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The formulation and optimization of joint trajectories for humanoid robots is quite different from this same task for standard
robots because of the complexity of humanoid robots’ kinematics and dynamics. In this paper we exploit the similarity between
human motion and humanoid robot motion to generate joint trajectories for humanoids. In particular, we show how to transform
human motion information captured by an optical tracking device into a high dimensional trajectory for a humanoid robot.
We propose an automatic approach to relate humanoid robot kinematic parameters to the kinematic parameters of a human
performer. Based on this relationship we infer the desired trajectories in robot joint space. B-spline wavelets are utilized to
efficiently represent the trajectories. The density of the basis functions on the time axis is selected automatically. Large-scale
optimization techniques are employed to solve the underlying computational problems efficiently. We applied our method to
the task of teaching a humanoid robot how to make various naturally looking movements.

1. Introduction

Generation of motion for humanoid robots is quite
different from that of standard robots because of the
large numbers of joints, coupling between joints, re-
dundancies, and people’s expectations that humanoid
robots move like humans. A possible solution is to
develop a special motion creator with a rich graphi-
cal user interface that enables programmers to tackle
these problems in an interactive manner [8]. In this
paper we take another approach and investigate the
application of motion capture techniques for the gen-
eration of humanoid movements. This is motivated
by the fact that motion capture has become a premier
technique for animation of human like characters in
computer graphics. Unlike other robots, humanoids
can perform human like movements and we can ex-
ploit this to generate appropriate trajectories by ob-
serving human motion.

Our basic assumption is that humanoid robot kine-
matics can be embedded into human body kinematics
(see Fig. 1). The humanoid’s kinematics do not need

to reproduce every aspect of human kinematics (in-
deed, this would be impossible), but should reproduce
some properties of the human body. The best known
humanoids developed up to now, e. g. ASIMO, QRIO,
SDR, HRP-2, HOAP-2, etc., fulfill this condition and
images like Fig. 1 are commonly distributed with hu-
manoids to demonstrate that they can perform human
like movements. Only such robots can truly be called
humanoid and an increasing number of researchers
think that humanoids are the most appropriate robots
to bring robotics away from factory floor because of
their similarity to people.

Our approach involves capturing full body motions
of a human performer using an optical tracking de-
vice, which provides 3D locations of identified active
markers that are currently in view. We break the prob-
lem up into three parts: 1) identifying a kinematic
model of the person being observed, 2) estimating
the joint angle trajectories of the motion to be imi-
tated, and 3) transforming the motion so that it is ap-
propriate for the kinematics of the robot. This paper
presents a theoretically well founded and experimen-
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Figure 1. Kinematic structure of our humanoid DB
(see also Fig. 4). In the upright position with extended
arms and legs, all joint axes are parallel to one of the
three main axes of the body (forward/backward: x-
axis, left/right: y-axis, up/down: z-axis).

tally tested solution to problems 1) and 2), while the
technique used to solve problem 3) is relatively sim-
ple and is only briefly presented in the discussion.

1.1. Related Research
The automatic construction of kinematic models

for robot manipulators is a well established field in
robotics. A lot of research has been done to identify
the most suitable kinematic parameter system accord-
ing to criteria such as completeness, proportionality
and equivalence (see [7] for a review). The unknown
kinematic parameters are most commonly identified
from end-effector pose measurements and robot joint
position readings. However, joint position data is
not available when constructing a kinematic model
of a human body. Techniques that were developed
by the computer graphics community to estimate hu-
man body kinematics are therefore more relevant to
our problem [2,10,13]. These approaches have shown
that it is possible to identify human body kinematics

from motion capture data.
Computer animators have the liberty to use any

kinematic model they want when generating move-
ments for virtual characters. This is not the case when
working with a humanoid robot because we must also
take into account the properties of the robot which
is supposed to learn the observed movements. Our
kinematic model should not only model human mo-
tion well, but should also be related to the kinematics
of the available robot. Obviously, this aspect does not
need to be considered when generating animations.

Finite elements such as B-splines are often used to
represent joint space trajectories when a parametric
form of the trajectory is not known. The main prob-
lem with splines is that an optimal set of basis func-
tions cannot easily be determined. If there are not
enough basis functions, the generated motion may be
far from the desired motion. If there are too many
of them, the computational complexity is increased
unnecessarily due to the larger number of variables
as well as the resulting ill-conditioning of the linear
subproblems that arise in the optimization process.
Among approaches proposed to resolve this problem,
a wavelet representation, in which the trajectory is
represented hierarchically [5], seems to be one of the
most promising.

An alternative approach to splines was recently
proposed in [6]. Instead of splines these authors use a
set of differential equations that forms a control pol-
icy to encode the information about joint space mo-
tion. They show that their representation has various
advantages such as robustness against perturbations,
ease of re-use, etc. Our work concentrates on the
transformation of the demonstrated motion acquired
in Cartesian space into humanoid robot joint space.
For this task, a splines-based representation seems to
be ideal because it allows us to adapt local and global
properties of the trajectory.

A few approaches have been proposed in the past
to convert human movements into humanoid robot
movements [3,12,15]. Unlike these authors, who pri-
marily deal with the conversion of human motion into
humanoid robot motion in real-time based on images
acquired from on-board cameras and who match their
kinematic models manually, we concentrate here on
the accurate reconstruction of complex, articulated
human movements, even if the resulting system does
not work in real-time. In this way we can generate
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high degree of freedom naturally looking motions and
also provide a high-quality input to systems like [6],
which can generalize robot joint space trajectories.

2. Kinematic Modeling

To a certain degree of accuracy, human motion can
be modeled as an articulated motion of rigid body
parts. The first decision to be made is the selec-
tion of an adequate kinematic parameter convention
to model motions generated by such systems. Since
Denavit-Hartenberg parameterization is inappropriate
because it lacks proportionality, other notations dis-
tinguished by various desirable properties have been
proposed for the calibration of kinematic models [7].
Our goal is to model human motion by a specific kine-
matic structure of the humanoid robot, therefore it is
very natural to specify such a parametric model using
twists [9]. A twist is defined by a point on the joint
axis and by the direction of the axis. Twists allow us
to work directly in a global body coordinate system
instead of specifying transformations between con-
secutive local coordinate frames in a kinematic chain.
Such a representation is not minimal (it involves 6
instead of 4 parameters per transformation), but we
shall show later how to derive a set of independent
parameters for calibration based on twists.

To describe the kinematic body model by twists, we
need to determine the location and direction of joint
axes on the human body. For a revolute joint,1 let
ni be the unit vector in the direction of the joint axis
and let qi be any point on the axis, both given in a
global body coordinate system at zero configuration,
i. e. with all joint angles θi equal to 0. In this case, the
twist ξi describing motion about i-th joint axis has the
form ξi =

[
(−ni × qi)

T nT
i

]T . The displace-
ment of a body part caused by motion about such a
joint by an angle θi can be calculated by an exponen-
tial map exp(θiξi) [9].

To generate humanoid robot motion from human
motion capture data, we need to relate the human
joint motion to the 3-D marker motion. If the coor-
dinates of a marker in a local coordinate system of
a rigid body part to which it is attached are given
by yj , then its 3-D position at body configuration

1All current humanoid robots possess only revolute joints, there-
fore we limit our attention to this type of joints. It is, however,
straightforward to also consider prismatic joints.

(r,d, θ1, . . . , θn) can be calculated as follows

ỹj = (1)
g(r,d) · exp(θi1ξi1

) · . . . · exp(θinx

ξinx

) · Gx · yj .

Here ξi1
, . . . , ξinx

are the twists that describe the
kinematic chain generating motion of the marker yj ,
Gx is the homogeneous matrix combining the posi-
tion and orientation of the local body part coordinate
system to which the marker is attached with respect
to the global body coordinate system at zero config-
uration (for DB, x = torso, pelvis, head, left upper
arm, left lower arm, left hand, right upper arm, right
lower arm, right hand, left upper leg, left lower leg,
left foot, right upper leg, right lower leg, right foot),
r and d are the orientation (represented by a rotation
vector) and position of a global body coordinate sys-
tem with respect to the world coordinate system, and
g(r,d) denotes the homogeneous matrix correspond-
ing to r and d. Note that the set of twists affecting
motion of the marker varies with the identity of the
body part to which the marker is attached.

In this setting, the kinematic modeling involves the
specification of joint axes positions and directions and
the placement of local body part coordinate systems,
all these parameters being specified in the global body
coordinate system when the body is at zero config-
uration. The location of the global body coordinate
system should also be determined.

3. Automatic Model Generation

The relationship between the kinematics of a hu-
man body and humanoid robot kinematics is estab-
lished by modeling the performer’s kinematics by a
model standard for humanoid robots, yet scaled to
the physical size of the performer. In biomechanics
and computer graphics, neck, shoulder, hip and ankle
joints are normally modeled as spherical joints. This
is not the case with current humanoid robots, which
rather have a number of consecutive revolute joints
(typically three) that are orthogonal but do not nec-
essarily intersect at all joints. In addition, at the zero
configuration the directions of the corresponding joint
axes are normally aligned with the three main body
axes (up/down, left/right, and forward/backward). We
consider the body to be in zero configuration when a
subject or a robot stands in the upright position with
extended arms and legs.
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Regardless of the kinematic parameter system in
use, the actual values of the parameters (joint angles)
depend on the choice of local coordinate systems be-
cause they specify transformations between them. We
orient the global and the local body part coordinate
systems on the human performer in such a way that
they are all aligned when the performer stands in the
upright position with extended arms and legs. The
axes are chosen to be parallel to the main body axes
in this configuration. Directions of joint axes at zero
configuration therefore coincide with the coordinate
axes, which gives us a reference posture for the map-
ping of human joint angles onto robot joint angles.

3.1. Practical Determination of Coordinate Sys-
tems and Marker Positions on the Body

To be able to relate the marker motion to the joint
motion of the observed actor, we must know the posi-
tions of markers on the body in local body part coor-
dinate systems. This data can be acquired by measur-
ing the position of markers while the actor stands in
a posture for which the joint angles are known. The
zero configuration is suitable for this purpose. In our
experiments we asked the performers to stand in such
a position and recorded the markers. For each body
part, the origin of a local coordinate system is taken
to be at the centroid of all markers attached to it.

To determine the directions of the main body axes,
the optical tracking system is calibrated so that we
know where up and down is2. We can therefore as-
sume one of the body axis at zero configuration (z-
axis on our robot) to be parallel to the z-axis of the
world coordinate system. The axis from the left to
the right shoulder can be estimated by attaching two
markers at the opposite positions on the left and right
shoulder. The line between the two opposite posi-
tions defines the second body axis (y-axis in our sys-
tem). Due to inaccuracies in the measurements and/or
marker placement, the derived axes are not exactly or-
thogonal, therefore we enforce the orthogonality by
calculating a new z-axis direction

z =




ỹr − ỹl

‖ỹr − ỹl‖
×





0
0
1







 ×
ỹr − ỹl

‖ỹr − ỹl‖
. (2)

where ỹl and ỹr are the coordinates of the two special
2This is done by aligning the z-coordinate of the calibration object
with the up/down direction in the real world.

markers attached to the left and right shoulder, respec-
tively. This new direction is orthogonal to the y-axis
and deviates from the original z-axis the least among
all directions orthogonal to y. Finally, the x-axis can
be calculated using the cross product.

The origin of the global body coordinate system is
assumed to be in the middle of a line connecting the
two specially placed markers. It is rigidly attached to
the torso. At zero configuration, the global body coor-
dinate system and all local body part coordinate sys-
tems are assumed to be aligned, which makes it pos-
sible to calculate the position and orientation of each
body part at zero configuration in the global body co-
ordinate system (Gx in Eq. (1)). We can also use this
assumption to transform the world coordinates of the
markers into the local coordinates (ỹj and yj in Eq.
(1)).

Because all joint angles are equal to 0, Eq. (1) sim-
plifies to

ỹj =

[
R d

0 1

]

· Gx · yj . (3)

The position of the global body coordinate system is
given by d = (ỹl + ỹr)/2, while the orientation is
given by the rotation matrix R having the three coor-
dinate axes in its columns

R =

[
ỹr − ỹl

‖ỹr − ỹl‖
× z,

ỹr − ỹl

‖ỹr − ỹl‖
, z

]

(4)

Due to the alignment by construction, the relative ori-
entation of each body part coordinate system with re-
spect to the global body coordinate system at zero
configuration is given by the identity matrix. The
relative position can be calculated by subtracting the
position of the global body coordinate system from
the position of local coordinate systems. Thus for the
body part x we have

Gx =




I ,

1

Mx

∑

∀j∈x

ỹj − d

0, 1



 , (5)

where Mx is the number of markers attached to the
body part. Finally, the local coordinates of markers
yj can be obtained by inverting Eq. (3).

3.2. Estimation of Joint Positions
At this point, the joint axis locations are the only

parameters that still need to be estimated. To estimate
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these parameters, the subject is asked to perform a
set of movements which are measured by the motion
capture system. He or she should exercise motions
around all relevant degrees of freedom if the method
is to return an unambiguous answer. Instead of trying
to estimate all joint locations in one big optimization
process, we decided to split the estimation in ten sep-
arate smaller optimization problems: neck, waist, left
and right shoulder + elbow, left and right wrist, left
and right hip + knee, and left and right ankle.

The position of a joint axis in 3-D space has only
two degrees of freedom because the position along the
axis is arbitrary. Recall from Section 3.1 that direc-
tions of all joint axes at zero configuration are parallel
to the coordinate axes of the global body coordinate
system and are thus all given by one of the vectors
[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [−1, 0, 0]T , [0,−1, 0]T

and [0, 0,−1]T . It is easy to see that the coordinate
corresponding to the non-zero coordinate of the joint
axis direction vector does not influence the twist. For
example, for a joint axis located at [a, b, c]T and par-
allel to [0, 1, 0]T , the corresponding twist is equal to
[
(

−
[
0 1 0

]T
×

[
a b c

]T
)T [

0 1 0
]T

]T

=

[
−c 0 a 0 1 0

]T

(6)

and is thus independent of the second coordinate, i. e.
b. It follows that we can parameterize the location of
each joint axis by two coordinates different from the
non-zero coordinate of the direction vector of the axis.

Now that we have the independent coordinates for
the joint axis locations, we can estimate them by min-
imizing a suitable optimization criterion. Apart from
joint axis locations, we also need to estimate the po-
sition and orientation of the body in space as well as
the joint angles in order to match the model markers
with the measured marker positions. To make the op-
timization process smaller, we estimate all the degrees
of freedoms prior to the joints under consideration in
a separate optimization process using the sequential
method from Section 4.1. The optimization process
then involves only the joint angle locations that need
to be estimated and the corresponding joint angles.
Still, this results in a very large optimization prob-
lem. For instance, to estimate the neck joint locations,
we need to minimize the following optimization cri-
terion:
h(a, b, c, d, e, f, {θ1(tk), θ2(tk), θ3(tk)}N
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Figure 2. Sparsity pattern of the Jacobian of the vec-
torized optimization criterion (7). The full Jacobian is
shown on the left. On the right, the upper left corner
of the Jacobian corresponding to the first three mea-
surement sets and variables is depicted.

N∑

k=1

∑

j∈head

‖ g(r(tk),d(tk)) · exp(θ1(tk)ξ1(a, b)) ·

exp(θ2(tk)ξ2(c, d)) · exp(θ3(tk)ξ3(e, f)) ·

Ghead · yj − ỹj(tk)‖2. (7)

Note that the number of parameters increases with
the number of measurement times. We typically used
300 measurements in each of the ten optimization
problems and therefore needed to estimate 906 or
1208 variables per optimization problem. To solve
such large optimization problems we utilized a sub-
space trust region approach and sparse matrix algebra
[4]. The trust region approach requires the calculation
of first derivatives of the criterion function h. Fortu-
nately, the Jacobian of h (shown in Fig. 2) is sparse
and our optimization method uses sparse matrix alge-
bra to reduce the computation time.

3.3. Discussion of the Technique
We first note that our system does not directly esti-

mate body part positions and orientations. Indeed, we
did not always have enough marker data to do this in
our experiments (we typically had 2, 3, or 4 markers
per body part when performing calibration). Thus the
parameters describing joint motion preceding the axes
under consideration are either determined in a previ-
ous step or are part of the current estimation process.

Some of the constraints imposed on the humanoid
robot kinematics can be relaxed. For example, it is
not necessary that the robot joint axes are parallel to
the main body axes or even that they are orthogo-
nal. However, to map human motion onto a humanoid
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robot body, we need to know the orientation of these
axes with respect to the main body axes (or any other
coordinate system chosen as a global body coordinate
system). We could then parameterize the kinematic
model using these known joint axis directions. How-
ever, looking at current humanoid robots, the practi-
cal value of this is rather limited and since this greatly
complicates the notation while clouding important is-
sues, we do not present the necessary mathematics in
this section.

Special placement of the two shoulder markers
could be avoided by estimating the left and right
shoulder joint position as in [10] or [13]. These two
methods are based on the estimation of neighboring
body part positions and orientations, but this is prob-
lematic with systems that provide only sparse marker
data such as our Optotrak. In addition, the estimation
of joint locations is a noisy process and the estimates
vary depending on the movements that were actually
performed because the human shoulder is not a per-
fect spherical joint and has some translation capabil-
ity. Hence there is no guarantee that the parameters
generated in this way would be more accurate than
the parameters acquired from special marker place-
ment. For these reasons we decided to stick with our
original approach which is simpler to implement.

4. Motion Generation from Marker Data

Our trajectory planning method should generate
motions which are perceptually similar to the motion
of the performer. To attain this, we minimize the dif-
ference between the measured marker positions and
marker positions generated by the recovered joint an-
gles for each frame of motion over the set of body
configurations (r(tk),d(tk), θi(tk))

M∑

j=1

‖g(r(tk),d(tk)) · exp(θi1(tk)ξi1
) · . . . ·

exp(θinx

(tk)ξinx

) · Gx · yj − ỹj(tk)‖2 =

M∑

j=1

‖hj(r(tk),d(tk), θ1(tk), . . . , θn(tk)) − ỹj(tk)‖2=

‖h(r(tk),d(tk), θ1(tk), . . . , θn(tk)) − ỹ(tk)‖2, (8)

where h = [hT
1 , . . . ,hT

M ]T and y(tk) =
[y1(tk)T , . . . , yM (tk)T ]T . ỹj(tk) denotes the mea-
sured markers at time tk,M is the number of markers,
and n is the number of joints.

4.1. Sequential Motion Estimation
The kinematics of humanoid robots are much too

complicated to allow for analytical solutions, al-
though partial solutions are sometimes feasible [1].
The optimization of criterion (8) is a standard nonlin-
ear least-squares optimization problem and there are
several good iterative methods that can be applied to
solve it [4]. Our experiments have shown that the in-
corporation of constraints into the above optimization
criterion can increase the quality of the reconstructed
motion. For example, the elbow joint angle is equal
to 0 when the performer fully extends his arm. It is
visually very disturbing if the estimated elbow angle
turns out to be negative because of measurement noise
and/or inaccuracies in the kinematic model. Thus it is
sensible to add simple bounds which limit the angles
to the area that can actually be reached by a human to
the above optimization criterion

li ≤ θi ≤ ui. (9)

Efficient algorithms are available for the minimiza-
tion of the nonlinear least squares criterion (8) subject
to box constraints (9). We utilized a method based on
the Gauss-Newton iteration available in the MATLAB
Optimization Toolbox to solve this problem.

4.2. Estimation of Global Trajectory
The straightforward approach of sequentially min-

imizing criterion (8) at each measurement time has
several deficiencies. First of all, optical motion cap-
ture systems often cannot recover the positions of all
markers due to occlusions. This can result in un-
derconstrained linear systems causing the optimiza-
tion process to break down. Moreover, experiments
showed that even when the positions of all markers
can be recovered, the optimization process can still
break down because of the singularities in the kine-
matic model. Finally, besides making our robot move
like a human, we also need to generate feasible robot
motions.

The optimization process can be made more reli-
able by recovering a global trajectory instead of single
configurations and by adding a regularization term to
the objective function (8). Writing the full-body tra-
jectory as f (t) = (r(t),d(t), θ1(t), . . . , θn(t)), we
look for a function that minimizes

s(f ) =
1

2

N∑

k=1

M∑

j=1

‖hj(f (tk)) − ỹj(tk)‖2, (10)
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over all possible trajectories. Regularization can be
achieved by minimizing the amplitude of physical
quantities such as acceleration (2nd derivative) or jerk
(3rd derivative)

r(f ) =
1

2

∫

0

1‖f (m)(t)‖2dt, m = 2 or 3. (11)

Note that we normalize the time of our trajectory. In
general we could penalize any weighted combination
of kinematic variables such as acceleration, jerk, and
violation of joint space or Cartesian soft limits.

The trajectory planning problem thus becomes

min
f

{s(f ) + λr(f )} , (12)

where λ is the parameter governing the tradeoff be-
tween the two objective functions. Apart from the
above mentioned computational issues, it is advanta-
geous to generate smooth trajectories also in order to
reduce the wear and tear of the mechanical system,
avoid exciting higher order dynamics, and because
real actuators often have limits on their torque out-
put or on the rate of change of output. Furthermore,
we find that jerky motions do not look natural.

Since parametric forms of complex body move-
ments are normally not known, we used a finite el-
ement method to represent the trajectory. As pointed
out in the introduction, wavelets are suitable for the
representation of general motions because they al-
low us to automatically determine the density of basis
functions on the time axis.

4.3. B-Spline Wavelets
Let V j(m) be the set of 2j + m endpoint-

interpolating B-splines of degree m constructed from
knot sequence

1

2j
[ 0, . . . , 0
︸ ︷︷ ︸

m+1 times

, 1, 2, . . . , 2j−2, 2j−1, 2j , . . . , 2j

︸ ︷︷ ︸

m+1 times

].(13)

Linear spaces spanned by these splines are nested, i. e.

L(V 0(m)) ⊂ L(V 1(m)) ⊂ L(V 2(m)) ⊂ . . . , (14)

where L(X) denotes the linear space spanned by
members of X . Each orthogonal complement of
L(V j(m)) in L(V j+1(m)) is called a wavelet space
and its basis is denoted by W j(m). Members of
W j(m) are called semiorthogonal wavelets because

they are orthogonal to B-splines but not to each
other. By definition L(W j(m)) ⊂ L(V j+1(m)),
thus wavelets are piecewise polynomials of the same
degree as the underlying B-splines. B-splines have
small support, i. e. they are different from zero only
on a short interval, and a construction for semiorthog-
onal wavelets with the smallest support, which are
called B-spline wavelets, is given in [14]. We omit
the details because of lack of space.

Let φj
i and ψj

i be members of V j(m) and W j(m),
respectively. The multiresolution finite element ap-
proach assumes that the optimal trajectory can be
written as a linear combination of B-spline wavelets:

f =
∑

i

Ciφ
L
i +

∑

L≤j≤K

∑

i

D
j
iψ

j
i . (15)

Here B-splines φL
i are fixed at the lowest possible res-

olution L, while the optimal set of wavelets ψj
i , L ≤

j ≤ K, should be determined automatically by the
optimization procedure.

4.4. Large-Scale Optimization
By replacing f in the optimization problem (12)

with the above linear combination of B-splines and
wavelets, which are fixed in this section, we obtain a
classic unconstrained optimization problem. Instead
of minimizing over all functions from some function
space, we can minimize over parameters C i, D

j
i .

Note, however, that the number of unknown param-
eters is very high. The full-body motion of DB in-
volves 26 joints plus 6 degrees of freedom for the dis-
placement in space. If we fix the highest resolution
space of piecewise polynomials to V 6(3), there are al-
together 67 basis functions. Thus in this case the high-
est possible number of variables is 67 ∗ 32 = 2144.

Trust region methods are suitable for solving large-
scale optimization problems [4]. Let H and g respec-
tively be the Hessian and the gradient of the objec-
tive function (12) at the current estimate for unknown
variables x = (Ci,D

j
i ). The main idea of the trust

region approach is to approximate the criterion func-
tion with a quadratic function in the neighborhood
around the current estimate. The next approximation
is thus computed by minimizing

min
x

{
1

2
xT Hx + xT g such that ‖Sx‖ ≤ ∆

}

,(16)

where S is a diagonal scaling matrix and ∆ is a posi-
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tive scalar setting the size of the neighborhood.
The trust region approach needs the gradient and

the Hessian of the criterion function. Let us define

c(x) = (17)







h1

(
∑

i Ciφ
L
i (t1)+

∑

j

∑

i D
j
iψ

j
i (t1)

)

− ỹ1(t1)

...
hM

(
∑

i Ciφ
L
i (tN )+

∑

j

∑

i D
j
iψ

j
i (tN )

)

− ỹM (tN )







.

Comparing (17) with the objective function (10) we
note that s(f ) = 1

2‖c(x)‖2. Let J be the Jacobian of
c at the current estimate. It is easy to verify that the
gradient of s is equal to JT c(x) while the Hessian of
s is given by JT J+ second order terms. It is a com-
mon practise in nonlinear least squares problems to
neglect the second order terms, which are expensive
to calculate, and to approximate the Hessian by JT J .

Calculation of the gradient and Hessian of the cri-
terion function (11) involves the calculation of inner
products of derivatives of basis functions
∫ 1

0
φ

(m)
i φ

(m)
j dt,

∫ 1

0
φ

(m)
i ψ

(m)
j dt,

∫ 1

0
ψ

(m)
i ψ

(m)
j dt.

Let Ω be the matrix of these inner products. It is easy
to see that (11) can be rewritten as r(f ) = 1

2xT
Ωx.

Thus the gradient of the objective function r is given
by Ωx and its Hessian is simply equal to Ω. We em-
ployed the Gaussian quadrature formulae to evaluate
these integrals exactly.

The bulk of the computing time when calculating
J is spent on the calculation of the body kinematics
Jacobian at all measurement times. Due to the struc-
ture of our model, the kinematics Jacobian is sparse.
Moreover, due to the minimal support property of B-
splines and wavelets, J , JT J , Ω and the resulting
combined Hessian JT J + λΩ are also sparse.

We showed that the gradient and the Hessian of the
combined criterion function (12) can be estimated as

g = JT c(x) + λΩx, H ≈ JT J + λΩ. (18)

Thus the next estimate for our trajectory can be com-
puted by solving the trust region subproblem (16).
To deal with the high dimensionality of the solu-
tion space, the solution of (16) is restricted to a two-
dimensional subspace spanned by the direction of
the gradient and direction of the negative curvature.
The calculation of the next approximation in this 2-
D space is trivial. We were able to use the MAT-
LAB Optimization Toolbox implementation of a trust

region method for large scale optimization problems
and the sparse matrix capabilities of MATLAB for the
resolution of sparse linear systems.

4.5. Selecting the Optimal Resolution
Criteria similar to the ones proposed in [5] for vari-

ational geometric modeling were applied to choose
the optimal resolution: add more wavelets to bet-
ter approximate the trajectory and remove the un-
needed wavelets to obtain a solution with lower en-
ergy. While the first principle can be realized using
hierarchical B-splines, the second criterion is much
easier to realize in a wavelet basis because the neces-
sary density is reflected in the magnitude of wavelet
coefficients.

After calculating an estimate for the trajectory at a
given resolution, we check the magnitude of wavelet
coefficients. If they are below a manually tuned
threshold, we remove the corresponding wavelets.
The next step is the addition of higher resolution
wavelets on time intervals where marker positions
generated by the recovered trajectory poorly match
the measured markers. Wavelets centered on such in-
tervals are added to the solution and their initial co-
efficients are set to zero. Experimentally we set the
threshold to 4 cm, which is about double the aver-
age marker error we typically had in our sequential
tests. This procedure is repeated until a stable solu-
tion is found. To prevent cycling between adding and
removing the wavelets, each wavelet can be removed
only once; once it is removed it cannot be switched
on again. While this is clearly a heuristic, such an ap-
proach allows us to quickly arrive at a stable solution.

5. Results and Discussion

We carried out numerous experiments to test our
method for the automatic generation of kinematic
models. We also captured several motion trajecto-
ries involving full-body motion of a human performer
to evaluate our trajectory generation approach. A
marker-based measurement system Optotrak (see the
web page www.ndigital.com/opto.html) was used for
this purpose. Optotrak uses identifiable active mark-
ers which is advantageous because full-body move-
ments often cause some of the markers to be occluded.
Systems using passive markers are more prone to
matching errors in such cases.
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Figure 3. Human demonstration and snapshot from
the karate kata animation generated by wavelets

In our first set of experiments we tested the accu-
racy of the model construction process. The subjects
exercised each joint complex in isolation trying to use
all the degrees of freedom. Similar movements were
performed in every motion capture session and the re-
covered kinematic parameters were very stable. The
statistics for one subject (mean values and average er-
rors), who exercised the upper body degrees of free-
dom ten times, is shown in Tab. 1-6 (RMSE stands
for root mean square error of the calculated joint lo-
cations with respect to the average joint location). A
revolute joint is a rather poor approximation for the
true neck kinematics, so it is not surprising that the de-
termination of the joint axes on the head is much less
repeatable than the determination of the joint axes on
the arms. Note also that the results for both arms are
reasonably symmetrical. The processing time needed
to generate a 30 degrees of freedom kinematic model
(DB has 26 DOFs excluding the eyes, but we added
two DOFs at each hip to allow for more complex an-
imations as in Fig. 3) was between 9.5 and 10.5 min-
utes on a 2 GHz Pentium 4 using 15-30 seconds long
motion sequences captured at 60 Hz for each joint
complex and starting from a generic kinematic model.

Fig. 3 and 4 compare the generated computer an-
imations and humanoid robot motions with the cap-
tured data. The Okinawan dance movements were re-
produced from motion capture sessions shorter than
ten seconds. Longer motions were generated by con-
catenation. Our experiments have shown that the
rather limited kinematic structure of DB is sufficient
to reproduce quite complex human motions. The
karate kata animation was generated from a data se-
quence over 1.5 minutes long, although this sequence
was divided into 10 seconds long subsequences to
make the trajectory optimization problem manage-
able. The data was captured at 60 Hz. The generation
of a 10 seconds long trajectory took about 6 minutes

Figure 4. Left image shows the captured markers
(yellow) and the reconstructed marker motion (red).
Right image shows DB performing Okinawan dance
generated by the sequential approach

on a 2 GHz Pentium 4 with the lowest resolution fixed
at V 3(3) and the highest resolution fixed at V 6(3).
Most of the computation time was spent on the last
few iterations when more wavelets are activated. One
iteration step with more than half of the wavelets ac-
tive takes about 1.5 minutes. On the other hand, a
sequential approach can be implemented in real-time
[12].

The experiments have also shown that our global
trajectory generation approach offers some advan-
tages over the straightforward approach of sequen-
tially minimizing the criterion function (8). Firstly,
the sequential minimization requires that a sufficient
number of markers be visible at each measurement
time. The optimization process can fail when too
many of them are occluded. In the sequential ap-
proach, we were able to recover part of the Okinawan
trajectory only by interpolating the marker positions
from the times when they were not occluded over the
intervals of occlusion. But when there are too many
consecutive missing markers, the interpolation pro-
cess does not do a good job because it has no knowl-
edge about the human motion. The missing mark-
ers problem was alleviated by the batch recovery of a
complete trajectory. Secondly, it turned out that even
when the positions of all markers can be measured,
the recovery of some of the joint angles becomes sen-
sitive at some configurations due to the kinematic sin-
gularities. This issue is resolved in the global ap-
proach with the introduction of the regularization fac-
tor (11). Thirdly, the recovered trajectory is smooth
and can avoid discontinuities that can arise in the se-
quential approach because of the switching between
local minima of the objective function.

The reconstructed trajectories are high dimensional
(over 30 degrees of freedom), so due to space limita-
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Table 1
Locations of neck axes (in millimeters).

x-axis location y-axis location z-axis location

Mean 0 1.7 -100.4 -78.1 0 -76.6 -66.1 -7.6 0

RMSE 22.0 24.6 5.5

Table 2
Locations of elbow axes (in millimeters).

Left elbow, y-axis location Right elbow, y-axis location

Mean -51.9 0 325.0 -79.5 0 313.5

RMSE 1.4 1.3

Table 3
Locations of left shoulder axes (in millimeters).

x-axis location y-axis location z-axis location

Mean 0 -167.0 27.4 -72.3 0 6.3 -52.0 -215.5 0

RMSE 3.0 3.0 1.4

Table 4
Locations of right shoulder axes (in millimeters).

x-axis location y-axis location z-axis location

Mean 0 175.8 31.0 -63.9 0 19.3 -51.6 213.6 0

RMSE 5.3 4.0 2.7

Table 5
Locations of left wrist axes (in millimeters).

x-axis location y-axis location z-axis location

Mean 0 -205.1 589.0 18.2 0 602.6 25.2 -224.3 0

RMSE 2.2 2.3 1.1

Table 6
Locations of right wrist axes (in millimeters).

x-axis location y-axis location z-axis location

Mean 0 214.3 575.0 -14.8 0 583.3 -15.8 241.2 0

RMSE 2.3 2.4 0.7

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Figure 5. Trajectory of the right arm flexion/extension

tions we are unable to present all of their components.
Some of the above mentioned findings are nicely
demonstrated on the recovery of the right shoulder
flexion/extension degree of freedom (see Fig. 5). The
dashed trajectory shows the trajectory recovered by
the sequential approach. It is more noisy than the
other two trajectories and it contains discontinuities.
The dotted trajectory shows the recovered trajectory
using an initial cubic B-spline basis (third resolution
level, 11 basis functions). While it is less noisy than
the trajectory generated by the sequential approach
and it does not contain discontinuities, it only poorly
follows the measured markers. The solid trajectory
shows our final result after adding some wavelet func-
tions. It is both smooth and continuous and it follows

the measured markers better.
When the target character has a different size

and proportion from the actual performer, we can-
not simultaneously preserve the joint angles and end-
effector positions. This leads to various artifacts such
as foot sliding, which are well known to the com-
puter animation community. We have indeed ob-
served these artifacts in our animation experiments,
but this was only a minor problem when mapping the
reconstructed motion onto DB. It turned out that the
mismatch between the joint limits of an actor and DB
is a much more serious problem. We dealt with it
by globally scaling and translating the reconstructed
joint trajectories into the range of DB’s joints. A lo-
cal approach to scaling was proposed in [11]. It is also
possible to replace the human joint limits with DB’s
joint limits in (9). This approach trades off joint errors
and Cartesian target errors in a straightforward way
and makes the robot see only feasible postures when
interpreting or reasoning about the captured motion.
Unfortunately, this approach also prevents the joints
from moving when reaching joint limits, which is
sometimes unnatural.

6. Summary and Conclusions

We presented a fully automatic technique for the
generation and synchronization of kinematic mod-
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els describing human and humanoid robot motion.
Our technique involves measuring marker positions
at zero configuration and over a repertoire of motions
exercising all relevant degrees of freedom. No manual
measurement of the performer’s limb lengths is nec-
essary. We exploited the sparseness of the Jacobian
matrices to solve the resulting optimization problems
efficiently.

The second important contribution of this paper is a
new approach to the formulation and optimization of
joint trajectories for humanoid robots using B-spline
wavelets. We demonstrated that B-spline wavelets
are suitable for the formulation and optimization of
humanoid robots’ trajectories at different resolution
levels and showed how to resolve the resulting large-
scale optimization problems to compute such trajec-
tories. The ability to treat large-scale optimization
problems that need to be solved to generate optimal
full-body motions and to automatically infer the ap-
propriate resolution level draws a distinction between
our approach and other approaches proposed for hu-
man motion capture in the literature.

The difference between motion capabilities of a hu-
man performer and of a humanoid robot is a seri-
ous problem when converting motion capture data.
Constraining the joint limits in the optimization cri-
terion does result in feasible motions, but the ”style”
or ”essence” of motion might suffer. A possible field
for further research is the development of additional
criterion functions that improve the style of motion
and that can be added to the objective function.
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