOEA, comprised of the following steps [9]: 

1. Generate an initial random population (of size 𝑁𝑃ெ) of vectors 𝑥௡
௚ୀଵ, each representing a 

candidate solution. The index g represents the generation number. 

2. While the maximum number of generations is not reached: 

a. For each 𝑥௡
௚ belonging to the g-th generation, apply the mutation operator to generate a 

noisy vector 𝑣௡
௚ାଵ as follows: 

 𝑣௡
௚ାଵ

= 𝑥௡
௚

+ (𝑥௥,ଵ
௚

− 𝑥௥,ଶ
௚

) ∙ 𝐹           (18) 

where 𝑥௥,ଵ and 𝑥௥,ଶ are vectors randomly chosen from the population and 𝐹 is a scaling 

factor. 

b. For each pair ൫𝑥௡
௚

, 𝑣௡
௚ାଵ

൯, apply the crossover operator (with rate 𝐶𝑅ெ) to generate the 

components a trial vector 𝑢௡
௚ାଵ as follows: 

 
𝑢௡,௭

௚ାଵ
= ቊ

𝑣௡,௭
௚ାଵ

    𝑖𝑓 𝑟𝑎𝑛𝑑(𝑧) ≤ 𝐶𝑅ெ  𝑜𝑟 𝑧 = 𝑟𝑛𝑏𝑟(𝑛)

𝑥௡,௭
௚

    𝑖𝑓 𝑟𝑎𝑛𝑑(𝑧) > 𝐶𝑅ெ 𝑎𝑛𝑑 𝑧 ≠ 𝑟𝑛𝑏𝑟(𝑛)
 (19) 



 

 

where 𝑟𝑎𝑛𝑑(𝑧) is the z-th evaluation of a uniform random number generator with outcome 
∈ [0,1] and 𝑟𝑛𝑏𝑟(𝑛) is a randomly chosen index which ensures that at least one 

component of 𝑣௡
௚ାଵ is given to 𝑢௡

௚ାଵ. 

c. For each pair ൫𝑥௡
௚

, 𝑢௡
௚ାଵ

൯, select the fittest vector between the two to keep in the 

population. 

Multi-Objective Particle Swarm Optimization 

MOPSO is a swarm intelligence algorithm that takes inspiration from the behavior of bird flocks and 
is composed by the following steps [10]: 

1. Generate an initial population (of size 𝑁𝑃௉) of candidate solutions 𝑃𝑂𝑃௡
௚ୀଵ (also called 

particles) with random positions (whose components are the decision variables) and velocity. 
The index g represents the iteration number. 

2. While the maximum number of iterations is not reached: 

a. Evaluate the fitness of each of the particle and store in a repository 𝑅𝐸𝑃௚ (of size 
𝑁𝑅௉) the positions of the particles that represent non-dominated vectors in the 
objective space. If the repository is full, prioritize the solutions located in less 
populated areas of the objective space. 

b. For each particle, store its best position (in terms of fitness) across the generations as 

𝑃𝐵𝐸𝑆𝑇௡
௚. 

c. Compute the velocity of each particle as follows: 

 𝑉𝐸𝐿௡
௚ାଵ

= 𝑊 ∙ 𝑉𝐸𝐿௡
௚

+ 𝑅ଵ ∙ ൫𝑃𝐵𝐸𝑆𝑇௡
௚

− 𝑃𝑂𝑃௡
௚

൯ + 𝑅ଶ ∙ ൫𝑅𝐸𝑃௛
௚

− 𝑃𝑂𝑃௡
௚

൯ (20) 

Where 𝑊 is the inertia weight, 𝑅ଵ and 𝑅ଶ are random numbers uniformly generated in 

the range [0,1] and 𝑅𝐸𝑃௛
௚ is the position of a solution from the repository, whose index 

ℎ is chosen with a roulette-wheel selection.  

d. Compute the new positions of the particles as follows: 

 𝑃𝑂𝑃௡
௚ାଵ

= 𝑃𝑂𝑃௡
௚

+ 𝑉𝐸𝐿௡
௚ାଵ  (21) 

e. Amend the particles to remain in the boundaries of the decision variables. 

Multi-objective Salp Swarm Algorithm 

MSSA is a swarm intelligence algorithm that takes inspiration from the behavior of salp chains and 
is composed by the following steps [11]: 

1. Generate an initial population (of size 𝑁𝑃ௌ) of candidate solutions 𝑠௡
௚ (called salps) with 

random positions (whose components are the decision variables). The index g represents the 
iteration number. 

2. While the maximum number of iterations is not reached: 



 

 

a. Calculate the fitness of each salp and add to the repository (of size 𝑁𝑅௦) the non-
dominated salps. If the repository is full, prioritize the solutions located in less populated 
areas of the objective space. 

b. Choose a source of food 𝐹௚ from the repository. 

c. Update the z=1,2,…Z components of the position of the leading salp (the first of the chain) 
as follows: 

 
𝑠ଵ,௭

௚ାଵ
= ቊ

𝐹௭
௚

+ 𝑐ଵ൫(𝑢𝑏௭ − 𝑙𝑏௭)𝑐ଶ + 𝑙𝑏௭൯ 𝑖𝑓 𝑐ଷ ≥ 0

𝐹௭
௚

− 𝑐ଵ൫(𝑢𝑏௭ − 𝑙𝑏௭)𝑐ଶ + 𝑙𝑏௭൯ 𝑖𝑓 𝑐ଷ < 0
 (22) 

where 𝑐ଵ = 2𝑒
ିቀ

ర೒

ಸ
ቁ

మ

(with 𝐺 being the maximum number of iterations), 𝑐ଶ and 𝑐ଷ are 
random numbers uniformly generated in the range [0,1] and 𝑢𝑏௭ and 𝑙𝑏௭ are the upper 
bound and lower bound of the z-th decision variable, respectively. 

d. Update the z=1,2,…Z components of the positions of the rest of the salps as follows: 

 
𝑠௡,௭

௚ାଵ
=

1

2
൫𝑠௡,௭

௚
− 𝑠௡ିଵ,௭

௚ାଵ
൯           (23) 

e. Amend the salps to remain in the boundaries. 
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