

 IROS 2003
October 27-31, 2003

Bally Hotel, Las Vegas, USA

Workshop On
Robot Programming Through

Demonstration
Half-day Workshop

Organizers:
Aude Billard & Roland Siegwart

Aude.billard@epfl.ch

Roland.siegwart@epfl.ch

Friday 31st of October 2003, 12pm-6pm
Bally’s Las Vegas Hotel

mailto:Aude.billard@epfl.ch
mailto:Roland.siegwart@epfl.ch

Objectives:

Programming by demonstration has become a key research topic in robotics. It impacts both

fundamental research and application-oriented studies. Work in that area tackles the development of

robust algorithms for motor control, motor learning, gesture recognition and visuo-motor integration.

While the field existed for more than twenty years, recent developments, taking inspiration in

biological mechanisms of imitation, have brought a new perspective, which this workshop aims at

assessing.

Studies of imitation in biological systems stressed a number of key issues that are, also, of concerns to

Robotics. These are the need to define a metric of imitation performance and the need to determine a

representation common to visual and motor systems.

The workshop aims at addressing the following key questions:

- What should the robot imitate, i.e. which features of the task should be reproduced?

- Can imitation use known motor learning techniques or does it require the development of new

learning and control policies?

- How could the metric drive the choice of learning technique?

- Does imitation speed up skill learning in robots?

- What are the costs of imitation learning?

- How could we define a general metric of imitation performance?

- Are there skills that could not be acquired without demonstration?

- Should gesture recognition and motor learning algorithms be context-specific?

- Can one find a level of representation of movement common to both gesture recognition and

motor control?

- How can models of human kinematics, used in gesture recognition, drive the reproduction of the

task?

Papers presented at this workshop fall into two categories:

1. research papers (typically 6 to 8 pages)
2. challenge/position statements (typically only 1 or 2 pages)

The papers cover the following topics:

• Programming by Demonstration, Imitation learning
• Task and Skill Learning
• Motor control, Motor learning
• Visuo-motor Integration
• Gesture recognition

Program

TIME TITLE

12:00 Welcome and overview
Aude Billard & Roland Siegwart, EPFL (Switzerland)

PART I: Invited Speakers

12:10 Rüdiger Dillmann Teaching and Learning of Robot Tasks via Observation of Human Performance

12:30 H. Ritter, Robotics: A data mining perspective

12:50 Jianwei Zhang Self-Valuing Learning and Generalization of Visually Guided Grasping

13:10 Ales Ude Using motion capture techniques to program high degree of freedom humanoid robot motion

13:30 Jun Nakanishi & Stefan Schaal Learning from Demonstration and Adaptation of Biped Locomotion

13:50 Auke Jan Ijspeert , Imitation of Human-Demonstrated Movements with Nonlinear Dynamical
Systems in Humanoid Robots

14:10 Aude Billard, Determining what to Imitate in a Manipulation Task

14:30 Coffee break (30 min)

PART 2: Accepted Papers

15:00 Leveraging on a Virtual Environment for Robot Programming by Demonstration
Jacopo Aleotti, Stefano Caselli, Monica Reggiani

15:20 A Posture Sequence Learning System for an Anthropomorphic Robotic Hand
Ignazio Infantino1 Antonio Chella1,2 Haris Džindo1 Irene Macaluso1

15:40 Motor Representations for Hand Gesture Recognition and Imitation
Manuel Cabido Lopes Jos´e Santos-Victor

16:00 Improving Robot Programming Flexibility through Physical Human - Robot Interaction
M. Frigola1, J. Poyatos1, A. Casals1 and J. Amat2

16:20 Learning Issues in a Multi-Modal Robot-Instruction Scenario
J. J. Steil, F. Rothling, R. Haschke, and H. Ritter

16:40 Towards Integrating Learning by Demonstration and Learning by Instruction in a Multimodal
Robot. Stefan Wermter, Mark Elshaw, Cornelius Weber, Christo Panchev, Harry Erwin

17:00 Learning From Observation and Practice Using Primitives
Darrin C. Bentivegna, Christopher G. Atkeson, Gordon Cheng

17:20 Teaching Bayesian Behaviours to Video Game Characters
Ronan Le Hy Anthony Arrigoni Pierre Bessi`ere Olivier Lebeltel

17:40 Towards Robot Intermodal Matching Using Spiking Neurons
Emachi Eneje & Yiannis Demiris

18:00 Wrap-up and goodbye:
Aude Billard & Roland Siegwart, EPFL (Switzerland)

Table of Content:

• Teaching and Learning of Robot Tasks via Observation of Human Performance
Rüdiger Dillmann

• Robotics: A data mining perspective

Helge Ritter

• Self-Valuing Learning and Generalization of Visually Guided Grasping

 Jianwei Zhang

• Using Motion Capture Techniques to Program High Degree of Freedom Humanoid Robot

Motion.
Ales Ude

• Learning from Demonstration and Adaptation of Biped Locomotion

Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal and Mitsuo Kawato

• Imitation of Human-Demonstrated Movements with Nonlinear Dynamical
Systems in Humanoid Robots
Auke Jan Ijspeert

• Determining what to Imitate in a Manipulation Task

 Aude Billard

• Leveraging on a Virtual Environment for Robot Programming by Demonstration

Jacopo Aleotti, Stefano Caselli, Monica Reggiani

• A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

Ignazio Infantino, Antonio Chella, Haris Džindo and Irene Macaluso

• Motor Representations for Hand Gesture Recognition and Imitation
Manuel Cabido Lopes José Santos-Victor

• Improving Robot Programming Flexibility through Physical Human - Robot Interaction
M. Frigola, J. Poyatos, A. Casals and J. Amat

• Learning Issues in a Multi-Modal Robot-Instruction Scenario
J. J. Steil, F. Rothling, R. Haschke, and H. Ritter

• Towards Integrating Learning by Demonstration and Learning by Instruction in a
Multimodal Robot.
Stefan Wermter, Mark Elshaw, Cornelius Weber, Christo Panchev, Harry Erwin

• Learning From Observation and Practice Using Primitives

Darrin C. Bentivegna, Christopher G. Atkeson, Gordon Cheng

• Teaching Bayesian Behaviours to Video Game Characters,
Ronan Le Hy, Anthony Arrigoni, Pierre Bessière and Olivier Lebeltel

• Towards Robot Intermodal Matching Using Spiking Neurons
Emachi Eneje and Yiannis Demiris

Teaching and Learning of Robot Tasks via Observation of Human
Performance

Rüdiger Dillmann

University of Karlsruhe
Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

Email: dillmann@ira.uka.de

Extended abstract:

Programming, cooperation and interaction with upcoming humanoid robots is assumed to be
multimodal which means to let the user program the robot simply by speech, gesture or demonstrating
the task to be done. The robot observes, interprets and then tries to imitate and to learn the performed
user action. A complete system for programming by demonstration is presented which interprets and
stores the observed demonstrated actions, segments them into meaningful sequences in a given context
including task knowledge. Due to sensor errors and the complexity of the intended interaction, it is
usefull, that the system generates queries concerning intention, manipulation and objects. Motion and
grasp capture techniques in combination with learning capabilities are combined towards imitation
learning and active observational learning strategies.
To achieve the goal of multimodal interaction, an effective representation and interpretation of the
world is required. The context in which we focus on this research is spontaneous continuous and
adaptive humanoid interaction and cooperation with the robot. As we believe, programming by
demonstration and advice (PbD) and imitation learning is a technique that overcomes the drawbacks of
classical robot programming approaches and could be a natural way to program humanoid robots.
Providing multimodal bi-directional interfaces allows both, modeling of motion and interaction but
also setting up a common representation of the world programmed in an intuitive mode. Thus, human
motion can be traced, segmented and interpreted. The observed action sequences can be mapped into a
generalized representation and finally adapted and executed by a target robot. Full body motion catch
techniques combined with statistical learning techniques [Schaal 99] are considered to implement
imitation learning of natural human movement by the robot.. If more natural motion behaviour can be
achieved a higher acceptance rate for robots in various applications may be the result [Billard et al.,
01].
Several PbD systems and approaches for different applications have been proposed in the past. An
overview and classification can be found in [Dillmann et al., 99]. Learning of skills, action sequences
or operation plans requires modelling of cognitive skills. In fact, the purpose of observing the user is
to generate an abstract description of the demonstration, reasoning about the user’s intention and
modelling the problem solution preferably in an optimal way. Likewise, a given problem has to be
generalized by identifying for example significant parameters and attributes being characteristic for a
particular demonstration and by deriving data being relevant for the problem concept. Both requires
background knowledge about the environment and about the user’s behaviour and performance.
The analysis of demonstrations may be based on the observation of dynamic transitions in the
workspace manipulated by the user. These dynamic transitions can be described using relational
expressions or contact relations [Kuniyoshi 94, Ikeuchi 93, Onda 97]. For generalising a single

demonstration typically explanation based methods are used [Mitchel 86] because they allow an
adequate generalisation taken from only one example (One-Shot-Learning).
Because physical demonstration in the real world may be very time-consuming some work addresses
virtual demonstrations [Archibald 93]. Augmented reality (AR) techniques and simulation allow some
additional degrees of freedom to the user. Hence, in some approaches object poses or trajectories
[Takahashi 96, Tung 95, Kang 97] and/or object contexts [Onda 97, Heise 92, Segre 89] are acquired
and generalised with the help of such techniques.
In addition direct cooperation between the user and the robot has been investigated. Here, user and
robot operate in a common working space. The user may direct the robot with the help of a common
vocabulary like speech or gestures [Zhang 99, Voyles 99, Steinhage 98].
For the humanoid robot project experiments following the PbD paradigm have been undertaken in a
stationary environment.
The perceptive capabilities of the robot are essential for the humanoid robot to be able to interact
within a dayly dynamic environment including humans. An active stereo vision system with steerable
cameras and an microphone array integrated into a head combined with a flexible neck is used to
identify objects, recognizing people and identifying their focus of attention. The purpose is tracking of
people and analyzing their intention and activities. The perceptive and control system steers the robot
behaviour. Typical capabilities of the audio- vision system include face recognition, people tracking,
lip reading, gesture recognition, identification focus of attention, speech recognition as well as
estimation of speaker position [Yang et al 98, Stiefelhagen et al 99, Kroschel et al 95].

Multimodal Man Robot Interaction

To improve intuitive interaction the robot must provide a multimodal user interface which enables the
user to communicate via speech, via gesture and via direct physical interaction with the robot system.
Gesture recognition enables the user to control and command the robot in a straightforward way.
Additionally, it extends the intuitive speech interface by pointing gestures (e.g. to select the objects to
be grasped). This additional information gathered by gesture recognition will be fused with the
dialogue context to a multimodal environment context in order to understand focus of interest, what
the user desires and what he is talking about. As an extension of this context the interactive
environment modelling (the user explains a new environment structure and situations to the robot) is a
very important scientific challenge in that field. This yields to dynamic vocabularies and dynamic
grammars.
A part of the multimodal environment context is the actual user state configuration. The robot needs
all information about the user (head, arms, hands etc.) that is available. Thus, the gesture recognition is
needed to complete upper body recognition and later on to the entire human to identify his intention
and the context of actual situations.

Adaptation and Learning

Various learning strategies may be applied on all levels of abstraction in the cognitive and perceptive
architecture of the humanoid robot:

• Learning of natural type basic movements (human-like movement)
• Learning of coordinated movements (human-like movement)
• Learning of tasks (e.g. assembly, fetch and carry, loading, unloading, opening/closing a door,

cleaning etc.)
• Learning of cooperative tasks or task-pattern

Learning and mapping of natural basic movements requires adaptive controls for the whole robot body
motion system. Learning of coordinated movements includes learning of all control sets for entire-
arm-movements, entire-body-movements etc.

Learning of manipulative tasks may be based on the programming by demonstration paradigm. The
user demonstrates the solution of a problem to the robot. The robot observes the solution and tries to
imitate. Basic skills or task solutions may be generated with the help of a training center which can be
a simulator to be accessed via a network. Simulation allows to correct the generated robot program.
Such a program may consist of an operator tree based on a huge set of basic skill operators.
Learning of cooperative tasks is similar to learning autonomous tasks. The robot is incorporated into
the process by being commanded via its multimodal interface. The entire user demonstration including
its own actions is recorded and post processed. For activating the patterns or execution of them the
specification of competences or roles (who does a specific action in a concrete case ?) between the
robot and the user is required.

Programming by demonstration for manipulation tasks

In the following our approach to PbD is shortly discussed. One key issue for the robot is the
interpretation of what has been done by the human demonstrator. If the humanoid robot can derive for
a given user demonstration a clear and correct hypothesis, it enables the robot system to reuse this
observed action in similar or slightly different situations. The PbD process starts with a user task
demonstration which is observed by a sensor system. Within a sequence of 7 processing phases the
data derived from the human demonstration is converted into a control program:

1. A sensor systems observes the user´s intention, motion, interaction and behaviour. Dynamic
changes of object positions and constraints in the environment can be detected. If context
information is given as input, the system`s sensor processing and tracing performance can be
improved considerably..

2. During the next phase relevant operations and environment state changes can be derived based
on the acquired sensor data. This process is called segmentation. Segmentation can be
performed online during the observation process or offline based on recorded data. The
segmentation processing performance can be improved significantly by user input concerning
context and purpose of the observed interaction to encrease the systems hypothesis generation
capabilities.

3. Within the interpretation phase the segmented user task demonstration trace is mapped onto a
sequence of symbolic descriptions. These symbols contain information about the action (e.g.
type of grasp, trajectory type) as well as important data from the sensor traces like forces, used
for grasping, etc.

4. Abstraction from the given demonstration for representing the task solution as general as
possible is the next processing step. Generalization of the obtained operators may include
further advice by the user. Spontaneous and not goal oriented motion and actions may be
identified and filtered in this phase. The task knowledge is stored in a form that allows reuse
even if the execution constraints and conditions differ slightly from the demonstration.

5. Transfer of the internal symbolic knowledge representation to the target system has to consider
physical properties of the robot.. Input to the mapping process is the generated task solution
knowledge from the previous processing phase. Background knowledge about the kinematic
constraints of the target robot system is matched with the abstract task description.

6. In the following process the mapped action sequence may be tested with the help of a
simulator. In this phase the user can access the system and can confirm and evaluate
performance and correctness to avoid ambiguous situations during real task execution.

7. During the execution process success and failure information can be used to evaluate and
modify the actual task program but also the mapping process.

 The PbD technique has been applied to fetch and carry operations of various household objects and to other
service tasks. However, the experiments with real household objects yield to learning of different grasp-types
for distinct robots. A 2 - arm - 2-hand demonstration system is set up actually to demonstrate simple 2
coordinated hand tasks in the above described environment.

System structure

The system structure is shown in figure 1. It integrates four basic modules. The sensor module is
responsible for analysis and presegmentation of data from the observer channels connected with the
sensor systems. It’s output is a vector describing environment states and user actions. This information
is stored in a world model database.
The second module operates on the gained observation vectors and associates sequences of
observation vectors to a set of predefined symbols. These parametrized symbols represent elementary
action sets. During the interpretation phase the symbols are chunked into hierarchical macro operators
after replacing specific task-dependant parameters by variables. The result is stored in a database as
generalized execution knowledge.
This knowledge is taken from the execution module which uses specific kinematic robot data for
processing. It calculates optimized trajectories for the target system taking into account the actual
world model.
Before mapping the generated program to the target system it’s correctness is tested by simulation. In
case of unforeseen errors or conflicts, the movement of the robot has to be corrected and optimized.
All four components communicate with the user via a graphical user-interface. Additional information
can be retrieved or hypotheses can be accepted or rejected. While demonstrating, the user may use
gestures for interaction as well.

Figure 1: System structure

Future work

For demonstration of various other tasks to the humanoid robot, the multimodal user interface will be
enhanced. Several interaction channels will allow intuitive interaction between man and machine:

• Speech recognition will be extended with face detection and eye tracking to determine focus of
attention.

• Gesture recognition considering static and dynamic gestures. Gestures will be used for
commanding and commenting a demonstration and for interaction
in user dialogues.

• Markov representations embedded in a dynamic grammar are planned to describe observed natural
motion of humans acquired by motion capture techniques. Cooperation patterns will me modeled
to enable the robot to continuously interact with humans in a given context.

Acknowledgement

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) as Collaborative Research
Center 588 Humanoid Robots, the DFG project “Programming by Demonstration” and also by the
BMBF lead project MORPHA .

Related references

[Archibald et al 93] C. Archibald and E. Petriu. Computational paradigm for creating and executing

sensorbased robot-based programming. ISIR, 401-406, Tokyo, Japan, 1993.
[Billard et al., 01], A. Billard and M. J. Mataric, Learning Human Arm Movements by Imitation:

Evaluation of a Biologically Inspired Connectionist Architecture Robotics and Autonomous
Systems (2001), 145-160

[Cutkosky 89] M. R. Cutkosky. On Grasp Choice, Grasp Models, and the Design of Hands for
Manufacturing Tasks. IEEE Transactions on Robotics and Automation, 5(3), 269-279, 1989

 [Dillmann et al. 99] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zöllner and M. Bordegoni. Learning
robot behaviour and skills based on human demonstration and advice: the machine learning
paradigm. 9th International Symposium of Robotics Research (ISRR ’99), 229-238, Snowbird,
Utah, USA, October 9-12, 1999

[Ehrenmann et al. 00] M. Ehrenmann, D. Ambela, P. Steinhaus and R. Dillmann. A Comparison of
Four Fast Vision Based Object Recognition Methods for Programing by Demonstration
Applications, Proceedings of the 2000 IEEE International Conference on Robotics and Automation
(ICRA), San Francisco, California, USA, 1862-1867, April 2000

[Ehrenmann et al. 01a] M. Ehrenmann, T. Lütticke and R. Dillmann. Dynamic Gestures as an Input
Device for mobile platforms. IEEE International Conference on Robotics and Automation, Seoul,
Korea, May 21-26, 2001

 [Ehrenmann et al. 99] M. Ehrenmann, P. Steinhaus and R. Dillmann, A Multisensor System for
Observation of User Actions in Programing by Demonstration, Proceedings of the IEEE
International Conference on Multi Sensor Fusion and Integration (MFI), Taipeh, Taiwan, 153-158,
August 1999

 [Kang et al 97] S. B. Kang, K. Ikeuchi. Toward automatic robot instruction from perception –
mapping human grasps to manipulator grasps. IEEE Transactions on Robotics and Automation,
13(1), Februar 1997

[Mitchel 86] T.M.Mitchell. Explanation-based Generalization - a unifying View. Machine Learning,
1;47-80, 1986.

[Onda et al 97] H. Onda, H. Hirukawa, F. Tomita, T. Suehiro, and K. Takase. Assembly motion
teaching system using position/force simulator – generating control program. 10th IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS`97), Grenoble, Frankreich,
September, 7-11, 1997.

[Schaal 99]. S. Schaal, Is Imitation Learning the Route to Humanoid Robots? Trends in Cognitive
Sciences 3 (6) (1999) 233 - 242

[Segre 89] A.M. Segre. Machine Learning of Assembly plans. Kluwer Academinc Publishers, 1989
[Steinhage et al 98] A. Steinhage, T. Bergener. Dynamical Systems for the Behavioral Organization of

an Anthropomorphic Mobile Robot. In R. Pfeifer, B. Blumbert, J.A. Meyer and S.W. Wilson

(Editors), From Animals to Animats 5: Proceedings of the Fifth International Conference on
Simulation of Adaptive Behavior (SAB 98). MIT Press, August 1998.

[Stiefelhagen et al 99].R.Stiefelhagen, j.Yang, A.Waibel, Modeling People´s Focus of Attention, IEEE
Int. Workshop on Modelling People. Sept. 1999, Corfu

[Takahashi et al 96] T. Takahashi. Time normalization and analysis method in robot progrmming from
human demonstration data. Proceedings of the IEEE International Conference on Robotics and
Automation, 695-700, Atlanta, Georgia, USA, 1993

[Tung et al 95] C.P.Tung, A.C. Kak. Integrating sensing, task planning and execution. IEEE
International Conference on Robotics and Automation, 3;2030-2037, 1994

[Voyles 99] R. Voyles and P. Khosla, Gesture-Based Programming: A Preliminary Demonstration.
Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan,
708-713, May 1999

[Yang et al 98].J.Yang, R.Stiefelhagen, U.Meier, A.Waibel, Visual Tracking for Multimodal Human
Computer Interaction, Proc. Of CHI´`98, p. 687-694, Hongkong

[Zhang et al 99] Jianwei Zhang, Yorck von Collani, Alois Knoll. Interactive Assembly by a Two-
Arm-Robot Agent. Robotics and Autonomous Systems, Elsevier 1999.

[Zöllner et al. 01] R. Zöllner, O. Rogalla and R. Dillmann. Integration of Tactile Sensors in a
Programming by Demonstration system. IEEE International Conference on Robotics and
Automation, Seoul, Korea, May 21-26, 2001

��������� 	
��� ��
�
� �����������

����� ������

	�
����
�������� ���
�

���
��� �
 ����������

�����
��� ����������

�� ������ ���	��
���
�������
����� ������ ��� ����
� �������� ���	 ����������
� ���	 ������
�����
�� �	�
� �	�� �

� �� �
������� ������������ ��
��� ������ ��	���
��� �
���
� ��� ���� �	�

���
����� �
���� �� �	�� �� ������� ���� ��
���� �� ���
�
� ��� 	�
���� �	�� ���� ������� ��������
��������� �� ���	 ���� ���������� ��
�������
��� ��� ��
�
����� �� �	� �������� ���
 ��
� ������ ����
�����
� �� �	� ��
� ��
�� �� �	�
�!����� �� ����� �	� ��
������	�� ������� �	� ������ ���� ��� �	���
������ �� �	� �������
��� �� ��Æ�����
� ��
�
�� �� ������� �	� ��� �� �����
� ����
��
�� ���
����
���
�
��� �	��� ���
������� "	�������� �� ��

 	��� �� �������� ��� ��������� �#���� �� ����
�� �������� ���

�������
��	��� �	�� ��� ���� �� �	� ����� �� �������
��� �� ���� �
������� � ������ ����
������
����� �����
���� ����
������ ��� ��
������	��� ������� ������ ���� ��� �	� ����� �������
����

"	��� �� �� ����������� ���
��� �� �	�� ��������� �� �� ��������
� ���	�� ��#����� ��
���� "	� �������
���
� $��
������%��& ���������� �� �������� ��� ����	����� ������������ �� �

���
�� �� ���������� ���	

�����
���� �� ��������� �����
����� ����� �����
�� ��	����� �
�� ��
����� ��	��
����� ������
��
	�� ������� ��
������ ���	 �� ����
���
� ��������� ��� �� $�������& ����� �	� �������
��� �� �	��	
�	�� ������
� ��� �����	 �� �������
� '� �	�
����� ��
���� ���
����
���
� �� ��������
 �	��� $�������
����& ���� �����
 �����
����� ����� �	� ����� �� �	� �������
��� ��� ����
��� ��Æ��
� �� ������ ���

��
 �������
�� �	�� �� ��������� �	��� ��
���� �� �������
� �	����� �	��
� �� �	� �
��
��� ��������

"	� ��
� �� ���� �� �����	����� 	����
 ()� *+ 	�� ���
��� �� � �������� �� ���
����
� ������ ��
�	��� ����� ������ �	�
��� ������� '� ��
������ � ����� ��� ��
��	���
����� �� $����& �	����	
����
�
����� �� ����� ������

� �� � 	��	 ��
������ ��� �� �	� ������� �� ������� � ������
���
�� �� ����� ��
�������� �����
 ����
������� �� ����������� ���	 �	�� ���
� �� 	�� �
������ �	� ��
����� ����
��
��� ��
��
���������

������� ���	������� �����
�%����� ��� ��������
��	��� �� ����� �� ���
� �����
� �	��

�� �� ������ �� ���
� �����

����� ������� ���������� ���� ��
�
��
����� �������
���� �	�� ��� ������
��� ������
 ��������� ��������� ���� ��
���� ��� �	��	 ������ �� ��� 	�� �� �������
��� ���� ����� ���
���
�������� �����������

,���������
�� �� ��� �������
��� ����� �	��� �������� ��� ����
����� ��� ������ ���
 ���	 ��	���
� ���� ��� �������
���
 �� ���	���� �������� �����
��	���- �
�����	
� ��� ����� ���� ��������������
���	 �� ��
������ ���������� �
��������� �
������������
���
 ���������� ��� ��
� ������ ���������� ��� ��
������
 �
�������� �� ���	 ��
�� ��� �	������� ������
� ����
���� �� ���	 ��

������� (./+� �	�
� �	���
�� � �������������
�
���� ����
�� �� ��������� �� �������	��� �� ���	 ��
��� �	��� ���� �� �� �	������������
��#������� �	��
��
��� �� ����	�	�
� ��
����� �� �	� ���������� ��	�� ��
�� 0�� ������ �
�	���� ��
�	� ����
����� ���� �������� ���
���
��� �� �����
�
�
���� ����	�� �� ��
�
� �� ��
�������
��� �� ���	�
���� ���� (/+� "	�� 	�� �������
��	 �������	 ������� ������ �������
��� �������� ��
��� �
�������
�
�����	
� �� ����� �� �����
���� �	��� ��������
� ��������� �� ����� ���
��� �� ��
� ���� ��%� ����
����
�� �
��� �������
� ���
���
��� 1��
�
�� ��� ���� �������
��� ���	������ ��� ��
������ ���������
������
 ���!������ (..+� ����
�� (2+�� �� �Æ����� ��	�
�� ��� ��
������ �����
����� ��������� �� ����

���� ���� ���� (3+� � ��
���� ��� ���� ������ ��
� �������� ���� ���������� ��� ����� �����	� 4����
����
����� �������	 	�� ��������� � ����
��
��� �� ����������
� ���	��������� ���� ���������� ��� �����	
�������
� �	�� ��� ���� ��������
��	��� ��� ������� ����	��� ��� ��
�
����� �����	�� ��
���� ���
	��	 ��
�������
 ���� ���� �� ������ ��
�������� (.� 5+�

6��	 ����
��
���� ��

 	����
� ���� �� �
�������� �� ���� �� ��
��� �� �	� ������
 �� ��������
������ ���	
��� ������� �� ������
 (.2+ �� ������ �	�
�
��� ���� �� ��� ������� ��

���
�
���

����� �� ������	
 ��	
 �� �
�
 	��
�
 �� �� �
���� �
�� �����

��� �� 	�������� ���

����
�

.

���� ������ �� �����
� �	�� ��

��� ���� ���� ���������� ������� �� �	��� ������
��� ����� 6��	 $
���
���&

�������
�� ���� ��� �� �� �	� ��
� ����
� ��
����� �� ������� �	� 	���
��� �� ���
� ����
���� �	��
�� �������� ��� ����
�������
� $����

�����& ��	������ ,������ ����
�
��� ���	��
��� �� ��
����� �
������������ ������ �� ���	 ���� ��������� �������	��� ��� �� ���� ���	 �	� ����
���� �

���� ���� ��
��
��
���
� �� ������ ������
� ���
 ���	������ ����
���� �� ����
����� ��� ����

����� ����������

6�������

�� ������ �������� �� ������� ����� �
��� �������� �������� ��� ��������
 (.7� .*+
�� 	���

��	 �� �#�� ��� ��������� 8����� ����

����� ������ �	��
� �� ������� ���	 ��
� ���� �� ��������

��� ���

�
��� �� ����
�
��� �����
 ��� ��	�� ������� ������������ 9���� ��� ������ �
���� ���
�	�� ������� 	��
��� ���������� ��������� �������� �� ��� ��
�� �	� ���� �� �Æ�����
� �������� ����
��� ���������� ���	��
���� ��

������� �� ���	 ���� (.:+� 9�
��� ��
��
�� ����� ������������� ��� ������
�
���� ��� ���� �� ������� ��� ��

���� ;�������� �	�� �� ��� ������� � ����� ��

��
��� ���� � ������
����� �� ������
� ������ ������� ��� ��
��� $����& �� ���������� ����� ������� �	��
�� �� ����������
�
�� �	� ��
� �� �	��� ���������� "	�� <�����
���
�� �� ��� �� �	� ������� �	� �
�� �	�
�
��� �����

�� ��� ����� �#��� �� ��������
� �����

� ������%�� ��������� �� ��� ��������
�
��� ������ '� �����
������ �������� �� ��
������

� ������%���
���� �
��� ��

������� ���	
��	���
������� ���	������ ���
������������ �������� ���
����� (7+ ��� ����
����
���

��� ���	 �
�������� ��������
� ������� �� � �������
�� �����
 ��!��� ��
���� (.3+ ��� �	�� 	�
�� ������� ������
��� ����
�� ���������
�� ��� �� ���� ��
�	� ���� ���
����� ����� ������� �	� ��
� ������%�� ����������� �� �
����� ���� �� ������� ����������
��� �� ��������
 ��������� �����
� 0������
�� ��� �������� �
��� �	���
���� �� �� �

������ �����������
��� �������� �
��� � ��
� �	��	
��
������� �� �� ������ ���	 �������	�� �� ���������

���
������ �����
��

������ ��� ������%��� � �������� �� 	����� ����������� ��� �������� ��!���
�����
������

����	�� ���� �� ���
� �
�������� �� ����
����� 	�� �
���� ���� ���� ���������� �� �������
�� ����
�
�%������ ��� �	� ����
��
��� �� ���������� ���������� �� �������� ������ ��� ���
��� ���� �����������
��
=���
�� �� �	��� ����� ��� �� �
�������� �� �������� �� ��
���� ��� ����� 8���� �� �

� ������� ������
�	�
��
��� �� $����
����� �������& �������� ��� �����
����� ��� ����
������� �� �	� ������� �
���� ��
�	��� �������
���� �
�����	
� ��� �Æ����� ���� ���
������� ��� ���� ��

���%����� ��� �� �� ������
�������� ��� ����
����� �
������ ���
������� ���
����� ��� �	� ������ 6�����
�� ������� �	� ����� ����
� ��
� ��
�
�� ����
���
 �����
� �� ��� ����� ���	 �	� ���� �� ������� �� �	� �������	�� ��� > �� �
���
�������
���
 > �	� ���� ���	 �����	���
 ����� �����
�%����� ��� �������� ������
����� �� ����� �� ��������
���	 �	� ������ ���	�� �� �	� ����������� �� �� �	� ����
���
� "	�� ��� ������ ���
 ���
���� ����
�����
���	������ �� ��� ����� �����
� 8�� ��������� ������
� �� 	��� ����
���� �
�
��
���
 �����
������
��� � �������	 ��������� �� � ���	��
���� ����������� ����� �����
� ����������� ������ ���������� ���

�����
���� ����� ������ �����
�� � �����	 ���
���� �����
� � �	��� ���

�
��� ��� ������
 ����	��

���
�� ��� ����� ��
 ���
�����
���� ������
 ��� �������� 	�
�� ����� ����������� (.)+� �� �� ��
�����	� �� ��
����� �������� �����
�%����� ���	������ ���	 �	� ���	�� ������ �������	 �� �����������
�� ����� �� ������ �� �����
������ ��� ���������
�
��
���
 ����
�� ��������� (?+ ��� �	� ����� ��� �	�
������������ �� ����� 7: ��������� ��������� ��
�
�������
� �� �	�� �����
� �� ����� �	�� �	�� ���������
�������

� �������� ���
 ����
����� ���	������ ��� ���� 	�
���
 �� �	� ���
 ��������� ��� ������ �	����
�� �	� ��
�
�� �����
�

�� �	������� �	��� �	�� � ����
����� ����������� �� �������� ��� ���������� ��
� ����	 ��� �����

����� ���� ����� � ��
��� �� ��Æ��
� ��� �
������� ��������� �	�� ���� �� �� ��
��� ��
��� ������

��� ���������� @��������� �� ���� ������ �� � ������
 ����� �� ����
������ ��� ���������� �� ���
� ���
�
�� �������� ���
 ������ �� �
�!�� ���� ��� ������� �� �	��� �	�� �	�� �� ��� !��� � ����������� �� ���
��
��� � ������ ����	��� ���
��� �� �	��	 ������
 ���
����� 	�� �
����� ���� �� �
�������� ����
���������
�� �	� �������� �� 	��	
� ����
���� ������� �����
� ��� ������� '� ��������� �����
�����
����� �� �
���� �����
��� ��
��� ����
����� �����������
 ������
����� ��� ������ �� $����& �� �� ���
����
� ��������

���� ���
�� �	��	 �� �	� ��� ��� ��
���� ������� �� �
��� ��

������� ����� �� ����
� ����� ���	
���
���
��� ������� �� �	� $���
& ����� �	��
���� �� ��� ��� ���
�� "	� ����
��
��� �� ������ ������
��
��	��� �� �������� ���������� �
����� ���
 ����� ����� ���������� �� �	� ����� ���
���
� �� ������
��
��� ���
 �����	�� ��� ����������� ���

����� �	� ����������
� �
������� $
������
& �� �����
������

)

����������

(.+ 6����� A���	��
�� A���	��� 1��
� B����
 �� C��
� 4��� D���� C�����
� ��� "	�
�� 6���
� 8���
������� ����	��� �����	 �� 	��	 ��
�������
 ������� '�
���� ���� ���� ����� ���� ��
�������
�
����� '111 ,�
����� 6�������)7E)3 .55?�

()+ ;��� 6��� ,	��� F����� 4��� ��� D	�
�� 6� G�� B���
�����- �� �������� ���
 � �������� �������
����� ���� ������ �� �������
� ��� ���� ��
�������
� ?-?//E??7� .55/�

(7+ G���� ,	��� F�
�� H� ����� ��� =����� C�����%� �� ������������
������� �������	 �� �������
����� �
��� ��������
� '�
���� ���� ������������� ��	 ���!	 �� ��
���
��������
 ��� ��� � ��"
�������� D����� 8������)::7�

(2+ ,	������ 8�
������ ��� C��� '� I��� 8���;��- � ���� �
�����	
 ��� ��������� ����
����� ���
�����
�%����� �� ����������
 ���
�
��
���� ��������� '� ;��	��
 F� ,���� ��� B������ �� 6�	�������
��������
��������
� �� ��� �##$ ��% ��&%�� ������������� ���������� �� %���
�	��� �� �����
����� ./7E.32� 6�� F���� ,�
��������))E)* .55*�

(*+ 9�;� 8������ J� D�������� 6	������ ��� D� 6
��	� '��	 ���� 	����
 �� (������
� �����)���* ��
�)��)���� ����� .E72� ;'" D����� .55/�

(/+ K�������	 J����� F�	����� J�	���� ��� =��	� =�
�����	���� ;����� ����
���� ���������� ��	"
 !���� 7)�?�-7?E2*� .555�

(3+ �
������� J� J��� ��� ������ �� ;����� L� ����M ����
�
� �� ����������

�������� '� "��� C�
I���� "	�
�� J� B��������	� ��� K�
��� "����� �������� ��)����� �� +�!��� �����	�����
��������

�����	� �,� ����� *).E*)3� ;'" D�����)::.�

(?+ "	�
�� 4��
���� ,	������� @��	��� ��� 4�
�� =������ '���������� �����
�%����� ��� �����������
���
��������� ��
�
�� ���������� '�
���� �� ��� ���� ����� �� �!������ ��� ���� �����)23E)*:�
A����� ;� 96��)::7�

(5+ D���� '���� ��� =�!��� ;������� �������
��� ������� ����	����- ������� ��
����� �	� ����� ��
��
�������
���� '�
���� ,-�� ���!� ��% ��	 ��� ������ ��	 !��� ����� /:2E/.7� .55?�

(.:+ "� CN�
���� "� CN������ ;� D���#��� 4� =������ ��� J� 6������� '@B' E '���

����� B������� @���������
�� '���������� ��� '�������� ,������ A���� '
��� =�������
� '� ���� .--. ������������� ����������
�� �	�
�
��������
� ��
�
� '''� ����� 5).E5)2� =��	������ 96��)::)�

(..+ 6� C����� B�
�������
��� ��������� �� �����

������� '�
���� ���� /���� ����� �� +�!���
+�����(�� ��
�
� .� ����� 2.7E2.?� .55?�

(.)+ D� ;�J����� F� 8�����	� F� F� 6���
� 8� =N��	
���� J� �� 8���� 6� ���	�
��	� J� 6������� ��� 4� =������
;�
��
���
 	�
��
��	��� ��

��������� ��� ����������� ����� �������� ������ '�
���� �0���
����� .:?)E.:?5� '111�)::)�

(.7+ G� =��� "� 4����� ��� 6� ,	���� '
��� ��������
- ������� ���	������� ���
����� ���������� ��� ����
������� /�!���� �� 1��!�� ��		!�������� ��� �	�
� 0� ������������ .:�2�-75E/)� ����
 .555�

(.2+ 6� 6�	��
� ,�J� �������� ��� 6� K�!�����
��� 6��
��
� ���	������ ���
 �������
������ ����������
��� ���
 ��
� �����
�������� � ���� �������
����� .3-25E/:�)::)�

(.*+ �� �� ;� 6
��
����� ;� �������� 6� 6������� �� J����� ��� =� F���� ,������ ����� �
��� ��������

�� �	� ��� �� �	� ���
� ������ ���� ������
������ �������� ��� %������ �������
�����))-.725E.7?:�
):::�

(./+ D��	���� 6
��	� ���� %����
 �� ��� ��������� �� ��	 !��� ������� ��� ����������� ����� 7*E/.�
C
�����)::.�

(.3+ F�
�� H� ����� F�� I�� ��� J�� ������	�
�� 6';DI'����- 6�
������ ��������� ����������
���	���
��� �������
��������� ���� ������������ ��
������ �������� ��� %������ �������
�����)7-523E5/7�
)::.�

7

Self-Valuing Learning and Generalization of Visually Guided Grasping

Jianwei Zhang and Bernd Rössler

Technical Aspects of Multimodal Systems (TAMS), Department of Computer Science,
University of Hamburg, D-22527 Hamburg, Germany�

zhang,roessler � @informatik.uni-hamburg.de

Abstract

We present a self-valuing learning technique which is ca-
pable of learning how to grasp unfamiliar objects and
generalize the learned abilities. The learning system con-
sists of two components which distinguish between local
and global quality criteria for grasp points. The local
criteria are not object-specific while the global criteria
cover physical properties of each object. In this case we
present a generalization method of the learning param-
eters based on a tree distance model for the medial axis
transformations. The system is self-valuing, i.e. it rates
its actions by evaluating sensory information and the us-
age of image processing techniques. An experimental
setup consisting of a PUMA-260 manipulator equipped
with a hand-camera and a force/torque sensor, was used
to test this scheme. The system has shown the ability to
grasp a wide range of objects and to apply pre-learned
knowledge to new objects.

1 Introduction

In a wide range of robotic systems grasping is a basic
skill that is crucial to manipulation tasks and interaction
with the environment. In most industrial applications the
problem of grasping is solved via teaching-by-doing or
static programs. However, when thinking of recent re-
search fields, e.g. service robots or humanoids, aspects
of sensor-based grasping will play a very important role.
New techniques must be developed for the robots to op-
erate in uncharted and unknown territories. They should
consider elements of human learning abilities, e.g. the
human potential of generalization, when constructing a
robotic grasping system.

2 Related Research

A lot of work has been done in the field of robot grasping.
[1] gives a brief overview of the field over the last two
decades. The commonly used analytical approaches try
to compute optimal grips according to special heuristics
(e.g. [2] and [3]). In these cases either a fully specified
model of the object and its mass distribution is known
or the center of area of the object, extracted via image
processing, is used to “approximate” the real center of

gravity. The first case is very difficult to obtain via ex-
ternal sensors and without any a priori knowledge. A
complete 3D representation of the object via image pro-
cessing needs to be gained and additionally features like
the material of the object need to be examined. However,
a hidden internal inhomogeneous mass distribution can
never be found with such an approach. The latter case of
using the center of the object’s area is certainly only an
approximation. This would work if the center of gravity
coincides with the object’s center of area, but would not
work in case of inhomogeneity, too.
Among several attempts to handle the problem of learn-
ing how to grasp, [4] presents a system that learns how
to grasp objects with a parallel-jaw gripper. Two main
subproblems are learned: to choose grasping points and
to predict the quality of a given grasp. The disadvan-
tage of this system is that only local criteria are used to
store grasping configurations. Without global criteria it
is for example impossible to learn how to grasp an object
whose center of gravity does not coincide with the cen-
ter of its image area. Without self-valuing learning tech-
niques it is impossible to handle the real physical proper-
ties of an object. [5] presents a learning system for visual
guided grasping, constructed of two learners. This sys-
tem is not self-valuing, i.e. the optimal grasp point has to
be given initially to the learner. Therefore, the two learn-
ers are not generalizable to new objects either. In [6] a
system is developed that performs skillful grasping with
a dextrous robot hand by emulating some infants’ growth
processes.

3 Learning Scheme

To construct a robotic learning system, it is useful to in-
vestigate elements of human learning abilities. In recent
work, of course, the human hand with its five fingers
is considered, which is more complex than a simplified
robot gripper. Therefore, in this paper an approach is
suggested that is based on our idea of human learning
abilities when grasping an object with two fingers.

3.1 Local and Global Quality Criteria

Our work is based on our idea that when intending to
grasp an unfamiliar object with two fingers, one can

mainly consider two kinds of quality criteria on how to
choose optimal grasp points. These two kinds are fur-
ther referred to as local quality criteria and global quality
criteria or local/global criteria for short. Together they
form the basis for the underlying learning system design.

Local Quality Criteria: The local quality criteria are
mostly independent of a special shape and therefore
of global aspects like the distribution of an object’s
mass. Therefore, they are valid for any kind of ob-
ject. Local quality criteria are considered first when
one decides to grasp an unfamiliar object. Such a
criterion is for example the sliding friction between
an object and the fingers of the gripper.

Global Quality Criteria: Global quality criteria, by
contrast to the local ones, are closely connected to
a special object and therefore seldom significant for
other objects. They are applied after the local cri-
teria to find the optimal grasp point. These criteria
consider aspects like the distribution of mass of an
object, e.g. the torque at the gripper when grasping
an object.

Technically speaking, the local criteria define a virtual
axis on which a possibly good grasp point may be found
with the help of the global criteria. For example, the
grasp configuration computed in Fig. 1(b) could be de-
termined from the search axis proposed by grasp point �
in Fig. 1(a). In the learning process these criteria are re-
peatedly considered one after the other for a finite number
of steps until a good grasp point is found. The number of
steps varies with the skill of the learner and the structure
of the object. For a familiar type of object, the global
and local criteria are considered in only one step. In fact,
since the same local criteria can be applied to any kind of
object, as mentioned above, they are fully learned prior
to the global criteria.

3.2 Optimality Conditions

A grasp point is considered to be optimal, if the quality
criteria are met in the following fashion:� the fingers can cover the object at this grasp point,

and� no sliding friction occurs between the fingers and the
object.

It is considered to be optimal according to the global
quality criteria if:� no torque occurs between the fingers grasping the

object, and� the grasp is stable, i.e. the object does not slip be-
tween or out of the fingers.

Some sample grasp configurations are shown in Fig. 1.

2
3

4

1

(a) (b)

Figure 1: Optimal grasp points in terms of the local and
global quality criteria. a): some example grasp configu-
rations which are optimal according to the local quality
criteria. b): the grasp point is optimal according to both
criteria.

3.3 Higher Level Criteria

An additional and higher level criterion for human grasps
is the role of the grip, i.e. its importance for carrying out
further operations, e.g. grasping a cup at its bail in or-
der to drink something or a sledge at its handle to drive a
nail into a wall1. Other higher level criteria are for exam-
ple the material or surface of an object. To consider these
criteria additional sensors or sophisticated image process-
ing techniques need to be integrated, which is beyond the
scope of this work. Our objective is to emulate the abil-
ities of somebody who just wants to learn to get hold of
an object as good as possible.

4 Two-Learner System

The quality criteria mentioned above suggest a system
consisting of two learners, one for the local and the
other for the global quality criteria. The states for
the first learner only consist of the local features ����	��

��������������
����

. The learner tries to map them to actions
consisting of a rotational component ����� . The sec-
ond learner tries to map states of global features ����	��������������������� �

to actions of translational components:�!� �	"#��$%�
. Because the local criteria are mainly covered

by the relative orientation of the gripper, the responsible
learner is called orientation learner. The global criteria
are affected by the position of the grasp point in the ob-
ject and therefore the proper learner is further referred to
as position learner. These two learners operate right after
each other (Algorithm 1). The key element for a good
performance of such a learning system is the choice of ad-
equate features which reflect the local and global quality
criteria. The choice depends mainly on the kind of grip-
per and other available sensors used in the system. The
local and global features are shown in Fig. 2. The first
component of the state vector of the orientation learner is
length & of the grasp-line. With this feature, good grasp

1For this higher level criteria, aspects of optimality like reducing
torque must possibly be shelved.

Algorithm 1 Algorithm for learning an optimal grasp
point

choose an initial grasp point configuration'�(*),+%'.-0/
repeat'�(*),+%'.-1'�(*),+%'3254

repeat
learn with the orientation learner

until [the grasp point is optimal according to orientation
OR number of episodes exceeds a given value]
repeat

learn with the position learner
until [the grasp point is optimal according to the posi-
tion in the object OR number of episodes exceeds a given
value]

until [the optimal grasp point is found OR '�(*),+%'76'�(*),+%'98;:9<]

θ3

θ 1

θ4

θ 2

COA

DL

Figure 2: State coding for the learners. The orientation
learner uses length & and angles =?> �������@� =BA while the
position learner integrates the distance C between the
center of the grasp-line and the center of area of the ob-
ject’s image.

points are distinguished from those which are inadequate
because the gripper cannot cover the object. The remain-
ing features are the corresponding angles =?> ��������� =BA be-
tween the grasp-line and the flanking straight line seg-
ments gained by a simple contour tracking process. The
features for the position learner are the distance C be-
tween the center of the grasp-line and the center of area
of the object’s image and the torque D around the nor-
mal vector EF of the gripper. Due to the learner separation
the local criteria need not be learned for every new ob-
ject. The orientation learner is a universal learner, which
means that the same learner can be used for every object.
E.g., this learner can learn to grasp objects at opposite
parallel or concave edges.

In principle, a two-learner system design was first intro-
duced in [5]. The new aspect of our work is a different
usage of the two learners. As described above this design
was chosen in respect to the local and global criteria and
their generalization properties.

4.1 Self-Valuation

The presented system is self-valuing, a method to gain
an estimation for the learning algorithms. Self-valuation
is done via a force/torque sensor and the hand-camera at

the gripper of the robot. It is important to mention that no
optimal grasp point is pre-known and the system finds its
own grasp points taking into account the quality criteria.

Orientation Learner. The best estimation of a good
grasp, determined by the orientation learner, is obtained
by the second optimality condition, i.e. no sliding fric-
tion at the fingers of the gripper. When an object slips
between or out of the fingers at the moment of closing
the gripper, the selected grasp configuration was not opti-
mal according to the local criteria. Some existing systems
(e.g. [2]) try to determine the friction occurring within the
gripper analytically, i.e. by computing the friction cone
via geometrical features. Here, several grasp configura-
tions are tried out with the real robot that values the suc-
cess or failure of the performed grasps - like humans who
do not analytically compute their optimal grips, but learn
by success and failure. Because the gripper used in this
work does not slip like human fingers over the object’s
surface, sliding friction appears either as a rotation or as
a displacement of the object itself. The valuation of the
orientation learner is basically gained by image process-
ing. A penalty for self valuation is computed as follows:G � HBI � = diff JLK diff

�
if grip was successfulINM

const otherwise

where = diff is the angle between the initial and the least
inertia axis after the performed grasp, C diff the dis-
placement of the center of area and

G
const a high con-

stant penalty which is greater than the highest estimated
changes in orientation and position together. Fig. 3 shows
a grasp configuration which results in a rotation of the
object itself. If a grasp has totally failed and therefore

(a) (b)

Figure 3: Sliding friction of the fingers result in rotation
of the object.

the first optimality condition cannot be met2, a predefined
penalty is given.

Position Learner. While the valuation technique for
the orientation learner is primarily based on processing
images from the camera sensors, the self-valuation of
the position learner is primarily gained via a force/torque
sensor. The two points for optimality of the global quality

2This occurs either when the orientation of the gripper does not per-
mit to cover the object or the object slips out of the fingers while closing
them.

(a) (b)

Figure 4: Grips that are suboptimal according to the
quality criteria.

criteria, mentioned in Section 3.2, are taken into account
for self-valuation in the following fashion:

Stable Grasp: A grip is unstable, for example, if the
gripper is not strong enough to fix the object at
a given position. Such a situation is shown in
Fig. 4(a). This lift-up movement of the manipulator
results in forces shown in Fig. 5. Nearly during the
whole lift-up movement, the force in the direction of
the approach vector of the gripper is approximately
constant. At the moment when the object loses con-
tact with the table (in this example at OP�) the force
rises to a higher value. These profiles can be ana-
lyzed and used for valuation of the learner, e.g. this
situation is valued with a predefined high penalty to
express that such grips are not desired.

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

F
or

ce
s

time

fx
fy
fz

Figure 5: Force profiles when the grip is not stable as
shown in Fig. 4(a).

When an object slips out of the fingers of the gripper
the force in the direction of the approach vector of
the gripper suddenly reduces to zero and the grasp
can be considered a failure. Such a grasp is totally
undesirable. Therefore, a constant high penalty is
given to prevent the system from effecting such grips
in the future.

Reducing torque: The goal of the position learner is
to reduce torque within the fingers of the gripper.
Fig. 4(b) shows an example of a grip that produces
high torque. The torque profiles are shown in Fig. 6.
Immediately after the beginning of the lift-up pro-
cess, the torque around the normal vector of the
gripper rises to a value considerably bigger than

zero and stays constant while the object is being
held. Torques are computed, and their negative val-
ues are directly used in the position learner. Here,
no constant penalty is given because a grip with
large torque is not necessarily bad, i.e. the sys-
tem must have the possibility to distinguish between
grasp points with different torques and choose the
best among them.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6

T
or

qu
es

time

tx
ty
tz

Figure 6: Torque profiles of the grip in Fig. 4(b).

5 Implementation of Learning

The learning scheme in our system is based on the Sarsa
algorithm [7]. The general update formula computes the
difference between the current and the next prediction of
cumulative reward and updates the action-value functionQ

by a fraction of this difference as follows:Q � ��R � �SR � � Q � ��R � �TR � JUWV X RZY > JL[Q � ��RZY > � �SRZY > � I Q � ��R � �SR �*\
As seen above, our system must handle continuous states
and actions, i.e. angles, torques, etc. In such a situa-
tion we cannot provide a single value

Q
for every state-

action pair but rather have to use a function approximator.
Such a function approximator is of the form

Q^] � � � � � ,
where _`� � _ �ba���� _ �	cd�9��������� _ � F ���be is a set of adjustable
weights. The update of the current estimate of

Q
is per-

formed by modifying the weights according to the fol-
lowing rule:

(1) f?_ R � UgV X RZY > J`[Q RZY > I Q R \�h]SijQ R
A general advantage of function approximators is that
they are able to generalize. The system is able to esti-
mate the expected return of state-action pairs that were
never visited before. Although a function approximator
can deal with continuous state and action spaces, it may
not be able to accurately represent

Q
for the entire state

and action space due to its finite resources.

We employ the B-spline function approximator [8] for
the

Q
-function which is a natural generalization of coarse

coding to continuously-valued features.

5.1 Approximating the Action-Value Function

In the following we define E" as the concatenation of the
current state �k� � � > �������@� �
	� and the taken action �`�

� � > �������@� �Pl � , that is: E" � � � > ��������� �
*� � > �������@� �Sl � . The
output for the B-spline function approximator which is
the prediction of

Q
is computed by:mon@pq rts u5v �w ��xzy|{}{�{ u5v �w � xzy�~�� w ��� � � � � w ������ x#yS� �w�� � � � n q � r	�u v �w �jx#y�{�{�{ u v �w � x#y � �� xzy � �w�� � � � n q � rs v ��w ��xzy {9{�{ v ��w � x#y�� � w ��� � � � � w � ��� xzy � �w�� � � � n q � r	�

where:
–
"P�

: the � th input
� ��� ad�������@� F � ,

– � � : the order of the B-splines used for
"%�

,
– � �� �9� �}� : the � th B-spline of

" �
,

– � � � a��������@�����
: the index of the B-spline of

"%�
,

–
�

denotes the number of B-splines and
– � � � � �
 �¢¡¢¡¢¡ � � � : the control vertices3.

This is called a general NUBS hypersurface , which pos-
sesses the following properties:

– If the B-splines of order � > � �d£ �������@� �d¤ are employed to
cover the spaces of the input variables

" > �}" £ ���������}" ¤ , it
can be guaranteed that the output variable

$
is (� � I c

)
times continuously differentiable with respect to the in-
put variables

" � � ��� ad�������@� F .
– If the input space is partitioned fine enough and at the
correct positions, the interpolation with the B-spline hy-
persurface can reach a given precision. Because the in-
troduced weights _ of

Q
here correspond to the control

vertices � � � � � �¢¡¢¡¢¡ � � � of the B-spline function approximator,
the gradient of

Q
with respect _ from Eqn. (1) is:h]zQ � h�¥,¦ �}§ ¦ § ¨ ¨ ¨ § ¦ � Q

Now the learning update from Equation (1) turns into the
following formula:

f�� � � � �
 �¢¡¢¡¢¡ � � � � UWV X RZY > JL[Q RZY > I Q R \ ¤©��ª > � �� �9� �}� �	"P���
Based on this, the control vertices are updated online after
each grasping trial of the system.

5.2 Accumulating Trails

A practical problem that arises is that the system will
learn a path from an initial state, i.e initial grasping con-
figuration, up to a final state, i.e. a successful grip. To
overcome this side effect in systems where the goal state
itself is the most important outcome and not the path to
the goal state, we propose an easy approach to increase
the performance of such a learning system, called accu-
mulating trails. When a learning system learns a type of
path from an initial state to a final state, i.e. by applying a
set of actions �S« ������� � ¤ to � and its successors, it is some-
times possible to get to the same goal state if applying a
set of actions � ¬« ����� �P¬l to the state � and its successors,

3Corresponding to de Boor points in CAGD.

where ­t® F . That is to say, that one would reach the
goal state F I ­ steps earlier.

Let ¯ denote the function applying an action � to a state� , denoted ¯±°z²0³ �µ´ ³ ´��
, where ² �j´

are the total
sets of actions and states, respectively. The outcome of
this function, applying it to an action, is a function on the
state space

´
called action execution function.

Using the definition above, each learning episode can be
considered as a composition of functions

�·¶ ° ´ ³ ´��¶?� � � �¸¯ � � ¤ �º¹ ¯ � � ¤P»#> �º¹½¼�¼�¼�¹ ¯ � �T« �@� � �
where � is the starting state of the episode and � � is the
action applied in time step � . This function composition
is further referred to as sequence.

A sequence ¾ of action executions ¯ �À¿ l ��¹o¼�¼�¼S¹ ¯ �À¿ « �
is called a sub-sequence of sequence

¶ �±¯ � �%¤ ��¹Á¼�¼�¼d¹¯ � � « � , if
¶?� � � �¸¾ � � � :¯ � � ¤ �º¹½¼�¼�¼�¹ ¯ � �T« �@� � � �Â¯ �	¿ l �º¹½¼�¼�¼�¹ ¯ �À¿ « �@� � �9� ­ÄÃ F

where � is the starting state. Then, sequence
¶

is called
substitutable through ¾ . The sub-sequence ¾ always
produces the same resulting state as the sequence

¶
.

That means, if we start in state � it makes no difference
whether we “follow” sequence ¾ or sequence

¶
. The

state at the end of the sequence is always the same. If
a sequence

¶
is not substitutable through any other se-

quence ¾ , it is called final. When the agent’s intention is
to reach the goal states as soon as possible, as for exam-
ple in this work4, the learning algorithm should converge
to a situation of purely final sequences.

An accumulation function on action executions is defined
as: ÅÆ° �µ´ ³ ´N�ÈÇ`�Z´ ³ ´N� ³ �µ´ ³ ´��9�

A sequence¶ �É¯ � � ¤ �Ê¹�¼�¼�¼9¹ ¯ � �S« � of action executions is accumu-
latable, if¯ � �S¤ � ÅL¯ � �P¤P»#> � Å ¼�¼�¼ ÅL¯ � � « � �¸¾ �
where ¾ is the subsequence of

¶
. The accumulation

function describes how to combine action executions to
produce shorter sequences. This function has to be de-
fined according to the learning system one wants to de-
velop. The accumulation is defined for action executions
and not solely for actions, because it depends on the states
if such an accumulation can be performed. In some situ-
ation the accumulation function is defined as follows:

(2) ¯ � � � � Å`¯ � �
 � �¸¯ � � ��Ë �
 ���
where Ë is a function Ë °T² Ç ²Ì³�² .

In most situations, the accumulation function must in-
clude a kind of model of the environment and this is only
possible by also taking into account the states rather than
only the actions as suggested by Equation (2). The agent

4It is desirable to find an optimal grasp point as soon as possible.

must “know” in which situation it is possible to accu-
mulate action executions and in which situation it is not.
However, for some tasks Equation (2) is an easy and suf-
ficient definition.

As an example, for application within the orientation
learner the accumulation function Ë is defined as:

� ��Ë �
 �ÎÍÏÐ ÏÑ
� � J �
 if

I5ÒdÓ ÃÂ� � J �
 Ã ÒdÓ� � J �
 J a�Ô Ó
if � � J �
 ® IÈÒdÓ� � J �
 I a�Ô Ó
if � � J �
ÖÕ ÒdÓ

assuming that the actions of the orientation learner are
rotational movements from the interval V IÈÒTÓ �������9� ÒdÓ \ .
6 Generalization

The orientation learner is fully applicable to any kind of
object, i.e. it provides a total generalization potential. In
other work, where the learning process is not divided into
two separate learners, the generalization is only partial.
This results in slower learning phases for new objects.
Propositions like “grasping at parallel edges is always
good” cannot be made by such systems at all. Here, once
the orientation learner has learned several grasping situa-
tions, it can be used with any kind of new object the robot
is faced with.

In comparison, the position learner is more complicated.
Because of different shapes of objects the global posi-
tions of the learned grasp points cannot be applied to ev-
ery object. In most cases it is a better choice to initialize
the learning parameters by values of a pre-learned similar
object than a random initialization.

Three main subproblems must be solved:

1. In which situation can a pre-learned position learner
be fully adopted to a new object?
2. When can a pre-learned position learner be used as a
basis for a new object?
3. When must a completely new position learner be initi-
ated?

6.1 Tree Distance as a Measure

Assuming a distance measure on the objects to grasp, we
can improve our initial learning parameters as follows:
Let ×NØÙ� �%�·Ú � �}� � ��Û �B� a������ F � be the set of tuples of F
pre-stored objects

Ú � in tree notation, together with their
stored position learners

� � , and Üd�b��Ý �·Ú � ��Ú � � the distance
of the trees according to a distance measure. Then,

1. a pre-learned position learner
� ¬ of an object

Ú ¬ can
be fully adopted to a new object

Ú
, if Þ �·Ú � �}� � �àß×NØ�á �	Ú ¬ ��� ¬ � :

(3) ÜT�,��Ý �	Ú ¬ ��Ú�� ÃàÜT�b��Ý �·Ú � �}Ú�� ÃâC l � ¤zã
2. a pre-learned position learner

� ¬ of an object
Ú ¬ can

be used as basis for a new object
Ú

, if Þ �·Ú � ��� � �gß

× Ø á �	Ú ¬ ��� ¬ � :
(4) CälNå@æ�çâÜT�b��Ý �	Ú ¬ ��Ú�� ÃÂÜd�b��Ý �·Ú � �}Ú��NÕ Cäl � ¤ ã

3. a completely new position learner is initiated for a
new object

Ú
, if Þ �·Ú � ��� � ��ß × Ø

(5) ÜT�b��Ý �·Ú � �}Ú��NÕ Cäl�å�æ �
where CälNå@æ and Cäl � ¤ are adequate thresholds for ac-
cepting and refusing an object to be equal, respectively.

Simple distances on the objects’ pixel data, like the Ham-
ming Distance, are susceptible to noisy data and more-
over do not consider the object structure. We restrict our
observations to object structures that can be represented
as a hierarchical relation. A simple tree encoding is used
for the objects. These are rooted ordered trees, i.e. there
exists an ancestor relation of nodes and the order of sib-
ling nodes matters. In order to obtain a tree out of an ob-
ject’s image pixel data a medial axis transformation [9]
is performed. The resulting graph is analyzed by a con-
tour tracking process which transforms the medial axes
into the corresponding trees. Fig. 7 gives examples of
this process. The nodes of the shown trees contain length
information about the corresponding parts of the medial
axis.

6.2 Computational Results

Distance models on rooted ordered trees based on edit-
ing operations are proposed in [10, 11]. We used the lat-
ter for our experiments. For instance, we learn to grasp
the object shown in Fig. 7(a) without any a priori knowl-
edge. Accordingly, a tree comparison with the object in
Fig. 7(b) leads to Eqn. (4). For the object in Fig. 7(c)
no object of sufficient similarity is stored in the database
which leads to Eqn. (5). Finally, Eqn. (4) again suggests
to grasp the object in Fig. 7(d) using the parameters of
the object in Fig. 7(c).

In this manner one can determine the “most similar” ob-
ject out of the set of pre-learned aggregates for a new
object. If the similarity is strong enough, i.e. Eqn. (3) is
met, the objects are treated the same and the same posi-
tion learner is used.

7 Experiments and Results

The physical set-up of this system consists of the follow-
ing components:

Main actuator: One 6-DOF PUMA-260 manipulator is
installed overhead in a stationary assembly cell. On
the wrist of the manipulator, a robot gripper with
integrated force/torque sensor and “self-viewing”
hand-eye system (local sensors) is mounted (Fig. 8).
The robot is controlled by RCCL (Robot Control C
Library).

(a) (b) (c) (d)

Figure 7: Different objects, their medial axes and the resulting tree coding. At each node the length of the branch
leading to that node is stored.

Figure 8: The setup and a sample view of the hand-
camera.

Objects: Most kinds of objects are constructed from
Baufix elements, wooden toys for children contain-
ing parts like screws, ledges and cubes. Therefore,
these objects are also referred to as aggregates. An
advantage of these parts is that one can very quickly
construct several aggregates that can be tested with
the system.

To get a uniform and matchable view of the objects the
system learns to grasp, the manipulator initially moves
itself over the object so that the

"
-axis of the camera’s

coordinate system appears parallel to the axis of least in-
ertia of the object and the center of area in the right side
of the image. The center of the object’s bounding box co-
incides with the center of the image. An additional tool-
transformation is performed, so that the camera is moved
towards the working surface. Several objects were used
to test the performance of the whole system. Some of
them are shown in Fig. 9. The robot has found a good
and stable grasp point for each object that fulfills the op-

Figure 9: Sample objects.

timality conditions given above, most times near the ob-
ject’s center of gravity. Two special results of a grasping
operation are shown in Fig. 10. In Fig. 10(a) the manip-
ulator has grasped the object at a point different from the
center of area but near the center of mass of the object.
Fig. 10(b) shows a successful grasp at a convex edge of
a different object. To show the generalization ability of

(a) (b)

Figure 10: Successfully performed grasping operations.

the orientation learner, it was first applied to a new object
for a defined number of epoches. Thereafter, the same
learner was used on a different object to show that the av-
erage steps until the goal state decrease much faster. The
result is shown in Fig. 11. In the second part of the ex-
periment the orientation learner did not start at a value
of three where the initially performed orientation learner
ended. This is due to the fact that in the first cycle a
simple ledge was used and the learner still did not con-
verge while in the second cycle a more complex object
was used. However, one can see that in the second cy-
cle the orientation learner was quicker. Only new states
that do not occur on the simple ledge have to be learned
additionally.

1

2

3

4

5

6

7

8

9

10

11

12

13

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 s
te

ps
 u

nt
il

go
al

 s
ta

te

Episodes

1. New orientation learner
2. Orientation learner from 1. on different object

Figure 11: Generalization of the orientation learner.

8 Discussion and Ongoing Work

We presented a self-valuing learning system that is ca-
pable of grasping various kinds of objects. Our system
consists of two learners based on local and global qual-
ity criteria. While the orientation learner is applicable to
arbitrary objects and therefore fully generalizes between
them, the position learner is mostly dependent on a spe-
cial object and its physical properties. The generalization
of the position learner is accomplished by a tree distance
model on the shape of the object. The system shows the
ability to grasp several kinds of objects and to generalize
the learned faculties to new ones.

In our ongoing work, the system will be extended to han-
dle grips in 3D. Therefore the tree coding for generaliza-
tion has to be extended to represent the 3D-structure of
an object. With additional sensors, e.g. a stereo camera
vision system, the robot should examine the objects and
place the grips from different orientations in space. We
are also adapting the presented system to a multi-fingered
robot hand. With such a hand a single grasp point is much
more complex than with a parallel-jaw gripper. In this
case a grasp point no longer consists of only two contact
points on the object’s surface, e.g. the three finger hand,
as shown in Fig. 12, can perform a full 7 point form clo-
sure grasp. Furthermore, the possible actions of the learn-
ers are more challenging with a multi-fingered hand. The
different fingers can move independently to a certain ex-

Figure 12: Sample grip with a multi-fingered hand.

tent and apply different forces. However, the basic prin-
ciple of two learners, based on local and global criteria,
and the self-valuing approach can be maintained.

References

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: A
review,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, 2000, pp. 348–353.

[2] G. Smith, E. Lee, K. Goldberg, K. Boehringer, and J. Craig,
“Computing parallel-jaw grips,” in Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, 1999, pp. 1897–1903.

[3] P. J. Sanz A. Morales, G. Recatalá and Ángel P. del Po-
bil, “Heuristic vision-based computation of planar antipo-
dal grasps on unknown objects,” in Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, 2001, pp. 583–588.

[4] I. Kamon, T. Flash, and S. Edelman, “Learning to grasp
using visual information,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, 1996,
pp. 2470–2476.

[5] J. Zhang, G. Brinkschröder, and A. Knoll, “Visuelles
reinforcement-lernen zur feinpositionierung eines roboter-
arms ”uber kompakte zustandskodierung,” in Tagungsband
Autonome Mobile Robotersysteme (im Druck), München,
1999.

[6] J. Coelho, J. Piater, and R. Grupen, “Developing haptic and
visual perceptual categories for reaching and grasping with
a humanoid robot,” 2000.

[7] Satinder P. Singh and Richard S. Sutton, “Reinforcement
learning with replacing eligibility traces,” Machine Learn-
ing, vol. 22, no. 1–3, pp. 123–158, 1996.

[8] J. Zhang and A. Knoll, “Constructing fuzzy controllers with
B-spline models - principles and applications,” Interna-
tional Journal of Intelligent Systems, vol. 13, no. 2/3, pp.
257–285, Februar/March 1998.

[9] H. Blum, “A transformation for extracting new descriptors
of shape,” in Models for the Perception of Speech and Vi-
sual Form, W. Wathen-Dunn, Ed., Cambridge, MA, 1967,
pp. 362–380, M.I.T. Press.

[10] K. C. Tai, “The tree-to-tree correction problem,” J. Assoc.
Comput. Mach., vol. 26, no. 3, pp. 422–433, 1979.

[11] L. Wang T. Jiang and K. Zhang, “Alignment of Trees - An
Alternative to Tree Edit,” Theoretical Computer Science,
vol. 143, no. 1, pp. 137–148, 1995.

Using Motion Capture Techniques to Program High Degree of

Freedom Humanoid Robot Movements

Aleš Ude

ATR Computational Neuroscience Laboratories Jožef Stefan Institute

Dept. of Humanoid Robotics and Comput. Neurosc. Dept. of Automatics, Biocybernetics and Robotics

2-2-2 Hikaridai, Seika-cho, Soraku-gun Jamova 39, 1000 Ljubljana

Kyoto 619-0288, Japan Slovenia

The formulation and optimization of joint trajectories

for humanoid robots is quite different from this same task

for standard robots because of the complexity of humanoid

robots’ kinematics and dynamics. Movements for such

robots are difficult to generate due to the large number of

joints, coupling between joints, and redundancies. In addi-

tion, people that interact with humanoid robots expect that

they move like humans. Our approach to the programming

of such movements is to exploit the similarities between

humanoid robots and humans to generate appropriate robot

trajectories. We take advantage of the nature of the tasks

humanoid robots are asked to perform, which typically

involve making human-like motion.

Our approach involves capturing full body motions of

a human performer using a suitable measurement device.

In particular, we used an optical tracking device, which

provides the 3D location of identified active markers

that are currently in view. We have also experimented

with goniometer devices strapped to the performer, and

magnetic systems that provide marker orientation as well

as location. Our goniometer-based system SenSuit from

Sarcos is worn like an exoskeleton and can measure

motion directly in the joint space. The main disadvantage

of such a system is that it is designed for a specific robot

and comes at a specific size, so that only people of proper

height can wear it. For example, when a professional

dancer came to our institute to teach our humanoid robot

an Okinawan folk dance, it turned out that she couldn’t put

on the SenSuit because she was too short. Magnetic and

marker-based optical systems are comparable. Magnetic

sensors can measure both position and orientation and

can handle occlusions better than optical systems. They

are, however, sensitive to metallic objects and noisier than

optical systems. The techniques presented in this talk can

be partially extended to these different types of motion

capture systems. We are also extending our techniques to

vision systems where there are no markers, but individual

pixels must be matched and accounted for.

We break up the problem into three parts: 1) identifying

a kinematic model of the human being observed, 2)

estimating the joint angle trajectories of the particular

motion to be imitated, and 3) transforming the motion

so that it is appropriate for the kinematics of the robot.

Our contributions include the development of an automatic

approach to identify a kinematic model of a human, which

is useful also for the perception of human motion from

video. The proposed technique involves measuring marker

positions at a zero configuration and over a repertoire

of motions exercising all relevant degrees of freedom.

No manual measurement of the performer’s limb lengths

is necessary. The structure of the generated kinematic

model is kept the same as the kinematic structure of

the humanoid robot under consideration, but the joint

axis positions are scaled to the lengths of the human

performer by optimization. We exploited the sparseness of

the Jacobian matrices to solve the resulting optimization

problems efficiently.

Our approach to the formulation and optimization of

joint trajectories for humanoid robots is based on B-

spline wavelets. We demonstrated that B-spline wavelets

are suitable for the representation of humanoid robots’

trajectories at different resolution levels and showed how

to resolve the resulting large-scale optimization problems

to compute such trajectories. The ability to treat large-

scale optimization problems that need to be solved to

generate optimal full-body motions and to automatically

infer the appropriate resolution level draws a distinction

between our approach and other approaches proposed for

human motion capture in the computer graphics literature.

We were able to process different motion sequences and

to generate both computer animations and humanoid robot

motions using these approaches.

Finally, a robust optimization framework for human

body tracking and motion recovery from video will be

presented in this talk. The developed system is resistant

to occlusions and demonstrates that it is possible to treat

different problems arising in human motion analysis in a

unified manner without using many decision thresholds.

The implemented system requires only a standard CCD

camera and no special markers on the body, but it is at

the moment limited to simpler movements than marker-

based systems.

Learning from Demonstration and Adaptation of Biped Locomotion
with Dynamical Movement Primitives

Jun Nakanishi∗1, Jun Morimoto1, Gen Endo1,2, Gordon Cheng1, Stefan Schaal1,3 and Mitsuo Kawato1

1ATR Computational Neuroscience Laboratories, Kyoto 619–0288, Japan
2Sony Intelligent Dynamics Laboratory, Tokyo 141–0001, Japan

3University of Southern California, Los Angeles, CA 90089-2520, USA

Abstract— In this paper, we report on our research for
learning biped locomotion from human demonstration. Our
ultimate goal is to establish a design principle of a controller
in order to achieve natural human-like locomotion. We
suggest dynamical movement primitives as a CPG of a biped
robot, an approach we have previously proposed for learning
and encoding complex human movements. Demonstrated
trajectories are learned through the movement primitives by
locally weighted regression, and the frequency of the learned
trajectories is adjusted automatically by a novel frequency
adaptation algorithm based on phase resetting and entrain-
ment of oscillators. Numerical simulations demonstrate the
effectiveness of the proposed locomotion controller.

I. INTRODUCTION

There has been a growing interest in biped locomotion
with the recent development of humanoid robots. Many
of existing successful walking algorithms use the zero
moment point (ZMP) criterion [21] for motion genera-
tion with off-line planning [9], [20] and on-line balance
compensation [5], [8], [23]. These ZMP methods have
been shown to be effective to guarantee point-wise sta-
bility of biped locomotion. However, they require precise
modelling of robot dynamics and high-gain trajectory
tracking control, and the generated patterns result in a
typical “bent-knee” posture to avoid singularities. From
the viewpoint of energy efficiency, such walking patterns
are not desirable since torque must be continuously ap-
plied to the knee joint to maintain a bent-knee posture.
The previous ZMP approaches have primarily focused on
stability during walking rather than natural human-like
motion which exploits passive dynamics of the body.

In contrast to off-line trajectory planning, biologically-
inspired control approaches based on central pattern gen-
erators (CPGs)1 with neural oscillators have been drawing
much attention for rhythmic motion generation. As a CPG,
a neural oscillator proposed by Matsuoka [12] is widely

∗Email: jun@atr.co.jp
1The term CPG is widely used, but a distributed pattern generator

(DPG) may be more appropriate, since, in many robotic applications, a
distributed architecture which consists of coupled oscillators is generally
used for pattern generators. In this paper, we shall use the classic
term CPG although we consider much more a DPG-like distributed
architecture.

Dynamical primitivesCPG

,0()

1

i i i i

i i

r r r

,

, ,1

,1

(())i i z z i m i i

N T

i k i k ik
i i i N

i kk

z y y z

y z
w v

oscillator

output with

local models

Robot

(index: i=1~# of oscillators)

Fig. 1. Proposed control strategy: CPG with dynamical movement
primitives and the robot.

used, which models the firing rate of two mutually inhibit-
ing neurons described in a set of differential equations.
This model is used in robotic applications to achieve des-
ignated tasks involving rhythmic motion which requires
interactions between the system and the environment.
Examples include biped locomotion [4], [19], quadruped
locomotion [3], juggling [13], drumming [11], and playing
with a slinky toy [22]. Neural oscillators have desirable
properties such as adaptation to the environment through
entrainment. However, it is difficult to design robust
controllers with coupled oscillators, and to manually tune
all open parameters to achieve a desired behavior.

In this paper, we suggest an approach to learning biped
locomotion from human demonstration and its adapta-
tion through coupling between the pattern generator and
the mechanical system. Motivated by human’s capability
of learning and imitating a demonstrated movement by
others, imitation learning has been explored as an effi-
cient method for motor learning in robots to accomplish
the desired movement [16], [17]. Previously, Ijspeert,
Nakanishi and Schaal have proposed a method to en-
code complex discrete and rhythmic multijoint movements
through imitation learning as movement primitives [6],
[7]. Kinematic movement plans are described in a set of
nonlinear differential equations with well-defined attractor
dynamics, and demonstrated trajectories are learned using

state ,

Dynamical primitives

(index : i=1~4)

CPGs

,0()

1

i i i i

i i

r r r

,

, ,1

,1

(())i i z z i m i i

N T

i k i k ik
i i i N

i kk

z y y z

y z
w v

oscillator

output with local models

(1/)i i

L_HIP

R_HIP

L_KNEE

R_KNEE

_ _

_ _

_ _

_ _

des L HIP

des L KNEE

des R HIP

des R KNEE

()P des Du K K

Torque

command

PD

Desired joint trajectories Robot

Phase reset and update of for frequency adaptation

Foot contact information

Fig. 2. Robot controller with dynamical movement primitives.

locally weighted regression. In this paper, we present the
idea of using rhythmic movement primitives [7] as a CPG
to achieve natural human-like walking in biped robots.
Figure 1 depicts a conceptual architecture of the proposed
control system. The dynamical movement primitive [7] has
various desirable properties which are beneficial for biped
locomotion—for example, it can learn a demonstrated
trajectory rapidly, and it is easy to re-scale the learned
rhythmic movement in terms of amplitude, frequency and
offset of the patterns. In this work, we also propose
an adaptation algorithm for the frequency of walking
based on phase resetting [10] and entrainment between
the phase oscillator and mechanical system using feedback
from the environment. We present numerical simulations
to demonstrate the effectiveness of the proposed control
strategy.

II. LEARNING BIPED LOCOMOTION FROM HUMAN

DEMONSTRATION

A. Rhythmic Dynamical Movement Primitives

We briefly review the rhythmic dynamical movement
primitives proposed in [7], which we will use as a CPG
for biped locomotion in this paper. Consider the following
limit cycle oscillator characterized in terms of an ampli-
tude r and a phase φ as a canonical dynamical system
which generates basic rhythmic patterns:

τφ̇ = 1 (1)

τ ṙ = −µ(r− r0) (2)

where τ is a temporal scaling factor, r0 determines the
desired (relative) amplitude, and µ is a positive constant.
Note that the phase dynamics (1) can be written as

φ̇ = ω (3)

where ω def= 1/τ is the natural frequency. This rhythmic
canonical system is designed to provide an amplitude
signal ṽ = [r cosφ ,r sin φ]T and phase variable mod(φ ,2π)
to the the following second order dynamical system (z,y),

where the output y is used as the desired trajectory for the
robot.

τ ż = αz(βz(ym − y)− z) (4)

τ ẏ = z+ f (ṽ,φ) (5)

where α and β are time constants, ym is an offset of the
output trajectory. f is a nonlinear function approximator
using locally linear models [15] of the form

f (ṽ,φ) =
∑N

k=1 ΨkwT
k ṽ

∑N
i=k Ψk

. (6)

where wk is the parameter vector of the k-th local model
which will be determined by locally weighted learning
[15] from a demonstrated trajectory ydemo (see Section II-
C.2). Each local model is weighted by a Gaussian kernel
function

Ψk = exp(−hk(mod(φ ,2π)− ck)
2) (7)

where ck is the center of the k-th linear model, and hk
characterizes its width. A final prediction is calculated by
the weighted average of the predictions of the individual
models. As demonstrated in [7], the amplitude, frequency
and offset of the learned rhythmic patterns can be easily
modified by scaling the parameters r0, ω(= 1/τ) and ym

individually.

B. Rhythmic Dynamical Movement Primitives as a CPG

We use the rhythmic dynamical movement primitives
introduced above as a CPG. Figure 2 illustrates the
proposed control architecture in this paper. Each joint is
equipped with a movement primitive which generates the
desired joint trajectory θdes. We define the index and the
corresponding name of the joint as Left hip (i=1, L HIP),
and Left knee (i=2, L KNEE), Right hip (i=3, R HIP), and
Right knee (i=4, R KNEE). In this setting, each degree of
freedom (DOF) has its own oscillator, however, different
allocation of oscillators can be considered, e.g., a unique
oscillator for the whole CPG or one oscillator for each
leg. We will address this design issue in our future work.
A low-gain PD controller is used for each joint to track
the desired trajectory which is the output of the movement
primitive, and ground contact information is fed back to
the CPG in order to reset the phase and adjust the natural
frequency of the oscillators. At heel contact, the phase of
all the oscillators is reset to φ = 0 for the stance leg and
to φ = π for the swing leg respectively at the same time.
Thus, the phase difference between the oscillators for the
left leg and the right leg is kept π rad. The update law for
the frequency adaptation of locomotion will be discussed
in Section III-B in detail.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−60

−40

−20

0

20

40

60

80

Time (sec)

Jo
in

t A
ng

le
 (

de
g)

R_HIP
R_KNEE

Fig. 3. Extracted one period of joint trajectory data of human walking
presented in [2] as used for learning in this paper (R HIP and R KNEE).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

Time (sec)

Jo
in

t A
ng

le
 (

ra
d)

R_HIP
R_HIP demo

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

Time (sec)

Jo
in

t A
ng

le
 (

ra
d)

R_KNEE
R_KNEE demo

Fig. 4. Learning result of human’s walking trajectories using dynamical
movement primitives. The learned trajectories (output of the dynamical
primitives) nearly coincide the demonstrated trajectories.

C. Learning from Human Demonstration

1) Human’s Walking Pattern: As a demonstrated tra-
jectory, we use the recorded joint data of human walking
in the book [2] (29-year-old male, 173cm, 83.5kg, right
hip and knee). In the future, we plan to measure human
walking under various conditions by ourselves using our
motion capture equipment. Figure 3 shows the extracted
trajectory data of the right hip and knee joints for one
period of locomotion from [2]. In the next section, we
will use these joint trajectories as human demonstration
for the learning of biped locomotion. We identified the
period and frequency of this patten by the power spectrum
estimation with FFT and autocorrelation as T = 1.17 sec
and f = 1/T = 0.855 Hz respectively.

2) Learning with Locally Weighted Regression: We
briefly explain how we find the parameters wk in (6) by
locally weighted learning [15] for a given demonstrated
trajectory ydemo. Given a sampled data point (ftarget , ṽ) at
t where

ftarget = ẏdemo −β (ym − ydemo) (8)

the learning problem is formulated to find the parameters
wk in (6) using incremental locally weighted regression

link 1

link 2

link 3

link 4

link 5

Fig. 5. Top: Five-link model of the robot. Bottom: physical system
whose dynamics are simulated in the numerical studies.

TABLE I

PHYSICAL PARAMETERS OF THE ROBOT MODEL

link1 link2 link3 link4 link5
mass [kg] 0.05 0.43 1.0 0.43 0.05
length [m] 0.2 0.2 0.01 0.2 0.2

inertia 1.75 4.29 4.33 4.29 1.75
(×10−4 [kg·m])

technique [15] in which w i is updated by

wt+1
k = wt

k +Pt+1
k ṽek (9)

where

Pt+1
k =

1
λ


Pt

k −
Pt

kṽṽT Pt
k

λ
Ψk

+ ṽT Pt
kṽ


 , ek = ftarget −wT

k ṽ

and λ ∈ [0,1] is a forgetting factor. We chose this locally
weighted regression framework as it can automatically find
the correct number of necessary basis function, and can
tune the hk parameters of each Gaussian kernel function
(7) to achieve higher function approximation accuracy.
Moreover, it learns the parameters wk of every local model
k totally independent of all other local models, which
minimizes interference between local models. Figure 4
shows the learning result of the demonstrated trajectories
using the rhythmic dynamical primitives. In the book [2],
only the trajectory data of the right leg are provided.
Thus, we generate the desired trajectory for the left leg
by shifting the phase of the oscillator of the right leg by
π .

TABLE II

PARAMETERS USED IN THE SIMULATIONS

Parameter Description Value used

Dynamical primitives
r0 (relative) amplitude 0.7 for all joints
ω natural frequency updated by (19)
ym offset Hip: ym = 0.0 and Knee: ym = 0.35

PD gains
KP position gain Hip: KP = 8.0 and Knee: KP = 6.0
KD velocity gain 0.05 for all joints

Phase resetting φi phase
φ1 = φ2 = 0,φ3 = φ4 = π at left leg heel strike

φ1 = φ2 = π ,φ3 = φ4 = 0 at right leg heel strike

III. FREQUENCY ADAPTATION OF LOCOMOTION VIA

ENTRAINMENT OF PHASE OSCILLATOR

A. Synchronization of Coupled Phase Oscillators

1) Entrainment with Phase Coupling: This section
reviews basic properties of coupled oscillators [18]. Con-
sider the following dynamics of two coupled oscillators
as depicted in Figure 6

φ̇1 = ω1 + K1(φ2 −φ1) (10)

φ̇2 = ω2 + K2(φ1 −φ2) (11)

where ω1,ω2 > 0 are natural frequencies of the oscillators,
and K1,K2 are positive coupling constants. Define the
phase difference ψ as ψ = φ2 − φ1, and consider its
dynamics

ψ̇ = (ω2 −ω1)− (K1 + K2)ψ . (12)

Then, we see that there is a stable fixed point at

ψ∗ =
ω2 −ω1

K1 + K2
. (13)

As a result, these oscillators run at the same frequency
(called coupled frequency) given by

ω∗ =
K2ω1 + K1ω2

K1 + K2
(14)

with phase difference ψ ∗.
2) Synchronization with Frequency Adaptation: In the

development above, the oscillators run with the phase
difference ψ = φ2 − φ1 = ω2−ω1

K1+K2
given ω1 and ω2 when

they are entrained. Suppose ω1 = ω2, then the phase
difference of these oscillators will be zero. Thus, when
ω2 = const. is given, we introduce a coupling dynamics
of the natural frequency for ω1 in (16) in addition to
the phase coupling in order to achieve synchronization
of these oscillators with zero phase difference.

φ̇1(t) = ω1(t)+ K1(φ2(t)−φ1(t)) (15)

ω̇1(t) = −K(ω2 −ω1(t)) (16)

φ̇2(t) = ω2 + K2(φ1(t)−φ2(t)) (17)

where K is a positive constant. It is straightforward to see
that ω1 → ω2 asymptotically. Thus, the phase difference
will be zero as ψ = φ2 −φ1 → 0.

oscillator 1 oscillator 2
1 2

Fig. 6. A coupled phase oscillator system

B. Frequency Adaptation of Locomotion

As depicted in Figure 1, we see that the proposed
control system can be regarded as a coupling of the
CPG and the mechanical oscillator (robot), which can
be modelled analogous to the coupled oscillator system
above. Thus, it is natural to introduce such an adaptation
mechanism to our dynamical primitives in order to achieve
frequency adaptation of the learned periodic motions by
the robot itself through the interaction among the CPG,
robot and environment.

Consider the following update law of the phase and
frequency of the oscillator in the dynamical movement
primitives at the instance of heel strike

φ̇ = ω̂n + δ (t − theel strike)(φ
robot
heel strike −φ) (18)

ω̂n+1 = ω̂n + K(ωn
measured − ω̂n) (19)

where δ is the Dirac’s delta function, n is the number
of steps, and φ robot

heel strike is the phase of the mechanical
oscillator (robot) at heel strike defined as φ robot

heel strike = 0 at
the heel strike of the leg with the corresponding oscillator,
and φ robot

heel strike = π at the heel strike of the other leg.
ωn

measured is the measured frequency of locomotion defined
by

ωn
measured =

π
T n

measured

(20)

where T n
measured is the time for one step of locomotion

(half period with respect to the oscillator). Note that (18)
introduces phase resetting to the oscillator at heel strike,
and (19) is the discretized version of (16).

IV. NUMERICAL SIMULATIONS

In this paper, we present numerical simulations to illus-
trate the effectiveness of the proposed control algorithm.

A. Robot Model

In the numerical simulations, we use the model of
the planar 5-link biped robot [14] depicted in Figure 5.
The height of the robot is 40cm and the weight is about
3kg. Kinematic and dynamic parameters of the simulated
robot are chosen to match those of the physical system
(see Table I). We assume that the motion of the robot
is constrained on the sagittal plane. The dynamics of the
robot are derived using SD/FAST2 and integrated using
the Runge-Kutta algorithm at 1ms step size. The ground
contact force is calculated using a linear spring-damper
model.

B. Simulation Results

It is necessary to properly scale the learned trajectories
from human demonstration since they cannot be directly
applied for the robot model with different dimensions. In
the following simulations, the parameters of the dynamical
movement primitives and gains of the PD controller are
determined empirically as listed in Table II to achieve sta-
ble walking. We manually designed the desired trajectory
for the initial step from the standing position, and the CPG
controller is activated at heel contact of the first step. For
the scaling of the natural frequency of the oscillator, the
adaptation law proposed in Section III-B is used. Figures
7 and 8 shows the desired and actual joint trajectories3 for
t = 0 ∼ 10 sec. Figure 9 illustrates the desired and actual
joint trajectories, and the timing of heel strke for the left
leg. Figure 10 shows the torque command for the left leg,
which indicates that the knee joint swings passively since
it requires almost no torque (see t = 14.8 ∼ 15.0 sec).

C. Frequency Adaptation of Locomotion

We present simulation results of the frequency adapta-
tion algorithm proposed in Section III-B. The frequency
of the all the oscillators are updated by (18) and (19)
at heel contant. Figure 12 (left) depicts the duration for
one step and Figure 12 (right) shows the learning curve
of the frequency of the CPG with different coupling
constants K = 0.2,0.5 and 0.8 in (19) when the initial
value is set to ω0 = 4.78 rad/s (period of oscillation is 1.5
sec). The simulation results demonstrate that robust self-
adaptation of the frequency of locomotion is achieved by
the proposed algorithm through entrainment. The resul-
tant frequency was ω = 8.120 rad/s. This result may be
interpreted as follows: Given the walking frequency of the

2http://www.sdfast.com
3Note that the sign of the trajectories for the hip joints (L HIP, R HIP)

is opposite to the human demonstration due to the definition of coordinate
system.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

Time (sec)

L_
H

IP

L_HIP
L_HIP des

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

L_
K

N
E

E

L_KNEE
L_KNEE des

Fig. 7. Joint trajectories of the robot simulation (left leg)

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

Time (sec)

R
_H

IP

R_HIP
R_HIP des

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

R
_K

N
E

E

R_KNEE
R_KNEE des

Fig. 8. Joint trajectories of the robot simulation (right leg)

human, ωhuman, the leg length of the human, lhuman , and
the leg length of the robot, lrobot , as depicted in Figure 13,
it may be natural to think of the scaling law

ω̂robot = ωhuman

√
lrobot

lhuman
(21)

which is derived from the ratio of the natural frequency of
the simplified linear pendulum. In this paper, l human can
be considered as lhuman = 1.76× 0.49 = 0.86m since the
height of the human subject is 1.76m and it is anatomically
known that the leg length is about 49% of the body height
[1]. Thus, using the scaling law (21), we can estimate the
frequency of locomotion of the robot with l robot = 0.4m
as

• Frequency: ω̂robot = 7.87 rad/s
• Time for one step: 0.399 sec

As a result of the simulation of frequency adaptation, we
obtained

• Frequency: ω̂robot = 8.120 rad/s
• Time for one step: 0.387 sec.

The difference in the frequencies above is roughly 3%.
Thus, simple analysis may suggest that the proposed
frequency adaptation algorithm achieves the natural fre-
quency of the coupled system through entrainment, i.e., a
simple form of resonance tuning.

Fig. 11. Snapshots of walking for one step at 15 frames/sec (1 frame ≈ 66msec)

14.4 14.6 14.8 15 15.2 15.4 15.6 15.8
−0.4

−0.2

0

0.2

0.4

Time (sec)

L_
H

IP
 (

ra
d)

L_HIP
L_HIP des
L heelstrke
R heelstrike

14.4 14.6 14.8 15 15.2 15.4 15.6 15.8
−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

L_
K

N
E

E
 (

ra
d)

L_KNEE
L_KNEE des
L heelstrke
R heelstrike

Fig. 9. Joint trajectories for the left leg and heel strike timing of the
simulation for two period (4 steps) of walking.

14.4 14.6 14.8 15 15.2 15.4 15.6 15.8
−1

−0.5

0

0.5

1

Time (sec)

L_
H

IP
 to

rq
ue

 (
N

m
) L_HIP torque

L heelstrke
R heelstrike

14.4 14.6 14.8 15 15.2 15.4 15.6 15.8
−1

−0.5

0

0.5

1

Time (sec)

L_
K

N
E

E
 to

rq
ue

 (
N

m
)

L_KNEE torque
L heelstrke
R heelstrike

Fig. 10. Torque command to the left hip and knee joints for two
period (4 steps) of walking.

V. SUMMARY

In this paper, we proposed a method for learning biped
locomotion from human demonstration and its frequency
adaptation using the dynamical movement primitives. In
the dynamical movement primitives, kinematic movement
plans are described in a set of nonlinear differential equa-
tions with well-defined attractor dynamics, and demon-
strated trajectories are learned using locally weighted
regression. Specifically, we use rhythmic dynamical move-
ment primitives as a CPG, and introduced a frequency
adaptation algorithm through interactions among the CPG,
mechanical system and environment. Numerical simula-
tions illustrate the effectiveness of the proposed control
algorithm: within a few seconds of walking, the simulation

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

H
al

f p
er

io
d

(s
ec

)

K=0.2
K=0.5
K=0.8

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Number of steps

om
eg

a[
n+

1]
 (

ra
d/

s)

K=0.2
K=0.5
K=0.8

Fig. 12. Frequency adaptation of walking via entrainment.

humanl

robotl

Fig. 13. A simplified pendulum model of the leg with different link
length

discovered an energy efficient walking frequency, roughly
at the natural frequency of the combined robot-oscillator-
environment system.

Future work will address intra- and interlimb co-
ordintaion by introducing coupling among oscillators, and
recovery from external perturbations. We also consider
experimental implementation of the proposed algorithm
on our biped robot, and collection of human’s walking
data under various behavioral conditions. In the long run,
we are hopeful that this approach may provide insight into
a theoretically sound design principle of biped locomotion
control to achieve human-like natural walking.

VI. REFERENCES

[1] Dempster, W. T. and Gaughran, G. R. L., “Prop-
erties of body segments based on size and weight,”
American Journal of Anatomy, vol. 120, pp. 33–54,
1965.

[2] Ehara, Y. and Yamamoto, S., Introduction to Body-
Dynamics—Analysis of Gait and Gait Initiation,
Ishiyaku Publishers, 2002, in Japanese.

[3] Fukuoka, Y., Kimura, H., and Cohen, A. H., “Adap-
tive dynamic walking of a quadruped robot on ir-
regular terrain based on biological concepts,” Inter-
national Journal of Robotics Research, vol. 22, no.
3–4, pp. 187–202, 2003.

[4] Hase, K. and Yamazaki, N., “Computational evolu-
tion of human bipedal walking by a neuro-musculo-
skeletal model,” Artificial Life and Robotics, vol. 3,
pp. 133–138, 1999.

[5] Hirai, K., Hirose, M., Haikawa, Y., and Takenaka,
T., “The development of honda humanoid robot,”
In IEEE International Conference on Robotics and
Automation, pages 1321–1326, 1998.

[6] Ijspeert, A., Nakanishi, J., and Schaal, S., “Move-
ment imitation with nonlinear dynamical systems in
humanoid robots,” In IEEE International Confer-
ence on Robotics and Automation (ICRA2002), pages
1398–1403, 2002.

[7] Ijspeert, A., Nakanishi, J., and Schaal, S., “Learning
attractor landscapes for learning motor primitives,”
In Becker, S., Thrun, S., and Obermayer, K., editors,
Advances in Neural Information Processing Systems
15. MIT-Press, 2003.

[8] Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., and
Inoue, H., AutoBalancer: An Online Dynamic Bal-
ance Compensation Scheme for Humanoid Robots,
A K Peters, Ltd., 2001.

[9] Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara,
T., Inaba, M., and Inoue, H., “A fast dynamically
equilibrated walking trajectory generation method of
humanoid robot,” Autonomouns Robots, vol. 12, pp.
71–82, 2002.

[10] Kawato, M., “Transient and steady state phase
response curves of limit cycle oscillators,” Journal
of Mathematical Biology, vol. 12, pp. 13–30, 1981.

[11] Kotosaka, S. and Schaal, S., “Synchronized robot
drumming by neural oscillator,” In Proceedings of
the International Symposium on Adaptive Motion of
Animals and Machines, 2000.

[12] Matsuoka, K., “Sustained oscillatons generated by
mutually inhibiting neurons with adaptation,” Biolo-
gial Cybernetics, vol. 52, pp. 367–376, 1985.

[13] Miyakoshi, S., Yamakita, M., and Furuta, K., “Jug-
gling control using neural oscillators,” In Proceed-
ings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1186–1193,
1994.

[14] Morimoto, J., Zeglin, G., and Atkeson, C. G., “Mini-
max differential dynamic programming: Application
to a biped walking robot,” In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003, to appear.

[15] Schaal, S. and Atkeson, C. G., “Constructive incre-
mental learning from only local information,” Neural
Computation, vol. 10, no. 8, pp. 2047–2084, 1998.

[16] Schaal, S., “Is imitation learning the route to hu-
manoid robots?,” Trends in Cognitive Sciences, vol.
3, no. 6, pp. 233–242, 1999.

[17] Schaal, S., Ijspeert, A., and Billard, A., “Computa-
tional approaches to motor learning by imitation,”
Philosophical Transaction of the Royal Society of
London: Series B, Biological Sciences, vol. 358, no.
1431, pp. 537–547, 2003.

[18] Strogatz, S. H., Nonlinear dynamics and chaos: with
applications to physics, Addison-Wesley, 1994.

[19] Taga, G., “Nonlinear dynamics of the human motor
control - real-time and anticipatory adaptation of
locomotion and development of movements,” In Pro-
ceedings of the International Symposium on Adaptive
Motion of Animals and Machines, 2000.

[20] Takanishi, A., Tochizawa, M., Karaki, H., and Kato,
I., “Dynamic biped walking stabilized with opti-
mal trunk and waist motion,” In Proceedings of
the IEEE/RSJ International Workshop on Intelligent
Robots and Systems, pages 561–566, 1989.

[21] Vukobratović, M., Borovac, B., Surla, D., and Stokić,
D., Biped Locomotion—Dynamics, Stability, Control
and Application, Springer-Verlag, 1990.

[22] Williamson, M. M., “Neural control of rhythmic arm
movements,” Neural Networks, vol. 11, pp. 1379–
1394, 1998.

[23] Yamaguchi, J., Takanishi, A., and Kato, I., “Devel-
opment of a biped walking robot compensating for
three-axis moment by trunk motion,” In Proceedings
of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 187–192, 1993.

Imitation of Human-Demonstrated Movements with Nonlinear Dynamical
Systems in Humanoid Robots

Auke Jan Ijspeert 1, Jun Nakanishi 2, Stefan Schaal 3

(1) Biologically Inspired Robotics Group

School of Informatics & Communication, Lausanne, Switzerland.
auke.ijspeert@epfl.ch

http://lslwww.epfl.ch/birg

(2) ATR Human Information Science Laboratories, Kyoto 619-0288, Japan

(3) University of Southern California, Los Angeles, CA 90089-2520, USA

Many control problems take place in continuous state-action spaces, e.g., as in manipulator robotics,
where the control objective is often defined as finding a desired trajectory that reaches a particular goal
state. While reinforcement learning offers a theoretical framework to learn such control policies from
scratch, its applicability to higher dimensional continuous state-action spaces remains rather limited to
date. Instead of learning from scratch, we suggest to learn a desired complex control policy by
transforming an existing simple canonical control policy. For this purpose, we represent canonical
policies in terms of differential equations with well-defined attractor properties. By nonlinearly
transforming the canonical attractor dynamics using techniques from nonparametric regression, almost
arbitrary new nonlinear policies can be generated without losing the stability properties of the
canonical system.

We demonstrate our techniques in the context of learning a set of movement skills for a humanoid
robot from demonstrations of a human teacher. Policies are acquired rapidly, and, due to the properties
of well-formulated differential equations, can be re-used and modified on-line under dynamic changes
of the environment. The linear parameterisation of nonparametric regression moreover lends itself to
recognize and classify previously learned movement skills. Evaluations in simulations and on an actual
30 degree-of-freedom humanoid robot exemplify the feasibility and robustness of our approach.
Movies demonstrating how the system can be used to learn movements such as tennis swings and
drumming beats with the humanoid robot will be shown.

Ijspeert A.J., Nakanishi J., Schaal S.: Learning attractor landscapes for learning motor primitives,
Advances in Neural Information Processing Systems 15. NIPS 2003. Becker S., Thrun S., Obermayer
K. (Eds), to appear.

Ijspeert A.J., Nakanishi J., Schaal S.: Learning Rhythmic Movements by Demonstration using
Nonlinear Oscillators, Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and
Systems 2002, pp 958-963.

Ijspeert A.J., Nakanishi J., Schaal S.: Movement imitation with nonlinear dynamical systems in
humanoid robots, Proceedings of the IEEE International Conference on Robotics and Automation,
2002, pp 1398-1403 (received the ICRA2002 best paper award).

http://lslwww.epfl.ch/birg

Determining What to Imitate in a Manipulation Task

Aude G. Billard
Autonomous Systems Lab

School of Engineering, EPFL, Lausanne, Switzerland.
aude.billard@epfl.ch; http://asl.epfl.ch

An essential problem of imitation is that of determining “what to imitate” [2,7], i.e. to determine which of
the many features of the demonstration are relevant to the task and which should be reproduced. When
requested to imitate a manipulation task, children tend to follow a hierarchy of goals [3] reproducing first
the goal of the motion (e.g. grasping a pen), and then reproducing the same body gesture (using the same
hand to grasp the pen).

(Alissandrakis et al. 2003) [1] illustrated nicely the problem of determining “what to imitate” in a
chessworld case-study, in which the imitator agent can follow either of three strategies, “end-point level”,
“trajectory level” and “path level”, to reproduce either subparts or the complete path followed by the
demonstrator. We follow a similar taxonomy and apply it to the learning and reproduction of a
manipulation task by a humanoid robot. We take the perspective that the features of the movements to
imitate are those that appear the most frequently, i.e. the invariants in time. The rational behind the model
is the following: Imagine that you must determine the rules guiding a game, solely based on the observation
of two players’ moves. If the game is Chess, then only the positions of the chess pieces on the board, and
not the particular gestures of the players, are relevant to the reproduction (e.g. it does not matter if the
players drive the pieces with right or left hand). If, on the other hand, the game is tennis, then both the
motion of the ball and the gestures of the players are relevant. Over time, while comparing different
players, only the relevant features of each task will remain invariant.

Demonstration of a box manipulation

The model builds upon previous work [4,5,6]. It combines different pattern recognition techniques, namely
hierarchical time delay neural networks, hidden markov models, k-mean clustering, to extract invariant
features from a manipulation task performed by a human demonstrator. The system analyses:

1. the trajectories of the objects in the 3-D Cartesian space, given by a fixed two-camera tracking
system,

2. the trajectories of the joints recorded by an exoskeleton worn by the demonstrator.

Reproduction by the humanoid robot DB (ATR).

By comparing the probabilities of occurrence of the different events, the model determines whether the
goal of the manipulation task is:

a. To move a specific object
b. To move the objects in a specific direction
c. To move the objects in a specific sequence
d. To perform a specific gesture

The observation of the manipulation task is then used to drive the reproduction of the task by a full body
humanoid robot.

References:

1. A. Alissandrakis, C. L. Nehaniv, K. Dautenhahn, (2002), "Imitating with ALICE: Learning to
Imitate Corresponding Actions across Dissimilar Embodiments'', IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans, IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, Vol. 32, Issue 4, pp. 482-496.

2. Chrystopher L. Nehaniv and Kerstin Dautenhahn, (2002) „The Correspondence Problem”.
Imitation in Animals and Artifacts. MIT Press, pp.41-62.

3. Bekkering, H., Wohlschläger, A., & Gattis, M. , (2000), Imitation is goal-directed. Quarterly
Journal of Experimental Psychology, 53A, 153-64.

4. Billard, A. (2002) Imitation. In M. A. Arbib (ed.), Handbook of Brain Theory and Neural
Networks, MIT Press, 566-569.

5. Billard, A, Epars, Y., Cheng, G. and Schaal, S. (2003) Discovering Imitation Strategies through
Categorization of Multi-Dimensional Data. Proceedings of the International Conference on
Intelligent and Robotics Systems ,IROS 2003. Las Vegas. October 2003.

6. Billard, A. and Schaal, S. (2001) Robust learning of arm trajectories through human
demonstration. In Proceedings of the International Conference on Intelligent and Robotics
Systems, IROS 2001, Hawaii, November.

7. Schaal, S., Ijspeert, A.J. and Billard, A. (2003) Computational Approaches to Motor Learning by
Imitation. Philosophical Transactions: Biological Sciences (The Royal Society), 358:1431, p.537-
547.

Leveraging on a Virtual Environment
for Robot Programming by Demonstration

Jacopo Aleotti, Stefano Caselli, Monica Reggiani
RIMLab - Robotics and Intelligent Machines Laboratory

Dipartimento di Ingegneria dell’Informazione,
University of Parma, Italy

Email: {aleotti, caselli, reggiani}@ce.unipr.it

Abstract— The Programming by Demonstration paradigm
promises to reduce the complexity incurred in programming
robot tasks. Its aim is to let robot systems learn new
behaviors from a human operator demonstration. In this
paper, we argue that while providing demonstrations in the
real environment enables teaching of general tasks, for tasks
whose essential features are known a priori demonstrating
in a virtual environment may improve efficiency and reduce
trainer’s fatigue. We next describe a prototype system
supporting Programming by Demonstration in a virtual
environment and we report results obtained exploiting simple
virtual tactile fixtures in pick-and-place tasks.

I. INTRODUCTION

Programming by Demonstration (PbD) aims at solving
the persistent problem of programming robot applica-
tions [8]–[10], [13]. Robot programming is known to be
a complex endeavor even for robotic experts. Simplifying
robot programming has become of prominent importance
in the current context of service robotics, where end users
with little or no specific expertise might be required to
program robot tasks.

The PbD tenet is to make robots acquire their behaviors
by providing to the system a demonstration of how to
solve a certain task, along with some initial knowledge. A
PbD interface then automatically interprets what is to be
done from the observed task, thus eliminating the need for
alternative, explicit programming techniques. Providing a
demonstration of a task to be reproduced by others is an
effective means of communication and knowledge trans-
fer between people. However, while PbD for computer
programming has achieved some success [4], teaching
tasks involving motion of physical systems, possibly in
dynamic environments, directly addresses the well-known
difficulties of embodied and situated systems [3]. Hence,
further research is required to fulfill the goals of PbD in
robotics.

The most straightforward way to put into practice the
PbD concept is by letting the user demonstrate the task
in the real world, while taxing the system with the re-
quirement to understand and replicate it. Recent examples
of PbD systems involving demonstration in the real world
are [13] and [17]. This is also the most general approach
to programming by demonstration, but the complexity of

the underlying recognition and interpretation techniques
strongly constrains its applicability. To circumvent this
problem, a PbD system might require to restrict the objects
and actions involved in the task to be demonstrated to a
predefined set, or set up a highly engineered demonstration
environment. However, if objects and actions occurring
in the task are constrained in number and type, the
samea priori knowledge can be transferred into a virtual
environment.

Based on this observation, we have begun an investi-
gation into a virtual environment for PbD, focusing on
the approach to PbD based on task-level program acquisi-
tion [5], [9], [10], [13]. Previous works evaluating PbD in
virtual environments include [11], [12], [16]. Performing
the demonstration in a virtual environment provides some
functional advantages which can decrease the time and
fatigue required for demonstration and improve overall
safety by preventing execution of incorrectly learned tasks:

• tracking user’s actions within a simulated environ-
ment is simpler than in a real environment and there
is no need for object recognition, since the state of
the manipulated objects is known in advance;

• human hand and grasped object positions do not
have to be estimated using error-prone sensors like
cameras;

• multiple virtual cameras and view point control are
available to the user during the demonstration;

• the virtual environment can be augmented with op-
erator aids such as graphical or other synthetic fix-
tures [15], and force feedback;

• a virtual environment enables task simulation prior to
execution for task validation.

In service robotics applications the simulation feature
is even more important since in has been pointed out that,
in many cases, it would be almost impossible to ask for
multiple demonstrations by the user [6]. Of course, these
functional advantages should be weighed against the very
drawback of a virtual environment, namely its need for
advance explicit encoding of a priori knowledge about the
task, which restricts the applicability of the approach.

The remaining of this paper presents a prototype PbD

Robot controller (RCCL)
Vision server

Visual and
Vibrotactile
feedback

 DEMONSTRATION INTERFACE
OPERATOR

TASK SIMULATION INFRASTRUCTURE
CORBA

Vision system
Hand

Gesture

CyberTouch &

Task Planner

Task Performer

Robot arm PUMA 560

REAL WORKSPACEVisual
feedback

HUMAN
OPERATOR

Tracker
Virtual

Environment

Fig. 1. PbD system architecture.

system that we have set up for simple pick-and-place tasks,
and our initial investigation into the exploitation of virtual
fixtures to simplify task demonstration.

II. SYSTEM OVERVIEW

The PbD system described hereafter handles basic ma-
nipulation operations in a 3D “block world”. As men-
tioned, the system targets task-level program acquisition.
We assume that trajectories will eventually be computed
by path planning based on the actual location of objects
and status of the working environment.

In the proposed robot teaching method, an operator,
wearing a dataglove with a 3D tracker, demonstrates
the tasks in a virtual environment. The virtual scene
simulates the actual workspace and displays the relevant
assembly components. The system recognizes, from the
user’s hand movements, a sequence of high level actions
and translates them into a sequence of commands for a
robot manipulator. The recognized task is then performed
in a simulated environment for validation. Finally, if the
operator agrees with the simulation, the task is executed
in the real environment referring to actual object locations
in the workspace. A library of some simple assembly
operations has been developed. It allows to pick and
place objects on a working plane, to stack objects, and
to perform peg-in-hole tasks.

The architecture of the PbD system (Figure 1) follows
the canonical structure of the “teaching by showing”
method, which consists of three major phases. The first
phase is task presentation, where the user wearing the
dataglove executes the intended task in a virtual environ-

ment. In the second phase the system analyzes the task
and extracts a sequence of high-level operations, taken
from a set of rules defined in advance. In the final stage
the synthesized task is mapped into basic operations and
executed, first in a 3D simulated environment and then by
the robotic platform.

Figure 1 shows the main components of the PbD
testbed. The actual robot controlled by the PbD application
is a six d.o.f. Puma 560 manipulator. A vision system
(currently operating in 2D) is exploited to recognize the
objects in the real workspace and detect their initial
configurations. The whole application is built on top of a
CORBA-based framework which interconnects clients and
servers while providing transparent access to the various
heterogeneous subsystems [2].

A. Demonstration interface

The demonstration interface includes an 18-sensor Cy-
berTouch (a virtual reality glove integrating tactile feed-
back devices, from Immersion Corporation, Inc.) and a
six d.o.f. Polhemus tracker. The human operator uses the
glove as an input device. For demonstration purposes, op-
erator’s gestures are directly mapped to an anthropomor-
phic 3D model of the hand in the simulated workspace.

In the developed demonstration setup, the virtual en-
vironment is built upon theVirtual Hand Toolkit (VHT)
provided by Immersion Corporation. To deal with geomet-
rical information in a formal way, VHT uses scene graphs
data structure (Haptic Scene Graph - HSG) containing
high-level descriptions of environment geometries. VRML
models can be easily imported in VHT through a parser

included in the library. To grant a dynamic interaction
between the virtual hand and the objects in the scene,
VHT allows objects to be grasped. A collision detection al-
gorithm (V-Clip) generates collision information between
the hand and the objects, including the surface normal
at the collision point. A grasp state is achieved if the
contact normals provide sufficient friction; otherwise, if
the grasp condition for a grasped object is no longer
satisfied, the object is released. The user interface also
provides a vibratory feedback using CyberTouch actuators.
Vibrations convey proximity information that helps the
operator to grasp the virtual objects.

The current implementation of the virtual environment
for assembly tasks in the “block world” consists of a plane,
a set of 3D colored blocks on it, and possibly one or more
containers (holes) whose shape and location are known in
advance. This scene includes the same objects of the real
workspace configuration, although, in general, the actual
locations of blocks will be different.

B. Task recognition

The task planner analyzes the demonstration provided
by the human operator and segments it into a sequence of
high-level primitives that should describe the user actions.
To segment the human action in high-level operations,
a simple algorithm based on changes in the grasping
state has been implemented: a new operation is generated
whenever a grasped object is released. The effect of the
operation is determined by evaluating the achieved object
configuration in the workspace.

Three high-level tasks have been identified, so far, as
basic blocks to describe assembly operations in the simple
pick-and-place domain. The first task picks an object and
places it onto a support plane (PickAndPlaceOnTable),
the second task stacks an object onto another (PickAnd-
PlaceOnObj), and the third task inserts a small object in
the hole of a container lying on the working plane (PegIn-
Hole). The three high-level tasks have been implemented
in C++ as subclasses of aHighLevelTaskabstract class
(Figure 2). Information about the recognized high-level
task is passed to the constructor when theHighLevelTask
class is instantiated.

C. Task generation

A set of BasicTaskshave been implemented for the
basic movements of the real robot. The available concrete
classes (Figure 2) include basic straight-line movements
of the end effector, such as translations in theXY plane,
parallel to the workspace table, and along thez axis. Two
classes describe the basic operations to pick up and to
release objects by simply closing and opening the on-off
gripper of the manipulator.

The high level tasks identified in the task recognition
phase are then decomposed in a sequence ofBasicTasks

Move_xy Move_z AttachObj DetachObj

Task

BasicTask

PickAndPlaceOnTable PegInHole

HighLevelTask

PickAndPlaceOnObj

Fig. 2. Task hierarchy.

objects describing their behavior. In this simple domain,
decomposition is straightforward and the three tasks only
differ in the heightzf of the release operation. Since the
available manipulator has no force sensor,zf is computed
in the virtual demonstration environment based on contact
relations. For the peg-in-hole task the grasped object must
be released after its initial insertion in the hole.

Each concrete class of the task tree provides two meth-
ods to perform the operation, one in the simulated environ-
ment and one in the real workspace. Once the entire task
has been planned, the task performer (Figure 1) manages
execution in both the simulated and real workspaces.

D. Task simulation

After the recognition phase, the system displays to the
human operator a graphical simulation of the generated
task. This simulation improves safety, since the user can
check the correctness of the interpreted task. If the user is
not satisfied after the simulation, the task can be discarded
without execution in the real environment.

The simulation is non-interactive and takes place in a
virtual environment exploiting the same scene graph used
for workspace representation in the demonstration phase.
The only difference is that the virtual hand node in the
HSG is replaced by a VRML model of the Puma560
manipulator. The simulated robot has the ability to per-
form all the operations described in the previous section.
The movement of the VRML model is obtained applying
an inverse kinematics algorithm for the specific robot
and is updated at every frame. In the simulation, picking
and releasing operations are achieved by attaching and
detaching the nodes of the HSG representing the objects
to the last link of the VRML model of the manipulator.

operator workspace manipulator workspace

virtual environment

step 1

execution

step 1

demonstration

step 3 step 3

task simulation

Fig. 3. PbD and execution of a task involving peg-in-hole and stacking operations.

E. Task execution

Execution in the real workspace exploits a C++ frame-
work [2] based on CORBA. The PbD system builds a
client-server CORBA connection using a Fast Ethernet
switch. The client side runs on MS Windows 2000,
whereas the server controlling the manipulator runs on
Solaris 8 and the vision server on Linux. The methods of
the concrete classes in the task list invoke blocking remote
calls of the servant manipulator object which transforms
them into manipulator commands based on RCCL – the
Robot Control C Library.

F. Sample experiment

Figure 3 shows the demonstration, simulation and
execution steps of a pick-and-place task (only initial and
final frames are shown). In this experiment the workspace
contains four objects: two colored boxes, a cylinder and a
container (a cylinder with a hole). The user demonstration
consists of a sequence of three steps. The user first picks
up the cylinder and puts it in the container, then puts
the yellow box on a different position on the table,
finally grasps the blue box and stacks it on top of the
yellow one. While performing the demonstration, the user
can dynamically adjust the point of view of the virtual
scene. This feature, typical of demonstration in virtual
environments, can help in picking partially occluded
objects, releasing them on the plane or on other boxes,
and inserting them in the container. Movies of this and
other PbD experiments are available at the web page:
http://rimlab.ce.unipr.it/Projects/PbD/
pbd.html .

G. Discussion

Since a large amount of information is readily avail-
able in the virtual environment (object locations, hand

pose) and since we target pick-and-place tasks, in the
proposed PbD system tasks are learned at an abstract
level and a single demonstration usually suffices. Hence,
the demonstration phase is less demanding than with
alternative approaches, even though performing a single
demonstration would be simpler for the user in the real
environment than in the virtual one.

Task simulation has proven an effective tool to prevent
some erroneous executions in the real world. The operator
can check whether the learned task is correct and whether
it can be executed by the target robot taking into account
also its reachability and kinematic constraints.

Task execution by the real robot requires the availability
of a sensory system to locate objects in the real workspace
and of adequate path planning and robot control capabil-
ities. Once the task has been correctly learned, success-
ful task execution depends on the quality of the robot
controller and the accuracy of the vision system. So far,
we have not stressed these aspects in our PbD system,
although we have successfully executed peg-in-hole tasks
with a clearance of 3mm.

III. EXPLOITING VIRTUAL FIXTURES

One of the potential advantages of a virtual demonstra-
tion environment, as mentioned earlier, is the ability to
incorporate in a simpler way virtual fixtures, i.e. artificial
clues that help the operator in performing the task. Virtual
fixtures have been introduced as a general concept in robot
teleoperation [14], [15]. We argue here that they can play
an important role in simplifying task demonstration in PbD
as well. While the PbD system described in the previous
section is admittedly simple, it allows some analysis of the
impact of synthetic fixturing as described in the following.

Our PbD system incorporates virtual fixturing in two
ways. First, demonstration in the virtual environment

is somehow easier than it would be with an accurate
representation of real world constraints, since we accept
some error in the positioning of the grasped object. For
example, with default parameter setting, attempting to
deposit an object 1 cm below the plane results in a valid
PickAndPlaceOnTableoperation. Likewise, in Figure 3
clearance of the peg-in-hole task in the virtual environ-
ment is about three times the actual clearance in the
physical world. Thresholds defining anacceptability zone
are defined for any action, the tradeoff being between
the degree of assistance provided to the operator and the
ability to discriminate between the contact relations to
be established and to achieve the required accuracy in
positioning. More cluttered environments would require,
thus, stricter thresholds.

Whenever the object is released within the acceptability
zone, its location is corrected and re-aligned in the virtual
environment. As described, this feature is appropriate only
for simple domains like the block world above, yet the un-
derlying concept extends to more general applications. I.e.,
if sufficient a priori knowledge is available, a virtual envi-
ronment canguide the user performing the demonstration
toward semantically significant actions, rather than simply
record user actions. Clearly, if the application demands
accurate, free positioning, a different task hierarchy must
be defined, along with proper acceptability thresholds.

A second type of virtual fixture is implemented in
the PbD system by exploiting the vibrotactile feedback
available in the CyberTouch glove. The underlying idea
is that exploiting multimodality reduces the perceptual
overload of the operator’s visual channel [1]. In the current
implementation, vibration is activated whenever the object
lies within the acceptability zone previously discussed
for a release operation. The operator can take advantage
of this explicit information by immediately releasing the
object, or decline it by moving the object to another
location.

Possible variations in this scheme include:

• activating vibrotactile feedback for a short amount of
time, so that the user can decide whether take advan-
tage of predefined object alignment (by immediately
releasing the object), or override it in favor of a fine
manual positioning (by holding the object until the
end of vibration);

• providing vibrotactile feedback (which in principle
could also be modulated in amplitude) in a wider
volume than the acceptability zone, so as to provide
a hint guiding user motion.

A. Evaluation

We have asked five subjects, 2 females and 3 males,
to demonstrate three elementary tasks and one composite
task in the virtual environment. Prior to the actual data
collection experiment, subjects were asked to play for 5

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

24
without vibration
with vibration

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

24
without vibration
with vibration

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

24
without vibration
with vibration

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

24
without vibration
with vibration

Fig. 4. Average and standard deviation in task completion times for five
subjects performing tasks with and without vibration assistance. Vertical
axis: time in seconds. Horizontal axis: subject index. Charts refer to
different tasks. From top to bottom: object displacement task; object
stacking task; peg-in-hole task; composite task.

minutes with the virtual environment, picking and releas-
ing objects.

The elementary tasks to be demonstrated were dis-
placement of a cubic object on table, stacking of a cubic
object on top of another one, insertion of a cylindrical peg
into a cylindrical hole. Each task also included approach
motion, object grasping, and object transportation phases.
The composite task was a routine comprising the three
elementary tasks in sequence, although with a different ob-
ject arrangement. For each task, time to completion (time
required to perform the demonstration) was measured
and the average value and standard deviation computed.
Finally, each subject performed the experiment five times
using only the graphical output of the virtual environment,
and then five times with the virtual tactile fixture on. Task
completion time was measured by an external supervisor
and triggered when the system reported a successful
recognition of the last requiredHighLevelTask.

Figure 4 shows the average and standard deviation in
task completion times without and with the virtual tactile
fixture in the four experiments. Task completion times
in both modality are clearly influenced by the different
difficulty of the various tasks. According to Fitt’s law [7],
a Difficulty Index can be defined for each task, and
correlation with average task completion time established
(we are currently performing such analysis). As a general
remark, the additional tactile fixture helps in decreasing
average demonstration times, even though for each ele-
mentary task one subject performed slightly worse with
the tactile fixture on. For the composite task, the tactile
fixture improved execution performance for all subjects.
It should be mentioned that the virtual environment is
somehow slower with the tactile feedback activated. A
higher latency is perceived by the user, which therefore
might tend to perform the demonstration more cautiously.
The resulting delay might play a role in the outlier data.
Moreover, due to differences in object arrangement and
initial operator pose, completion times for the composite
task cannot be compared with completion times of the
elementary tasks.

Figure 5 compares results across the four tasks by
scaling each subject performance with the value obtained
without the tactile fixture. Dashed lines refer to the average
task completion time across all subjects. Qualitatively,
virtual tactile fixturing appears to play a more important
role for more complex tasks. For the composite task the
average degree of improvement is smaller, although all
subjects improve their completion times with the tactile
virtual fixturing. This is due to the fact that the task
includes multiple transfer phases where virtual tactile fix-
turing plays no role. Our ongoing work attempts to assess
the correlation between task difficulty and completion time
in a more quantitative manner.

Cube on Table Cube on Top Peg in Hole Composite Task
0.4

0.6

0.8

1

Fig. 5. Assessing the improvement in task completion time using vibra-
tion for the four tasks. Vertical axis: ratio between average completion
times with and without vibration. Each dot represents a subject, whereas
the dashed line connects to the average improvement across all subjects.

IV. CLOSING

We have described an ongoing investigation into ex-
ploiting a virtual environment to assist the user in PbD of
robot tasks. We have developed a prototype PbD system
that uses a data glove and a virtual reality teaching
interface to program pick-and-place tasks in a block world.

In this context, we are investigating the potentials of
virtual fixtures, both visual and tactile, and their effect on
task recognition performance. The ability to easily inte-
grate such virtual fixtures is one of the major advantages
of a virtual demonstration environment.

V. ACKNOWLEDGMENTS

This research is partially supported by MIUR (Italian
Ministry of Education, University and Research) under
project RoboCare (A Multi-Agent System with Intelligent
Fixed and Mobile Robotic Components).

VI. REFERENCES

[1] J. Aleotti, S. Caselli, and M. Reggiani. Multimodal
User Interface for Remote Object Exploration with
Sparse Sensory Data. In11th IEEE International
Workshop on Robot and Human Interactive Commu-
nication, 2002.

[2] S. Bottazzi, S. Caselli, M. Reggiani, and
M. Amoretti. A Software Framework based
on Real-Time CORBA for Telerobotic Systems. In
IEEE Int. Conf. on Intelligent Robots and Systems,
2002.

[3] R. A. Brooks. Intelligence without Reason. In12th
Int’l Joint Conf. on Artificial Intelligence, 1991.

[4] A. Cypher, editor. Watch What I do: Programming
by Demonstration. The MIT Press, 1993.

[5] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zöllner,
and M. Bordegoni. Learning Robot Behaviour and
Skills Based on Human Demonstration and Advice:
The Machine Learning Paradigm. In9th Int’l Symp.
of Robotics Research, 1999.

[6] M. Ehrenmann, R. Z̈ollner, O. Rogalla, and R. Dill-
mann. Programming Service Tasks in Household
Environments by Human Demonstration. In11th
IEEE International Workshop on Robot and Human
Interactive Communication, 2002.

[7] P.M. Fitts. The Information Capacity of the Hu-
man Motor System in Controlling the Amplitude
of Movement.Journal of Experimental Psychology,
(47), 1947.

[8] H. Friedrich, S. M̈unch, R. Dillmann, S. Bocionek,
and M. Sassin. Robot Programming by Demonstra-
tion: Supporting the Induction by Human Interaction.
Machine Learning, pages 163–189, May 1996.

[9] K. Ikeuchi and T. Suehiro. Towards an Assembly
Plan from Observation, Part I: Task Recognition with
Polyhedral Objects.IEEE Trans. on Robotics and
Automation, 10(3), 1994.

[10] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning
by Watching: Extracting Reusable Task Knowledge
from Visual Observation of Human Performance.
IEEE Trans. on Robotics and Automation, 10(6),
1994.

[11] E. Lloyd, J. S. Beis, D. K. Pai, and D. G. Lowe.
Programming Contact Tasks Using a Reality-Based
Virtual Environment Integrated with Vision.IEEE
Trans. on Robotics and Automation, 15(3), 1999.

[12] H. Ogata and T. Takahashi. Robotic Assembly
Operation Teaching in a Virtual Environment.IEEE
Trans. on Robotics and Automation, 10(3), 1994.

[13] K. Ogawara, J. Takamatsu, H. Kimura, and
K. Ikeuchi. Extraction of Essential Interactions
through Multiple Observations of Human Demon-
strations. IEEE Trans. on Industrial Electronics,
50(4), 2003.

[14] L. Rosenberg. Virtual Fixtures: Perceptual Tools for
Telerobotic Manipulation. InIEEE Virtual Reality
Annual International Symposium, 1993.

[15] C. P. Sayers and R. P. Paul. An Operator Interface
for Teleprogramming Employing Synthetic Fixtures.
Presence, 3(4), 1994.

[16] T. Takahashi and T. Sakai. Teaching Robot’s Move-
ment in Virtual Reality. InIEEE/RSJ Int. Workshop
on Intelligent robots and systems, 1991.

[17] R. Zöllner, O. Rogalla, R. Dillmann, and M. Zöllner.
Understanding Users Intention: Programming Fine
Manipulation Tasks by Demonstration. InIEEE/RSJ
Int’l Conference on Intelligent Robots and Systems,
2002.

A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

Ignazio Infantino1 Antonio Chella1,2 Haris Džindo1 Irene Macaluso1

1ICAR-CNR sez. di Palermo
Viale delle Scienze, edif. 11,

90128, Palermo, Italy

2DINFO Università di Palermo

Viale delle Scienze,
90128, Palermo, Italy

 Abstract __ The paper deals with a cognitive architecture for
posture learning of an anthropomorphic robotic hand. Our
approach is aimed to allow the robotic system to perform
complex perceptual operations, to interact with an human user
and to integrate the perceptions by a cognitive representation
of the scene and the observed actions. The anthropomorphic
robotic hand imitates the gestures acquired by the vision system
in order to learn meaningful movements, to build its knowledge
by different conceptual spaces and to perform complex
interaction with the human operator.

I. INTRODUCTION

The control of robotic systems has reached a high level of
precision and accuracy, but often the high complexity and
task specificity are limiting factors for large scale uses.
Today, robots are requested to be both “intelligent” and
“easy to use”, allowing a natural and useful interaction with
human operators and users. A promising approach towards
simple robot programming is the “learning by imitation”
paradigm (see [19], [21], [26] for reviews on different aspects
on imitation). Many working systems have been proposed in
the literature [2], [3], [4], [12], [14], [15], [16], [22], [23],
[28]. However, these systems, although effective, are
generally based on movements recordings obtained by gloves,
by particular equipments or by simplified vision; moreover,
the imitation capabilities are sometimes limited to simple
mimicking of the teacher movements.

We claim that, in order to have a system able to learn by
imitation, the system itself may have the capabilities of
deeply understand the perceived actions to be imitated.
Therefore, the system may be able to build an inner
conceptual representation of the learned actions. In this paper,
we present an architecture based on learning by imitation that
performs visual interaction between an human user showing
his moving hand and an anthropomorphic robotic hand (a
DIST-Hand built by GraalTech, Genova, Italy). The core of
the architecture is a rich inner conceptual level [10] where
the representation of perceptual data takes place starting from
a real time unconstrained vision system [5], [6], [7], [8], [13].
Our long term project goal is to build a system that may help
and collaborate with elderly and impaired persons in

everyday life (e.g. a system that helps to pick up an object or
to perform some movements).

The current system is equipped with a stereo video camera
that acquires the movements of the hand of the user, in order
to perform a direct visual control of the robot (by movements
imitation) or to interact using a given sign formalism. The
acquired visual data are anchored to symbolic descriptions of
the human hand postures and operations [7]. The system takes
as input a sequence of images corresponding to subsequent
phases of the evolution of the scene (the movements of the
human hand and their effects on the whole scene), and it
generates an output as a suitable action performed by robotic
hand, along with the description of the scene. Such a
symbolic description may be employed to perform high-level
inferences, e.g. those needed to generate complex long-range
plans of interaction, or to perform reasoning about the user
operations. In order to test our system and to have
quantitative data on human system interaction, we consider a
measurable experimental setup in which the user plays Rock-
Paper-Scissors game. The system task in this setup is to
understand the strategy of the human player.

The paper is organized as follows. In the next section, the
cognitive architecture is summarized and detailed description
of the conceptual representations is given. The third section
describes a simple application that involves conceptual space
representation and reasoning: human user plays rock, paper,
scissors game against the system. Short conclusions follow.

II. THE COGNITIVE ARCHITECTURE FOR VISUAL
PERCEPTION AND LEARNING

The aim of the architecture is to integrate visual perception

with knowledge representation, with particular emphasis on
man–machine interaction. Our proposal is based on the
hypothesis that a principled integration of the approaches of
artificial vision and of symbolic knowledge requires the
introduction of an intermediate representation between these
two levels [6]. Such a role is played by a conceptual space,
according to the approach proposed by Gärdenfors [10].

The implemented architecture is organized in three
computational areas. Fig. 1 schematically shows the relations
among them. The subconceptual area is concerned with the

low-level processing of perceptual data coming from the
sensors. We call it subconceptual because here information is
not yet organized in terms of conceptual structures and
categories. The subconceptual area includes a 3D model of
the perceived scenes. Even if such a kind of representation
cannot be considered “low-level” from the point of view of
artificial vision, it still remains below the level of conceptual
categorization. In the linguistic area, representation and
processing are based on the formalism of probabilistic
reasoning based on Bayesian networks [17]. In the conceptual
area, the data coming from the subconceptual area are
organized in conceptual categories, which are still
independent from any linguistic characterization.

The purpose of the subsequent discussion is to show how a
conceptual representation can be viewed as a composition of
three different space, that driven step by step from sensorial
to symbolic level. An overview of the system is depicted in
Fig. 2.

A. The subconceptual area

As previously stated, the task of the implemented

architecture is to deeply understand the postures and
movements of the human hand. To this aim, we need the
exact 3D reconstruction of the hand to individuate the
orientation and reciprocal position with other body parts
(arms, face, and so on).

Different methods have been proposed to capture human
hand motion. Rehg and Kanade [18] introduced the use of a
highly articulated 3D hand model for the tracking of a human
hand. Heap and Hogg [11] used a deformable 3D hand shape
model. The hand is modeled as a surface mesh which is
constructed via PCA from training examples. In [9], Cipolla
and Mendoca presented a stereo hand tracking system using a
2D model deformable by affine transformations. Wu and
Huang [29] proposed a two-step algorithm to estimate the
hand pose, first estimating the global pose and subsequently
finding the configuration of the joints. In [27], the
Eigenspace method is used to classify hand shape and
estimate hand position.
Our method, described in details in [13], uses fingertips as
features, extracted from gray level images with black
background. Each finger (except the thumb) is considered as
planar manipulator. The hand postures is defined
reconstructing its joint angles, and the Kalman Filter is used
to track the fingertips in an image sequence and computes the
3D coordinates of each of them. The coordinates of the four
fingertips and the wrist are used to solve the inverse
kinematics problem for joint angles, provided a kinematics
model of a human hand.

The model is designed to remain simple enough for
inverse kinematics to be done in real-time, while still
respecting human hand capabilities. We take into account
static and dynamic hand constraints [24] which allow us to
reduce the number of DOF of the model to 15.

(a)

(b)

Fig. 1. (a) The three areas of the conceptual representation and the relations

among them. (b) The posture reconstruction system and the robotic hand

The robustness of this algorithm has been tested using

various fingers configuration: also in the more complicated
case of two very close fingers on the background palm the
system follow the correct feature. The addition of artificial
noise or the use of a lower image scale does not degrade the
performance of the algorithm. No constraints of the possible
hand postures are necessary and gray-level video images are
sufficient to obtain good results. A limitation of the proposed
approach is that the background may be uniform in order to
obtain real time segmentation; other approaches presented
better segmentation algorithms based on color [30] or 3D
models [20] but without dealing with real time problems.

We have tested our method by using two different stereo
rigs: the first one was composed by two Sony cameras, and
the second one by two USB Webcams. The software runs on
a personal computer (Pentium III, 450 MHz), equipped with
two video grabber cards and an Ethernet card.

Conceptual area

Sub-conceptual
area

Linguistic area
(Bayesian
network)

Sensory Data

Action Space

Situation Space

Perceptual
Space

Fig. 2. The system architecture.

The movements command are send to the DIST-Hand
using a TCP-IP link to it. The various procedures
implemented to perform the posture reconstruction allow a
frame rate of 10 images per second, permitting a qualitative
correct recognition of the movements of the real hand
presented

B. Perceptual Space (PS)

The perceptual space PS is part of the conceptual area of the
architecture and it is a conceptual space in the sense of
Gärdenfors [10], in particular it is a metric space whose
dimensions are strictly related with the quantities processed in
the subconceptual area. By analogy with the term pixel, we
call knoxel a point in a PS. A knoxel is an epistemologically
primitive element at the considered level of analysis. The
basic blocks of our representations in PS are geometric
primitives (the joint angle values, or superquadric
parameters) describing the acquired scene. In order to
account for the dynamic aspects of actions, we adopt a

(a)

(b)

(c)

Fig.3. (a) Human hand model. (b)The basic blocks of PS representations are
3D geometric primitives such as phalanx joint angles. (c) Each point of the

PS represents a whole simple motion.

perceptual space PS in which each point represents a whole
simple motion. In this sense, the space is intrinsically
dynamic since the generic motion of an object is represented
in its wholeness, rather than as a sequence of single, static
frames. The decision of which kind of motion can be
considered simple is not straightforward, and it is strictly
related to the problem of motion segmentation. In the line of
the approach described in [8], we consider a simple motion as
a motion interval between two subsequent generic
discontinuities in the motion parameters.

Subconceptual Area

Stereo camera Single camera
 camera

Arm-Hand
Tracker

3D
Coordinate

Kinematics

Controller

Conceptual
Area

Linguistic
Area

In the static PS mentioned above, a moving component had
to be represented as a set of points corresponding to
subsequent instants of time. This solution does not capture the
motion in its wholeness. The implemented alternative has
been previously investigated in [8]. We adopt as the
conceptual space for the representation of dynamic scenes a
dynamic space which can be seen as an “explosion” of the
static space. In this space, each axis is split in a number of
new axes, each one corresponding to a harmonic component.

Fig. 3 is an evocative, pictorial description of this
approach. In the leftmost part of the figure, representing the
static PS, each axis corresponds to a 3D geometric parameter;
in the rightmost part of the figure, representing the dynamic
PS, each group of axes corresponds to the harmonics of the
corresponding geometric parameter. Also in this case, a
knoxel is a point in the conceptual space, and it corresponds
to the simple motion of a geometric component.

C. Situation Space (SS)

A simple motion of a component corresponds to a knoxel
in PS. Objects may be approximated by one or more
geometric primitives. Let us now consider a scene made up
by the human hand. Consider the index opening, as in Fig. 4.
We call Situation this kind of scene. It may be represented in
PS by the set of the knoxels corresponding to the simple
motions of its components, as in Fig. 4, where each knoxel
corresponds to a phalanx. In this case, each knoxel
corresponds to a moving phalanx of the index and its
harmonic components are not zero, while the other knoxels
correspond to the phalanxes of quiet fingers (the figure
depicts only some of them). Each point in the Situation Space
(SS) is a collection of points in PS. SS is a pictorial
representation of the global perceived situation.

D. Action Space(AS)

In a Situation, the motions of all of the components in the
scene occur simultaneously, i.e. they correspond to a single
configuration of knoxels in the conceptual space. To consider
a composition of several motions arranged according to a
temporal sequence, we introduce the notion of Action in the
sense of Allen [1]. An Action corresponds to a “scattering”
from one Situation to another Situation of knoxels in the
conceptual space.

We assume that the situations within an action are
separated by instantaneous events. In the transition between
two subsequent configurations, a “scattering” of at least one
knoxel occurs. This corresponds to a discontinuity in time
that is associated to an instantaneous event. Fig. 5 shows a
simple Action performed by the human hand. The figure
shows a human hand while opening. This Action may be
represented in CS (Fig. 5) as a double scattering of the
knoxels representing the phalanxes (the figure depicts only
one of them). The knoxel representing the palm remains

Fig. 4. S1 is the collection of the points in PS describing the finger
movement.

Fig. 5. A1 is the collection of the points in SS describing the hand action.

unchanged. Each point in the Action Space (AS) is a
collection of situations, i .e., of points in SS and it represents
a hand action. AS is a pictorial representation of the action
performed by human hand.

E. Linguistic area

Long term declarative knowledge is stored at the linguistic
area. The more “abstract” forms of reasoning, that are less

perceptually constrained, are likely to be performed mainly
within this area. The elements of the linguistic area are terms
that have the role of summarizing the situations and actions
represented in the conceptual spaces previously described,
i.e., linguistic terms are anchored to the structures in the
conceptual spaces [7].

The symbolic inferences in the linguistic area aimed to plan
and decision making, are performed by suitable Bayesian
networks. At a given instant, the chosen decision depends
from past events and actions executed with a given
probability. The interactions between human user and robotic
system, initially random, are used to update the tables of
probability of the network in order to learn suitable strategies
[17].

F. Learning in the architecture

The structures of the conceptual spaces allows to manage
the learning of the link between perception and action at
different level of representation.

In the Perceptual Space, we need to recognize and classify
the motions of single phalanxes (e.g., UpPhalanx1): it is an
easy task and the system uses a classifier based on a
perceptron neural network.

In the Situation Space, we need to classify and recognize
complex dynamic postures: the system uses a recurrent neural
network able to learns the different hand configurations. Let
us consider a set of knoxels s= {pk1, pk2, …, pkm}
corresponding to an instance of a Situation concept C, e.g.,
Hand Opening. When a knoxel of s, say pk1, has been
individuated by the subconceptual area and it is presented as
input to the recurrent network associated to C, the network
generates as output another knoxel of s, say pk2. In this way,
the network predicts the presence of pk2 in SS. The
expectation is considered confirmed when the subconceptual
area individuates a knoxel pk* so that pk2~pk* . If the
expectation is confirmed, then the network receives as input
pk2 and generates a new expected knoxel pk3,and so on. The
network therefore recognizes the configuration of knoxels of
the associated concept according to a recognition and
expectation loop.

In the Action Space, we performs a similar mechanism to
classify complex actions: when C is an Action, the previously
described sequences now refer to a succession of different SS
configurations. It should be noted that the SS case is an
example of synchronic attention, while the AS case is an
example of diachronic attention.

Recurrent neural networks make it possible to avoid an
exhaustive linguistic description of conceptual categories: in
some sense, prototype Situations and Actions arises from the
activity of the neural networks by means of a training phase
based on examples. In addition, the measure of similarity
between a prototype and a given Situation or Action is
implicit in the behavior of the network and is determined by
learning. As stated before, in the linguistic area, where long

Rock Posture Paper Posture Scissors Posture

Fig. 6. Elementary postures of the RPS game executed by human user,

robotic hand and simulator.

term memory is the instrument to plan and to decide
strategies, we use suitable Bayesian networks. The history
that determines the behavior of the system is a group of
sequential action: the current decision is dependent from past
events and actions executed, with a given probability.

The interactions between human user and robotic system,
initially random, are used to update the tables of probability
of the network in order to learn strategies of behaviors
according to the Bayesian learning algorithms [17].

III. EXPERIMENTS: THE CASE OF ROCK, PAPER,
SCISSORS GAME

We adopted an experimental setup that allowed us to

measure the degree of learning of the system during human-
robot interactions. In this setup, human user plays the Rock,
Paper, Scissors game against the robotic hand (see Fig. 6).

 We have chosen the RPS (Rock, Paper, Scissors) game
because it is simple, fast, involving hand dexterity and
strategy between two players. Moreover, RPS game is based
on standard hand signs. Also the rules are simple and well-
known:

- players contemporarily show one of the three signs;
- rock: wins against scissors, loses to paper and

stalemates against itself;
- paper wins against Rock, loses to scissors and

stalemates against itself;

- scissors wins against paper, loses to rock and
stalemates against itself.

Players may use any combination of these throws at any

time throughout the match. Any throws that are not
conforming to the standard hand positions and thus deemed to
be a rock, paper, or scissors is considered to be an illegal
throw and it is thus forbidden.

A. Learning game behavior

The robotic system, in order to choose one of the three
game signs, uses a suitable sequential mechanism of
expectations. The recognition of a certain component of a
Situation (a knoxel in PS) will elicit the expectation of other
components of the same Situation in the scene. In this case,
the mechanism seeks for the corresponding knoxels in the
current PS configuration. The recognition of a certain
situation in PS could also elicit the expectation of a scattering
in the arrangement of the knoxels in the scene; i.e., the
mechanism generates the expectations for another Situation in
a subsequent PS configuration. In this way expectations can
prefigure the situation resulting as the outcome of an action.

This implements a predictive behavior of the robotic hand,
and it represents the ability of a player to predict the
opponent action before its completion and using only
sensorial input. For example, when the robot recognizes a
starting instance of the Paper path situation, it immediately
performs the Scissors action.

We take into account two main sources of expectations. On
the one side, expectations could be generated on the basis of
the structural information learned in the Bayesian network.
As soon as a Situation is recognized and the situation is the
precondition of an Action, the symbolic description elicit the
expectation of the effect situation. Fig. 7 shows an example
of the Bayesian network that computes the most probable sign
after two throws using a strategy based on the repetition of
successful moves. On the other side, expectations could also
be generated by purely associative mechanism between
situations by means of the previously described neural
networks.

Each concept C is associated with a suitable recurrent
neural network which acts as a “predictive filter” on the
sequences of knoxels corresponding to C.

B. Playing a game

The system has played 500 matches against human user
which uses a defined complex strategy based on “gambit”
composition. A gambit is a series of three throws used with
strategic intent. “Strategic intent” in this case, means that the
three throws are selected beforehand as part of a planned
sequence. There are only twenty-seven possible gambits, but
they can also be combined to form longer, complex
combination moves.

Fig. 7. An example of the Bayesian network that computes the most

probable sign after two throws using a strategy based on the repetition of
successful moves.

The strategy followed by human player related to the Fig. 8 is
represented by the union of the gambit (PSR) and (RPR),
with the random choose to repeat the same sign or change
gambit after a stalemate or the conclusion of a set.
A single game uses the best of three of three format (max 3
sets, ended when a player wins 2 throws). In the first phase of
the challenge (match #1-#50), the system plays at random,
obtained a success rate near to 33% (stalemate is counted as
fail). The continuous updating of the tables of the Bayesian
network introduces the knowledge of opponent’s strategy.
After approximately 250 matches the system has completely
learned the inner behavior of the human player and has
obtained a success rate near to 61,2%. The various
experiments done have highlighted a profile of learning
process characterized by a random initial phase that lasts
50~75 matches depending from player strategy, a second
phase with constant converging learning rate, and a final
phase in which the system does not improve its skill.

Match #001

Match #201

 Human Robot Human Robot
P P P* R
R* S S R*
S R*

Set 1

R* S

Set 1

R* S
 R P*

P S*
Set 2
 R P*

R R
R R R R
P* R R P*

Set 2

R P* P* R

Set 3

S R*
R R
R* S
P S*

Set 3

R* S

Result: Human wins
Robot %tw: 30,77%

Robot wins
55,56%

Fig. 8. The results of 2 matches (#1 and #355 of 500) are reported. The

graph reports the percentage of throws won by robotic system in a single
match. After 250 matches the system has reconstructed the behavior of the

human player and has obtained a success rate near to 61,2%.

IV. FUTURE WORKS: EMOTIONAL BEHAVIOR

On the surface, RPS appears to be a game of chance.
Whether because of associations with the symbols or the hand
positions that represent them, players perceive the three
throws to have distinct characteristics. These vary from player

to player, but generally fall into some common patterns. For
example the World RPS Society web site [25] associates
different behaviors to the three possible opening throw:

“ rock: use of rock as an opening move is seen by many
players to be a sign of aggression; paper: it is actually the
most challenging of the basic opening moves since it requires
the manual displacement of the most digits. It is therefore
generally viewed as the least obvious of opening throws;
scissors: opening with a pair of scissors assumes that you are
playing against an opponent who has tight control over their
aggressive tendencies …”.

We are considering a knowledge base that collects
emotional tendencies of different human players. If, before
starting the game, the system knows its opponent, it could
decide the initial sign. On other side, during a game, the
history of the throws could be stored and used to associate a
typical behavior of current opponent.

IV. CONCLUSIONS

A cognitive architecture for posture learning of an
anthropomorphic robotic hand has been presented. Our
approach is aimed to allow the robotic system to perform
complex perceptual operation, to interact with human user
and to integrate the perceptions with a cognitive
representation of the scene and the actions. The
anthropomorphic robotic hand imitates gestures showed to
the vision system in order to learn movements, to build its
knowledge by different conceptual spaces and to perform
complex interaction with the human operator.

V. ACKNOWLEDGMENTS

This research is partially supported by MIUR (Italian
Ministry of Education, University and Research) under
project RoboCare (A Multi-Agent System with Intelligent
Fixed and Mobile Robotic Components).

VI. REFERENCES

[1] J.F. Allen. Towards a general theory of action and time.

Artif. Intell., vol. 23(2), pp. 123–154, 1984.
[2] ..C. G. Atkeson, S. Schaal, “Learning Tasks From A

Single Demonstration“, in proc. of IEEE-ICRA 1997,
pp. 1706-1712, Albuquerque, New Mexico, 1997.

[3] A. Billard, M.J. Mataric, “Learning human arm
movements by imitation: Evalutation of a biologically
inspired connectionist architecture, Robotics and
Autonomous System, no. 37, pp. 145-160, 2001.

[4] .A. Billard, S. Schaal, “Robust learning of arm trajectories
through human demonstration”, proc. of IROS 2001,
pp.734-739, Hawaii, USA, 2001.

[5] A. Chella, M. Frixione, S. Gaglio, “An architecture for
autonomous agents exploiting conceptual
representations”, Robotics and Autonomous Systems,
vol. 25 (3–4), pp. 231–240, 1998.

[6] .A. Chella, M. Frixione, S. Gaglio, “A Cognitive
Architecture for Artificial Vision”, Artificial
Intelligence 89, no. 1-2, pp. 73-111, 1997.

[7] A. Chella, M. Frixione, S.Gaglio, “Anchoring symbols
to conceptual spaces: the case of dynamic scenarios”,
Robotics and Autonomous Systems, special issue on
Perceptual Anchoring, vol. 43, 2-3, pp. 175-188, 2003

[8] A. Chella, M. Frixione, S. Gaglio, Understanding
dynamic scenes, Artificial Intelligence, no. 123, pp. 89-
132, 2000.

[9] B.D.R. Stenger, P.R.S. Mendonca, R. Cipolla, “Model
based 3D tracking of an articulated hand”, in Proc.
CVPR‘01, pp. 310-315, 2001.

[10] P. Gärdenfors, Conceptual Spaces, MIT Press- Bradford
Books, Cambridge, MA, 2000.

[11] A. J. Heap, D. C. Hogg, “Towards 3-D hand tracking
using a deformable model”, in 2nd International Face
and Gesture Recognition Conference, pp. 140-145,
Killington, Vermont, USA, October 1996.

[12] J.A Ijspeert, J. Nakanishi, S. Schaal, “Movement
imitation with nonlinear dynamical systems in humanoid
robots”, in proc. of Intl. Conf. on Robotics and
Automation (ICRA2002), Wahington, 2002.

[13] I. Infantino, A. Chella, H. Džindo, I. Macaluso, “Visual
Control of a Robotic Hand”, IROS 2003, Las Vegas,
November 2003.

[14] J. Lee, T.L. Kunii, “Model-based analysis of Hand
Posture”, in IEEE Comp. Graphics and Appl., pp. 77-
86, 1995.

[15] K. Ogawarw, J. Takamatsu, H. Kimura, K. Ikeuchi,
“Generation of a task model by integrating multiple
observations of human demonstrations”, in proc. of
IEEE-ICRA 2002, Washington, DC, Usa, May 2002.

[16] V. Pavlovic, R. Sharma, T.S. Huang., “Visual
interpretation of hand gestures for human-computer
interaction: a review”, IEEE PAMI, vol. 19(7), pp. 677-
695, 1997.

[17] J. Pearl, “Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference”, Morgan Kaufmann,
San Francisco, CA, 1988.

[18] .J.M. Rehg, T. Kanade, “DigitEyes: Vision-Based Hand
Tracking for Human-Computer Interaction”, in Proc. of
the IEEE Workshop on Motion of Non-Rigid and
Articulated Objects, Austin, Texas, pp.16-22, 1994.

[19]..J. Rittscher, A. Blake, A. Hoogs, G. Stein,
“Mathematical modelling of animate and intentional
motion”, Philosophical Transactions: Biological
Sciences (The Royal Society), no. 358, pp.475-490,
2003.

[20] R. Rosales, V. Athitsos, L. Sigal, S. Sclaroff, “3D Hand
Pose Reconstruction Using Specialized Mappings”, in

Proc. IEEE Int.l. Conf. on Computer Vision (ICCV’01),
Canada, July 2001.

[21] S. Schaal, A. J. Ijspeert, A. Billard, “Computational
Approaches to Motor Learning by Imitation”.
Philosophical Transactions: Biological Sciences (The
Royal Society), no. 358, pp.537-547, 2003.

[22] T. Starner, J. Weaver, A. Pentland, “Real-time
American sign language recognition using desk- and
wearable computer-based video”, IEEE PAMI, vol.
20(12), pp. 1371-1375, 1998.

[23] B.D.R. Stenger, P.R.S. Mendonca, R. Cipolla, “Model
based 3D tracking of an articulated hand”, in Proc.
CVPR‘01, pp. 310-315, 2001.

[24] Y. Wu, J. Y. Lin, T. S. Huang, "Modeling Human Hand
Constraints", in Proc. Of Work-shop on Human Motion
(Humo2000), Austin, TX, 2000.

[25] Web site of The World RPS Society,
http://www.worldrps.com/.

[26] D. M. Wolpert, K. Doya, M. Kawato, “ A unifying
computational framework for motor control and social
interaction”, Philosophical Transactions: Biological
Sciences (The Royal Society), no. 358, pp. 593-602,
2003.

[27] Y. Sato, K. Bernardin, H. Kimura, K. Ikeuchi, “Task
analysis based on observing hands and objects by
vision”, in Proc. of IROS 2002, Lausanne, Switzerland,
Oct. 2002.

[28] A. Ude, T. Shibata, C.G. Atkeson, “Real time visual
system for interaction with a humanoid robot”, Robotics
and Autonomous System, vol. 37, pp. 115-126, 2001.

[29] Y.Wu, T. S. Huang, “View-independent Recognition of
Hand Postures”, in Proc. of IEEE CVPR'2000, Vol. II,
pp.88-94, Hilton Head Island, SC, 2000.

[30] X. Zhu, J. Yang, A. Waibel, “Segmenting Hands of
Arbitrary Color”, in proc. of Fourth IEEE Intl. Conf. on
Automatic Face and Gesture Recognition, Grenoble,
France, March 2000.

Motor Representations for Hand Gesture Recognition and Imitation

Manuel Cabido Lopes José Santos-Victor

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Lisbon, Portugal
{macl,jasv}@isr.ist.utl.pt

Abstract— We present an approach for grasp recognition
and imitation based on models for canonical and mirror
neurons, recently found in neurophysiological experiments.
Canonical Neurons seem to code object affordances, e.g.
possible ways of grasping.Mirror Neurons code goal directed
tasks, like precision or power grasping of an object. The
major feature of this neuron population is the use of motor
information in the recognition step.

We propose a Bayesian approach that encompasses all
these aspects. Recognition is performed in the motor space
and we solve the problem of getting motor information while
observing another person. Our approach avoids the complex-
ity of other approaches based on the3D reconstruction of
the hand from images, considering that the hand is a multi-
articulated object subject to frequent occlusions.

The results obtained illustrate the benefits of designing ar-
tificial machines inspired on biological findings and hypothe-
ses, while at the same time, offering robotics technologiesas
a testbed for such hypotheses.

I. I NTRODUCTION

Despite being often ignored, an artificial system can
retrieve a large amount of knowledge, simply by looking
at other individuals, humans or robots working in the same
area. In fact, similarly to human infants, a robot could
learn significant information if it were able to recognize
and imitate what the others are doing.

The long-term goal of our work is two-fold. On one
hand, we want to develop methodologies whereby a sys-
tem can learn how to perform complex tasks through
imitation. On the other hand, our approach relies on recent
findings in neuroscience and developmental psychology,
hoping to contribute to a better understanding of the
fundamental problem of how humans imitate each other
and how they recognize and understand the observed
behavior and actions.

This work is motivated by the recent discovery of
mirror and canonical neurons [1], [2] in the F5 area of
the macaque’s brain. These neurons discharge during the
execution of hand/mouth movements. In this paper we will
focus on hand gestures, often referred to as grasp actions
or grasps.

In spite of their localization in a pre-motor area of
the brain,mirror neurons fire not only when the animal
performs a specific goal-oriented grasping task, but also

when observing that same action being performed by an-
other individual. Canonical neurons [3] have the intriguing
characteristic of responding when objects, that afford a
specific type of grasp, are present in the scene, even if the
grasp action is not performed or observed.

By establishing a direct connection between gestures
performed by a subject and similar gestures performed
by others, mirror neurons may be intimately connected to
the ability to imitate found in some animal species [2],
establishing an implicit level of communication between
individuals.

The discovery of mirror neurons raises the fundamental
question of understanding the role of motor information
for “visual” gesture recognition, and how can it be fa-
cilitated by the fact that we know how to perform those
gestures. This is clearly distinct from most approaches
for gesture recognition, where only visual information is
involved. In our paper, instead, recognition is performed
in the motor space and we show that it really simplifies
the problem by affording a larger degree of invariance to
viewpoint modifications.

Visuo-motor representations can be acquired during
extensive periods of self-observation, as well as from
observing other individuals. The subject can learn how
to perform various gestures and what effect they produce
on the visual space and on world objects. Observation can
be useful in different ways:
(i) By manipulating objects, one can learn which grasp

types are successful for a certain class of objects.
Also, if we observeother people manipulating ob-
jects, we can learn the most likely grasps or func-
tions, for a given class of objects. We will refer to
these grasp types or functions as a particular type
of affordances [4] associated to a certain object.
For recognizing gestures, affordances provide prior
information as to which gestures are more likely,
when acting upon a certain object class. This is a
possible interpretation of the role played bycanonical
neurons in the overall process of gesture recognition
and imitation.

(ii) When observing one’s own gestures, the hand appear-
ance can be estimated and directly related with the
corresponding motor commands. We will refer to this

association as theVisuo-Motor Map (VMM). Once
the VMM has been estimated, one can transform
views of observed gestures to motor descriptions that
can either be used for recognition or to elicit the
corresponding (imitated) gesture.

Grasp actions are usually partitioned into thetransport
andgrasp phases [5]. During the transport phase, the hand
moves towards the target and the grasp phase corresponds
to the final segment, immediately before and after touch.
It has been shown that the transport phase can change
significantly, according to the particular grasp type that is
performed in the end of the movement. However, it seems
that this information is not used by humans for gesture
recognition. Mathematically, this can be interpreted as
poor (uncertain) predictive capabilities, as it is only in
the final (grasp) part of the gesture that recognition takes
place.

Similarly, in our work, recognition will only be based
on the grasp phase of the gesture. Figure 1 illustrates the
hand appearance during the approach phase, together with
the final phase of two broad classes of grasps that will be
used in this work: precision grip and power grasp.

Fig. 1. Hand appearance during the approach phase (left), power grasp
(center) and precision grip (right).

Gesture recognition has been addressed in the computer
vision community in many different ways [6]- [11]. The
difficulty of hand tracking and recognition arises from the
fact that the hand is a deformable, articulated object, that
may display many different appearances depending on its
configuration, viewpoint or illumination. In addition, there
are frequent occlusions between hand parts (e.g. fingers).

Modeling the hand as an articulated object in the 3D
space implies extracting and tracking finger-tips, fingers,
and other notable points in the image. This is in general
quite difficult, depending on the taken viewpoints and
image acquisition conditions. To overcome this difficulty,
we exploit more iconic representations for the hand shape,
that are commonly believed to be used by humans when
recognizing (known) gestures. Also, our approach will

make use of motor information, since it is invariant to
the viewpoint, as suggested by the existence of mirror
neurons.

The recognition of other individuals and imitation are
always intertwined and imitation mechanisms can allow
better recognition. Several works suggest imitation as a
very important paradigm for programming robots [12].
The imitation mechanism can be better understood if
some computational models are developed that emulate
the brain. An important work [13] modeled several com-
ponents of the brain, presumably involved in imitation.
This work was extended for the case of grasp recognition
(mirror neurons) [14] and an implementation with video
data was used. Although good results were obtained, the
visual features used are very difficult to extract, which
makes it difficult to use in real world conditions. For the
case of learning motor skills, [15] presents a biologically
motivated architecture. This systems works with real data
and allows learning of repetitive patterns and precise
movements for grasp and reaching. Several other works
used biological principles in order to achieve imitation
[16] - [19]. Instead of mapping different brain regions and
modeling the way they function, our goal in this work is
to investigate the mathematical properties of some mech-
anisms, hypothetically developed through evolution, that
allow to recognize and imitate others. Most of the cited
works, although recognizing the complexity, simplified the
perception either using markers or reducing the possible
postures of the demonstrator.

Imitation can be done with simple mechanisms. If the
motor system is activated in order to reduce some error
function derived from the visual perception, imitation
emerges. Thishomeostatic behavior was used in [20], [21]
in order to imitate hand trajectories.

A discussion between passive and active imitation is
present in [22]. The first case relies on a perceive-
recognize-reproduce sequence, while the second uses a
map from perception to a set of behaviors. In the case
of gesture imitation the traditional way would be to have
a visual gesture classifier and then generate a similar prob-
lem. Active imitation needs a direct link from perception
to action. In the cited work this two modules are mixed
allowing imitation of known and unknown actions. In
our work, for the case of visual features, some action
generation would be necessary after the classification
(passive imitation), for the case of motor features the
action generation is temporally mixed with recognition
(active imitation). We show, in this work, that the use of
motor features allows better and more robust classification
and imitation. Although for low-level imitation the map
allows for imitation of unknown sequences, for grasp
actions only known gestures can be imitated.

As a final comment, we would like to remark that, to
consider gestures performed by the entire arm, we would

need to include some sort of visual transformation to deal
with the problem of viewpoint shape variance [23]. For
hand movements, our approach is invariant to large variety
of view points. Also, during self-observation, the system
can generate a large variety of hand visual stimuli that will
be used for the construction of visuo-motor maps. The
viewpoint transformation for arm gestures is specifically
addressed in [24].

In the next section, we will detail the main structure of
our approach. In Section III we describe our Bayesian
framework for grasp actions recognition and imitation,
that involves models of canonical and mirror neurons.
We detail how to learn the prior densities and likelihood
function from data and how to estimate a visuo-motor
map (VMM), using data acquired during self-observation.
As suggested by studies of mirror neurons, recognition
takes place in motor variables rather than visual. Finally
we present some experimental results in Section IV and
discuss the main conclusions in Section V.

II. A PPROACH

Gesture recognition is, in general, a complex task [6]-
[11]. Traditional approaches imply performing full3D
reconstruction of the hand, followed by a pose classifier.
To make the 3D reconstruction, it is necessary to track
the fingertips, while handling the multiple occlusions
generated by the complex hand motion. State-of-the-art
algorithms rely on good initial estimates and require
sophisticated kinematic models of the hand.

The approach we propose here differs from other works
in several ways: (i) use of object affordances in the
recognition process (canonical neurons); (ii) recognition
is performed in the motor space (mirror neurons) and (iii)
use of global descriptors of the hand appearance.

Many objects are grasped in very precise ways, since
they allow the object to be used for some specific purpose.
A pen is usually grasped in a way that affords writing
and a glass is hold in such a way that we can use it
to drink. Hence, if we recognize an object that is being
manipulated, it immediately tells us some information
about the most likely grasping possibilities (expectations)
and hand appearance, simplifying the task of gesture
recognition.

This link between objects and their affordances is
possibly played in the macacque’s brain by thecanonical
neurons of the area F5. If two objects can be grasped
in the same way, the same neurons will fire when either
object is presented. The affordances of the object have
thus an attention property because the number of possible
(or likely) events are reduced, thus overcoming possible
ambiguities. This will be the first module of our overall
system architecture.

We have seen in the previous section that, in spite of
their localization in a motor area of the brain, mirror

neurons are also active during pure visual (recognition)
tasks. When observing someone doing a familiar gesture,
the same neurons, that would fire when performing this
same gesture, become active. It has also been shown that
lesions in the motor part of the brain do affect recognition
capabilities.

This observation suggests that the motor system respon-
sible for triggering an action is also involved when rec-
ognizing that same action, leading to the question of how
to use motor information for recognition. Since during
the recognition, only visual information is available, the
solution lies in making a transformation from visual to the
motor space, where recognition will eventually be done.

The common approach to recognition involves compar-
ing acquired visual features to data from a training set.
Instead, we will first use aVisual-Motor Map to convert
such measurements to the motor space and then perform
the comparison/recognition in terms of motor variables.

The advantage of doing this inference in the motor
space is two-fold. Firstly, while visual features can be
ambiguous, we show that converting these features to
the motor space may reduce ambiguity. Secondly, as
the motor information is directly exploited during this
process, imitation can be done immediately, as all the
information/signals are readily available.

To use motor representations for grasp recognition, we
need to defineVisuo-Motor maps (VMMs) to transform
visual data onto motor information. The VMM can be
learnt during an initial phase of self-observation, while
the robot performs different gestures and learns its visual
effects.

The question that remains is that of choosing what vi-
sual features to use. As we will focus on the classification
and imitation of coarse gestures (power grasp and preci-
sion grip), we will rely on global appearance-based image
methods. Together with the prior information provided by
the canonical neurons, appearance based methods offer
an easier, fast and more robust representation than point
tracking methods.

In the next section we will present a Bayesian approach
for a gesture recognition that includes models of the
canonical and mirror neurons, using visual appearance
methods. The approach leads to excellent classification
rates and classification occurs in the motor space.

III. A B AYESIAN MODEL FOR CANONICAL AND

M IRROR NEURONS

Gesture recognition can be modeled in a Bayesian
framework, which allows to naturally combineprior in-
formation and knowledge derived from observations (like-
lihood). The role played by canonical and mirror neurons
will be interpreted within this setting.

Let us assume that we want to recognize (or imitate) a
set of gestures,Gi, using a set ofobserved features,F .

For the time being, these features can either be represented
in the motor space (as mirror neurons seem to do) or in
the visual space (directly extracted from images). Let us
also define a set of objects,Ok, present in the scene, that
represents the goal of a certain grasp action.

The prior information is modeled as a probability
density function,p(Gi|Ok), describing the probability
of each gesture given a certain object. The observation
model is captured in thelikelihood function, p(F |Gi, Ok),
describing the probability of observing a set of (motor
or visual) features, conditioned to an instance of the pair
gesture and object. Theposterior density can be directly
obtained through Bayesian inference:

p(Gi|F, Ok) = p(F |Gi, Ok)p(Gi|Ok)/p(F |Ok),

ĜMAP = arg max
Gi

p(Gi|F, Ok) (1)

where p(F |Ok) is just a scaling factor that will not
influence the classification.

The MAP estimate,GMAP , is the gesture that max-
imizes the posterior density in Equation (1). In order
to introduce some temporal filtering, features of several
images can be considered:

p(Gi|F, Ok) = p(Gi|Ft, Ft−1, ..., Ft−N , Ok),

whereFj are the features corresponding to the image at
time instantj. The posterior probability distribution can
be estimated using a naive approach, assuming indepen-
dence between the observations at different time instants.
The justification for this assumption is that, recognition
does not necessarily require the accurate modeling of the
density functions. We then have:

p(Gi|Ft, ..., Ft−N , Ok) =
N
∏

j=0

p(Ft−j |Gi, Ok)p(Gi|Ok)

p(Ft−j |Ok)

A. The role of canonical neurons

The role of canonical neurons in the overall classifica-
tion system lies essentially in providing the affordances,
modeled as theprior density function,p(Gi|Ok) that,
together with evidence from the observations, will shape
the final decision. This density can be estimated by the
relative frequency of gestures in the training set.

Canonical neurons are also somewhat involved in the
computation of the likelihood function, since it depends
both on thegesture and object, thus implicitly defining
another level of association between these. Computing the
likelihood function,p(F |Gi, Ok), is more elaborated and
is described in detail in Section III-B.

B. Estimating the likelihood function

As the likelihood function may correspond to a complex
distribution, it will be modeled it by a Gaussian mixture,

which is fitted to data points. In what follows we will
describe the process of fitting a mixture model to a density,
p(x):

p(x) =

K
∑

j=1

πj p(x|j),

wherep(x|j) ∼ N(µj , σj), is a Gaussian distribution. For
a proper probability density function, we need to ensure
that

∑K

i=1
πi = 1, πi ≥ 0.

The Expectation-Maximization (EM) algorithm can be
used to estimate the parametersµi, σi, πi that best fit the
data. The main problem with this solution is the necessity
of knowing in advance the number of kernels,K. In
[25], [26] there is the option of modifying the number
of Gaussian kernels used to best fit the data. The number
of kernels can be increased during the learning process,
based on a new measure designated as the totalkurtosis,
K:

K
△
=

∫ ∞

−∞

(

x − µj

σj

)4
p(j|x)

πj

p(x)dx − 3

The kurtosis measures how far a distribution is from
a Gaussian and it is zero for a Gaussian function. If the
kurtosis is not close to zero for a given kernel, it means
that the data are not Gaussian and this kernel is split. On
the other hand, the number of kernels can sometimes be
reduced (merged) in order to reduce the model complexity.
A “closeness” metric between two kernels, can be defined
as follows:

d(p1, p2) =

∏

xi∈X1
p2(xi)

∏

xi∈X2
p1(xi)

∏

xi∈X1
p1(xi)

∏

xi∈X2
p2(xi)

whereXi stands for the data points used for the estimation
of pi(x).

Two different kernels can be merged if the distance
between them is sufficiently small. At the end of this
process, we have an estimate of the likelihood function
directly from the data, without imposing a particular
structure for the underlying distribution. An important
point worth mentioning is that this method can cope
with clusters that with very irregular shapes and that it
automatically adapts to the shape of such clusters..

C. Mirror Neurons

The classification done by our system as several prop-
erties similar to the mirror neurons. In this section we
will see how to account to some of the observations
regarding this neurons into our Bayesian framework. We
must first consider a Visuo-Motor Map that transforms
observed visual data, to the motor representations that will
eventually drive the recognition process.

1) Visual versus motor features: An image contains a
large amount of highly redundant information. This allows
for the use of methods whereby the image information
is compacted in lower dimensional spaces, thus boosting
computational performance. Our visual features consist of
projections of the original image onto linear subspaces,
using Principal Components Analysis (PCA). As a result,
our images can be compressed to a 15 dimension coeffi-
cient vector.

Rather than representing the hand as a kinematic model
built from tracked fingers and finger tips, we code directly
the image as templates projected in the low-dimensional
subspace. This method has the advantage of being robust
and fast.

In a real (robotic or living) system, motor features
would correspond to proprioceptive information about the
hand/arm pose/motion. In our experiments [27], this is
obtained through the use of a data-glove that records23
joint angles of someone’s hand performing gestures.

2) Visuo-Motor Map: As referred previously, theVisuo-
Motor Map must transform the features defined in the
previous section, from the visual space to the motor space.

V MM : FV → FM

As the structure of the transformation is quite complex,
it was learned with a Multi-Layer Perceptron, for each
joint angle. For each network,i, the input consists of a 15-
dimensional vectorFV , which are the PCA components
of the imaged hand appearance. The output consists of
a single unit, coding the corresponding joint angle,FM

i .
There are5 neurons in the hidden layer.

We assume thatFV is captured across many different
view points. This is possible to generate during self-
observation since a huge variety of hand configurations
can be easily displayed. Otherwise, some kind of view-
point transformation is needed to pre-transform the visual
data [24].

The VMM can lead to impossible (temporal) trajecto-
ries, as errors in input frames can cause discontinuities in
the motor space. To overcome this problem, continuity is
imposed in the motor data through a first-order dynamic
filter.

Each network was trained with momentum and adaptive
back-propagation with the data pre-processed to have zero
mean and unitary variance. It converges to an error of0.01
in less than1000 epochs.

Figure 2 shows trajectories (solid-line) for a joint angle
of the little finger when performing several precision grips.

It is noticeable that, even inside each grasp class, the
variability is very large. This is due to the differences be-
tween the grasped objects, and illustrates how the observed
features depend not only on the ”grasp” type but also on
the manipulated object (see Section III-A for discussion).
The dashed-line in the figure shows that the trajectory

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2. A sequence of several trials of a precision grip experiment.
Solid line: original motor information. Dotted Line: reconstructed motor
information using the Visual-Motor Map (VMM)

reconstructed through the neural-VMM is in a very close
agreement with the ”true” values.

A final aspect worth mentioning is that the VMM can
be learned very naturally during an initial phase, when a
system (natural or artificial) performs hand/arm gestures
and observes the (visual) consequences of such gestures.
During self-observation, both proprioceptive (motor) and
visual data are present and the association can be es-
tablished. As an additional aspect, self-observation would
allow the system to search and tune the most interesting
visuo-motor features such that a more compact represen-
tation could be used.

IV. EXPERIMENTAL RESULTS

For the results presented here, we use a data set pre-
pared at the Lira Lab, University of Genova, [27], with
a specially designed experimental setup. Several subjects
were asked to perform different types of grasp on different
objects. The experiment begins with the subject sitting in
a chair, with the hand on the table. Then, the subject is
told to grasp the object that is in front of him.

The experiments include two types of grasp: power
grasp and precision grip. Power grasp is defined when all
the hand fingers and palm are in contact with the object.
Instead, in precision grip, only the fingertips touch the
object.

We considered three different objects: a small sphere,
a large sphere and a box. The small sphere is sufficiently
small so that only precision grip is allowed. The big sphere
allows only power grasps. The box is ambiguous because
it allows all possible grasps with different orientations.

Every experiment was repeated several times under
varying conditions. The subject and the camera go around
the table to cover a large variation of viewpoints. To
record the sequences we use a stereo-pair. In total, we
record the experiments from 6 different azimuths (12 if
we consider the stereo-pair). In order to record the motor
information, a data-glove [28], capable of recording23
values of the hand configuration, is used. We used the
first 15 values that correspond to all the joint angles (3

for each finger). Finger’s abduction and palm and wrist
flexion were also available but they were not used in the
recognition. Altogether the data-set contains sixty grasp
sequences with three objects, two grasps with six different
azimuths.

Figure 3 shows sample images of the data set acquired
according to process just described. Notice the multiplicity
of grasps and view points. Some external observations of
an arm are impossible to have when looking to one’s arm.
For the case of an hand this is not the case because moving
the arm allows observing the hand from all viewpoints.
Because of this some arm images that might appear
impossible have realistic hand observations.

Fig. 3. Data set illustrating some of the used grasp types: power
(left) and precision (right). Altogether the tests were conducted using
60 sequences, from which a total of about 900 images were processed.

Every video sequence is automatically processed in
order to segment the hand. First, a color-based clustering
method, in the Y-Cr-Cb space, was applied to extract skin-
colored pixels. The bounding box is determined based on
the vertical/horizontal projections of the detected skin re-
gion. Finally, the hand is resized for a constant scale before
applying the PCA. This approach yields uniformly scaled
hand image regions. Figure 4 presents some segmentation
results.

Fig. 4. Segmentation results of scale-normalized hand regions automat-
ically detected from colour clustering.

Table I shows the obtained classification rates. It allows
us to compare the benefits of using motor representations
for recognition as opposed to visual information only. The
results shown correspond to the use of the ambiguous
objects only, when the recognition is more challenging.
We varied the number of viewpoints included in both the
training and test sets, so as to assess the degree of view
invariance attained by the different methods.

In the first experiment, both the training and test sets
correspond to one single view point. Training was based
on 16 grasp sequences, while test was done in 8 (different)
sequences. The achieved classification rate was100%. The
number of visual features (number ofPCA components)
was also tuned and the value of5 provided good results.
The number of modes (gaussians in the mixture) were
typically from 5 to 7.

The second experiment shows that this classifier is not
able to generalizes to other view points / camera positions.
We used the same training-set as inExp.I, but the test-set
is formed with image sequences acquired with 4 different
camera positions. In this case, the classification rate is
worse than random (30%).

In the third experiment, we added view point variability
in the training set. When sequences from all camera
positions are included in the training-set, the classification
rate in the test-set drops to80%. While this is a more
acceptable value, it is nevertheless a significant drop from
the desired 100%. This result shows that the view point
variation introduces such challenging modifications in the
hand appearance that classification errors occur.

The final experiment corresponds to the main approach
proposed in this paper. The system learns a visuo-motor
map during an initial period of self-observation. Then, the
VMM is used to transform the (segmented) hand images
to motor information, where classification is conducted.
A very high degree of classification was achieved (97 %).
Interestingly, the number of modes need for the learning
is between 1-2 in this case as opposed to 5-7, when
recognition takes place in the visual domain. This also
shows that mapping visual data to motor representations,
helps clustering the data, as it is now view-point invariant.

Notice that view-point invariance is achieved when the
training set only contains sequences from one single view
point.

TABLE I

GRASPRECOGNITION RESULTS. NOTICE THE GAIN OBTAINED IN THE

CLASSIFICATION RATE AND VIEWPOINT INVARIANCE DUE TO THE

USE IF MOTOR FEATURES.

Exp. I Exp. II Exp. III Exp. IV
(visual) (visual) (visual) (motor)

Training
Sequences 16 24 64 24
View Points 1 1 4 1
Classif. Rate 100% 100% 97% 98%
Features 5 5 5 15
Modes 5-7 5-7 5-7 1-2

Test

Sequences 8 96 32 96
View Points 1 4 4 4
Classif. Rate 100% 30% 80% 97%

These experiments show that motor representations
describe the hand better, for gesture recognition, due
to the inherent viewpoint independence. As only visual
information is available during recognition, the process
greatly depends on theVMM. The results also validate
our approach to estimate the VMM. For the case of only
one camera position the quality obtained was very good,
with 15 visual features.

The use of motor features for the recognition, has
the additional advantage of making imitation a straight
forward process, as all the reasoning is performed in
motor terms. Figure 5 shows a hand imitating an observed
gesture.

Fig. 5. Reconstruction results of our model hand, obtained with the
VMM

V. CONCLUSIONS

Neurophysiology can provide many useful ideas for
engineers to build more efficient artificial systems. On the
other hand, designing artificial systems, grounded on such
biological principles, is a valuable means of validating
hypotheses or theories in biology.

In this work we propose a framework for gesture
recognition based on a model forcanonical and mirror
neurons, that seem to play a fundamental role for grasp
recognition or imitation in primates.

Canonical neurons provide prior information in terms of
object affordances which narrows the attention span of the
system, since very unlikely gestures or hand appearances
can be discarded immediately . The fact that, despite being
located in a motor area of the brain, mirror neurons are
active during both the execution and recognition of an
action, suggest that recognition takes place in the motor
space rather than on the visual space.

We propose a Bayesian formulation where all these
observations are taken into account. We describe how to
estimate the prior density and likelihood functions directly
from the data. A Visuo-Motor Map is used to transform
image data to the motor space, and is learnt during an
initial period of self-observation. The use of the VMM
is good for the classification and, as an extra advantage,
gives the possibility of doing gesture imitation directly.

Although hand posture recognition is in general quite
difficult, grasp classification benefits from using extra
information. Temporal integration and object-related cues
are very useful for recognition. Occlusions and ambiguous
positions of the hand can also be solved with temporal
information. The observation of a given object “conveys”
information about the possible and the most probable
grasp types for that object class. Expectations of the hand
appearance can also be created.

The results show that it is possible to achieve100%
recognition rates based on this approach. Notably, we
avoid using complex schemes for detecting and tracking
fine details of the hand on a video sequence. Rather, we
rely on the global hand appearance for this purpose.

In our opinion, the results obtained are an encourag-
ing step in the endeavor of understanding the biological
grounding of imitation and, at the same time, develop the
principles to build more performing and robust machines,
able to cope with complex tasks and to interact with
humans.

VI. A CKNOWLEDGMENTS

The experimental data set was prepared by Matteo Schenatti,
Lorenzo Natale, Giorgio Metta and Giulio Sandini [27], Lira-
Lab, University of Genova. This work was (partially) sup-
ported by the portuguese Fundação para a Ciência e Tecnolo-
gia (FCT), Programa Operacional Sociedade de Informação
(POSI) in the frame of QCA III and the EU-Project
IST-2000-28159, Mirror, “Mirror Neurons for Recognition”,
www.lira.dist.unige.it/projects/mirror/.

VII. REFERENCES

[1] L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti. Vi-
suomotor neurons: ambiguity of the discharge or ’motor’
perception?International Journal of Psychophysiology, 35,
2000.

[2] V.S. Ramachandran. Mirror neurons and imitation learning
as the driving force behind the great leap forward in human
evolution. Edge, 69, June 2000.

[3] A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and
G. Rizzolatti. Object representation in the ventral premotor
cortex (area f5) of the monkey.Journal of Neurophysiology,
78(4):2226–2230, October 1997.

[4] J. J. Gibson.The Ecological Approach to Visual Perception.
Houghton Mifflin, Boston, 1979.

[5] L. Fogassi, V. Gallese, G. Buccino, L. Craighero, L. Fadiga,
and G. Rizzolatti. Cortical mechanism for the visual
guidance of hand grasping movements in the monkey:
A reversible inactivation study. Brain, 124(3):571–586,
March 2001.

[6] James M. Rehg and Takeo Kanade. Visual tracking of high
DOF articulated structures: an application to human hand
tracking. InECCV (2), pages 35–46, 1994.

[7] Ying Wu and Thomas S. Huang. Capturing articulated
human hand motion: A divide-and-conquer approach. In
ICCV (1), pages 606–611, 1999.

[8] Michael J. Black and Allan D. Jepson. Eigentracking:
Robust matching and tracking of articulated objects using
a view-based representation. InECCV (1), pages 329–342,
1996.

[9] D. M. Gavrila. The visual analysis of human movement:
A survey. CVIU, 73(1):82–98, 1999.

[10] James M. Rehg and Takeo Kanade. Model-based tracking
of self-occluding articulated objects. InICCV, pages 612–
617, 1995.

[11] Ying Wu and Thomas S. Huang. View-independent recog-
nition of hand postures. InCVPR, pages 88–94, June 2000.

[12] S. Schaal. Is imitation learning the route to humanoid
robots. Trends in Cognitive Sciences, 3(6), 1999.

[13] Andrew H. Fagg.A Computational Model of the Cortical
Mechanisms Involved in Primate Grasping. PhD thesis,
University of Southern California, 1996.

[14] Erhan Oztop.Modeling the Mirror: Grasp Learning and
Action Recognition. PhD thesis, University of Southern
California, August 2002.

[15] M. A. Arbib, A. Billard, M. Iacoboni, and E. Oztop.
Synthetic brain imaging: grasping, mirror neurons and
imitation. Neural Networks, 13:975–997, 2000.

[16] Aude Billard and Maja J. Matarić. A biologically inspired
robotic model for learning by imitation. InInternational
Conference on Autonomous Agents, Barcelona, 2000.

[17] Aude Billard. Learning motor skills by imitation: A bio-
logically inspired robotic model.Cybernetics and Systems,
32:155–193, 2001.

[18] Aude Billard and Stephan Schaal. Robust learning of arm
trajectories through human demonstration. InInternational
Conference on Intelligent Robots and Systems, pages 734–
739, Maui, Hawaii, USA, 2001.

[19] Maja J. Matarić. Sensory-motor primitives as a basis
for imitation: Linking perception to action and biology
to robotics. In C. Nehaniv and K. Dautenhahn, editors,
Imitation in Animals and Artifacts. MIT Press, 2000.

[20] P. Andry, P. Gaussier, S. Moga, J.P. Banquet, and J. Nadel.
Learning and communication in imitation: An autonomous
robot perspective.IEEE Transaction on Systems, Man and
Cybernetics, Part A, 31(5):431–444, September 2001.

[21] P. Andry, P. Gaussier, and J. Nadel. From sensori-motor
development to low-level imitation. In2nd International
Workshop on Epigenetic Robotics, pages 7–15, 2002.

[22] Yiannis Demiris and Gillian Hayes. Imitation as a dual-
route process featuring predictive and learning components:
a biologically-plausible computational model. In K. Daut-
enhahn and C. Nehaniv, editors,Imitation in Animals and
Artifacts. MIT Press, 2002.

[23] J.S. Bruner. Nature and use of immaturity.American
Psychologist, 27:687–708, 1972.

[24] Manuel Cabido-Lopes and José Santos-Victor. Visual
transformations in gesture imitation: What you see is what
you do. In to appear in International Conference on
Robotics and Automation, Taiwan, 2003.

[25] Paul M. Baggenstoss. Statistical modeling
using gaussian mixtures and hmms with matlab.
http://www.npt.nuwc.navy.mil/Csf/htmldoc/pdf/.

[26] N. Vlassis and A. Likas. A kurtosis-based dynamic ap-
proach to gaussian mixture modeling.IEEE Trans. Systems,
Man, and Cybernetics, Part A, 29:393–399, 1999.

[27] Matteo Schenatti, Lorenzo Natale, Giorgio Metta, and
Giulio Sandini. Object grasping data-set. Lira Lab,
University of Genova, Italy, 2003.

[28] CyberGlove. http://www.immersion.com.

Improving robot programming flexibility through
 physical human - robot interaction

M. Frigola1, J. Poyatos1, A. Casals1 and J. Amat2

1Dep. Automatic Control
Universitat Politècnica de Catalunya

{manel.frigola, joan.poyatos, alicia.casals}@upc.es

2Robotics Institute. (IRI) UPC / CSIC,
Barcelona, SPAIN
josep.amat@upc.es

Abstract. Robotics applications in the services sector require more and more human-robot interaction. This fact
has promoted the development of more flexible programming techniques, even extending such improvements to
industrial applications. Based on the measure of the force applied over the robot end effector and/or the contact
point over its arm, the goal of this work is to provide a means for increasing flexibility in the programming phase,
as well as enabling the user to correct, on-line, in the execution phase, a robot programmed trajectory by means of
manual guidance. This paper focuses on the study of the deviation of the robot trajectories produced by an external
human interaction. The work considers the robot performing complex trajectories, operating under several
behavior hypotheses, such as movements with very low inertia or with elastic or plastic reflection.

1. Introduction

The continuous evolution of robotic applications
towards the service sector, or in tasks requiring
more flexibility, creates the need of providing
robots with higher programming performances. In
these kind of applications it is common that the
presence of a human is required to interact with
the robot controlling, guiding or simply
supervising the robot operation, due to the still too
limited performances of current perception
systems and artificial intelligence techniques.

Analyzing the wide scope of programming
methods, going from the manual robot guidance
programming techniques, or programming by
demonstration, up to the high level programming
languages, one can find multiple possibilities
combining both techniques.

Programming by demonstration techniques
enable users that are not computer programming
experts, to program a robot based on the human
expertise and knowledge of the task itself. Robot
programming using computer languages provides
the robotic system with computer performances
such as high computing capabilities, reference
frame changes, sensor based operation etc. Thus
changes of some parameters in the program code,
from any input device or through an external
computer, modify, at convenience, the robotic
task.

The availability of performances of both kinds
of programming techniques operating
simultaneously adds the computing power of
computers to the intelligence and adaptability of a
human to the working environment that potentially
contains unknown parts or non modeled objects. If
these complementary performances can be applied
operating interactively in real time, the robotic

system can react to changes in the environment
which are not perceptible by current perception
systems, or take decisions depending on the
evolution of the robotic task, at levels far away
from those achievable by computers, based on
deep human knowledge and expertise.

Such interactive programming techniques start
to become a real need for robot programming
when they operate in human environments, as for
instance at home. For this robot programming
technique, the common keyboard and mouse
become insufficient as described in [1], where a
multimodal recognition system detects hand
postures and spontaneous speech to design a
friendly user-robot interaction at any time both in
the programming and in the execution phase.

Service robotics and especially domestic
robots, where the user is not an expert robot
programmer, impose new needs, as programming
by demonstration. In [2] some basic concepts for
mapping typical human actions at home are
explained, while in [3] the effort is devoted to
understand human intention, by analyzing fine
motion manipulation through the use of integrated
tactile data.

The interaction using vision has been used in
[4], with the AVAT system (Adaptive Vision-
based Attentive Tracker). The human –machine
interaction is achieved isolating intended actions
from ordinary walking movements. The use of
force sensors in [5] provides the information for
following a programmed trajectory carrying an
object in cooperation with a human.

The interactive programming procedure
developed is based on the detection and measure
of the force applied by a human interacting with
the robot by pushing, pulling or steering the robot
end effector, or its arm, in the programming phase

or at some time during the execution of a task. In
this way, the way of programming by
demonstration all the task or part of it, enables the
user to introduce some adjustments by
demonstration as well. This is quite useful taking
into account that it can be difficult to achieve the
desired results with only one go. Thus,
programming parts of the task, or changing them,
can be done without interrupting the execution of
the task and the improvement of the programmed
task can be tested by reiterating the robot actuation
as many times as required to get the desired
results.

A force sensor on the robot wrist measures the
force applied to the robot end effector [4], thus
enabling its manual guidance. To deal with risks
situations a vision system can detect visually the
human intention, from a quick reaction of the
operator to some possible incidences, such as
potential collisions. This is achieved through the
perception of the operator hitting the robot arm.

A previous work demonstrating the potential
use of the visual detection on human postures to
detect their intention can be found in [6], and its
application to robot programming in [7].

2. System configuration

The robotic system with manual programming or
movement correction capabilities consists of the
robot itself, endowed with a six degrees of
freedom sensor located on the wrist, and several
cameras strategically located around the working
area to visualize the scene and detect possible
actions of a human applying a force over the robot
arm. Fig. 1 shows the configuration of the robotic
system.

Fig. 1 System configuration

The force sensor mounted on the wrist enables the
user not only to program the robot by
demonstration during the programming phase, but
also to deviate the robot or change its programmed
trajectory, on line, during the execution phase.
This means that the execution of a previously
programmed task can be modified during its
execution by a non expert robot user, according to
the task needs. This performance provides
flexibility when operating with different shaped

objects, if it is convenient to change the operation
strategy, when it is necessary to adapt the task to
unforeseen situations or to avoid collisions.
 The force sensor detects the efforts applied
over the robot end-effector or the robot handling
device. The detection of efforts applied over the
robot arm is carried out by the remote vision
system, since the robot is not covered by artificial
skin that would sense such contacts or pressure all
over its body. The vision system developed
appreciates human intention by means of their
posture and the position of their hands over the
robot surface. This interaction is aimed to move
the robot apart, for instance when it is going to
collide, more than moving precisely the arm to a
desired position or executing a given trajectory.
 The combination of both kind of perception
systems enables a human to interact effectively
with a robot, increasing, for some applications, the
performances of the commonly used robot
programming by demonstration techniques.
 During the execution phase the human
interaction can affect qualitatively, from the
application of a certain force over the arm to move
it apart, a hit on the arm, or quantitatively,
measuring the forces and pairs that can deviate the
robot trajectory at human’s will, according to the
task and task conditions.

3. Trajectory typologies in programming

by demonstration

Analyzing the typologies of the trajectories carried
out by a robot, three kinds of tasks have been
considered:

• Trajectories that have a fixed origin and
destination, and it is possible to interact with
them, over the passing points, modifying their
flying trajectories (manipulation, palletizing,
assembly)

• Trajectories where multiple points or the
whole path is relevant, as in spot welding or
sealing tasks respectively.

• Trajectories for tasks based on following
surfaces, where the task to be carried out is
more important than tracing a concrete path
(painting, polishing, cleaning…)

In the first two cases the task is composed by a
succession of trajectories in space, which are
chained to achieve the predefined goals. On the
contrary, in the third case, there is not a
composition, but a superposition of two or more
different trajectories.

On the other hand, in the three cases, the
resulting trajectory of the programmed task
contains two different components. A component
considered as the most relevant, from the point of
view of the task, and a secondary one.

In tasks of the two first types, the trajectory is
much simpler, while in the third case the whole
programming process demands for more steps,
which are described in more detail the next
subsections. Fig. 2 shows two examples of such
trajectories, in a) a pick and place type task, and in
b) a polishing type one.

Fig. 2 Trajectory examples. a) a point to point

trajectory (first type), and b) a complete
complex trajectory (third type).

3. 1 Tasks with simple trajectories

Many tasks can be performed as a sum of subtasks
of the type: approximation, grasping, loading,
transfer, actuation, assembling, insertion,
verification or return. Such composed tasks can be
included in the two first above mentioned sets.

Since these trajectories are composed by a
sequence of subtrajectories, each one of them can
be changed, improved, or suppressed very easily,
since they can be clearly separated. For instance,
in a pick and place task or in spot welding the
working points can be considered as the relevant
ones, while the flying trajectory between them can
be considered as secondary. In sealing or arc
welding tasks the passing points are the relevant
ones.

In tasks of these two first typologies the
differential factor between the primary and the
secondary trajectory components can be the speed.
In theses cases, the lower velocities are associated
to the precision requirements.

3. 2 Tasks with complex trajectories

In the third case, the primary and secondary
components of the task can be associated, the first,
to a component of higher frequency that
characterizes the type of task, and a second one, of
lower frequency that determines the robot run over
the part or working area. For instance, a welding

cordon is defined by a run over the borders of the
two parts to be joined (the second component),
that can be modulated by a tooth saw signal (the
first), thus making the welding more robust.
Another example would be a polishing task. In
this application the basic task movements can be
circles or a zigzag that sweeps the surface to be
polished. Thus, we will name the task specific
movement, the modulator signal (the one with the
highest frequency), while the robot run all over the
surface will be the carrier (the one with lowest
frequency). It is necessary to decompose the
trajectory in these two components, for each
coordinates axis, since the future interaction of a
human would have to influence differently over
each of them. According to the applied force the
robot will deviate or change the programmed run,
but the specific task movements would only be
modified during the transitory, the time of the
interaction of the disturbing force.

3. 2.1 Model of the task movements

The characterization of a model that differentiates
the kind of trajectory requires first the
characterization of the task.
 In such complex tasks, for obtaining the model
of the basic movements of the task (the modulator
signal), in the programming phase, the user has to
repeat several times this movement over a fixed
area. Afterwards he can teach the complete task by
sweeping the working surface, following the
classical programming by demonstration
procedure.
 Once the task has been programmed, a
modulating signal is available. That is, a trajectory
P composed by n samples pi is generated, where
for each sample the robot position and the time in
which it is sampled is memorized. The data stored
for each sample is:),,,(iiiii tzyxp = .

The repetition of the task movements (the
modulating signal) by the user is imprecise,
describing non coincident trajectories. One such P
trajectory is shown in fig. 3.

Fig. 3 Non coincident trajectories of the

modulating signal

From P, the searched modulating trajectory Q, has
to be obtained from the average of the P sections.
The proposed method is divided into two steps. In
the first step, the time independent path Qf is

found, and in the second, we generate Q assigning
a speed value to each point of Qf.
 From the P trajectory obtained in the learning
phase, repeating several times the task, a trajectory
P’ is obtained. P’ follows the same path than P,
but all its points p’ are equidistant. Fig. 4 shows
both the P and P’ paths, visualizing respectively a
constant time sampling and a constant distance.

Fig. 4 .Trajectory P’ obtained with
 equidistant space intervals

Two cycles of this trajectory are considered equal
if they follow the same path, independently of
speed with which the cycle and sampling period
have been generated. P’ is used to learn the path
(Qf) to be tracked by the robot.

3. 2. 2 Extraction of the period of the modulating

signal

In order to obtain the modulating signal Qf, first,
the periodic trajectory in P’ has to be found. The
process is as follows. First P’ is divided into its
periodic sections and they are averaged. Each
component of P’ can have a different number of
samples per cycle, but , as they represent a unique
trajectory in the 3D space, they behave
synchronously, so the periods of all components
must be multiple of the smaller one and the largest
period is taken as the period of the trajectory

This periodicity can be obtained from
autocorrelation [6]. The peaks in the
autocorrelation function can be used to determine
whether the signal is a periodic sequence, and its
period. If the signal is not periodic, peaks occur at
aperiodic intervals and their amplitudes decrease
rapidly. In fig. 5, the position evolution of a
periodic component (a), and the auto-correlation
obtained from it (b) are shown.

For each coordinate, the mean value of each
component is removed, then the auto-correlation
function is applied, and the highest peak (at lag 0)
is found. Then, we must look for the next peaks,
taking the highest as the one that defines the
period of this component. Then the highest period
of all the components is taken as the trajectory’s
period and each coordinate is divided into sections
of period T. Each section must be adjusted to get a
closed trajectory (a loop). All the trajectory loops
are then averaged to get the modulation signal
from the movement acquired in the learning phase.
The extracted Qf trajectory is shown in fig. 6.

Fig. 5 Evolution a), and auto-correlation b), of a
component of P'

Fig. 6 Average trajectory from several loops

3. 3 Extraction of the carrier signal

The cross-correlation between the modulating
signal trajectory and the compound one produces a
pick in every position of the compound trajectory
where the modulating trajectory starts a cycle. The
subtraction of the modulated trajectory to the
compound one, gives as result the carrier signal.

4. Human-Robot-Environment interaction

Classical robot programming techniques require
propioceptive sensors and an accurate description
of an invariant environment. In more advanced
robotic systems, specially in those having
interaction with other “living” elements in the
environment, it is indispensable to provide the
system with some environment perception,
necessary to develop shared control strategies,
able to assure safety, adaptability and cooperation.

In this application, aside from the force sensor
located on the wrist, a vision system has been
adopted as a sensor able to detect the human
presence, not as an obstacle to be avoided, but as
an active agent in robot control. The first provides
precise measures of the forces exerted over the

a)

b)

robot, while vision gives a qualitative appreciation
of the human intended action.

4. 1 Human robot interaction through force
sensors

The availability of force and torque sensors in the
robot wrist allows the use of new control strategies
that can improve the human-robot cooperation,
through a better interaction system.
 Once a given trajectory has been programmed,
it is still possible to interact with the robot to
change its predefined path.

In order to fulfil the required task reacting
smooth and reliably to human intentional forces,
the robot movements are controlled by considering
several force components, all focused on the robot
tool. Some of these forces are internally generated
and provide the robot with a particular behaviour,
the others are externals forces applied on the tool,
and they are measured by a six degrees of freedom
force sensor located on the wrist. Fig. 7 shows a
schema of the influence of these forces over the
robot behaviour.

Fig. 7 Teaching by demonstration schema

4.1.1 Force components

The first of these forces to be considered is an
internal one, acting as a damping factor that
hampers fast movements of the robot tool. The
damping factor is simulated as if the robot tool
were virtually ‘immersed’ in a fluid medium of a
given viscosity with no gravity influence. This
dragging resistance force FDrag opposite to the
movement direction is parameterised as follows:
 ()DragF X t= −D & (1)

where ()X t& is the Cartesian vector velocity of the
tool tip and D is a diagonal damping matrix, which
components D11, D22 and D33 are damping factors
associated to the translations of the tool and D44,

D55 and D66 are the damping factors associated to
its rotations.

The second force is the recovering force FRec
that acts as a spring with a variable stiffness factor
whose mission is to move the tool to the designed
position P(t) specified by the predefined trajectory,
after the perturbation produced by a human
external force. This force can be expressed as:

[]Recov 2 ((() ())) 0.5F Sigmoid P t X t= ⋅ ⋅ ⋅ − −K N (2)
where K is a diagonal matrix that indicates the
maximum applicable force and torque. The
Sigmoid function 1/(1+e-x), applied to the six
force components, is used as a means to limit the
maximum recovering force, and N is a diagonal
matrix factor that adjusts the distance and angle
values in the linear range of the sigmoid function
(around – 2.0 and +2.0). Here, only a proportional
control law is used since it is assumed that the
hardware control loop compensates gear frictions
and death zones, thus there is no factor.

The third force is the intentional force FIntent,
that is, the force that the user can apply to the tool
without compromising the task. The user is only
allowed to apply the forces with those components
that are not artificially constrained by the task. For
instance, in a polishing task the forces measured in
the tangential plane of the working surface will be
understood as user interaction forces. Thus the user
can interact with the tool moving it along the
surface, but not in its normal direction. The method
used here to obtain the intentional force assumes
that the force control loop of the specific task will
operate maintaining the artificial constrains,
characteristic of the task. Under this assumption,
the forces not constrained by the task and not
predicted (i.e. frictional forces) are estimated as
intentional forces as:
 F Intent =T_C(X)·(FSensor-F_P(X, X’,X’’,T) (3)
being T_C and F_P the task constrains and force
prediction respectively.

The force FSensor value is the averaged wrist-
sensor force measurements, once the offsets of the
force sensor and the weight of the tool are
eliminated. All forces are referred to the robot
reference frame. With such sensor it is possible to
extract the weight of the tool, and, once the offsets
and the forces and pairs produced by accelerations
of the robot are eliminated, the sensor system
provides the required data for reacting to external
applied forces with almost ideal behaviors [7].

The last force to be considered is FAvoid , which
aim is to avoid singular configurations. This
internal force pushes or steers the robot a part
from singular configurations, from auto-colliding
positions or when reaching the articulation limits.

When the robot is close to a joint limit or a
singularity, a repulsive force FAvoid is generated in
order to move away the robot from this
configuration. Thus, FAvoid is the composition of
two forces: a force FLimits that pushes the robot

away from any joint limit and FSing that does the
same with configuration singularities.

FLimits is computed in the joint space because
this is the space where the joint limits are defined.
The direction and magnitude of this force, θs, is
given by the intersection of a sphere centred on
the current configuration (in the joint space) with
all the joints limit surfaces. To do so, the sphere’s
surface is discretized in a certain number of
points. Its representation is shown in fig. 8, for a
robot of only three degrees of freedom, for clarity.

Fig. 8. Representation of the constrained space
 for a three degrees of freedom robot

A point that is out of the joint limits is called an
invalid point θi. For each point θi a force opposite
to the vector that goes from the centre of the
sphere θc (current configuration joints) to the
point is applied. θS is the sum of all these forces:

∑=
−=

M

i iCS 0
)(θθθ

where M is the number of invalid points θi. Fig. 9
provides, for a given robot trajectory, the
proximity to any joint limit. The degree of
blackness for each point of the curve indicates the
proximity to a joint limit. Once θS has been
computed in joint coordinates, it must be
transformed into a repulsion force in Cartesian
coordinates using the Jacobian.

SCLits JKF θθ *)(lim ⋅=
where KL is a diagonal matrix used to adjust the
amount of repulsion from a joint limit.

Fig. 9 Visualization of the proximity to a joint limit

for a given trajectory

To avoid singular configurations, another repulsion
force FSing is computed when the robot is too close
to a singularity. In order to have a measure of how

near the robot is to a singular configuration the
determinant of the Jacobian matrix is used as
follows:

())(det)(qJqw =
The repulsion force FSing is activated only when
w(q) is smaller than a given threshold. When this
condition happens the system finds what direction,
in cartesian coordinates, produces a larger joint
displacement. This is done by computing the
increment in the joint variables ∆θ caused by an
increment in the end-effector position and
orientation ∆x as follows:

xJ C ∆=∆ − *)(1 θθ
Eq. (7) is evaluated in several (∆x) directions in
order to find the one that produces a larger joint
displacement (∆θMax). If ∆xMax is the direction that
moves the manipulator closer to the singular
configuration, the opposite direction is used to
obtain FSing:

()MaxSSing xKF ∆−= *
where KS is a constant diagonal matrix that
transforms displacements into forces.

4.1.2 Movement computing

The computed movement is the programmed one
modified by the possible user’s interaction, in such
a way that it presents a variable impedance to the
user.
 This impedance represents the force that the
operator perceives as a reaction to his or her
action. If this human action is not conditioned by
restrictions, the perceived force will be null
(infinite impedance), or the one that corresponds to
the inertia assigned to the robot.
 If the modification of the trajectory due to the
human action leads the robot close to a singular
point or close to a joint run end, a variation of the
trajectory will be generated, that will be perceived
by the operator as an opposition force that
increases with the proximity to such restriction.
 To facilitate experimentation, this computing
movement module takes the highest of the forces
corresponding to the different restrictions, all of
them modelled according to the function indicated
in fig. 10, in which the two inflection points are
programmed separately in the four modules
corresponding to dragging, singular points, inertias
and task constrains. In this way it is possible to
achieve limitations, more or less progressive (soft
or hard) as a function of the minimum distances di
to each joint.

Fig. 10 Function to model the forces

d

F

F limits

θ2
θ1

θ3

(4)

(5)

(7)

(8)

(6)

4. 2 Contact detection from visual analysis

In order to detect the direct action of a person over
the robot, the vision system used identifies the
silhouette of a person and obtaining the relative
position of the robot using a simplified model [6].

The extraction of human figures from the
working scenario is based on the subtraction of
successive gradient images. When the dynamics of
the movement of the person is high enough, this
procedure gives the best results since the
subtraction vector is highly independent of
lighting conditions and provides a good movement
detection sensitivity [8]. The time interval for the
computation of the difference of successive
images is carried out at a variable rate, chosen
automatically, in order to follow adequately the
different dynamics of the robot.

With the aim of detecting and recognizing the
upper limb configurations, robustly enough, a
simplified cylindrical model of the body is used.
The requirement that the detected object fits with
the model enables us to automatically reject all
the other elements in the scene.
 When the vision system detects that the end
of the arm contacts the robot, fig. 11, the effect
that produces on the robot trajectory is equivalent
to a new restriction corresponding to a vertical
plane, that is superposed to the other task
constraints.
 With this criterion the problem of not being
able to perceive the action of the person over the
robot is avoided, achieving a logical interaction
easily assimilated by the operator. In this way, a
human operator can contribute to the robot
movement as an additional security measure.

 Fig. 11 Contact detection. a) One of the two

stereo images (original image) b) the
processed image (movement detection)
c) modeling of a human body and
interaction detection

4. 3 Reactive behaviors

The interaction with a robot movement or
trajectory can follow two different behaviors,
producing either permanent or transitory
deviations, at the user’s criterion, and in any case
it is possible to emulate different elasticity
responses. The characterization of such behaviors
can be parameterized by two parameters, the
equivalent mass of the robot and its elasticity [7].

Therefore, fig 12 shows three different
behaviors during the correction of the trajectory in
the execution phase. In fig. 12 a) the trajectory
changes, with a permanent effect, after human
interaction; while in fig 12 b) three different
returns to the trajectory B1, B2 and B3,
correspond to three different masses considered,
and c) shows the smoothing of the trajectory
where punctual accelerations produce
discontinuities.

Fig. 12 Trajectory interaction between X1 and X2:

a) with permanent effect, b) return to
 the original trajectory with three different

responses, and c) a smoothed trajectory
with return to the original run

6. Conclusions

In this work several strategies for improving robot
programming and reprogramming through the
direct interaction of an operator with the robot,

a)

b)

c)

b)

during the programming and the execution phase,
have been experimented.

So as to make the interaction with the robot in
a natural and intuitive way, the robot is endowed
with a force sensor, enabling the user to interact
by steering the end-effector, and thus generating
the trajectory in the programming phase, as well
as to test strategies for changing the programmed
trajectories, at any time, by interacting directly
with the robot. Thus the program can be adapted
to changes, more easily, in real working
conditions. In case it is necessary, the user can
also modify the robot trajectory touching or hitting
the robot arm, from the detection of this action by
means of vision. This interaction is less precise; it
is conceived as a reflective behavior for task
safety and reliability.

The appreciation of the interaction from the
action of the force applied over the end-effector,
allows to robot to control highly accurately the
deviation of the trajectories, since it has available
the measure of tridimensional forces and pairs.

The appreciation of the interaction from
vision uniquely permits to perceive the contact,
but not the magnitude, neither the orientation of
the action carried out by the user. In this case, the
best behaviors have been obtained using the
interpretation of the visually detected contact, as a
corrective action that reacts in the opposite
direction of the robot movement, perpendicular to
the 3D perceived from the operator’s arm.

The possibilities of applying such techniques
of interaction with the robot trajectories can have
their application in service robotics, in which the
task to be developed occurs close to people that
can interact with the robot, either through the end
effector, or just steering the mobile robot through
its handles.

Acknowledgements.

The work is being done with the support of
CYCIT, Spanish Research Agency, under the
projects: DPI2001-0822 and DPI2002-04286-C2-
02

References

[1] Iba, S.; Paredis, C.J.J.; Khosla, P.K.; ”Interactive

multi-modal robot programming” IEEE International
Conference on Robotics and Automation, ICRA'02.,
Volume: 1 , pp. 161 –168, 2002

[2] Ehrenmann, M.; Miner, R.; Rogalla, O.; Dillmann, R.;
“Programming service tasks in household
environments by human demonstration”, 11th IEEE
International Workshop on Robot and Human
Interactive Communication, pp. 460 –467, 2002

[3] Zöllner, R.; Rogalla, O.; Dillmann, R.; “Understanding
Users Intention: Understanding Fine Manipulation
Tasks by Demonstration”, IEEE/RSJ Int. Conference
on Intelligent Robots and System, IROS’02. pp. 1114-
1119, 2002

[4] Ho, M.A.T.; Yamada, Y.; Umetani, Y.”An HMM-
based temporal difference learning with model-
updating capability for visual tracking of human
communicational behaviors” Fifth IEEE International
Conference on Automatic Face and Gesture
Recognition, pp: 163-168, 2002.

[5] M.Sato and K.Kosuge, Handling of objects by mobile
manipulator in cooperation with human using object
trajectory following method. Proc. Int. Conf. on
Intelligent Robots and Systems, pp. 541-546, 2000

[6] Amat, J.; Casals, A.; Frigola, M.; “Human Body
Acquisition and Modeling for Persons -Humanoid
Robots Cooperation” The Third IARP Workshop on
Humanoid and Human Friendly Robotics, pp: 76-82,
2002

[7] M. Frigola, J. Poyatos, A. Casals and J. Amat, “Force
and Contact based Control for Human Robot
Interaction”, Inter. Conference on Advanced Robotics,
ICAR’03, pp: , July 2003

[8] Mita, S.K.; “Digital Signal Processing. A Computed-
Based Approach” McGraw-Hill, 2002.

[9] Xiao, D.; Ghosh, K. ; Xi, N.; Tarn, T. J.; “Sensor
Based Hybrid Position-Force Control of a Robot
Manipulator in an Uncalibrated Environment“, IEEE
Trans. on Control Systems Technology, Vol 8, N. 4, pp:
635-645, 2000

[10] Amat, J.; Casals, A.; Frigola, M.; “Virtual
exoskeleton for telemanipulation”, Lecture Notes in
Control and Information Sciences (271) Experimental
Robotics VII, pp. 21-30, 2000

Learning issues in a
multi-modal robot-instruction scenario

J. J. Steil, F. Röthling, R. Haschke, and H. Ritter

Bielefeld University, Neuroinformatics Group, Faculty of Technology
P.O.-Box 10 01 31, D-33501 Bielefeld, Germany

{jsteil,helge}@techfak.uni-bielefeld.de

Abstract— One of the challenges for the realization of fu-
ture intelligent robots is to design architectures which make
user instruction of work tasks by interactive demonstration
effective and convenient. A key prerequisite for enhance-
ment of robot learning beyond the level of low-level skill ac-
quisition is situated multi-modal communication. Currently,
most existing robot platforms still have to advance to make
the development of an integrated learning architecture feasi-
ble. We report on the status of the Bielefeld GRAVIS-robot
architecture that combines statistical methods, neural net-
works, and finite state machines into an integrated system
for instructing grasping tasks by human-machine interac-
tion. It combines visual attention and gestural instruction
with an intelligent interface for speech recognition and lin-
guistic interpretation and a modality fusion module to allow
multi-modal task-oriented communication. It further inte-
grates imitation of human hand postures to allow flexible
grasping of every-day objects. With respect to this plat-
form, we sketch the concept of a learning architecture based
on several interlocking levels with the goal to demonstrate
speech-supported imitation learning of grasping.

I. Introduction

How can we endow robots with enough cognitive capa-
bilities to enable them to serve as multi-functional personal
assistants that can easily and intuitively be instructed by
the human user? A key role in the realization of this goal
plays the ability of situated learning : Only, when we can
instruct robots to execute desired work tasks by means of a
combination of spoken dialog, gestures, and visual demon-
stration, robots will loose their predominant role as special-
ists for repeatable tasks and become effective to support
humans in every-day live.

A basic element of situated learning is the capability to
observe and successfully imitate actions and – as a pre-
requisite for that – to establish a common focus of atten-
tion with the human instructor. For multi-modal commu-
nication, additional perceptive capabilities in the fields of
speech understanding, active vision, and in the interpreta-
tion of non-verbal cues like gestures or body posture are
essential and have to be coordinated and integrated.

We report on progress in building an integrated archi-
tecture within the framework of the Special Collaborative
Research Unit SFB 360 “Situated Artificial Communica-
tors”. In the course of this long term program, many mod-
ules implementing partial skills were at first realized and
evaluated as stand alone applications [4], [7], [15], [17], [27],
but their integration is an additional research task and a
key issue towards the realization of complex architectures.

As the development of integrated architectures for real
world tasks poses an enormous challenge, there can hardly
be found any efforts to scale learning from the lower level of
training single skills up to a multi-stage learning across the
overall architecture. A primary reason is that most learning
approaches rely on highly pre-structured information and
search spaces. Prominent examples are supervised learn-
ing of target outputs, unsupervised learning of clusters, or
learning of control tasks with a (usually small) number of
predefined variables (pole balancing, trajectory learning).
Here there exist well understood approaches like gradient
based learning, support vector machines, vector quantiza-
tion, or Q-learning, which yield for certain tasks remark-
able results, for instance in speech-image integration [21],
trajectory learning [10], [16], [36], in object recognition and
determination of grasp postures [23], sensor fusion for grasp
planning [1], or autonomous grasp optimization [25].

In real world learning a well defined pre-structuring of
the data with respect to the given task is an essential part of
the learning itself: the system has to find lower-dimensional
relevant manifolds in very high dimensional data and to
detect important regularities in the course of learning to
use these to improve its capabilities. Furthermore, for a
complex architecture with many motor degrees of freedom
or for cognitive architectures – as the one discussed here
– finding a solution by exploration of new actions is not
suitable because the search spaces involved are extremely
high-dimensional and by far too complex.

Fig. 1. Interaction with the GRAVIS-system by speech and gesture
and some functional components.

2

−

3D
−C

o
o

rd
in

at
es

3D
−R

eg
io

n

re
fe

re
n

ce
d

 o
b

je
ct

s
re

fe
re

n
ce

d
 o

b
je

ct
s

state

Dialog
Interaction

Image
Speech

Robot Arm/Hand

Recognition

Direction
Pointing

Grasping

Motion

Visual
Feedback

Feedback
Tactile

Visual Attention

Recognition

Hand

Attention

Speech Processing

Understanding

Command

Command

Integration

Visual
Context

Fig. 2. Schematic picture of the current GRAVIS architecture.

Current practice aims at developing well-scalable, homo-
geneous and transparent architectures to create complex
systems. Ironically, successful examples of this strategy
tend to cluster in the small- or mid-size range, while truly
large and complex systems seem to defy our wishes for
”formatting away” their complexity by good bookkeeping
alone. It seems not unlikely that it is one of the hallmarks
of complex systems that they confront us with limited ho-
mogeneity, evolutionarily grown layers of overlapping func-
tionality and bugs that may even amalgamate with fea-
tures. Looking at biological systems with their enormous
complexity, we see that these by no means resemble or-
thogonal clockworks; instead, they consist of a tangle of
interwoven loops stabilized by numerous mechanisms of
error-tolerance and self-repair. This suggests that a ma-
jor challenge to be met for moving to higher complexity is
to successfully adopt similar approaches to come to grips
with systems that we cannot analyze in their full detail.

To make learning in such situations feasible, the ap-
proach of imitation learning appears very appealing [2], [3],
[6], [8], [18], [19], [26], The basic idea is to find a “template”
for a successful trajectory by observation of a (human) in-
structor. This requires (i) to endow the robot system with
sufficient perceptive capabilities to visually acquire the ac-
tion to imitate; (ii) to transfer the observed action into an
internal representation, which accounts as well for the sys-
tem’s parameters and copes with the different accessibility
of sensor data and the possibly different “instrumentation”
with actuators; (iii) to be able to physically execute a suit-
able action by an actuator.

In our scenario we choose the challenging task to observe
human hands in grasping actions, transfer this to an inter-
nal perspective to simulate grasping of an anthropomorphic
robot hand, and finally to carry out grasping with the robot
hand. It is motivated because an important basic capabil-
ity for intelligent behavior and cognition is the ability to
manipulate one’s environment purposively. Therefore, we
may suspect that the need to control sophisticated manip-
ulators as hands and arms, or a full body is a major driving
force for any cognitive processing architecture. In particu-

lar, the control of hands is connected with a large number
of highly demanding and in many ways generic information
processing tasks whose coordination already forms a major
base for intelligent behavior.

The following sections give a short overview on the sys-
tem architecture realized so far and focus especially on the
system’s learning capabilities. We describe the adaptive
methods used, discuss potentials in the architectural de-
sign to facilitate high level learning, give an outlook on
the planned overall learning architecture, and highlight the
first steps we took to enhance our system with capabilities
of observation and recognition of human hand postures,
simulation of grasping starting from the observed postures,
and carrying out the corresponding action with an anthro-
pomorphic robot hand.

II. The current system architecture: Overview

The architecture design is one of the key issues in realiz-
ing a complex intelligent robot system. Our entire system
is implemented as a larger number of separate processes
running in parallel on several workstations and commu-
nicating with the distributed architecture communication
system (DACS [13]) developed earlier for the purpose of
this project. The submodules use different programming
languages (C, C++, Tcl/Tk, Neo/NST), various visualiza-
tion tools, and a variety of processing paradigms ranging
from a neurally inspired attention system to statistical and
declarative methods for inference and knowledge represen-
tation. More details can be found in [27], [20].

Figure 2 shows a coarse overview of the main informa-
tion processing paths. The speech processing (left) and
the attention mechanism (right) provide linguistic and vi-
sual/gestural inputs converging in an integration module.
It has a short term memory of objects and their 3D-
coordinates and passes control to the manipulator if an
object is unambiguously referenced by speech or gesture
or their combination. Additionally, there are control com-
mands for parts of the system (e.g. “on”, “off”, “calibrate
skin”, “park robot arm”, ...). Some of the modules and
their interactions are further described in the following.

A. Robot Arm and Hand

Manipulation is carried out by a standard 6DOF PUMA
manipulator operated with the real-time RCCL-command
library [29]. It is further equipped with a wrist camera to
obtain local visual feedback during the grasping phase. The
grasping is carried out by a 9DOF dextrous robot hand de-
veloped at the Technical University of Munich [30]. It has
three approximately human-sized fingers driven by an oil
hydraulics system. The fingertips have custom built finger-
tip sensors to provide force feedback for control and eval-
uation of the grasp. Recently we have added a palm and
rearranged the fingers in a more human-like configuration
in order to allow a larger variety of two- and three-finger
grasps and to equip the hand with a tactile display of 8×8
force sensors on the palm.

Starting from the 3D-coordinates determined by the
vision and integration modules, approaching movements

3

and the grasping are executed in a semi-autonomous fash-
ion relying on local feedback only. The grasp sequence
starts with an approach movement, centers the manipula-
tor above the object based on visual feedback, chooses a
grasp prototype according to the recognized object, aligns
the hand along the main axis of the object and executes
the grasp prototype. After successful grasping, a similar
chain of events allows the robot to put the object down in
another gesturally selected location.

B. Visual Attention and Symbol Grounding

A necessary prerequisite for successful human-machine
interaction is to establish and maintain a common visual fo-
cus of attention between the user and the robot. To enable
grasping, we work in full 3D-space and use a binocular ac-
tive vision head with two 3-chip-CCD color-cameras, con-
trollable pan, tilt, left/right vergence and motorized lenses
for focus, zoom and aperture, which combine to a total of
10 DOFs. The basic behavior of the active vision system
is – driven by the attention system – to explore the scene
autonomously and to search for salient points and objects.

Our attention system places a high emphasis on the spa-
tial organization of visual low level clues and is a more
elaborated version of a design proposed in [17]. It con-
sists of a layered system of topographically organized neu-
ral maps for integrating different feature maps into a con-
tinually updated focus of attention. Similar mechanisms
have also been employed in [9], [11], [31]. Currently we
use feature maps indicating the presence of oriented edges,
HSI-color saturation, intensity, motion (difference map),
and skin colors, and a special map for detecting moving
skin (mostly hands). As one of the main goals of the system
is to A weighted sum of these feature maps is multiplied by
a fadeout-map to form a final attention map whose highest
peak determines the next fixation. After stereo matching,
the resulting loop continuously generates saccades for fix-
ations and this active exploration behavior persists during
the whole system operation.

To bridge the lower perceptual level, on which the atten-
tion focuses, and the symbolic level, on which linguistic ref-
erences can be made, we process for both eyes a subimage
in the focus of both cameras by a holistic, neural network
based object recognition system [15]. If the same object
is found and a stereo match can be made, then the cor-
responding 3D-object coordinates are sent to a short term
memory module and such objects can be referenced further
by gestures or speech.

C. Speech and Language

To enable speech interaction and communication be-
tween the user and the artificial communicator, our sys-
tem imports a module for understanding speaker inde-
pendent speech input [12]. The recognition process is di-
rectly influenced by a partial parser which provides lin-
guistic and domain-specific restrictions on word sequences
derived from previous investigations on a word corpus.
Therefore, partial syntactic structures instead of simple
word sequences are generated, like e.g. object descriptions

Speaker

Speaker

detail
viewer modul−graph

interaction space

GRAVIS system

sound−
system

protocoll data

,,Data agents"

Interaction space

data

visualization system monitor

datamining on
protocol−

gesture
input

Fig. 3. System monitoring by visual and auditory feedback: the
user can obtain a condensed view of the currently active modules
together with sounds signaling their current status.

(”the red cube”) or spatial relations (”...in front of...”).
These are combined by the subsequent speech understand-
ing module to form linguistic interpretations. The instruc-
tor neither needs to know a special command syntax nor
the exact terms or identifiers of the objects. Consequently,
the speech understanding system has to face a high de-
gree of referential uncertainty from vague meanings, speech
recognition errors, and un-modeled language structures.

D. Modality Integration and Dialog

In integration of speech and vision, this referential uncer-
tainty has to be resolved with respect to the visual object
memory. Also verbal object descriptions and object recog-
nition results, such as vague attributes (e.g. “the long, thin
stick”), vague spatial and structural descriptions (e.g. “the
object to the left of the cube”, “the cube with the bolt”) have
to be disambiguated. Here the system uses an Bayesian
network approach [33], where the different kinds of uncer-
tainties are modeled by conditional probability tables that
have been estimated from experimental data. The objects
which are denoted in the utterance are those explaining
the observed visual and verbal evidences in the Bayesian
network with the maximum a-posteriori probability. Addi-
tional causal support for an intended object is defined by
an optional target region of interest that is provided from
the 3D-pointing evaluation. The intended object is then
used by the dialog component for system response and ma-
nipulator instruction.

The dialog system is based on an investigation of a cor-
pus of human-human and simulated human-machine di-
alogs [7]. It integrates utterances of the instructor, infor-
mation of the visible scene, and feedback from the robot to
realize a natural, flexible and robust dialog strategy. It is
realized within the semantic network language Ernest. In
particular, it asks for a pointing gesture to resolve ambigu-
ities in the current spoken instruction with respect to the
actual state of the memory. The overall goal of this module
is to continue the dialog in every situation. Actions which
cannot be executed are immediately rejected. For verbal
instructions which could not be analyzed a repetition is re-
quested up to two times. If the dialog has gathered too
contradictory information the system expresses its confu-
sion and asks for a new instruction.

4

E. System monitoring and feedback

To add learning or other functionality at the system level
one further very important prerequisite is a system for diag-
nosis and monitoring. Our system currently employs more
than thirty distributed processes with many functional sub-
modules such that the detection of errors becomes a non-
trivial task. To address this problem is crucial in two re-
spects: first, to generate appropriate feedback for the user
to enable him or her to react suitably to the system, e.g.
by interrupting, repeating, or restarting an instructive be-
havior. Secondly, the monitoring of parameters is naturally
an important means to analyze and optimize the behavior
from an engineering point of view. Thus, we have recently
added a system monitoring screen (see Fig. 3), where the
activity of modules is visually displayed and, additionally,
auditory feedback can be generated. All functional mod-
ules send protocol messages to this application to trans-
mit results, useful status information together with time-
stamps, which enables us to carry out an analysis of the
time-behavior of the complete system.

F. Action and imitation

The system as described above allows interactively
guided and visually instructed pick-and-place operations
based on (i) autonomous exploration of the attention sys-
tem to transfer visually recognized objects into memory;
(ii) subsequent spoken instructions to take objects (with
reference to their spatial relationships) which are integrated
with 3D-pointing gestures; (iii) a grasping sequence [20].
The system monitor allows a detailed analysis of the tem-
poral behavior of such sequences like in Fig. 4, where a
grasp with a a stored pre-shape is chosen with respect to an
object recognized by the hand camera followed by a tactile
feedback based closing phase. In [20], the objects had to be
trained in the recognition system to allow to choose from
visual feedback a corresponding pre-programmed grasp.

To gain flexibility in grasping, we reduce the object
recognition to the task to find the center of the object
and optionally the orientation of its main axis. Then we
use imitation of visually perceived human hand postures to
choose pre-grasp templates instead of stored distinct grasp
strategies for each of the known objects. This approach
(detailed in Sections IV, V below) now allows grasping of
a large number of objects with different sizes and various
shape as shown in Fig. 8.

III. System design, adaptivity, and robustness

Our architecture has integrated a larger number of mod-
ules, which have been developed in the course of sev-
eral years in different research contexts and under dif-
ferent programming environments and languages ranging
form C/C++ to an object-oriented graphical environment,
Neo/NST, which has been developed in-house during the
recent years. Many of these modules originally have not
been developed in view of being utilized in the described
system. Thus, the ideal perspective to define constraints
and a unified framework beforehand to facilitate building

Tactile
Feedback Grasping

Robot Hand Arm
Movement

Visual
Feedback

of Positioning
Correction

of Positioning
Correction

of Positioning
Correction

with Object
to Defaultposition

Return

sensor data

4 s
1,8 s

0,6 s
1,2 s

1,8 s

0,6 s3,2 s

1,2 s

...... 6 s

5 s

t

"Take"−Instruction

Color+Shape Handcamera Image

Hand Rotation

Handcamera Image

1,8 s

0,6 s
Color+Shape

1,2 s
Handcamera Image

Color+Shape

Pre−Grasp
Posture

Close Grasp

Strengthen Grasp

Stabilize Grasp

every 10 ms

Fingertip

Action "Take ..." finished

Ti
m

e

Fig. 4. Evaluation of predefined grasp sequence.

a cognitive learning architecture had to be replaced by an
“evolutionary approach” to integrate modules as heteroge-
neous components in the form they were made available to
us. Therefore it is rather the level of the architecture that
has to support this integration to provide the environment
of an evolutionarily growing system with layers of over-
lapping and possible redundant functionality. In our case,
this led to the development of a rather flexible architecture
where our modules mainly communicate by message pass-
ing and, once activated, rely on local feedback mechanisms,
and which allows to add newly developed skills quite easily.

From the perspective of learning, our architecture is af-
fected at three levels: the lowest level concerns the incre-
mental shaping of basis and fallback behaviors in order
to provide a robust set of primitives on which to build the
higher-order capabilities of the system. This iterative shap-
ing and refinement may be viewed as a (human-assisted)
analogue to an evolutionary learning process and paves the
way for the use of learning methods in the more traditional
sense on the next higher levels.

The intermediate level is concerned with ”adaptivity in
the small”. This takes the form of various adaptive prop-
erties of single modules to calibrate and refine their pa-
rameters during use, e.g. an adaptive weighting of the fea-
ture maps in the saccadic system or the training of neural
networks for gesture recognition and classification and the
object recognition together with a fast online color calibra-
tion. Here, adaptivity is confined to act ”locally”, within
individual modules and, therefore, largely bypassing any
difficult credit assignment problems. Still, from a systems
perspective such ”local adaptivity” can be extremely valu-
able, since it endows modules with a degree of ”elasticity”
against perturbations in their working conditions such the
overall system robustness is enhanced.

The higher level finally is concerned with ”adaptivity in
the large”. By this we mean the adaptive coordination of
several modules to achieve new action sequences at the task
level. We attempt to realize this adaptivity by providing
the system with interfaces to flexibly ”bind” to observed
action structures in order to imitate them. This seems a
much more realistic way than trying to self-organize compa-
rable capabilities from pure trial-and-error. Currently, we

5

focus on enabling the system to bind to visually perceived
hand postures. This allows a human to trigger grasping
sequences of the robot arm by informing the system with
a hand pre-shape posture about the grasp to use for pick-
ing up an object. The fine-adjustment of the visually in-
structed hand pre-shape to the target object can then be
carried out with the aid of the local hand camera that ex-
tracts information about the relative orientation between
manipulator and object.

Thus our design philosophy is to proceed in an evolu-
tionary way and consequently to require newly developed
methods and modules to have adaptive capabilities, basic
fallback behaviors, and a certain robustness against pure
data quality together with sparse communication needs
rather than to restrict them to obey predefined program-
ming paradigm or strong architectural constraints.

IV. Towards a learning architecture

To enhance our system with an integrated learning ar-
chitecture on the system level we propose three subsequent
stages. Each stage aims at restricting the search space for
the to-be-learned action as much as possible.

At the level of cognition and imitation the system’s
learning is targeted at observing the environment, respec-
tively the instructor, in order to imitate successful action
sequences, see e.g. [26]. Key issues are (i) the extraction
of relevant features, events, and chains of observed partial
actions, (ii) their translation from the observed to an in-
trinsic perspective, and (iii) their exploitation for focusing
further exploration to promising regions of the a-priori very
high-dimensional search space. Here we plan to use search
space restricted reinforcement learning, where the explo-
ration of actions can be restricted to a neighborhood of the
observed successful trajectory to reduce the otherwise un-
reasonably long learning phases of classical reinforcement
learning. This combination of imitation and reinforcement
learning is very flexible: the neighborhood can be cho-
sen small where highly reliable observations are available
whereas more exploration may be needed where poor data
are given. A typical case in our scenario is the initializa-
tion of a grasping sequence with respect to the approach
direction and hand pre-shaping for the fingertip trajecto-
ries based on visual observation of a grasping human hand,
which can be obtained by earlier developed hand and fin-
gertip recognition methods (see Section V).

At the level of action selection and exploration
learning takes place from an ”intrinsic” perspective (”sim-
ulation”) of a possible action. Based on the search space
restrictions gained from the first stage, the focus of this
second stage is on exploration of details and to include
available model knowledge (e.g.. about constraints of the
used hardware) to generate simulated actions to be verified
later. Here we use a dynamics based grasping simulation
to apply classical reinforcement learning for action choice.
Fig. ?? shows the simulation of grasping a complex object
with the TUM-hand. Due to the lack of sufficient tac-
tile sensors in the TUM-hand, it is only this setting where
we can obtain full information about joint angles, applied

Robot

Human

simulation

physics−
based

motor skills

language

perception

actions
example

real
action
results

unsupervised

supervised

learning

reinforcement

results

simulated
action

Fig. 5. Multistage learning architecture for integration of imitation
learning, reinforcement learning, and statistical learning.

wrenches, or contact points, such that we can measure the
grasp quality to generate an suitable reinforcement signal.

At the sensorimotor level, actions are executed which
seem promising with respect to the results of the previ-
ous stages. Here we can distinguish two cases with dif-
ferent evaluation criteria: (i) a maximization of knowl-
edge gain has the consequence of risky actions, for instance
near decision boundaries; (ii) a maximization of robustness
chooses conservative actions (in maximal distance to deci-
sion boundaries). On this level, we use standard methods
of statistical learning.

A crucial element to connect the different stages should
be an attention driven focus of plasticity : standard learning
methods are based on the minimization of an error function
and distribute incremental learning steps to many param-
eters. This often leads to unnecessary interference which,
however, often can be reduced by the employment of local
learning. The concept of attention driven plasticity heads
in this direction: We propose that learning can be usefully
focused by forming flexible and context dependent groups
of parameters whose plasticity is made contingent with re-
spect to a particular situation. This is a way to include
prior knowledge to circumvent the credit assignment prob-
lem of standard learning algorithms. It can be interpreted
as a form of attentional control of the learning process and
can be modulated by linguistic inputs of the user.

Fig. 5 shows the interaction of the different stages. The
interaction with the user proceeds by means of a simula-
tion driven clarification dialog (already used in the system
for resolving ambiguities occurring in the speech-image in-
tegration). This changes robot learning into an interactive
situated learning process, which uses speech and the multi-
modal perceptual channels for an effective optimization of
the system’s exploration.

V. First steps to imitation: Observation,
simulation, and control of hand posture

We have started the realization of the described inte-
grated learning architecture for grasping tasks like shown
in Fig. 6: we generate a robot hand posture from visual ob-
servation and 3D-identification of a human hand posture.
So we are able to perceive an example action illustrated

6

Fig. 6. Observation and recognition of continuous human hand pos-
tures to obtain an initial pre-grasp posture for autonomous grasp-
ing of the anthropomorphic robot hand. In the upper right part
the observed human hand is shown on the screen together with
the reconstructed hand posture visualized by the rendered com-
puter hand. Below is shown the operation of the PSOM network
which obtains the inverse transform from fingertip positions found
from observation in the 2D-images to the joint angles of the hand.
To the left the respective TUM hand posture is shown.

as the first stage in Fig. 5. This identified posture can
be executed with the real robot hand and is also used as
an initial posture for the internal physics-based simulation
of a corresponding grasp as shown in Fig. ??. Therefore
all three aforementioned stages are already present in our
setup.

The hand posture recognition uses a system for vi-
sual recognition of arbitrary hand postures which was pre-
viously developed in our group. It works in real time, how-
ever, currently is restricted to a predefined viewing area.
We shortly describe the underlying multi-stage hierarchy
of neural networks which first detect the fingertips in the
hand image and then reconstruct the joint angles from the
fingertip positions, for more details see [22], [24].

In a first step, the pixel image is transformed into a lower-
dimensional feature vector of “neural activities” which are
responses of Gabor filters with different resolution and ori-
entation. The resulting activity pattern provides an initial,
“holistic” input representation of the image, from which we
compute a set of meaningful and stable object features –
the 2D finger tip locations in the image. For this subtask
we use a processing hierarchy in which a neural network
first computes a coarse estimate of the centers of up to five
image subregions where the finger tips should be located.
Subsequently, we provide for each finger subregion an extra
network, applying an analogous processing as on the first
stage, but focused on the selected finger subregion that was
identified by the first, “global” network. It is followed by
a post processing which a Gaussian confidence measure for
the presence of the corresponding tip and a simple “finger
tip filter” that consists of a 5×5 pixel template of a typical
“finger tip edge”.

In the final step, the obtained 2D-features (finger tip lo-
cations) are analyzed to identify the 3D-hand posture. By
using the the fact, that human finger joints are highly cor-

related, we circumvent the problem of the many available
degrees of freedom of a 3D-hand. For the corresponding in-
verse transformation a Parameterized Self-organizing Map,
PSOM is trained, using data from the analytically com-
putable forward transform. The PSOM is a generalization
of the well-known Self-organizing map (SOM) [35]. It re-
places the discrete lattice of the SOM with a continuous
manifold and allows to retrieve the inverse of each learned
mapping automatically.

To actuate the robot-hand the reconstructed 3D-joint
coordinates, however, can not directly be used, because the
robot hand shown in Fig.6 has three fingers only and differs
in hand and finger sizes, proportions of the phalanges, and
the arrangement of the fingers at the palm. Additionally
the sensory equipment and control concepts differ, such
that we have to transform the observed joint angles in a
way, that we obtain an “equivalent” posture of the robot
hand. Geometrically this transformation the different joint
angle workspaces and reflects the kinematic constraints im-
posed by the coupled joints of the robot hand. With respect
to executing of a grasp the we have to compensate the lack
of direct joint angle measurements by means of a force feed-
back obtained from the custom built fingertip sensors and
a recently added palm sensor (see Fig. 6). With the latter
we can evaluate the form of a touched object when carrying
out a power grasp, while the fingertip sensors have to be
used for precision grasps.

With respect to control we mainly rely on piston po-
tentiometers located at the base station of the hydraulic
system. Here we have to cope with hysteresis and non-
linearities due to the long distance of 2.5m between the
base station and the finger pistons. We also face sticking
and sliding effects caused by return springs integrated in
the finger pistons. Nevertheless we achieve an accuracy
of about 2 degrees in every joint, which is not enough for
a reliable position control but allows a qualitatively suffi-
cient positioning of the fingers to realize suitable pre-grasp
postures.

Because of these incompatibilities between a human and
our robot hand, it is important to simulate the grasping
process before attempting its actual execution. Neverthe-
less the hand posture recognition is important to get an
object and situation specific pre-grasp posture which is an

Fig. 7. Evaluation of a TUM-hand grasp in physics-based simulation
using contact models with friction (left) and the grasp polytope
evaluating force closure (lower right).

7

essential requirement for successful grasping and is needed
as a starting point for the internal simulation as well. The
simulation serves as a filter which adapts the observed pre-
grasp position and (in later stages) the grasping strategy to
the robots’ intrinsic hardware constraints described above.

For internal simulation we utilize the real-time
dynamics-based package Vortex [32], which allows accu-
rate object motion and interaction based on Newtonian
physics. We extended the package to provide static and
dynamic friction for contacts, which is crucial for success-
ful grasp simulation. Although contacts are simulated on
the basis of point contacts and thus are necessarily coarse,
they provide full force feedback, which is not available with
our real world tactile fingertip and palm sensors. Hence,
in simulation, it is possible to evaluate a successful grasp
with respect to measures such as form or force closure [5],
which we evaluate by numerical solution of Linear Matrix
Inequalities as recently suggested in [14]. Fig. 7 illustrates
the friction cones of a successful grasp together with the
resulting polytope of applicable forces.

VI. Results for imitation based grasping

When executing the grasp different levels of imitation are
possible reaching from the task level down to the realization
of similar joint trajectories of the fingers. At an intermedi-
ate level, we use observation of the human hand posture to
define a pre-grasp position, starting from which we coher-
ently close all fingers until they get in contact with the ob-
ject, what is detect by the fingertip force sensors. We have
also tried to directly transform the observed and recon-
structed 3D-joint angles to the robot hand, however with
very limited success because this transfer to the very dif-
ferent hardware lead to uncoordinated finger movements.
Therefore the imitation in our case leads to a choice be-
tween one of a number of possible grasping strategies. This
reduction of complexity turns out to be very efficient and
allows to grasp many every-day objects of different shape
an size as shown in Fig. 8.

The results reveal some interesting details. The object
number 2 (propeller) cannot be grasped by any of the stan-
dard prototypic grasps and shows that complex shapes can
need more specialized grasps. To generate such grasps on-
line, additional information from observation in form of
e.g. grasping points could be useful. Furthermore, many
objects can be grasp with more than one strategy or in spe-
cial positions only and in these cases imitation introduces
otherwise unknown context knowledge. The preliminary
experiments also showed that often small changes in the
pre-grasp posture have a large impact on the success rate.
These results show that despite the previous reduction of
the search space by obtaining a suitable pre-grasp posi-
tion there is much room for improvements by simulation
as proposed in Sections IV/V. Possible free parameters to
be evaluated in such simulation are the exact initial joint
angles of the fingers, the exact relative position of the hand
to the object, the closing speeds of the fingers, etc.

nr. power thumb/2. thumb/2./3. 2./3. rotate
1 10 - + - +
3 (+) - + 10 +
4 10 - - - -
5 10 - + - +
6 10 - + - +
7 9 - (+) - +
8 + (+) 8 (+) +
9 8 - - - 5
10 9 - - - +
11 - 7 - - 5
12 - - 6 - +
13 7 - - - +
14 + (+) 7 (+) +
15 6 - (+) - 4
16 - - 5 4
17 - 4 - - 3
18 - 3 - - 2
19 - 4 - - +
20 - - 0 - -
21 - 0 - - -

Fig. 8. Imitation based grasping of every-day objects sorted with
respects to 10 grasp attempts using the most suitable strategy,
which was determined by an preliminary experiment and is indi-
cated as [-] — grasp not possible, [(+)] — possible but only in
non-general position, [+] possible, the propeller (no. 2) needs
a specialized grasp. The final column gives the number of trails,
which are robust against rotations of the hand after lifting up.

VII. Conclusions

Our initial assumption is that situated and multi-modal
communication is a key prerequisite for learning in arti-
ficial intelligent perception-action systems. Thus, we will
proceed with the development of the current platform and
use it as a basis for a systematic design of a learning archi-
tecture. The longer term goal is to demonstrate speech en-
abled imitation learning for instructing grasping tasks (see
Fig. ??), because multi-fingered grasping combines many
of the highly developed capabilities of the human cognitive
system: the recognition of object shape, type, position and
orientation in space; the respective and for the intended
task appropriate choice of a grasp; the actual realization
of the grasp under complex kinematic constraints; and the
following immediate optimization of finger positions and
force with respect to grasp stability and manipulability.

We believe that this research program is promising if a
sufficiently developed technological basis is available. This
basis seems crucial for higher level architectures and in-
cludes sophisticated hardware for data acquisition and ac-
tion like an articulated dextrous hand as well as algorithms

8

for robust implementation of the perceptual skills. In par-
ticular for the imitation of grasps, we expect in the nearer
future progress from improvements in the field of multi-
fingered hands, especially with respect to robustness and
tactile sensing. Concerning intelligent control it is impor-
tant to have at our disposal a sufficiently high number of
robust and adaptive partial skills, a prerequisite toward
which many efforts have been made in the course of the
Special Collaborative Research Unit SFB 360.

The key towards an integrated architecture now is a sys-
tematic design, which endows the system with a fruitful
interrelation of different aspects of learning and their vari-
ous techniques on the different levels to generate a flexible
and incrementally improving combination of these partial
skills and modules. Here we see the main focus of the
sketched learning architecture, knowing that this goal may
be reached only by long term efforts and in incremental
steps. We are aware, that in view of the enormous com-
plexity of the respective challenges, this research program
also calls for a close collaboration of robotics with neigh-
boring disciplines like neurobiology or cognitive science and
we expect many insights and inspirations from these fields.

Acknowledgments:

Among many people who contributed to the robot sys-
tem, we thank in particular G.Fink, J. Fritsch, G. Heide-
mann, T. Hermann, J. Jockusch, N. Jungclaus, F. Lömker,
P. McGuire, R. Rae, G. Sagerer, S. Wrede, S. Wachsmuth,
J. Walter. For further contributions of the SFB 360 “Sit-
uated Artificial Communicators” and the neuroinformatics
and practical informatics groups at the Faculty of Technol-
ogy of the Bielefeld University see the references.

References

[1] P. K. Allen, A. Miller, P. Y. Oh, and B. Leibowitz, “Integra-
tion of vision, force and tactile sensing for grasping,” Int. J.
Intelligent Machines, vol. 4, no. 1, pp. 129–149, 1999.

[2] P. Andry, P. Gaussier, S. Moga, J. P. Banquet, and J. Nadel,
“Learning and communication via imitation: An autonomous
robot perspective,” IEEE SMC, vol. 31, pp. 431–442, 2001.

[3] P. Bakker and Y. Kuniyoshi, “Robot see, robot do : An overview
of robot imitation,” in Proc. AISB Workshop on Learning in
Robots and Animals, Brighton, 1996, pp. 3–11.

[4] C. Bauckhage, G. A. Fink, J. Fritsch, F. Kummert, F. Lömker,
G. Sagerer, and S. Wachsmuth, “An Integrated System for Co-
operative Man-Machine Interaction,” in IEEE Int. Symp. on
Comp. Int. in Robotics and Automation, 2001, pp. 328–333.

[5] A. Bicchi and V. Kumar. “Robotic grasping and contact: A
review”, In Proc. ICRA, 2000, pp. 348–353.

[6] A. Billard and M. J. Mataric “A biologically inspired robotic
model for learning by imitation,” Proc. 4. Int. Conf. on Au-
tonomous agents, Barcelona, Spain, 2000.

[7] H. Brandt-Pook, G. A. Fink, S. Wachsmuth, and G. Sagerer,
“Integrated recognition and interpretation of speech for a con-
struction task domain,” in Proc. Int. Conf. on Human-
Computer Interaction, 1999, vol. 1, pp. 550–554.

[8] C. Breazeal and B. Scassellati, “Challenges in building robots
that imitate people,” in Imitation in Animals and Artifacts, K.
Dautenhahn and C. Nehaniv, Eds. MIT Press.

[9] C. Breazeal and B. Scassellati, “A context-dependent attention
system for a social robot,” in Proc.IJCAI, 1999, pp. 1146–1151.

[10] R. Dillmann, M. Kaiser, and A. Ude, “Acquisition of elementary
robot skills from human demonstration,” in In Int. Symp. on
Intelligent Robotic Systems, Pisa, Italy, 1995, pp. 185–192.

[11] Joseph A. Driscoll, Richard Alan Peters II, and Kyle R. Cave,

“A visual attention network for a humanoid robot,” in Proc.
IROS, Victoria, B.C., 1998.

[12] G. A. Fink, “Developing HMM-based recognizers with ESMER-
ALDA,” in LN in AI, V. Matoušek, P. Mautner, J. Oceĺıková,
and P. Sojka, Eds., Berlin, 1999, vol. 1692, pp. 229–234.

[13] G.A. Fink, N. Jungclaus, H. Ritter, and G. Sagerer, “A commu-
nication framework for heterogeneous distributed pattern analy-
sis,” in Int. Conf. on Algorithms and Architectures for Parallel
Processing, Brisbane, 1995, pp. 881–890.

[14] L. Han and J. C. Trinkle and Z. X. Li, ”Grasp Analysis as
Linear Matrix Inequality Problems” IEEE. Trans. on Robotics
and Automation, vol. 16, no. 6, pp. 663–673, 2000.

[15] G. Heidemann, D. Lücke, and H. Ritter, “A system for various
visual classification tasks based on neural networks,” in Proc.
ICPR, Barcelona, A. Sanfeliu et al., Ed., 2000, pp. 9–12.

[16] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation
for imitation with nonlinear dynamical systems,” in Proc. IROS,
2001, pp. 752–757.

[17] N. Jungclaus, R. Rae, and H. Ritter, “An integrated system for
advanced human-computer interaction,” in UCSB-Workshop on
Signals and Images, USA, 1998, pp. 93–97.

[18] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching:
extracting reusable task knowledge from visual observation of
human performance,” IEEE. Trans. on Robotics and Automa-
tion, vol. 10, no. 6, pp. 799–822, 1994.

[19] M. J. Mataric, O. C. Jenkins, A. Fod, and V. Zordan, “Con-
trol and imitation in humanoids,” in AAAI Fall Symposium on
Simulating Human Agents, North Falmouth, MA, 2000.

[20] P. McGuire, F. Fritsch, J. J. Steil, F. Röthling, G. A. Fink,
S. Wachsmuth, G. Sagerer, and H. Ritter, “Multi-modal human-
machine communication for instructing robot grasping tasks,” in
Proc. IROS, 2002, pp. 1082–1089.

[21] P. McKevitt, Ed., Integration of natural language and vision
processing, Kluver, Dordrecht, 1994.

[22] C. Nölker and H. Ritter “Visual Recognition of Continuous Hand
Postures” IEEE Trans. NN, vol. 13, no. 4, pp. 983–994, 2002.

[23] J. Pauli, “Learning to recognize and grasp objects,” Autonomous
Robots, vol. 5, pp. 407–420, 1998.

[24] H. Ritter, J. J. Steil, C. Nölker, F. Röthling, and P. McGuire,
“Neural Architectures for Robot Intelligence,” in Rev. Neurosci.,
vol. 14, no. 1-2, pp. 121-143, 2003.

[25] B. Roessler, J. Zhang, and M. Hoechsmann, “Visual Guided
Grasping and Generalization Using Self-Valuing Learning,” in
Proc. IROS, 2002,pp. 944–949.

[26] Stefan Schaal, “Is imitation learning the route to humanoid
robots?,” Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233–
242, 1999.

[27] J. J. Steil, G. Heidemann, J. Jockusch, R.Rae, N. Jungclaus,
and H. Ritter, “Guiding attention for grasping tasks by gestural
instruction: The GRAVIS-robot architecture,” in Proc. IROS
2001. IEEE, 2001, pp. 1570–1577.

[28] Joseph O’Sullivan, “Towards a robot learning architecture,” in
Learning Action Models , Wei-Min Shen, Ed., 1993, pp. 47–51,
AAAI Press, 1993.

[29] J. Lloyd and M. Parker, “Real time control under Unix for
RCCL,” in Robotics and Manufacturing ISRAM’90, 1990, vol. 3,
pp. 237–242.

[30] R. Menzel, K. Woelfl, and F. Pfeiffer, “The development of a
hydraulic hand,” in Proc. 2. Conf. Mechatronics and Robotics,
1993, pp. 225–238.

[31] S. Vijayakumar, J. Conradt, T. Shibata, and S. Schaal, “Overt
visual attention for a humanoid robot,” in Proc IROS, 2001, pp.
2332–2337.

[32] CMLabs “Vortex – physics engine for real-time simulation”,
www.cm-labs.com

[33] S. Wachsmuth, H. Brandt-Pook, G. Socher, F. Kummert, and
G. Sagerer, “Multilevel integration of vision and speech under-
standing using Bayesian networks,” in Computer Vision Sys-
tems: 1. Int. Conf., H. I. Christensen, Ed., 1999, pp. 231–254.

[34] S. Wachsmuth, and G. Sagerer, “Bayesian Networks for Speech
and Image Integration,” in Proc. of 18th National Conf. on
Artificial Intelligence, Edmonton, 2002, pp. 300–306.

[35] J. Walter and C. Nölker and H. Ritter, “The PSOM Algo-
rithm and Applications”, Proc. Symposion Neural Computation
(Berlin), 2000, pp. 758–764.

[36] M. Yeasin and S. Chaudhuri, “Toward Automatic robot pro-
gramming: Learning Human Skill from Visual Data,” IEEE
SMC, vol. 30, no. 1, pp. 180–185, 2000.

Towards Integrating Learning by Demonstration and Learning by
Instruction in a Multimodal Robot

Stefan Wermter, Mark Elshaw, Cornelius
Weber, Christo Panchev, Harry Erwin
Centre for Hybrid Intelligent Systems
School of Computing and Technology

University of Sunderland
St Peter’s Way, Sunderland

UK
www.his.sunderland.ac.uk

Abstract— Learning by demonstration and learning by
instruction offers a potentially more powerful paradigm than
programming robots directly for specific tasks. Learning in
humans or primates substantially benefits from demonstra-
tion of actions or instruction by language in the appropriate
context and there is initial neurocognitive cortical evidence
for such processes. Cortical assemblies have been identified
in the cortex that activate in response to the performance
of motor tasks at a semantic level. This evidence supports
that such mirror neuron assemblies are involved in actions,
observing actions and communicating actions. Furthermore,
neurocognitive evidence supports that cell assemblies are
activated in different regions of the brain dependent on the
action type being processed. Based on this neurocognitive
evidence we have begun to design a neural robot in the
MirrorBot project that is based on multimodal integration
and topological organisation of actions using associative
memory. As part of these studies in this paper we describe
a self-organising model that clusters actions into different
locations dependent on the body part they are associated
with. In particular, we use actual sensor readings from the
MIRA robot to represent semantic features of the action
verbs. Furthermore, ongoing work focuses on integration of
motor, vision and language representations for learning from
demonstration and language instruction.

I. INTRODUCTION

Often robots are restricted in their general autonomous
behaviour and only perform what has been prepro-
grammed. We begin to see initial research in learning by
language instruction or action demonstration (e.g. Billard
2002 [2] , Demiris and Hayes 2002 [5]). However, so far,
demonstration and language instruction have only played
a minor role in intelligent robotics. Some robots like the
tour-guide robot Rhino [4] have been quite robust in terms
of their localisation and navigation behaviour. However
they do not use learning by demonstration or learning from
language instructions. Although the conversation office
robot jijo-2 [1] can be instructed to navigate to certain
landmarks and the Minerva tour-guide [17] interacts by
using simply preprogrammed speech, they are restricted in
their ability to learn. Furthermore, the Kismet interactive
robot [3] can recognise and represent emotions using a

sophisticated head but does not learn by imitation or
instruction.

Learning through imitation has been a useful approach
for primates and therefore is an active research into the
area of learning in robots. For instance Demiris and
Hayes 2002 [5] and Maistros and Hayes 2001 [10] have
devised approaches based on the mirror neuron concept
to achieve robot learning through imitation. Demiris and
Hayes 2002 [5] use behaviour and forward models in their
approach where a demonstrator robot was observed by
the imitator robot performing actions and then is required
to predict what is being performed. Maistros and Hayes
2001 [10] use the Scheme Theory to express the function
of the mirror neurons to achieve learning by imitation of
grasping actions. This was done by using as demonstrator-
imitation scenario in a similar manner to that by Demiris
and Hayes 2002 [5]. Billard 2002 [2] also considers the
use of imitation to aid autonomous robot communication
learning of a proto-language by using an unsupervised
approach based on a dynamic recurrent associative mem-
ory architecture. Language is learnt through a student
robot recreating the actions of the teacher robot, through
the teacher robot describing what it observes and the
student robot having a similar perspective to the teacher.
Gaussier et al. 2001 [9] have considered the use of a
neural network approach that is able to achieve learning
and communication through imitation. In doing so they
concentrate on low-level imitations that recreate simple
movements that are found in infants.

In our approach (e.g. Wermter and Panchev 2002 [22],
Wermter et al. 2001 [20], Wermter and Elshaw 2003
[21], Weber and Wermter 2003 [18]) we study learning in
intelligent robots based on some evidence from the brain
since it obviously supports learning from demonstration
and learning from verbal instructions in humans. In this
particular study here in the context of the MirrorBot
project we focus on two constraints: first multimodal
learning and integration of action, vision and language
and second the topological arrangement of actions and

their visual and language counterparts.
First, multimodal learning, recently, a class of neurons

has been found in the rostral part of the ventral premotor
cortex (area F5) in monkeys that are active both when a
monkey handles an object and when it observes an exper-
imenter performing similar actions [14]. More recently,
PET studies have implicated these ’mirror neurons’ in
the gesture recognition system of humans. This system
involves Broca’s area, a language area in humans, which
is generally believed to be the human homologue of area
F5 in monkeys. Therefore, we explore the role of mirror
neurons and cell assemblies for multimodal integration of
action, vision, and language in the MirrorBot project.

Second, examining the processing of action verbs that
relate to the leg, face and arm Pulvermüller et al. 2000 [13]
found that cell assemblies are associated through semantic
information with the appropriate body part. Furthermore, it
was noted by Rizzolatti et al. 2001 [16] that when subjects
were required to observe actions made by the mouth,
hand and foot that the foot was represented dorsally and
mouth and hand ventrally in the brain. This neurocognitive
topological evidence motivates our approach for self-
organising associative memory in multiple regions of the
brain.

In our approach neural learning of multimodal asso-
ciation of motor actions, vision and language will be a
key element for learning robots. We understand learning
by demonstration and imitation in this general sense of
learning multimodal internal topological representations.
In an initial experiment and architecture described in this
paper we show how representation of demonstrating motor
actions and language instructions can be integrated. In a
second step we will outline an architecture for integration
of motor actions, vision and language representations.

II. ASSOCIATING MOTOR ACTIONS WITH
ACTION VERBS

We have begun to associate internal representations of
demonstrated actions with a word description. This system
learns to associate the semantic features that are found
in the sensor readings that represent the action with a
representation of the word. As can be seen at the bottom
of Fig 1 the architecture firstly contains a self-organising
network to associate the action sensor readings with the
appropriate body part by clustering the actions in different
regions. At the next processing level there is a self-
organising network for each body part that uses the sensor
reading vectors to associate the actual action verbs with
different regions. To the right in the architecture, the words
that are represented using their phonemes are clustered in
a self-organising network. The upper-most self-organising
network associates the action representations by using
the locations on the body part self-organising networks
and their appropriate word form representation from the

location on the word form self-organising network. Hence
by associating the action representation with the word
form the robot can describe the action with a word when
it receives only the action representation and vice versa
perform the action when it is given the word only.

In this system the input is used to produce the output
by recreating the action from the sensor readings. The
sensor readings provide information on the action such as
the velocity of the separate wheels, the gripper activities
and how the constituent sub-actions relate to the states of
sensors such as break-beam and table sensors. If the robot
receives the ’put’ action sensor reading representation, it
would be introduced into the trained body part network
and activate the hand region of the output layer. The hand
self-organising network would then position the sensor
readings input in the ’put’ region of the output layer. As
the robot is describing the word form there is no nec-
essary input from the word self-organising network into
the association self-organising network. However, as the
network has previously learnt to associate this action with
the appropriate word form the ’put’ region of the network
is activated. The robot will then state using its language
synthesis that the action semantic features provided are
those for ’put’. On the association self-organising network,
the winner-take-all mechanism removes ambiguities in the
representation, allowing for only one action.

This describes the pathway from the internal action
representation via the association area to the language
description. It would be used to make the robot speak
from observing actions. In a similar but opposite pathway
the word input representation can lead via the association
area - to the sensory robot action. This would be used to
make the robot execute a verbal command.

This approach offers some brain-inspired regional mod-
ularity by having multiple self-organising networks each
performing a subtask of the overall task. These networks
are linked in a distributed overall memory organisation.
Furthermore, this architecture includes components that
are analogous to brain regions at a higher level. For
instance, the SOMs that take the action representations
and cluster these are related to the sensory motor cortical
areas of the brain. The approach also takes into account
the neurocognitive evidence of Pulvermüller (2003) [11]
in that cell assemblies in different regions are associated
with specific action verbs as a functional unit, with the
association being based on the action verbs relationship
with the appropriate body part.

This architecture links in some concepts of the mirror
neuron theory. The relationship of mirror neurons to
language was pointed out by Rizzolatti and Arbib 1998
[14] who found that neurons located in the F5 area of a
primate’s brain were activated by both the performance of
the action and its observation. The recognition of motor
actions comes from the presence of a goal and so the

motor system does not solely control movement [8]. The
role of these mirror neurons is to associate action rep-
resentations with vision or language representations. The
mirror neuron system was a critical discovery as it shows
the role played by the motor cortex in action depiction
[16]. By using the sensor readings as input the mirror
neuron concept is considered since the understanding of
the action can come from either performing the action or
a stored representation is linked to observing the action.

III. SELF-ORGANISATION ON THE ROBOT

In order to have greater objectivity and to incorporate
self-organising maps into a robot control system, sensor
readings were taken from the MIrror-neuron Robot Agent
(MIRA) (see Fig 8). The MIRA robot is based on a
Peoplebot and was set up to perform various actions that
are associated in humans with the leg, head or hand. The
leg verb actions were ’turn left’, ’turn right’, ’forward’
and ’backward’; head action verbs were ’head up’, ’head
down’, ’head right’ and ’head left’; and finally the hand
verbs were ’pick’, ’put’, ’lift’, ’drop’ and ’touch’. One
action can be made of several basic actions. For instance,
the hand verb action ’pick’ included the following sub-
actions (i) slowly move forward to the table; (ii) tilt camera
downward to see table; (iii) lift gripper to table height;
(iv) open gripper; (v) close gripper on object; (vi) stop
forward motion; and (vii) lift gripper. The MIRA robot
performing the ’pick’ action is shown in Fig 8, top. This
sequence of sub-actions corresponds in principle (although
not in detail) to motor schemata since a complex action is
represented as a sequence of basic actions. Sensor readings
were taken for such sequences of basic actions.

In order to provide sufficient and varied training and test
data the actions were performed 20 times (15 training and
5 test) under diverse conditions. For instance, the speed the
robot was travelling at and the angle that the camera was
tilted or panned to were varied. The sensor readings were
taken 10 times a second while MIRA performed these
actions including the state of the gripper, the velocity of
the wheels and the angle that the robot’s camera was at.
The full list of the sensor readings is given in Table I.

To reduce the size of the input for the self-organising
networks to a manageable level, 10 sets of the readings
were taken over time to represent the action. This was
achieved by taking the first, last and eight equi-distant sets
of readings and combining them to create a single input
for a sample. This procedure concatenates the whole time
series to one data point and bypasses problems of short-
term memory. We normalised the sensor readings for such
variables as velocity of left wheel, velocity of right wheel,
x coordinate of robot, y coordinate of robot, and the pan
and tilt of the camera.

For the self-organising network to cluster actions based
on the appropriate body part the input layer had 120 units,

Motor areas

Assemblies for association based
on mirror neuron concepts

Word
description

Robot action

Action and word
form association

Word SOM

Body Part
SOM

Word
representation

Action
representation

Head SOM Leg SOM Hand SOM

 Sensory areas

Fig. 1. The self-organising associative architecture.

one for each of the preprocessed sensor readings. The
output layers had various sizes (from 8 by 8 units to 13
by 13 units) and the networks were trained between 50
to 500 epochs at intervals of 50 epochs. There were 260
samples in total, 195 for training and 65 for testing. The
location of each of the training and test samples on the
self-organising maps were identified based on the units
that had the highest activation.

Fig 2 shows a self-organising network that was 12 by
12 units. Once this network architecture was trained for
50 epochs there was clear clustering into the three body
parts (see Fig 2). The hand action words such as ’pick’,
’touch’, ’lift’ were at the bottom of the training and test
output layers in the hand body part region, with the head
actions slightly below and to the right of the leg region.
Although one unit within the head region contained both
head and leg action samples with the highest activation,
the percentage for head samples was much higher on
both test and training data. For the training and test data
the percentage of head action samples with the highest
activation for that unit was over 60% for training samples
and 70% for test samples. Due to the major difference
between the head and leg action percentages for this unit,
only the head percentage is shown on Fig 2.

For the training data 100% of the samples which corre-
spond to the head and hand actions fell in the appropriate
region and 88% of the leg data. For test data the percentage

TABLE I

SENSOR READINGS TAKEN BY ROBOT DURING ACTIONS.

Sensor Reading Value

Left Wheel Velocity Real number
Right Wheel Velocity Real number
x coordinate of robot Real number
y coordinate of robot Real number

Break-beam state of gripper No beam broken, Inner broken,
Outer broken, Both broken

Gripper state Fully open, closed, between
open and closed

Gripper at highest or lowest position Yes No
Gripper moving Yes No

Table sensors activated Yes No
Gripper opening Yes No
Pan of camera Integer
Tilt of camera Integer

100

90

80

70

60

50

40

30

20

10

0

Pe
rce

nta
ge

of
Sa

mp
les

Fig. 2. The percentages for the test samples for the body parts that
have highest activation for each unit on a 12 by 12 units network after
a training time of 50 epochs. (Black - Hand, White - Head, Grey - Leg)

was even better with 100% for hand and head and 90%
for leg. It is interesting to note that within the hand verb
region there was a good division into the actual action
classes. In Fig 3 ’pick’ was located in the lower right of
the map, ’put’ in the lower left, ’drop’ in the unit above
’pick’, ’touch’ at the top of the hand region and most of
the ’lift’ samples were located in a unit just below ’touch’.
For the other two classes there was some splitting into the
individual actions but not on the scale of the hand class
(see Fig 4 and Fig 5).

For such an architecture on both training and test data
the clusters were in very similar positions on the output
layer, which points to the ability of the network to gener-
alise on data it has not seen before. When considering the
percentage of test data that fell in the regions identified by

the training data the percentages were very high. For the
hand actions 100%, head actions 95% and leg actions 88%
of the test data fell into the appropriate training region.
Therefore, if the self-organising network was used in the
control of a robot it can perform successfully in an on-line
manner clustering semantic features of the action to the
appropriate region of the output layer.

Turning to the hand, head and leg self-organising net-
works, when considering the clustering of the specific
body part actions for all three types of action, the size
of network that performed best was 8 by 8. For the hand
network the training time that produced the best clustering
was 50 epochs, for the head network it was 150 epochs and
for the leg self-organising network it was 100 epochs. As
can be seen from Fig 3 to Fig 5 there was clear clustering
into different regions for the hand, head and leg actions.

Put

Pick

Lift

Touch
Drop

Pe
rce

nta
ge

of
sam

ple
s

100

90

80

70

60

50

40

30

20

10

0

Fig. 3. The percentage for the test samples for the specific hand actions
that have highest activation for each unit on a 8 by 8 units network.

IV. ASSOCIATING VISION AND MOTOR
REPRESENTATIONS

Our next step is to describe an associator neural network
to localise a recognised object within the visual field.
This is an essential basic skill for robotic learning by
demonstration which we solve by a purely neuronal ap-
proach. The model, depicted in Fig 6, is thus a centrepiece
of a larger model which can on the one hand perform
actions like grasping and on the other hand is connected
to neurally implemented language areas.

The idea extends the use of lateral associator connec-
tions within a single cortical area to their use between
different areas [18]. The first cortical area is the visual area
V1 which codes for an internal representation, ”what”, of
images. The weights connecting it to the image are trained

Head Right

Head Down
Head Left

Head Up

Pe
rce

nta
ge

of
Sa

mp
les

100

90

80

40

60

50

70

30

20

10

0

Fig. 4. The percentage for the test samples for the specific head actions
that have highest activation for each unit on a 8 by 8 units network.

Backward

Turn Left

Forward

100

90

80

60
Turn Right

70

50

40

30

20

10

0

Pe
rce

nta
ge

of
sam

ple
s

Fig. 5. The percentage for the test samples for the specific leg actions
that have highest activation for each unit on a 8 by 8 units network.

by a sparse coding Helmholtz machine. Earlier, intra-
area lateral connections have been implemented within
V1 to endow the simple cells with biologically realistic
orientation tuning curves as well as to generate complex
cell properties. We extend the lateral connections to also
span a second cortical area, the ”where” area which
is laterally connected to the simulated V1. The lateral
weights are trained to associate the V1 representation of
the image to the location of an object of interest which
is given on the ”where” area. The lateral weights are thus
object specific associative weights which can complete a
representation of an image with the location of the object
of interest.

Fig. 6. Model architecture. The hidden representation ”what” of the
image including the target object is associated to the location ”where”
of the target which is relevant for motor action.

image “what” “where”

Fig. 7. Example representations on the image, ”what” and ”where”
areas. Theimage is originally in color, where in the upper row, the
orange fruit target is artificially generated. The networks of the upper
and lower row were also trained and activated with different parameters.

Fig 7, shows the network activities after initialisation
with sample stimuli of an orange and relaxation to a
steady state. In both cases the ”where” area neuron’s
activations were initialised to zero initially (not shown).
The relaxation procedure which spans the ”what” and the
”where” area then completes the pattern by displaying the
location of the object of interest as a Gaussian activity
hill.

Once that an object of interest appears in the visual
field, it is first necessary to localise its position within the
visual field. Then, usually the centre of sight is moved
toward it, and a grasping movement prototype will be
activated which is related to the specific affordance [15].

We have made initial experiments connecting the
”where” area to motor neuron’s output which control the
robot camera’s pan-tilt motors. The task is to move the
camera so that the orange fruit is located in the centre of
the “where” area (Figs. 6,7). This is achieved by a simple
algorithm. Weights from every unit of the “where” area to
the camera’s pan and tilt units were trained based on the

error of a movement: if after a tilt movement the camera
would face, e.g., too much upward, then the unit which
elicited that movement had its weight to the tilt motor unit
changed, so that at the next trial it would face a little less
upward. Fig 8, bottom, shows the camera pointing toward
an orange which is moved across its ”visual field”. This
implements the MIRA robot’s reaction to the command
”Bot show orange”.

Additionally, using reinforcement learning, we have
very recently implemented the robot ”docking” at a table
so that it can grasp an object which lies at the border
of the table with its short grippers [19]. The input to
the reinforcement-trained network is the perceived target
location (from the “where” area) and the rotation angle
of the robot w.r.t. the table. Outputs are the four motor
units and a critic unit which carries a value function on
the input space. A positive reinforcement signal is given
if two conditions are met:(i) the target is perceived at
the middle of the lower edge of the visual field (where
also the gripper is perceived by the camera which is at a
fixed position) and(ii) the rotation angle is zero (which
is defined such that the robot is approaching the table
perpendicularly). The weights to the value function unit
and those to the motor units develop concurrently such
that an optimal strategy toward reaching the target will by
performed. Fig 8, top, shows the robot perpendicularly at
the table, at the goal position. The data delivered during
these actions will be used for the training and verification
of mirror neurons.

V. ASSOCIATING VISION, LANGUAGE AND
MOTOR REPRESENTATIONS FOR LEARNING

BY DEMONSTRATION

As the next steps therefore the model needs to be
extended to incorporate more complex motor tasks. This
is not only desirable from a robotic application point of
view, but also from the fact that mirror neurons are action-
related, as they reside in motor associated cortical areas
such as F5 and respond to performance, description and
observation of actions (Rizzolatti and Arbib 1998) [14].
For this, we will integrate the language- and motor-sensory
related ’pick’ action with the more vision relate the more
vision related tracking action (Fig 8).

The model of Elshaw and Wermter (2002) [6] and
Elshaw, Wermter and Watt (2003) [7] handles an organi-
sation of a variety of actions on a self-organising layer of
neurons as an avenue to include a larger number of motor
tasks. Fig. 9 shows the plan of a proposed network.

In the envisaged network of Fig 9, mirror neuron
properties are expected to evolve among some of the
neurons in the top layer. They carry an internal represen-
tation~r of all of the inputs, below. The inputs are from
multiple modalities including higher level representations.
The vector~l contains language input information. This can

Fig. 8. The MIRA robot performing the ’pick’ action (top) and
recognising and tracking an orange with its pan-tilt camera (bottom).

include internal representations from language areas or the
goal area of the cell assembly model for Broca/Wernicke
areas.~pv contains the visual perception which includes
the identity and perceived location of a target to be
grasped.~mare the motor unit activations including wheels,
gripper and pan-tilt camera.~ms denotes motor sensory
unit activations and may also include available idiothetic
information such as the rotation angle of the robot.~i are
other internal states such as the goal related value function
of the critic used in reinforcement learning.

Thick lines with arrow heads denote the weights. The
vertical connections are trained with a sparse coding
unsupervised learning scheme similar to the Helmholtz
machine which we described for image processing (Fig 6).
The inputs are collected from real robotic actions (af-
ter exercising with simulated data) which are performed
interactively in the environment. The data contain only
instantaneous information, i.e. the whole action sequence
is not known. Therefore, neurons do not necessarily fire
over a sustained period in time as do mirror neurons. How-
ever, since~r is a distributed code, some of the units may
specialise to code for longer sequences. The horizontal

Fig. 9. The envisaged associative architecture

recurrent connections (depicted as open circle) are trained
as an autoassociator neural network. They are used in a
neural activation relaxation procedure which de-noises the
representation~r and may also encourage prolonged firing.
As a possible extension, associator recurrent connections
may also feed back to the input. This would be particularly
interesting for the cortical feed back to the motor units,
because of implications for motor control.

VI. DISCUSSION

We have developed biologically inspired solutions for
tasks which are needed by a robot that should learn by
demonstration and instruction.

The robot sensor inputs to the modular, self-organising
network were partitioned in a way that they match the
three body areas ’leg’, ’head’ and ’hand’. The match is
intuitive, but equivalents of the robotic sensor readings
(like “gripper opening”) are likely to be represented at
various locations on the cortex, as a visual or motor-
sensory perception or distributed in the language system
as a “word web” [11]. The network can in principle
realise the findings of Pulverm̈uller et al. (2000) [13]
on the processing of action verbs with different clusters
representing the specific body parts. The network was able
to identify the semantic features from the actual sensor
readings for the individual action verb classes that were
specific to the appropriate body part. These features were
likely to include the degree of move, whether there was an
object involved and the type and number of motors used.

The performance of the head, leg and hand self-
organising networks are in principle suitable for use in a
robot control system based on language instruction. This is
because it is likely, based on the clear clustering demon-
strated, that the sensor reading input will be accurately
represented and mapped to the appropriate network region.
As this location is the basis for the association between the
action and the word this will contribute to the successful
identification of the action and its description.

A recurrent associator network with distributed coding
was applied to the visually related part of the task. Such
associator networks form the neural basis for multimodal
convergence and at the same time can supply a distributed
representation across modalities as has been proposed
for linguistic structures [12]. Multimodal representations
furthermore allow for mirror neuron-like response proper-
ties which shall emerge in our application within a bio-
mimetic mirror neuron-based robot, MirrorBot.

Two actions, interactively performed with the environ-
ment, shall supply input data to the envisaged mirror
neurons. Since reinforcement learning which we used to
train these actions is attributed to the basal ganglia, the
model extends beyond the cerebral cortex, in a biologically
plausible fashion.

VII. CONCLUSIONS

We have described some research toward integrating
learning by demonstration and learning by instruction
on a neural substrate on a robot. Our approach is not
so much on imitating complex behaviour. Rather our
focus is on testing mirror neuron concepts and other
neurocognitive evidence like the topological arrangement
of actions in order to provide a multimodal integration
of the robots own actions, as well as visual observation
and language instruction. We think that visual observation
and language instructions are complementary forms of
programming robots in a natural manner to perform and
link their performance to their own underlying actions.
An associative neural organisation of the internal memory
may therefore be advantageous for a robot’s learning of
visually described actions or verbally instructed actions.

VIII. ACKNOWLEDGEMENTS

This work is part of the MirrorBot project supported
by the EU in the FET-IST programme under grant IST-
2001-35282.

IX. REFERENCES

[1] H. Asoh, S. Huyamizu, H. Isao, Y. Motomura, S.
Akaho, and T. Matsu, ”Socially embedded learning
of office-conversant robot jijo-2”, inProceedings of
1997 International Joint Conference on Artificial In-
telligence, Nagoa.

[2] A. Billard, ”Imitation: a means to enhance learning of
a synthetic proto-language in an autonomous robot”,
in Dautenhahn, K. and Nehaniv, C. (eds),Imitation in
Animals and Artifacts, Academic Press, pp. 281-311,
2001.

[3] C. Breazeal and B. Scassellati, ”A context-dependent
attention system for a social robot”, inProceedings of
the 1999 Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI99), Stockholm, Sweden,
pp. 1146-1151.

[4] W. Burgard, A.B. Cremers, D. Fox, D. Ḧahnel, G.
Lakemeye, D. Schulz, W. Steiner, and S. Thrun,
”Experiences with an interactive museum tour-guide
robot”, Artificial Intelligence, Vol. 114, No. 1-2, 2000.

[5] Y. Demiris and G. Hayes, ”Imitation as a dual-route
process featuring prediction and learning components:
A biologically plausible computational model”, in
Dautenhahn, K. and Nehaniv, C. (eds),Imitation in
Animals and Artifacts, MIT Press, 2002.

[6] M. Elshaw and S. Wermter, ”A neurocognitive ap-
proach to self-organisation of verb actions”, inPro-
ceedings of 2002 International Joint Conference on
Neural Networks, Honolulu, USA, pp. 24-29.

[7] M. Elshaw, S. Wermter and P. Watt, ”Self-organisation
of language instruction for robot action”, inProceed-
ings of 2003 International Joint Conference on Neural
Networks, Oregon, USA.

[8] V. Gallese and A. Goldman, ”Mirror neurons and
the simulation theory of mind-reading”,Trends in
Cognitive Science, Vol. 2, No. 12, 1998, pp. 493-501.

[9] P. Gaussier, S. Moga, J.P. Banquet and J. Nadel,
”Learning and communication in imitation: An au-
tonomous robot perspective”,IEEE Transaction on
Systems, Man and Cybernetics, Part A: Systems and
Humans, Vol. 31, No. 5, 2001, pp. 431-444.

[10] G. Maistros and G. Hayes, ”An imitation mechanism
for goal-directed actions”, inProceedings of TIMR
2001 - Towards Intelligent Mobile Robots, Manch-
ester.

[11] F. Pulverm̈uller, The neuroscience of language: On
brain circuits of words and serial order, Cambridge
University Press, 2003.

[12] F. Pulverm̈uller, ”Words in the brain’s language”,
Behavioral and Brain Sciences, Vol. 22, No. 2, 1999,
pp. 253-336.

[13] F. Pulverm̈uller, M. Hare and F. Hummel, ”Neuro-
physiological distinction of verb categories”,Cogni-
tive Neuroscience, Vol. 11, No. 12, 2000, pp. 2789-
2793.

[14] G. Rizzolatti and M. Arbib ”Language within our
grasp”,Trends in Neuroscience, Vol. 21, No. 5, 1998,
pp. 188-194.

[15] G. Rizzolatti and G. Luppino, ”Cortical motor sys-
tem”, Neuron, Vol. 31, 2001, pp. 889-901.

[16] G. Rizzolatti, L. Fogassi and V. Gallese, ”Neurophys-
iological mechanisms underlying the understanding
and imitation of action”,Nature Review, Vol. 2, 2001,
pp. 661-670.

[17] S. Thrun, M. Bennewitz, W. Burgard, F. Dellaert, D.
Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte and
D. Schulz, ”MINERVA: A second generation mobile
tour-guide robot”, inProceedings of the 1999 IEEE
International Conference on Robotics and Automation
(ICRA’99).

[18] C. Weber and S. Wermter, ”Object localisation using
laterally connected ”What” and ”Where” associator
networks”, in Proceedings of the 2003 International
Conference on Artificial Neural Networks, Istanbul,
Turkey, pp. 813-820.

[19] C. Weber and S. Wermter, ”Robot Docking with
Neural Vision and Reinforcement”, inProceedings of
the AI-2003, Twenty-third SGAI International Confer-
ence on Innovative Techniques and Applications of
Artificial Intelligence, Cambridge, UK, (accepted).

[20] S. Wermter, J. Austin, D. Willshaw and M. Elshaw,
”Towards novel neuroscience-inspired computing”, in
S. Wermter, J. Austin, and D. Willshaw, (Eds.),Emer-
gent Neural Computational Architectures based on
Neuroscience, Heidelberg, Germany: Springer-Verlag,
2001, pp. 1-19.

[21] S. Wermter and M. Elshaw, ”Learning robot actions
based on self-organising language memory”,Neural
Networks, Vol. 16 pp. 5-6, 2003, pp. 661-669.

[22] S. Wermter and C. Panchev, ”Hybrid preference
machines based on inspiration from neuroscience”,
Cognitive Systems Research, Vol. 3, No. 2, 2002, pp.
255-270.

Learning From Observation and Practice Using Primitives

Darrin C. Bentivegna (darrin@atr.co.jp)1,2, Christopher G. Atkeson (cga@cmu.edu)1,3,
Gordon Cheng (gordon@atr.co.jp)1

1 ATR Computational Neuroscience Laboratories,
Department of Humanoid Robotics and Computational Neuroscience, Kyoto, Japan
2 Georgia Institute of Technology, College of Computing, Atlanta, GA
3 Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, USA

Abstract

This paper focuses on learning from observation us-
ing primitives and improving performance of the task
through practice. We have created a flexible frame-
work that provides structure for this type of research.
A novel algorithm that combines Q-learning and a lo-
cally weighted learning method to improve primitive
selection and sub-goal generation has been created. We
demonstrate this approach applied to the tilt maze task.
Our robot initially learns to perform this task using
learning from observation, and then increases perfor-
mance through practice.

1 Introduction
Behavioral primitives are defined as solutions to small
parts of a task that are combined to complete a task [1,
11]. We are exploring whether learning in terms of
primitives speeds up learning of dynamic tasks. A task
that is to be performed using primitives must first have
a library of primitives to use. Research is being per-
formed on having a robot discover primitives automati-
cally after observing performances of a task [6] or while
operating in a task environment [9]. We will use a man-
ually defined library of primitives in this work, so we
can focus on learning to select primitives and generate
sub-goals.

A software and hardware version of the tilt maze
task, Figure 1, have been created as testbeds in which
to test our primitive learning framework and learning
techniques. In this task, a player tilts a maze to roll a
marble to a goal, avoiding hazards such as holes. The
manually defined library of primitives is (Figure 2):
• Roll To Corner: The marble rolls along a wall and stops in a

corner.
• Roll Off Wall: The ball marble rolls along a wall and then rolls

off the end.
• Guide: The marble rolls without touching a wall.

Figure 1: Software and hardware Marble Maze environ-
ments.

Roll Off WallRoll To Corner

Guide Roll From Wall

Leave Corner

Figure 2: Primitives being explored in the Tilt Maze
Environment.

• Roll From Wall: The marble rolls on a wall and then rolls
away from it.

• Leave Corner: The marble is captured in a corner and then the
board is positioned in preparation to move the marble from the
corner location.

In both hardware and simulation versions of the
tilt maze task the board and marble positions can be
recorded as a human plays the game. The hardware
maze has two motors that control the tilt of the board.
A human can control the motors using knobs that are
connected to encoders. The computer receives the en-
coder signals and creates the proper motor commands.
The board orientation is also measured using two en-
coders. The computer is equipped with a vision system
which estimates the position of the marble on the board

Primitive
Selection

Sub-goal
Generation

Action
Generation

Primitive
Recognition

Training

Learning from
Execution

Figure 3: Our framework.

at 60Hz [5]. In the software version the human con-
trols the board using a mouse. Noise is introduced into
marble velocity calculation in the simulator to make the
outcome of actions less deterministic.

2 Our Framework
Our behavioral framework has three main parts when
operating in the environment using observed informa-
tion (Figure 3) [3]. The first part is a classifier that uses
the current location in state space to choose a behav-
ioral primitive to execute. For tasks that have a set se-
quence of actions, such as dancing, primitive selection
can be done by specifying the sequence of primitives
to be performed [8]. Tung and Kak [13] show how a
planning system can be used to specify the primitive ex-
ecution sequence in an environment where objects are
not moving during training and there is a high probabil-
ity of successful performance of the primitives. Robots
operating in a similar static environment have learned
a primitive execution sequence from observed data [7].
We are interested in dynamic tasks where primitive ex-
ecution sometimes fails, other agents interfere, and a
fixed sequence of primitives is not adequate.

The second part of our framework is a module that
specifies parameters for the behavioral primitive cho-
sen, for example, how fast to go, or how much to turn.
Often, these parameters can be interpreted as behavioral
sub-goals. For the Roll Off Wall primitive, for exam-
ple, this module specifies the velocity at which the mar-
ble will roll off the wall and the tilt of the board at the
end of primitive execution.

The third part of our framework is a module that
specifies the actuator commands to achieve a behavioral
sub-goal, or behavioral target specified by the current
primitive and parameters. There is a separate action
generation module for each type of primitive. For the
tilt maze task, models are created from observing the
human that encode the actions the human takes during

the performance of the primitive to move the environ-
ment from the current state to the sub-goal state. The
models provide a policy that is used by the agent to con-
trol the tilt of the board to perform the selected primitive
type to obtain the desired sub-goal.

The modules described above obtain training data
from observing the task being performed by a human.
The primitive recognition module segments the data
collected from observing the task into the predefined
primitive types. This segmented information is then
structured as needed for the other modules in the sys-
tem.

In learning from observation, the robot’s goal is to
behave like the teacher. No knowledge of higher level
goals or how to improve its performance autonomously
is needed. In order to learn from practice, there must
be additional domain knowledge that provides informa-
tion needed to evaluate progress towards task objec-
tives. The learning from execution module contains
that knowledge and provides feedback to the other mod-
ules so their behavior can be changed.

3 Obtaining Information from
Observing Others

The observed data is continuous and is segmented into
primitives by the primitive recognition module using
critical events. Critical events are easily observable oc-
currences such as marble-wall contacts and the marble
traveling along a wall. The data collected in the sim-
ulator includes the status of ball-wall contacts. This
status provides information on the side of the wall (top,
bottom, left, right) that the marble is currently in con-
tact with. The primitive definition is used to create a
sequence of critical events that allow the primitive to be
observed in the data. TheRoll to Corner primitive, for
example, begins just before the ball makes contact with
a wall that contains a corner and then rolls along that
wall into the corner. An easy way to find an occurrence
of this primitive is to look at each observed data point
and find one where the status indicates that the marble
is in contact with two connecting walls. This is the lo-
cation of the end of the primitive and the state of the
environment, Se, is recorded for this point.

From this ending data point, the primitive recognition
algorithm backs up through the data points and notes
which wall the marble is rolling along. The algorithm
continues to back up through the data searching for the
first occurrence of when the marble is no longer on the
wall. This point is the start of the primitive and the
environment state, Ss, is recorded.

The parameters recorded for all environment states

Figure 4: Left: Path of the marble while observing a
human teacher. Right: The processed path with the
thicker line (red) representing situations in which the
marble is in contact with a wall.

in the tilt maze domain are the marble’s position (x, y),
velocity (V x, V y) and board tilt angles (θx, θy). Using
this obtained information a primitive data point can be
created that represents an action, PT (one of the spec-
ified primitive types), taken by the human while they
were operating in the environment. The goal of per-
forming this primitive can be determined from Se, the
state of the environment at the completion of the prim-
itive performance. This data point encodes what oc-
curred during the observed performance in the follow-
ing way: When the environment was in the state Ss, the
human performed the primitive PT , and at the comple-
tion of that action the environment was in the state Se.

The data collected from the hardware version of the
tilt maze is noisy and does not include the wall contact
status and velocity information provided by the simula-
tor. To reduce the noise in the data it is filtered forward
and backward through a Butterworth filter with a cutoff
of 12Hz. The velocities are then computed using the
frame rate of 60Hz and the wall contacts are inferred
from the observed ball position and board orientation.
Figure 4 shows the raw collected data, left, of an ob-
served game played by a human teacher. The right side
of Figure 4 shows the processed data with a thicker line
(red) showing where appropriate ball-wall contact sta-
tus flags, described above, were set.

After the observed hardware data is processed and
the appropriate status flags are set, it is applied to the
recognition algorithms. The primitives recognized in
the processed data are shown in Figure 5. The appro-
priate primitive symbol shows the beginning position
of each recognized primitive. The line represents the
path the marble took while that primitive was being per-
formed. The primitive ends when the next primitive
symbol is reached or the line ends. No action was clas-
sified in the areas where there are gaps between the end
of one primitive and the start of another.

0 5 10 15 20 25
0

5

10

15

20

Start position

Goal location

+Y

+X

+Y

+X

Figure 5: The primitives recognized while observing
the human during one trial. The symbols show the start
of the primitive as follows: °-Roll To Corner,¤-Roll
Off Wall, ♦-Guide, ∗-Roll FromWall, ×-Leave Cor-
ner.

4 Choosing Primitives and Associ-
ated Parameters

It is the responsibility of the primitive selection module,
Figure 3, to choose the primitive type, based on the cur-
rent state and prior observations of primitives that have
been executed. In our implementation, during training
the context or state in which the human has performed
each primitive is extracted from the observed data, and
during execution is used by a nearest neighbor lookup
process to find the most appropriate primitive type as
follows.

A database is created from the observed data that
contains states of the environment and corresponding
primitive types. A lookup is performed on this data-
base to find the states that are closest to the query state.
The distance of each data point from the query point is
computed as d (x, q) =

qP
j wj · (xj − qj)2, where

x and q are the locations of the data point and the query
point in state space, and w allows each dimension to be
weighted differently. A query to the database is the cur-
rent state of the environment: marble position (x, y),
velocity (V x, V y) and board tilt angles (θx, θy).

A pure nearest neighbor lookup scheme would use
the closest point to select the primitive type. The data
point also contains the observed outcome of the hu-
man’s performance of that primitive, which can be used

as the desired sub-goal and used to compute the para-
meters needed to perform that primitive type.

A more robust approach is to use several nearby
points, and implement some sort of voting scheme.
Multiple data points in the vicinity of the current state
are retrieved from the database. The primitive type (a
discrete choice) can be chosen by selecting the prim-
itive type that occurs most often within the closest N
data points, for example. We are currently selecting the
primitive type indicated by the nearest data point.

4.1 Computing the Desired Sub-goal

Once the primitive type has been chosen the sub-goal
can be computed. It is important to first choose the
primitive type because the sub-goals of different prim-
itive types can not be combined. For example it would
not make sense to use the sub-goal of the Roll Off Wall
primitive with the Roll Into Corner primitive. The
Roll Into Corner primitive will be expecting a corner
for the marble to land in as a sub-goal location and the
Roll Off Wall primitive will be specifying a sub-goal
location at the end of a wall.

The n closest points of the same primitive type are
used to compute the sub-goal using a locally weighted
learning (LWL) model[2]. n has been chosen as 5. A
kernel function, K(d) = exp−αd2 , uses the distance to
compute the weight of each data point. [2] discusses
the effect of other kernel functions on the weighting of
the data points. The output components needed at the
query point are computed using the equation y(q) =

yiK(d(xi,q))
K(d(xi,q)) where i ranges from 1 to n. The values

of the vectorw and αwere set globally and were chosen
by trial and error.

4.2 Results of Learning from Observation

Our learning from observation using primitives frame-
work has been used to create agents that operate in the
hardware and software tilt maze environments. These
agents followed four basic steps: 1. Observe the state
of the environment; 2. Decide what primitive to per-
form; 3. Compute the parameters to use with the se-
lected primitive type. 4. Perform the primitive until it
has terminated. Steps 2 through 4 use the information
obtained from observing the human. The agent’s inten-
tion is to act as the human did, or as the human would,
for the observed state. But if the agent incorrectly pre-
dicts the human’s action, or can not correctly perform
the chosen action, it has no way of knowing if the out-
come is desirable for completing the task. A primitive

Figure 6: Marble paths during hardware maze learning:
Top: The 3 training games. Middle: Performance on 10
games based on learning from observing the 3 training
games. The marble falls into holes 2, 12, and 14. Bot-
tom: Performance on 10 games based on learning from
practice after 30 practice games.

Figure 7: Performance on the software marble maze.
Top solid (red) line: Agent using only observed infor-
mation. Dashed (blue) line: Agent also learning while
practicing. Bottom solid (black) line: Average time of
the three observed games performed by the human.

ends when the marble reaches the chosen sub-goal lo-
cation, rolls outside a bounding box containing the start
and end position, rolls into a hole, or does not make
progress in a timely manner.

Figure 6 shows the performance of the hardware
agent. The top picture shows the path of the marble
during the three observed games. The middle picture
shows the ten paths the agent took while using this in-
formation to control the marble through the maze from
the start position (the middle of the top of the board).
The marble falls into holes 2, 12, and 14 five times and
completes the maze five times.

An agent was also tested in the software environment.
In the software environment play continues, even after
failures, until the end location is reached. If a failure
occurs the marble is re-placed on the board ahead of
the failure location and the player is given a 10 second
penalty on the time that is taken to traverse the maze.
The agent can fail because the marble has fallen into a
hole or does not make progress toward the goal within
15 seconds. This agent observed the human perform
the task three times in the simulator. The human com-
pleted the maze in 23.3, 30.3, and 32.7 seconds, never
fell into a hole and was never penalized for not making
progress. The top solid (red) line on the graph in Figure
7 shows the performance of the agent during 30 trials
in the simulation environment using the observed infor-
mation. Each trial consist of playing three consecutive
games and the graph shows the running average of the
time to complete the three games. The skilled human’s
average of 28.77 seconds is shown by the bottom solid
(black) line in the graph.

These results show the agents quickly learned how to
perform in many parts of the maze from only observ-
ing the human and have approximately the same per-

formance from one trial to the next. Differences be-
tween trials are mostly due to the noise that is inherent
in, or introduced into, the environment. The observed
information provides the agent with a good indication
of what is the right thing to do for a given state, but it
does not have the ability to change its policy from one
trial to the next. A common error made by the agent
is choosing a primitive that it can not perform from the
current state of the environment.

These results also show that the agent’s performance
does not match that of the human and that the agents
can perform better if they had the ability to change their
policy while playing the game. To change its policy, the
agent must have knowledge of the overall task objec-
tives and some way to evaluate its performance toward
the accomplishment of those objectives. Using this in-
formation it must also have a way to change its behavior
as it practices to increase its performance toward com-
pleting the task. The remainder of this paper describes a
method in which the agent can learn, through practice,
to become more skilled at choosing a primitive and sub-
goals for an observed state.

5 Learning to Select Experiences

As described above, the primitive to be performed and
the desired sub-goal is determined by the data points
selected. The results of performing a primitive can be
observed and evaluated at its completion. If the chosen
primitive and sub-goal result in the agent not making
progress in the task, such as the marble falling into a
hole, there must be some way to indicate this so that the
same action is not performed again in the future from
this same state.

To obtain this functionality, the LWL algorithm has
been combined with a Q-learning algorithm [12] to give
the agent an indication of the value of using data points
from an observed state. The basics of the algorithm
are to incorporate a multiplier into the distance function
d(xi,q) in the kernel regression equation in section 4.
The multiplier has the effect of moving the data point
in relation to the query point. A multiplier greater than
1.0 will have the effect of moving the data point further
away from the query point and a multiplier less than 1.0
have the effect of moving the data point closer to the
query point. For example, if the marble falls into a hole
after a selected primitive is performed, the multipliers
associated with the set of data points that were used to
decide on that primitive can be increased. The next time
the agent finds itself in the same state, those data points
will appear further away and will therefore have less or
no effect on the new chosen action.

5.1 Associating Multipliers With Data
Points

There is a problem with this naive approach of only
associating one multiplier to each data point. For one
query point, the chosen data points may be inappropri-
ate. But from a different query point, these data points
may work very well. If the same multiplier is used at
both query points, the system will not be able to distin-
guish between these two situations. From the first query
point the agent may choose a more desirable action, but
from the second query point the agent may choose a less
desirable action. To overcome this limitation our algo-
rithm provides the ability to use a different multiplier
for different query points around the data point. Obvi-
ously there cannot be an infinite number of multipliers
so the state space is quantized around a small area of
the state space in the vicinity of the data point. In the
tilt maze environment, for example, the state space has
six dimensions. Each dimension is quantized into five
cells. Therefore each data point in the database has a
table of size 56. For any query point in the state space,
its position relative to the data point is used to find the
cell that is associated with that query point.

Only a small fraction of the cells are visited. There-
fore the tables are stored as sparse arrays and only when
the value in a cell is initially updated is the cell actually
created. For example, if a set of chosen data points pro-
vides a good result, those data points will be chosen
every time for that environment state. Other data points
in the area will not be visited and therefore all the cells
that are associated with those data points will not be
created.

5.2 Using the Multipliers When Selecting
Primitives and Sub-goals

In the tilt maze implementation the numbers in the cells
encode the value of using that data point in relation to
the query point. When selecting the nearest data points
from the data base, the following equation is now used
to provide the distance between the data point xi and
the query point q: d̂ = d(xi,q)·f(xi,q). The function
f(xi,q) finds the number in the cell of the data point xi
associated with this query point q and uses that number
to compute a multiplier.

The multiplier returned by the function f(xi,q) has a
direct impact on the apparent distance of the data point
in relation to the query point. Section 4.1 shows how
multiple data points of the same type are combined to
compute the parameters. The new distance d̂ is now
used to compute the parameters in place of d(xi,q) in
the LWL algorithm described previously.

Currently f(xi,q) is C/V where C is the value that
the cells are initialized to and V is the current value
in the cell. As the cell value is increased, f(xi,q)
decreases and the data point’s apparent distance is re-
duced. In this implementation V must be restricted
from reaching 0.

5.3 Updating Cell Values
When the results of performing a primitive are ob-
served, the values associated with the data points used
to select the primitive type and parameters can be ad-
justed to reflect the performance. If the values are set
in isolation for each primitive performed, the agent will
not consider what can be done from the state the envi-
ronment is left in when the primitive completes. The
agent may make large progress during a primitive, for
example, but when it completes it leaves the marble
heading very quickly towards a hole. There are no pos-
sible actions that can now be taken to recover and the
marble will always fall into the hole. There must be
some way to propagate this information back to previ-
ous primitive selections.

The Q-learning function lends itself very well to up-
dating the values while taking into account the result
of actions taken in the future. The Q values in the Q-
learning algorithm, Q(s, a), are normally used to pro-
vide the expected future reward that can be obtained by
taking action a from state s. The results are observed
when an action is taken and the values are updated. Re-
wards are given to guide the values to provide the de-
sired outcome. In our implementation, the Q values,
Q(q,xm), are located in the cells of each data point
and provide an indication of the expected reward that
can be obtained by selecting data point xm from query
point q. The value V , described in the previous section,
becomes the Q value. Since the selected data points
and their distance from the query point determine the
action that is taken, the Q values have a direct impact
on manipulating the action that is chosen at query point
q.

The cells are initialized with a constant, C, and then
updated using a modified version of the Q-learning
function. Since there areN data points that are used, N
Q-values must be updated at each evaluation step For
each data point chosen, xm, m = 1, N , the Q-values
Qt(qt,xm) are updated as follows:

Qt(qt,xm) = Qt(qt,xm) +

α ·
·
r +Qt+1(qt+1, x̂m)−

Qt(qt,xm)

¸
• Qt() represents the Q-value of the data points that were chosen

at time t.

• α is the learning rate, since multiple data points are used, the
distance given by K(d̂(xi,qt))

N
j=1K(d̂(xj ,qt))

is used as the learning

rate. The distance returned by this equation for each data point
used is between 0 and 1.0 and distances of all the points used
add up to 1.0. This has the effect of having the points that con-
tributed the most toward selecting the primitive and parameters
having the highest learning rate.

• r is the reward observed after the primitive has been performed.
• Qt+1(qt+1, x̂) is the future reward that can be expected

from the new state qt+1 and selecting the data points
x̂m at the next time step. This value is given by:

N
i=1 Qt+1(qt+1, x̂i) · K(d̂(x̂i,qt+1))

N
j=1K(d̂(x̂j ,qt+1))

A primitive ends when the sub-goal location is
reached, if the marble rolls outside a bounding box that
contains the start and end location, or if there are small
or no changes in the environment state during the exe-
cution of the primitive. When the primitive begins and
ends the state of the environment is recorded and re-
wards are assigned to communicate to the agent which
actions are most effective in completing the task. In
the tilt maze task the agent receives positive rewards for
making progress towards the goal location and negative
rewards for taking up time.

5.4 Result of Learning Through Practice
The same agents described in Section 4.2 are now given
the ability to change their policy while operating in the
environment. The bottom picture in Figure 6 shows the
path of the marble for ten games played by the hard-
ware agent after it has practiced for 30 games. This
agent has completed the maze ten consecutive times
without falling into a hole. The dashed (blue) line on
the graph in Figure 7 shows the performance of the soft-
ware agent playing the game with the ability to update
its primitive and parameter selection policy. Again the
graph shows 30 trials with each trial being the average
of three games. This agent immediately decreased the
time it takes to complete the maze and its performance
is as good or better than that of the observed human’s
average of 28.77 seconds.

6 Discussion
In learning from observation, the performance of the
learning agent is dependent on the performance of the
observed agent. The actions available to the learning
agent are limited by what is observed. The goal of this
research is not to create agents that operate optimally in
the environment, but to create agents that can learn to
perform proficiently in a short time and have the ability
to increase their performance through practice. Even
though the agent’s first attempt is to perform the same

actions as the observed teacher, it is not a requirement
to do so. If the agent, while practicing, performs an
action that was not previously observed, but moves the
marble through the maze very quickly, the agent will try
to perform the same action in the future. This can be
seen in Figure 6 around hole 14. In the three observed
games the human maneuvers the marble below hole 14.
During practice, middle picture, the agent falls into hole
14 and learns that it can more easily maneuver the mar-
ble around the top of this hole. The human player did
not know this action was possible until they observed
the action discovered by the agent.

The size of the cells associated with a data point were
chosen manually through trial and error with the cells
near the center being smaller then those further away.
Using this system assumes that the data points will be
chosen close to their origin in the state space and that
by making the closer cells smaller will allow a finer dis-
tinction of the data point’s effect on the outcome when
chosen in this area. But if the data point is chosen far
from its origin, it will not be possible to make fine dis-
tinctions. There is a trade-off between generalization,
learning speed, and ability to make fine distinctions.

From the results of this initial implementation it can
be seen that choosing a Q-value in relation to the query
point is very useful. But there needs to be simpler
and more effective methods to associate Q-values with
a data point. We are currently exploring a method that
encodes the value function in a locally weighted pro-
jection regression (LWPR) model [15] that is created
for each data point. The LWPR approach was cho-
sen because new data can be added very easily and the
new information is available for use immediately with-
out having to go off line to train the model on the new
information. The problem with most locally weighted
learning methods is that each data point added to the
model increases the time needed to compute a solution
[2]. LWPR maintains a reasonably stable lookup time
so data may continuously be added. It is a nonparamet-
ric local learning system that uses locally linear models,
spanned by a small number of univariate regressions in
selected directions in the input space. LWPR is proving
its usefulness in such tasks as inverse-dynamics learn-
ing [10] and inverse kinematics learning [14].

7 Conclusions
Choosing actions to perform when operating in a dy-
namic environment, such as the Tilt Maze environment
described in this paper, is a difficult task. Because the
state space is large and continuous, expecting to learn
entirely from random actions is not realistic. An ini-
tial policy can be created using knowledge of primitive

actions performed in the environment and information
obtained from observing others. Within our research
we find that the performance of the initial policy is quite
high but there is still room for improvement. This initial
policy provides a very good starting point from which
to practice to further increase competence at the task.

Our learning from observation using primitives
framework described in Section 2 provides flexibility
in conducting research in learning from observing oth-
ers. The framework uses the observed data in a system-
atic way, and provides the ability to learn while prac-
ticing. The organization of the data allows lookups to
be performed using LWL techniques. The algorithm
described in Section 5 is effective for updating the pol-
icy used during primitive selection and sub-goal gener-
ation.

Agents using this framework have learned an initial
policy to use in the hardware and software Tilt Maze en-
vironments. The agents can traverse most of the maze
after only observing a few games performed by a hu-
man. The agents go on to increase performance at the
task by updating their primitive and parameter selection
policy while practicing the task. Further testing of our
learning from execution method is being conducted to
gain a better understanding of the effect the various pa-
rameters have on the learning rate. Learning methods
that reduce the number of parameters are also being ex-
plored. We are also extending this research to an Air
Hockey environment [4].

8 Acknowledgments

Support for all authors was provided by ATR Computational Neuro-
science Laboratories, Department of Humanoid Robotics and Com-
putational Neuroscience, and the Communications Research Labo-
ratory (CRL). It was also supported in part by the National Science
Foundation Award 0325383.

References
[1] R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge,

MA, 1998.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted
learning. Artificial Intelligence Review, 11:11–73, 1997.

[3] D. C. Bentivegna and C. G. Atkeson. A framework for learn-
ing from observation using primitives. In Proceedings of
the RoboCup 2002 International Symposium., Fukuoka, Japan,
2002.

[4] D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning
from observation and practice at the action generation level.
In IEEE-RAS International Conference on Humanoid Robotics
(Humanoids 2003), Karlsruhe, Germany, 2003.

[5] D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng. Hu-
manoid robot learning and game playing using pc-based vision.

In Proceedings of the 2002 IEEE/RSJ International Conference
on Intelligent Robots and Systems., Switzerland, 2002.

[6] A. Fod, M. Mataric, and O. Jenkins. Automated derivation
of primitives for movement classification. In First IEEE-RAS
International Conference on Humanoid Robotics (Humanoids-
2000), MIT, Cambridge, MA, 2000.

[7] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching:
Extracting reusable task knowledge from visual observation of
human performance. In IEEE Transactions on Robotics and
Automation, pages 799–822, 1994.

[8] M. J. Mataric, M. Williamson, J. Demiris, and A. Mohan.
Behavior-based primitives for articulated control. In Fifth Inter-
national Conference on Simulation of Adaptive Behavior (SAB-
98), pages 165–170. MIT Press, 1998.

[9] A. McGovern and A. G. Barto. Automatic discovery of subgoals
in reinforcement learning using diverse density. In Proceed-
ings of the 18th International Conference on Machine Learning,
2001.

[10] S. Schaal, C. Atkeson, and S. Vijayakumar. Scalable locally
weighted statistical techniques for real time robot learning. In
Applied Intelligence - Special issue on Scalable Robotic Appli-
cations of Neural Networks, volume 17, pages 49–60, 2002.

[11] R. A. Schmidt. Motor Learning and Control. Human Kinetics
Publishers, Champaign, IL, 1988.

[12] R. Sutton and A. Barto. Reinforcment Learning: An Introduc-
tion. MIT Press, 1998.

[13] C. Tung and A. Kak. Automatic learning of assembly tasks
using a dataglove system. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, vol-
ume 1, 1995.

[14] S. Vijayakumar, A. DŚouza, T. Shibata, J. Conradt, and
S. Schaal. Statistical learning for humanoid robots. In Au-
tonomous Robot, volume 12, pages 55–69, 2002.

[15] S. Vijayakumar and S. Schaal. Locally weighted projection re-
gression: An O(n) algorithm for incremental real time learning
in high dimensional spaces. In Proceedings of the Seventeenth
International Conference on Machine Learning (ICML 2000),
Stanford, CA, 2000.

Teaching Bayesian Behaviours to Video Game Characters

Ronan Le Hy Anthony Arrigoni Pierre Bessière Olivier Lebeltel

GRAVIR/IMAG
INRIA Rhône-Alpes, ZIRST
38330 Montbonnot, France

lehy@imag.fr

Abstract— This article exploresan application of Bayesian
Programming to behaviours for synthetic video gameschar-
acters.We addressthe problem of real-time reactive selection
of elementary behaviours for an agent playing a first person
shooter game. We show how Bayesian Programming can
lead to condensedand easier formalisation of finite state
machine-like behaviour selection,and lend itself to learning
by imitation, in a fully transparent way for the player.

I. INTRODUCTION

Today’s video games feature synthetic characters in-
volved in complex interactions with human players. As
John Laird sums it up [10], a synthetic character may have
one of many different roles: tactical enemy, partner for
the human, strategic opponent, simple unit amongst many,
commenter... In all of these cases, the game developer’s
ultimate objective is for the synthetic character to act like
a human player.

We are interested in a particular type of synthetic
character, which we call a bot in the rest of this paper.
It is a player for a first person shooter game named
Unreal Tournament augmented with the Gamebots control
framework [6] (see figure 1). This framework provides a
tridimensional environment in which players have to fight
each other, taking advantage of resources such as weapons
and health bonuses available in the arena. We believe, with
Laird [10], [8], that this kind of computer game provides
a challenging ground for the development of human-level
AI.

After listing our practical objectives, we will present our
bayesian model. We will show how we use it to specify by
hand a behaviour, and how we use it to learn a behaviour.
We will tackle learning by example using a high-level
interface, and then the natural controls of the game. We
will show that it is possible to map the player’s actions
onto bot states, and use this reconstruction to learn our
model. Finally, we will come back to our objectives as a
conclusion.

A. Objectives

Our core objective is to propose an efficient way to
specify a behaviour for our bot. This can be broken down
into several criteria that hold either for the developers or
for the player.

Fig. 1. Unreal Tournament and the Gamebots environment.

1) Development Team’s Viewpoint:
a) Programming efficiency: One crucial concern for

the programmer is productivity: he needs both expressivity
and simplicity of the behaviour programming system.

b) Limited computation requirements: The process-
ing time alloted to AI in games is typically between 10%
and 20% of the total processing time [13]; therefore it is
important for the behaviour system to be light in terms of
computation time.

c) Design / development separation: The industrial
development scheme often draws a separation between
game designers and engine developers. The system should
allow the designers to describe behaviours at a high
conceptual level, without any knowledge of the engine’s
internals.

d) Behaviour tunability: The ability to program a
variety of different behaviours, and to adjust each of
them without having to modify the system’s back end is
essential to the designer.

2) Player’s Viewpoint:
a) “Humanness”: As defined by Laird [7], this

implies the illusion of spatial reasoning, memory, common
sense reasoning, using goals, tactics, planning, commu-
nication and coordination, adaptation, unpredictability...
One important criterion for the player is that the synthetic
character does not cheat; its perceptions and actions should
be as much as possible like a human player’s.

b) Behaviour learning: This feature is gradually
finding its place in modern games: the player can adjust

its synthetic partners’ behaviour. The behaviour system
should therefore support learning.

B. Technical Framework

As mentioned earlier, we used the Gamebots framework
to conduct our experiments. This implies that our bot com-
municates with Unreal Tournament via a text protocol on a
Unix socket. It receives messages covering its perceptions:
its position and speed, health level, ammunition, visible
opponents and objects, etc. In return, it sends actions:
move to a given point, rotate, change weapon...

The environment is perceived by the bot as a graph, of
which nodes are characteristic points of the topology and
various objects. The bot perceives only what is in its field
of vision.

As our objectives and framework have been exposed,
we shall now proceed to explicit our model of behaviour
selection, and discuss its interest for the specification and
learning of behaviours.

II. BAYESIAN MODEL

Before examining our particular bot model, we review
in the next section the principles of Bayesian Program-
ming [11].

A. Bayesian Programming

Rational reasoning with incomplete and uncertain in-
formation is quite a challenge. Bayesian Programming
addresses this challenge, and relies upon a well estab-
lished formal theory: the probability theory [4]. As a
modeling tool, it encompasses the framework of Bayesian
Networks [5].

Program















Description







Relevant V ariables

Decomposition

Parametric Forms

Question
Fig. 2. structure of a Bayesian Program

In our framework, a Bayesian Program is made of two
parts: a description and a question.

The description can be viewed as a knowledge base
containing the a priori information available about the
problem at hand. It is essentially a joint probability distri-
bution. The description is made up of three components: 1)
A set of relevant variables on which the joint distribution
is defined. Typically, variables are motor, sensory or
internal. 2) A decomposition of the joint distribution as
a product of simpler terms. It is obtained by applying
Bayes theorem and taking advantage of the conditional
independencies that may exist between variables. 3) The
parametric forms assigned to each of the terms appearing
in the decomposition (they are required to compute the
joint distribution).

Given a distribution, it is possible to ask questions.
Questions are obtained first by partitioning the set of vari-
ables into three sets: (1) Searched: the searched variables,
(2) Known: the known variables, and (3) Free: the free
variables. A question is then defined as the distribution:

P (Searched | Known) (1)

Given the description, it is always possible to answer
a question, i.e. to compute the probability distribution
P (Searched | Known). To do so, the following general
inference is used:

P (Searched | Known)

=

∑

Free
P (Searched Free Known)

P (Known)

=
1

Z
×

∑

Free

P (Searched Free Known) (2)

where Z is a normalisation term.
As such, the inference is computationally expensive

(Bayesian inference in general has been shown to be NP-
Hard [2]). A symbolic simplification phase can reduce
drastically the number of sums necessary to compute
a given distribution. However the decomposition of the
preliminary knowledge, which expresses the conditional
independencies of variables, still plays a crucial role in
keeping the computation tractable.

B. Modelling our Bot

1) Bayesian Program: Our particular bot behaviour
uses the following bayesian program.

a) Relevant Variables:

St: the bot’s state at time t. One of Attack, Search-
Weapon, SearchHealth, Explore, Flee, Detect-
Danger. These states correspond to elementary
behaviours, in our example programmed in a
classic procedural fashion.

St+1: the bot’s state at time t + 1.
H : the bot’s health level at t.
W : the bot’s weapon at t.
OW : the opponent’s weapon at t.
HN : indicates whether a noise has been heard recently

at t.
NE : the number of close enemies at t.
PW : indicates whether a weapon is close at t.
PH : indicate whether a health pack is close at t.

The elementary motor commands of the bot are the
values of variables St+1 and St. They include an attack
behaviour, in which the bot shoots at an opponent while
keeping a distance to him and strafing; a fleeing behaviour,
which consists in trying to escape (locally) an opponent;
behaviours to fetch a weapon or a health bonus the bot
noticed in its environment; a behaviour to detect possible

opponents outside the current field of view of the bot;
and behaviour to navigate around the environment and
discover unexplored parts of it.

b) Decomposition: The joint distribution is decom-
posed as:

P (St St+1 H W OW HN NE PW PH)
= P (St)

P (St+1|St)
P (H |St+1)
P (W |St+1)
P (OW |St+1)
P (HN |St+1)
P (NE |St+1)
P (PW |St+1)
P (PH |St+1)

To write the above, we make the hypothesis that know-
ing St+1, any sensory variable is independent to each
other sensory variable. Although it may seem to reduce
the expressivity of our model, it allows to specify it in a
very condensed way; this point will be emphasised upon
in section II-B.2.

c) Parametric Forms:

• P (St): unknown (unspecified)
• P (St+1|St): table (this table will be defined in sec-

tion II-B.2)
• P (Sensor |St+1) with Sensor each of the sensory

variables: tables
d) Identification: Identification of the parametric

forms is done either by manually writing the tables, or
by learning them. We describe these two processes in
sections III (Specifying a Behaviour) and IV (Learning
a Behaviour).

e) Question: Every time our bot has to take a deci-
sion, the question we ask to our model is:

P (St+1|St H W OW HN NE PW PH)

Knowing the current state and the values of the sensors,
we want to know the new state the bot should switch into.
This question leads a probability distribution, on which
we draw a value to decide the actual new state. This state
translates directly into an elementary behaviour which is
applied to the bot.

2) Inverse Programming: We shall now emphasise the
peculiarities of our method to specify behaviours, com-
pared to one using simple finite state machines (FSMs).
The problem we address is, knowing the current state and
the sensors’ values, to determine the next state: this is
actually naturally accomplished using an FSM.

Let us consider the case where each of our n sensory
variables has mi (1 ≤ i ≤ n) possible values.

In an FSM modelling a behaviour [3], [14], we would
have to specify, for each state, a transition to each state, in
the form of a logical condition on the sensory variables.

It means that the programmer has to discriminate
amongst the

∏

i
mi possible sensory combinations to

describe the state transitions. Not only does this pose the
difficult problem of determining the appropriate transi-
tions, but it raises the question of convenient formalised
representation. This approach could actually lead to sev-
eral implementations, but will possibly [1] result in a script
resembling the following:

if St =A and W =None and OW =None then
if HN =False and NE!=None

or NE =TwoOrMore then
St+1 ← F

else if HN =True or NE =One

and PW =True then
St+1 ← A

else ...

This kind of script is hard to write and hard to maintain.
In contrast, our approach consists in giving, for each

sensory variable, for each possible state, a distribution (i.e.
mi numbers summing to 1). In practice, we write tables
like table 3, which represents P (H |St+1). Values of H are
enumerated in the first column, those of St+1 in the first
line; cells marked x are computed so that each column
sums to 1.

Moreover, instead of specifying the conditions that
make the bot switch from one state to another, we specify
the (probability distribution of the) sensors’ values when
the bot goes into a given state. This way of specifying
a sensor under the hypothesis that we know the state is
what makes us call our method “inverse programming”.

Although somewhat confusing at first, this is the core
advantage of our way to specify a behaviour. As a matter
of fact, we have to describe separately the influence of
each sensor on the bot’s state, thereby reducing drasti-
cally the quantity of needed information. Furthermore, it
becomes very easy to incorporate a new sensory variable
into our model: it just requires to write an additional table,
without modifying the existing ones.

Finally, the number of figures we need in order to
specify a behaviour is s2 + snm, where s is the number
of states, n the number of sensory variables, and m

the average number of possible values for the sensory
variables. It is therefore linear in the number of variables
(assuming m constant).

Fig. 3. P (H |St+1)

III. SPECIFYING A BEHAVIOUR

A. Basic specification

A behaviour can be specified by writing the tables
corresponding to P (St+1|St) and P (Sensor |St+1) (for
each sensory variable). Let us consider for instance table
3, which gives the probability distribution for H knowing
St+1. We read the first column this way: given the fact
that the bot is going to be in state Attack, we know that
it has a very low probability (0.001) to have a low health
level, a medium probability (0.1) to have a medium health
level, and a strong chance (x = 1− 0.001− 0.1) to have
a high health level.

This form of specification allows us to formalise con-
veniently the constraints we want to impose on the be-
haviour, in a condensed format, and separately on each
sensory variable. For instance, table 3 formalises the
relation of the bot’s health level to its state: if it starts
attacking, then its health is rather high; if it starts searching
for a health pack, then its health is very probably low; if
it starts fleeing, then its health is probably rather low, but
with a high degree of uncertainty.

All tables on the sensory variables are built on the same
pattern; the one giving P (St+1|St) (see table 4) is special.
It gives some sort of basic transition table; i.e. it answers
in a probabilistic way the question: knowing nothing but
the current state, what will be the next state?

Fig. 4. P (St+1|St)

The answer our sample table gives is: tend to stay in
your current state (notice the xs on the diagonal) or switch
to attack (notice the xs on the first line) with the same
high probability; switch to other states with a very low
probability (10−5 – which in our example we found to be
representative of “very low”).

Again, this makes a parallel with an FSM with proba-
bilistic transitions: with our transition table P (St+1|St),
we give a basic automaton upon which we build our
behaviour by fusing the tendencies given separately on
each sensory variable.

B. Tuning the behaviour

Tuning our behaviour amounts to tuning our probability
distributions. For instance, to create a berserk character
that is insensible to its health level, we put only uni-
form distributions (i.e. in our notation, only xs) in table

P (H |St+1). A berserk is also very aggressive, so the
transition table we proposed in table 4 is quite adapted.
A transition table for a more prudent character would not
have those xs on the first line, so that the state A would
not be particular.

To create a unique behaviour, we therefore have to
review all our tables, i.e. the influence of each sensory
variable on the character according to the said behaviour.

C. Results

Several observations can be made when out bots are
playing the game. The first is that their behaviour corre-
sponds to what we want: the behaviour switching occurs
reasonably, given the evolution of the sensory variables.
The second is that they can’t compete with humans
playing the game. Noting this allows to pinpoint the fact
that our method’s interest mostly resides in the gain of ease
and power in the design of behaviours. It does not pretend
to overcome the limitations of the elementary behaviours
we are switching between, nor can it do more than what
the Gamebots framework allow, in terms of perception and
action. Therefore, what we aimed for, and finally obtained,
is a reliable, practical and efficient way to specify the real-
time selection of elementary behaviours.

Our attempt to tune the behaviour shows that the differ-
ences between our ’reasonable’ bot and our ’aggressive’
bot are visible, and correspond to what we tried to specify
in the tables. For instance, the aggressive bot is excited by
the presence of several opponents, whereas this situation
repels the reasonable bot; and the aggressive bot is not
discouraged to attack when its health level goes low.

IV. LEARNING A BEHAVIOUR

Our goal now is to teach the bot a behaviour, instead
of specifying all the probability distributions by hand. It
requires to be able to measure at each instant sensory and
motor variables of the controlled bot. In particular, it is
necessary to determine the state St at each instant. It can
be done by letting the player specify it directly in real
time, or by inferring it from his natural actions in the
game.

A. Selecting behaviours

This form of learning by example presents a simple
interface to the player, shown on figure 5.

The player controls in real time the elementary be-
haviour that the bot executes, by using buttons that allow
to switch to each state with a mouse click. In addition
to the ordinary Unreal Tournament window on the right,
part of the internal state of the bot is summed up in the
learning interface on the left.

Fig. 5. Interface used to teach the bot: on the right is the normal
Unreal Tournament window showing our bot; on the left is our interface
to control the bot.

B. Recognising behaviours

While the previous method of teaching a behaviour
works, it deprives the player of the interface he is used to;
his perceptions and motor capabilities are mostly adjusted
to the bot’s. In order to solve this problem, it is possible
to give the player the natural interface of the game, and
try to recognise in real time the behaviour he is following.

To recognise the human’s behaviour from his low-level
actions, we use a heuristic programmed in a classical im-
perative fashion. It involves identifying each behaviour’s
critical variables (for instance, attack is characterised by
distance and speed of the bot to characters in the centre
of his field of view), and triggering recognition at several
timescales.

Behaviours are recognised after a delay (back-
propagating a state to past, yet unrecognised events, thanks
to a critical event like picking a health bonus), after
examining critical variables over a fixed period (to identify
danger checking behaviours, for instance), or immediately
on special events (like attacking and fleeing). Exploration
is a default state, when no other seems to match the
observations.

We do this recognition off-line, on data representing ten
to fifteen minutes of game-play; processing this data and
producing the tables that represent our behaviour takes
five to ten seconds.

C. Results

recognition learned, aggressive 4.4
recognition learned, cautious 13.9
selection learned, aggressive 45.7

manual specification, aggressive 8.0
manual specification, cautious 12.2
manual specification, uniform 43.2

native (level 3/8) UT bot 11.0

Fig. 6. Performance comparison on learned, hand-specified, and native
Unreal bots (lower is better)

Table on figure 6 shows a comparison between different
specification methods. Numbers are the average difference
to the winning bot, over ten games won by the first bot

reaching 100 kills. Our bots compare well to the native UT
bot, whose skill corresponds to an average human player.
Aggressive bots (gray lines) perform significantly better,
and learning by recognition does much better than learning
by selection, along with hand specification.

Lessons from these results can be summed up in the
following way (we will refer here to the table on figure 7,
which is the same as figure 3, but learnt by recognition):

1) learnt tables share common aspects with
hand-written tables (as for the transition table
P (St+1|St)); for instance,in the fleeing state F ,
health level i̋s much more probably low or average
than high;

2) differences in behaviour of the teacher influence
the learnt behaviour: aggressivity (or the lack of
it) is found in the learnt behaviour, and translates
into performance variations (in our setup, aggressive
behaviours seem to be more successful);

3) nevertheless, differences between hand-specified
and learnt models are noticeable; they can explained
by:

a) player-specific behaviours: humans almost al-
ways attack and do not retreat; another ex-
ample is the low probability of P (H =
High|St+1 = SW) in the learnt table (dark
gray cell on figure 7): it can be explained
by the fact that human players give a much
higher priority to searching a good weapon
over searching for health bonuses;

b) additional information: some parts of the hand-
written tables are specified as uniform (as a
result from a refusal or impossibility to specify
theoretically a link between two events, like
the value of the opponent’s weapon knowing
that the bot is exploring), whereas their learnt
counterparts include information;

c) perceptive differences: a human player and a
bot have a different perception of sound (the
human perceives direction combined with the
origin of sound, like an impact on a wall or
the sound of the shooting itself, whereas the
bot senses only direction);

d) bias induced by data quantity: a human player
has almost always an average health level
(which is due to a poor choice of discretisation
for the health level variable), which explains
higher values in the learnt table in figure 7
(line of light gray cells);

4) our learning methods lead to functioning behaviours;
learning using behaviour recognition scores best,
and allows to reach the level of an average native
UT bot.

Fig. 7. learnt P (H |St+1)

V. DISCUSSION

A. Evaluation

We shall now come back to the objectives we listed at
the beginning, to try and assess our method in practical
terms.

1) Development Team’s Viewpoint:
a) Programming efficiency: Our method of be-

haviour design relies upon a clear theoretical ground.
Programming the basic model can use a generic bayesian
programming library, and needs afterwards little more than
the translation into C++ (for instance) of the mathematical
model. Design is really expressed in terms of practical
questions to the expertise of the designer, like “if the
bot is attacking, how high is his health level?”; it does
not require a preliminary formalisation of the expected
behaviour to program. Moreover, in our model behaviours
are data (our tables). It means that they can easily be
loaded and saved while the behaviour is running, or
exchanged amongst a community of players or developers.

b) Limited computation requirements: The computa-
tion time needed for a decision under our model can be
shown to be linear in both the number of sensory variables
and the number of states.

c) Design / Development separation: Development
amounts to incorporating the bayesian framework into
the control architecture, and establishing the bayesian
model; design consists in establishing relations between
the variables in the form of probability distributions. A
designer really has to know about what the bot should do,
but does not need any knowledge of the implementation
details; he needs but a light background on probabilities,
and no scripting or programming at all.

d) Behaviour tunability: We have seen that our way
of specifying behaviours gives a natural way to formalise
human expertise about behaviours, and that it implies
that tuning a behaviour is possible, as they are expressed
in natural terms and not in artificial logical or scripting
terms. Moreover, the quantity of data needed to describe
a behaviour is kept small compared to an FSM, and this
helps keeping the analysis and control of a behaviour
tractable for the designer.

2) Player’s Viewpoint:
a) “Humanness”: This criterion is hard to assess,

although it can be done [9] in ways comparable to the
Turing test [12]. Our method of specifying a behaviour

helps the designer translate his expertise easily, and there-
fore gives him a chance to build a believable bot.

b) Behaviour learning: We have seen that learning
under our model is natural: it amounts to measuring
frequencies. This is a chance for the player to teach its
teammate bots how to play. Recognising high-level states
on the basis of low-level commands is possible, and allows
a player to adjust a behaviour completely transparently,
with the original controls of the game.

B. Perspectives

We have shown a way to specify FSM-like action
selection models for virtual robots, and to learn these
models by example. The recognition involved in learning
from the natural actions of a player in the game remains a
classicaly programmed heuristic; an obvious perspective is
to formalise it within the bayesian framework, in order to
perform probabilistic behaviour recognition. This would
grant more adaptability to variations in the behaviour
model.

Acknowledgments

This work was partially funded by the ROBEA-CNRS
project ”Modeles Bayesiens pour la Generation de Mou-
vement”, the BIBA project funded by the European Com-
munity, and a grant from the French Ministry of Research.

VI. REFERENCES

[1] Unrealscript language reference. Website.
http://unreal.epicgames.com/UnrealScript.htm.

[2] G. Cooper. The computational complexity of prob-
abilistic inference using bayesian belief network.
Artificial Intelligence, 42(2-3), 1990.

[3] E. Dysband. A finite-state machine class. In
M. Deloura, editor, Game Programming Gems, pages
237–248. Charles River Media, 2000.

[4] E. T. Jaynes. Probability theory: the logic of
science. Unprinted book, available on-line at
http://bayes.wustl.edu/, 1995.

[5] M. Jordan, editor. Learning in Graphical Models.
MIT Press, 1998.

[6] G. A. Kaminka, M. Veloso, S. Schaffer, C. Sollitto,
R. Adobbati, Andrew N. Marshal, S. Scholer, An-
drew, and S. Tejada. Gamebots: the ever-challenging
multi-agent research test-bed. Communications of the
ACM, January 2002.

[7] J. Laird. Design goals for autonomous synthetic
characters. Draft, 2000.

[8] J. E. Laird. It knows what you’re going to do :
Adding anticipation to a quakebot. In AAAI Spring
Symposium Technical Report, March 2000.

[9] J. E. Laird and J. C. Duchi. Creating human-like
synthetic characters with multiple skill-levels : A
case study using the Soar quakebot. In AAAI Fall
Symposium Technical Report, August 2000.

[10] J. E. Laird and M. Van Lent. Human-level AI’s killer
application : Interactive computer games. In AAAI
Fall Symposium Technical Report, August 2000.

[11] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer.
Bayesian Robot Programming. Autonomous Robots,
2003. In press.

[12] A. M. Turing. Computing machinery and intelli-
gence. Mind, 59(236):433–460, 1950.

[13] S. Woodcock. Game AI : The state of the industry
2000-2001. Game Developer, August 2001.

[14] M. Zarozinski. Imploding combinatorial explosion
in a fuzzy system. In M. Deloura, editor, Game
Programming Gems 2, pages 342–350. Charles River
Media, 2001.

TowardsRobot IntermodalMatchingUsing Spiking Neurons

EmachiEneje& YiannisDemiris
Intelligent & Interactive SystemsGroup
Departmentof ElectricalandElectronic

Engineering
Imperial College London

Exhibition Road,London,SW7 2BT
UK

Abstract— For a robot to successfullylearn fr om demon-
stration it must possesthe ability to reproducethe actionsof
a teacher. For this to happen,the robot must generatemotor
signalsto match its proprioceptively perceived statewith that
of the visually perceived state of a teacher. In this paper
we describe a real time matching model at a neural level
of description. Experimental results fr om matching of arm
movements,using dynamically simulated articulated robots,
are presented.

I . INTRODUCTION

It is beneficial for biological organismsto copy the
actions of their conspecifics,as this greatly accelerates
their cognitive and sensorimotordevelopment.Learning
by imitation has recently attractedthat attention of the
roboticist(seereview in [5]), sincedevising mechanisms
that allow robots to imitate will open possibilities for
learning through demonstration.Its beensuggestedthat
imitation occurson several different levels [10].
1) Stimuli level imitation, that is reproducingexactcopies
of perceived stimuli. 2) Functional level imitation, and
3) at a social level imitation, this is thought to be roots
of empathy. Viewing imitation at the stimuli level, a
questionremainsasto how it is possibleto matchphysical
movementswithout the use of the visual modality in
generatinga matching evaluation critic in perceptually
opaque cases, for example facial gesture imitation.
This type of imitation raises a couple of interesting
questions.First, the metrics used to detect cross-modal
equivalencesin humanacts.Second,theprocessby which
they correct their imitative errors [3]. Investigationsby
Meltzoff [2], [3] focus on this kind of imitation process.
His experimentsin facial gestureimitation suggeststhat
infantsarecapableof imitating, even hoursafter birth. In
accountingfor his finding, Meltzoff proposedan Active
Intermodal Matching (AIM) hypothesis. In AIM, the
infant is able to match facial gesturesby performing
intermodalmatching.That is translatingvisual perceived
stimuli from an external coordinateframe to a viewer
centeredrepresentation,which canbe usedalongwith the
viewersproprioceptivestateto drive thematchingprocess.

In this paper we implement a matching model at a

neural level of description. In the model, physical
state of the imitator and demonstratorare encoded
in the temporal characteristicsof the spiking neuron.
Preliminaryexperimentalresultsin a real time matching
taskusingsimulatedhumanoidsarereported.

I I . BIOLOGICAL INSPIRATION

Biological organismsneed a meansof acquiring in-
formation about their environment, and sensoryrecep-
tors provide that interface.The topographicorganisation
of the model is inspired by the somatosensorycortex
(SC). The SC if the primary site for somaticinformation
processing.Of the sensationsprocessedin the SC, the
proprioceptive sensationis crucial in providing a bodily
sense,i.e. the static location of limbs, and the senseof
kinesthesia[8]. Thisbodily senseif facilitatedby aclassof
sensoryreceptorsknown as mechanoreceptors,providing
informationsuchas limb velocity, position,muscleforce
anddirectionof movement.Theseparametersareencoded
by the temporal characteristicsof spiking activity. For
illustrative purposes,figure 1 shows a shoulder joint
mechanoreceptorwith aspatiallymodulatedreceptivefield
sensitive in one of three degreesof freedom.Evidence
of this kind of spatialmodulationof activity is presented
in [6]. Givenmechanoreceptoroperation,limb distribution
can be representedby the collective spiking activity of
mechanoreceptorslocatedin thebody. We alsoimplement
a setof neuralnodesthatencodedemonstratorparameters
in spiking activity. In the model presented,we assume
all relevant demonstratorparameters,joint angles,canbe
extracted.A review of vision approachesto perceiving
animatemotion canbe found in [4].

I I I . MATCHING MODEL

The model presentedin this paperis shown in figure
2. The joint angles of the demonstratorare extracted
and encoded.The neuralactivity generatedin the visual
transformationstageis fed to the neuralcomparator. The
imitatorssomaticinformation,encodedby mechanorecep-
tors, is alsofed to the neuralcomparator. The two signals
arethencombinedto thegeneratecontrolsignalsthatdrive
the matchingprocess.

��
A

B

C

Fig. 1. Shows a singlemechanoreceptorattachedto the shoulderjoint.
The activity of this joint mechanoreceptoris spatiallymodulated

Visual Info

Somatic Feedback

Neural

Neural Control
Signal

Perception Transformation Control

Demonstrator Imitator

Visual Stimuli

Internal Metric
To

Comparator

Limbs

Fig. 2. Schematicof basicmatchingmodelpresented

A. Neuron Model

The spike accumulatormodel (SAM) of the neuronis
implemented.The equationsgoverning the behaviour of
the model we useare given below and are basedon an
implementationby Tijsseling& Berthouze[7].

ui

�
t ��� ∑

j
wi j

�
t � o j � τvi

�
t � 1� (1)

whereui

�
t � is theaccumulatedpotentialof neuroni at time

t, vi

�
t � is the internal,or membrane,potentialof neuroni,

o j

�
t � is the outputof connectedneuron j, wi j - represents

theafferentconnectionweightbetweenneuroni and j and
τ is the decayrate of the of the internal potential vi

�
t � .

The internalpotentialis given by:

vi

�
t ��� ui

�
t �	� ρoi

�
t � (2)

whereρ is the subtractionconstant.SAM outputis deter-
minedby:

oi

�
t �
� �

1 if ui

�
t �
� T

0 otherwise
(3)

whereT is the internal thresholdlevel.

B. Mechanoreceptors

We implementa classof positionsensitive mechanorecep-
tors.Theequationsgoverningit behaviour is givenbelow:

ei

�
t �
� K1θi � b1 (4)

ai

�
t ��� ai

�
t � 1� � ei

�
t � (5)

where ei

�
t � is the mechanoreceptorexcitor, the value of

which over the courseof time variesin proportionto the
angle,θ , of the joint to which the receptoris attached.
Constant,b1, accountsfor the resting frequency of the
mechanoreceptor. K1 is a scaling constant.ai

�
t � is the

accumulatedpotentialof themechanoreceptor. Theoutput
of the mechanoreceptor, oi

�
t � at a given time instant is

given by;

oi

�
t ��� �

1 if ai

�
t ��� T ; ai

�
t ��� 0;

0 otherwise
(6)

C. Neural Comparator

The neural comparator, shown in figure 3, is a three
node arrangement.The comparatoris a three node ar-
rangement.Nodesone and two are implementedasSAM
nodes,whereasthenodeOsc. is anoscillatingunit. Nodes
oneandtwo receive excitatory andinhibitory afferentsof
both visual and somaticorigin. Nodesone and two are
connectedto node Osc both via inhibitory connections.
Given a trajectory matchingtask, the activities of nodes
one andtwo reflectthedisparitybetweenthe joint stateof
the correspondingimitator anddemonstratorlimbs. For a
limb correspondencetherewill be little disparitybetween
the spiking activity of visual neuronsandmechanorecep-
tors.This in turn resultsin no inhibiting signalbeingsent
to node Osc. A neural comparatorunit is implemented
for eachof the imitators degreesof freedom.Using this
simplearrangement,appropriatematchingtorquescanbe
generated.

VISUAL SOMATIC

ONE TWO

EXCITE

INHIBIT

Osc

Fig. 3. Comparatorassemblyimplementedon imitator. Three node
arrangementacting as a comparatorof imitators somatic state (S) of
a single degree of freedom of a single limb, with the state of the
correspondinglimb DOF of the demonstrator(V)

D. Torque Generation

The motor control signals driving the imitator are
derived from the node activities of the neural assembly.
We defineactivity asthe numberof spikeswithin a given

time interval. We denotethis time interval, T s, which may
alsobe viewedasa spike summation interval. Therearea
total of N summationintervalsduringany givenmatching
simulationrun. Thusactivities of nodesone, two andOsc.
duringa givensummationinterval, n, aredenotedby Aone,
Atwo and AOsc respectively. Thus equationsdescribing
torquegenerationprocessaregiven below:

βn � Aone � Atwo (7)

whereβn is theactivity differencebetweennodesone and
two during summationinterval n. From βn we calculate
torquevalue,λ , for a particularinterval n as:

λn � γ
�
βn � baseTs � (8)

where baseTs is a basetorque constant.γ is the torque
coefficient and is calculatedas follows:

γ � 2

s � 2π
�
exp� 1

2 � α1 � � exp� 1
2 � α2 � � � F (9)

whereF is constantto ensurea non-zeroγ value.Sinceγ
is a mixed Gaussiancurve, its function parametersare
basedon the differencebetweenjoint angles in corre-
spondingimitator anddemonstratorlimbs. α1 andα2 are
given by:

α1 ��� � θd � θi � � Z

s � 2

(10)

α2 ��� � θd � θi �	� Z

s � 2

(11)

whereZ is is a constantwhich, alongwith s, determines
the shapeof the γ function.θd andθi arethe joint angles
of the demonstratorand imitator respectively.

IV. EXPERIMENTS

A. Platform & Postural Task

Two simulated humanoids,demonstratorand imitator,
were implemented using the Dynamechs simulation
library [1], a rigid body simulator basedon real time
physicsengine.Eachof the two simulatedhumanoidshas
8 degreesof freedom.A modular Proportional-Integral-
Derivative control schemeis usedto control eachDOF
of the demonstrator. The matching model describedin
the last sectionis implementedon the imitator, thus all
the imitators limb control signals are generatedby the
matchingmodel.

During an imitation trial, spatial targets are fed to
the demonstratorscontroller and a motion trajectory is
executed. As the demonstratorexecutes a movement,
the imitator generatetorquesin order to reproducethe
demonstratedtrajectory. Resultsand analysisof model
performanceis presentedin the following section.

Fig. 4. Shows the two simulatedhumanoids,imitator closest,during a
posturematchingtask

B. Results

Two different trajectory matching experiments were
conductedto assessthe performanceof our model.First,
the imitators ability to matcha single demonstratedtra-
jectory. Figures5 and 6 correspondto the resultsof this
trial. Figure5 shows how joint angleof demonstratorand
imitator varies during the matchingtrial. At the bottom
of the figure the β generatedby the imitator during the
trial is shown, the polarity of the β graphdeterminesthe
polarity of the torquesignalsissuedto drive the matching
process.Figure 6 shows the activities of the threenodes
in theneuralcomparatorduring thesamesingletrajectory
matchingtask. This deviation betweenthe demonstrated
andtheimitatedtrajectoriesis dueto severalfactors.First,
the humanoidsare implementedin a dynamicsimulation
environment where gravity and friction apply. Second,
neuralnodesimplementedthat performangletransforma-
tions have a finite spatial resolution that result in both
a delay in imitators responseand the final static target
offset that areseenin figure 5. Figure7 shows the results
of a matchingtrial wheremotion is throughmultiple via
points. Neural assemblyparameterAOsc is shown at the
bottomof the figure.During the trajectorymotion pathof
the imitator limb is not smooth.This highlightsa problem
of using spike signals for control. This problem can
be overcomeby using a distributed populationaveraged
control schemethat utilisesmultiple receptorsper degree
of freedom.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a model dealing with
intermodal matching, at a neural level of description,
for the purposesof movement imitation. Our results
demonstratethe models ability to imitate demonstrated
trajectoriesin real time. We achieve this by representing
visual and proprioceptive information using the activity
of spiking neurons, and a neural comparator circuit
to drive the torque generationprocessthat results in

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3
Demonstrator Joint Position

R
ad

ia
ns

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3
Imitator Joint Angle

R
ad

ia
ns

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−15

−10

−5

0

5
Neural Assembly Beta Value

Computational Iterations

Fig. 5. Shows demonstrator, imitator joint positionandgeneratedtorque

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15
Neural Comparator Node Osc. Activity

O
ut

pu
t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1
Neural Comparator Node One Activity

O
ut

pu
t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1
Neural Comparator Node Two

Computational Iterations

O
ut

pu
t

Fig. 6. Shows the activities of neuralassemblynodesOsc, One and
Two, during a simple trajectorymatchingtask

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3
Sequence: Demonstrator Joint Position

de
g(

ra
d)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3
Imitator Joint Position

de
g(

ra
d)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20
Aosc

Iterations

Fig. 7. Figuresshows how joint positionof demonstratorandimitator
variesover time for matchinga complex trajectory

intermodal posture matching. By transforming visual
and proprioceptive information into spiking neuron
activation, we can comparethe representationsbetween
the two modalities without resolving into geometrical
representationsof posture, which have been used in
previous implementationsof the AIM hypothesis[9].

Thereareseveral further issuesthat would be interesting
to investigate.Our experimentscurrently do not perform
any elaborate coordinate transformationsbetween the
demonstratedmovements and the imitated movement.
Our next stepwill add a mental translationand rotation
stage, so the imitator is able to imitate demonstrated
movementsirrespectively of the viewing angle, and we
will test the timing issuesthat will arise from adding
sucha stage.The robustnessof the model to noisealso
needsto be investigated.We have started investigating
this issuethroughthe systematicaddition of noiseto the
visual and proprioceptive values.We are currently also
making the first stepstowards implementingthe model
on humanoidrobots.

VI . ACKNOWLEDGMENTS

Emachi Eneje is supportedby an EPSRC doctoral
training award.

VI I . REFERENCES

[1] S. McMillan, ”A ComputationalFramework for Sim-
ulation of UnderwaterRoboticVehicleSystem”,Spe-
cial Issue of the Journal of Autonomous Robots, vol.
3, 1996,pp. 253-268.

[2] A.N. Meltzoff, M. K. Moore,”Imitation, Memoryand
the Representationof Persons”,Infant Behavior and
Development, vol. 17, 1994.

[3] A. N. Meltzoff, M. K. Moore, ”Explaining Facial
Imitation: A TheoreticalModel”, Early Development
and Parenting, vol. 6, 1997,pp. 179-192.

[4] T. B. Moeslund,E. Granum,”A Survey of Computer
Vision-BasedHumanMotion Capture”,Int. Journal of
Computer Vision and Image Understanding, vol. 81,
no. 3, 2001

[5] S. Schaal, ”Computational Approaches to Motor
Learningby Imitation”, Trends in Cognitive Science,
vol. 3, 1999,pp. 233-242.

[6] S.I. Helms Tillery, J.F. Soechting,T.J. Ebner, ”So-
matosensoryCortical Activity in Relation to Arm
Posture:NonuniformSpatialTuning”, Journal of Neu-
rophysiology, vol. 76, October1996,pp. 2423-2438.

[7] A. Tijsseling, L. Berthouze,”A neural network ar-
chitecturefor the categorizationof temporalinforma-
tion”, Submitted,2002

[8] E. R. Kandel,J.H. Schwartz,T. M. Jessell,Principles
of Neural Science McGraw-Hill, 2000

[9] J. Demiris,S. Rougeaux,G. M. Hayes,L. Berthouze,
Y. Kuniyoshi ”Deferred Imitation of Human Head
Movementsby an Active Stereo Vision Head”, in
Proceedings of the 6th IEEE International Workshop
on Robot Human Communication, pp.88-93,

[10] J. Demiris, Movement Imitatation Mechanisms in
Robots and Humans, thesis,University of Edinburgh,
1999.

	IROS 2003
	Objectives:
	Program
	
	
	Leveraging on a Virtual Environment for Robot Programming by Demonstration
	A Posture Sequence Learning System for an Anthropomorphic Robotic Hand
	Motor Representations for Hand Gesture Recognition and Imitation
	Learning Issues in a Multi-Modal Robot-Instruction Scenario
	Learning From Observation and Practice Using Primitives
	Darrin C. Bentivegna, Christopher G. Atkeson, Gordon Cheng

	Teaching Bayesian Behaviours to Video Game Characters
	Towards Robot Intermodal Matching Using Spiking Neurons

	Table of Content:
	
	
	Leveraging on a Virtual Environment for Robot Programming by Demonstration
	A Posture Sequence Learning System for an Anthropomorphic Robotic Hand
	Motor Representations for Hand Gesture Recognition and Imitation
	Learning Issues in a Multi-Modal Robot-Instruction Scenario
	Learning From Observation and Practice Using Primitives

	Teaching Bayesian Behaviours to Video Game Characters,
	Towards Robot Intermodal Matching Using Spiking Neurons

	iros03-ijspeert_et_al.pdf
	Imitation of Human-Demonstrated Movements with Nonlinear Dynamical �Systems in Humanoid Robots
	Auke Jan Ijspeert 1, Jun Nakanishi 2, Stefan Schaal 3

	Dillmann.pdf
	Multimodal Man Robot Interaction
	Adaptation and Learning
	Programming by demonstration for manipulation tasks
	Future work
	Acknowledgement
	Related references

