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Abstract

This paper addresses the issue of measurement errors in visual servoing. The error
characteristics of the vision based state estimation and the associated uncertainty of
the control are investigated. The major contribution is the analysis of the propaga-
tion of image error through pose estimation and visual servoing control law. Using
the analysis, two classical visual servoing methods are evaluated: position-based and
2 1/2 D visual servoing. The evaluation offers a tool to build and analyze hybrid
control systems such as switching or partitioning control.
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1 Introduction

The use of visual feedback for closed loop control of a robot motion termed
visual servoing has received a significant amount of attention during the last
two decades [1], [2]. Most of the key research problem have been related to
the performance of visual servoing methods in the presence of measurement
and system modeling errors. As a result, a number of variations and hybrid
visual servoing approaches have been proposed in the literature to cope with
the inherit problems of image and position based visual servoing.
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Specific problems such as the effect of camera calibration errors have been
studied in [3]. The convergence properties of the control part of the systems
are known for most cases as discussed in [4,5]. While the convergence of the
system is an essential performance property, it does not reveal much about
the generated robot trajectory and its uncertainty.

The procedures of camera calibration have improved enormously over the last
decade. However, even perfect calibration does not overcome the restriction
of the image resolution and the imaging process causes an uncertainty in
the control. Motivated by this fact, in this work we proposes the use of error
propagation in the analysis and comparison of different types of visual servoing
methods, i.e., position-based [1] and hybrid [6].

To provide a common ground for the modeling process, we start with a basic
notation for modeling of a visual servoing system considered in this work as
shown in Figure 1. Here, s denotes image measurements, and oT ∗

c denotes the
rigid body transformation relating the desired camera pose (position and ori-
entation) to a measured target object. Similarly, cTo is the current measured
pose of the object w.r.t. the camera. The system is divided into three parts:
pose estimation, servoing strategy, and control strategy. This model can be
used with most position-based and hybrid approaches. It is based on eye-in-
hand configuration, and the objective of servoing is defined as bringing the
camera to a desired pose with respect to the target which is commonly termed
teach-by-showing approach. The pose estimation part may compute the full
3-D pose of the target, or it may use homography- or epipolar-based tech-
niques to infer partial pose. In the case of hybrid approaches, image features
are directly used to control specific degrees of freedom. The choice of servoing
strategy is based on the modeling of an error function and thus has a major
effect on the robot’s trajectory. On the other hand, the control strategy, such
as for example a proportional control law, affects convergence properties es-
pecially in the case of a moving target. The related coordinate systems are
illustrated in Figure 2.

o

c

s

Estimation
Pose

*cT

oT
Strategy
Servoing ve

Strategy
Control

Fig. 1. System model.

To compare the visual servoing approaches with respect to image error model-
ing methods, a common reference has to be defined. We use the control output
of a Cartesian controller as the reference, since it seems reasonable to study the
sensitivity of the system by propagating the errors in the image measurements
to the actual actuator motion. Thus, our approach predicts the uncertainty of
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Fig. 2. Coordinate systems.

the Cartesian control with respect to the uncertainty in the image measure-
ments. We do not wish to analyze uncertainty in the image measurements in
detail, but instead model the image uncertainty with a Gaussian distribution,
since a wide variety of methods is applicable for the image plane tracking. In
this paper, we do not consider the correspondence problem since, in visual
servoing, the correspondences can be tracked one frame to frame basis thus
simplifying the correspondence problem. The division of the servoing model
into subsystems allows us not only to compare the behavior of complete sys-
tems but also to compare their components. Furthermore, the error analysis
is used to compare position-based visual servoing [1] and the hybrid approach
termed 2.5D visual servoing proposed in [6].

The rest of the paper is organized as follows: We survey related work in Sec-
tion 2 and provide a motivation for the research presented here. In Section 3
we describe the pose estimation algorithm and analyze its error propagation.
Sections 4 and 5 present the position-based and hybrid servoing and their anal-
ysis. Section 6 extends the analysis of pose estimation uncertainty to cover all
optimization-based algorithms. The analytical results are verified by Monte-
Carlo simulation experiments in Section 7, which also discusses the merits
of the different approaches. Finally, in Section 8, we present a summary and
conclusions. Parts of this work has been presented in [7].

2 Related work

The work presented in this paper is closely related to the analysis of pose
estimation algorithms. The most common approach considers the case where
a 3D model of the object is given and its pose is estimated based on 2D-3D
correspondences. Although a widely studied problem, most of the proposed
methods are iterative which is a disadvantage in the context of visual servoing
where “real-time” is a requirement. There are a few closed form solutions for
point feature based pose estimation using any number of feature points [8–11].
In this paper, we have used the algorithm proposed by Fiore [10] together with
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methods proposed in [12] and [13]. It has to be noted that in the proposed
evaluation framework any other pose estimation algorithm can be used.

Although there are analyzes of sensitivity based on linear error propagation
(e.g. [13]) in structure-from-motion research, according to the authors knowl-
edge no corresponding analyzes have been published for the pose estimation.
Haralick has demonstrated empirically that pose estimation breaks down when
the image noise exceeds a certain threshold [14]. Ansar et al. have presented
a sensitivity analysis where the results are upper bounds for the error de-
rived from matrix perturbation theory [11]. Their experiments reveal that the
bounds are highly conservative and thus not well suited for comparing different
systems which we deal with in this work.

The error characteristics of visual servoing are usually investigated from either
of the following two points of view: the stability of the closed-loop system, or
the steady-state error [15]. It is known that the convergence of position-based
visual servoing (PBVS) might be inhibited by the loss of stability in pose
estimation [4]. 2.5D servoing does not seem to suffer from this problem [5],
unless the partial pose estimation becomes unstable. Deng [15] has proposed
use of the steady-state error as a measure of sensitivity of visual servoing.
However, if long trajectories are executed, it is important to estimate the
sensitivity of the system along the trajectory to, for example, predict the
set of adequate trajectories in the presence of errors. Another approach is to
consider the outliers in the image data. Comport et al. [16] have proposed a
scheme to increase the robustness by embedding the outlier processing into the
control law. Outlier rejection can also be performed in the image processing
step [17].

Recently, Gans et al. [18] have proposed switching between position- and
image-based servoing. We foresee that our error modeling can be used in the
design of switching strategies which is currently an unsolved problem.

3 Pose estimation

In this section, we first describe the pose estimation algorithm used. It is
based on earlier work by Fiore [10] and Weng et al.[13]. This is followed by
the analysis of error propagation. The correspondence problem is not treated
here because in visual servoing it applies mostly only to the initial estimation
of the pose, as the features can be tracked from frame to frame. Initially, the
correspondences can be found for example using interest point descriptors,
e.g. [19].
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3.1 Estimation algorithm

The pose estimation, also known as the exterior orientation problem, seeks
the similarity transform consisting of translation t and rotation R that brings
a set of known 3D feature points ai into alignment with a set of corresponding
image plane projections (xi, yi). Without loss of generality, we can assume unit
focal length of the camera. Then, translation and rotation are the ones that
best satisfy the set of equations

li

[

xi yi 1

]T

= sR(ai + t), i = 1, . . . , N (1)

where li are the projective parameters, s is a scale factor, and N is the number
of feature points.

In this work, the parameters li are first solved following [10]. We seek linear
combinations of the N equations in (1) such that the right hand side becomes
zero. Defining the data matrix P for 3D points as

P = ( a1 ··· aN

1 ··· 1 ) (2)

we can find the linear combinations by finding the weight matrix W ∈ R
N×(N−4)

which satisfies

PW = 0. (3)

Thus, W represents the null space of P and it can be found from the singular
value decomposition (SVD) of P as the matrix of the N − 4 right singular
vectors of P corresponding to the null space. Because of this, for each of the
linear combinations, each corresponding to a column of W, we have

N
∑

i=1

wijli















xi

yi

1















= 0 for j = 1, . . . , N − 4. (4)

Defining the vector of projective parameters l = [l1, . . . , lN ], we can write this
as Gl = 0 where

G =

















w1,1

[

x1 y1 1

]T

. . . wN,1

[

xN yN 1

]T

...
...

w1,1

[

x1 y1 1

]T

. . . wN,1

[

xN yN 1

]T

















. (5)

Noting that every third row of G is a column of W, l must be in the left
null space of W, spanned by PT . Therefore, we can write l = PT

α for an
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unknown vector α ∈ R
4. Then, α can be found as the solution to the set of

homogeneous linear equations

Cα ≡















W1,1 ( x1

y1
) · · · WN,1 ( xN

yN )
...

...

W1,N−4 ( x1

y1
) · · · WN,N−4 ( xN

yN )















PT
α = 0. (6)

Usually the system is overconstrained, and the solution can be found as the
eigenvector corresponding to the smallest eigenvalue of CTC. This in turn
gives the set of projective parameters l.

Now, we only need to recover the absolute orientation with scaling. With li
known, we can write (1) as

bi = sR(ai + t), i = 1, . . . , N (7)

where bi = [lixi, liyi, li]
T . The unknown scale parameter s can be solved by

centering the two point sets ai and bi, and inspecting the ratio between the
lengths of the centered vectors. Let ā and b̄ denote the means of sets ai and
bi. Then, the centered vectors can be defined as ãi = ai − ā and b̃i = bi − b̄.
Now, as the lengths of the centred point vectors are invariant to rotation, we
can ignore the rotation and find the optimal least-squares scale from

s =

∑

i ‖ãi‖‖b̃i‖
∑

i ‖ãi‖2
. (8)

With s known, we want to find the rotation matrix that minimizes the sum
of the square errors between the centered point sets, that is,

∑

i ‖b̃i − sRãi‖
2
2,

which can also be written in matrix form as

‖B − RA‖2
F (9)

where

A = s
[

ã1 . . . ãN

]

B =
[

b̃1 . . . b̃N

]

and ‖ · ‖F denotes the Frobenius norm. This, so called Orthogonal Procrustes
problem, can be solved using SVD as suggested by Fiore, but we choose to
solve the rotation using unit quaternions as presented in [13], as they have
already proposed a suitable error analysis. The method was actually proposed
already in [12]. We next give an outline of the method, and ask the reader to
consult details in the original source.

A rotation can be represented with a unit quaternion q such that for any
vector a

q ∗ a ∗ q̃=̂Ra (10)
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where q̃ is the quaternion conjugate of q, ∗ is the quaternion product and
R is the corresponding rotation matrix. The quaternion product used in (10)
can be written as a multiplication by a matrix, similarly to writing the cross
product of vectors using a skew-symmetric matrix. After some manipulation
using the basic properties of quaternions, the minimization problem (9) can
be written using the matrix representation of quaternions as minimization of

min
‖q‖=1

qTEq (11)

where E is defined as

E =
N
∑

i=1

ET
i Ei with Ei =







0 (Ai − Bi)
T

Bi − Ai [Ai + Bi]×





 . (12)

Here Ai and Bi denote the ith column of A and B, respectively, and [·]×
denotes the skew-symmetric matrix corresponding to cross product. The unit
quaternion q representing the rotation can be found by minimization of (11)
as the eigenvector corresponding to the smallest eigenvalue of E.

When the quaternion q = (q0, q1, q2, q3)
T is known, the rotation matrix can be

calculated as

R =

(

q2

0
+q2

1
−q2

2
−q2

3
2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2

0
−q2

1
+q2

2
−q2

3
2(q2q3−q0q1)

2(q1q3−q0q2) 2(q0q1+q2q3) q2

0
−q2

1
−q2

2
+q2

3

)

. (13)

Finally, the translation is found from t = s−1RT b̄− ā where ā and b̄ are the
point set centroids.

3.2 Error analysis

The error analysis in this paper is based on first-order error propagation [20].
The goal of this analysis is to determine the covariance of the pose estimate
with respect to the variances of image plane coordinates. While errors can
also be analyzed by finding worst case error bounds, this can result in overly
conservative bounds that are suitable only for small errors. In practice, the
possible redundancy of data in pose estimation (i.e., having more features
than necessary) allows finding stable solutions also in the presence of noise.
In this paper, it is assumed that the errors in the pose estimate result from
the noise in the image coordinates of features. Their sources include spatial
quantization, feature detection, and camera distortion. However, we assume
that there is no systematic calibration error and thus the image noise can be
modeled as zero-mean random variables. It is further assumed that the errors
between points are uncorrelated.
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Let x be the vector of image coordinates of features such that

x = (x1, . . . , xN , y1, . . . , yN )T .

We formulate the error analysis problem as finding the matrices Dt and DR

such that δt = Dtδx and δR = DRδx are linear error estimates in t and R

with respect to errors in x. In other words, the measurements x are considered
to be affected by additive noise such that x = x0 + δx where x0 is the true
value. We have then a function t(x) for which we inspect its behavior around
the current measurements using a first-order Taylor expansion. This allows
us to write the estimate of the error in t(x) as δt(x) = ∂t(x)

∂x
δx. Here, Dt

is just the gradient ∂t(x)
∂x

. Going through several steps of the algorithm, the
chain-rule of differentiation can be used in determining the gradient. That is,
the gradient for each step can be calculated separately.

For vectors, let Γ denote the covariance matrix, e.g., Γx = E[δxδx
T ]. If the

covariance of the input and the linear linear mappings are known, the covari-
ance matrices of the rotation and translation can be written ΓR = DRΓxDR

T

and Γt = DtΓxDt
T . Note that matrix R must be represented as a vector r

by concatenating the columns of the matrix into a single vector. Thus, δR is
the error in this vector. This notation will be adopted for denoting vectors
corresponding to matrices such that c is a vector corresponding to matrix C.

It is evident that Dt and DR depend on the values of both x and every ai,
that is, the image measurements and the object model. The error is now prop-
agated through the pose estimation algorithm. First, it can be seen that W in
(3) depends only on matrix P where there is no associated uncertainty. The
uncertainty in matrix C (6) can be found by finding the matrix GC that rep-
resents the transform from x to c (and δc = GCδx), the vector representation
of matrix C. This operation is linear so no approximations are needed. The
matrix is easily found to be

GC =
(

Q1 0 Q2 0 Q3 0 Q4 0
0 Q1 0 Q2 0 Q3 0 Q4

)T
(14)

where

Qi =





W1,1Pi,1 ··· W1,N−4Pi,1

...
...

WN,1Pi,N ··· WN,N−4Pi,N



 .

Next, the linear estimate for the error in CTC is found. Denoting the error
matrix corresponding to vector δc by ∆C, the linear estimate is

∆CT C ≈ CT∆C + ∆C
TC. (15)

Using the vector notation, this can be written as

δCT C ≈ GCT Cδc = GCT CGCδx = DCT Cδx (16)
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where GCT C = [Kij] + [Lij] can be determined using (15). [Kij] and [Lij] are
matrices with 4 × 2(N − 4) submatrices Kij and Lij, with Kij equal to CT

when i = j and otherwise it is a zero matrix. In Lij, the jth row is equal to
the ith row of CT , otherwise the elements are zero.

To propagate the error through the eigenvalue decomposition, we use the result
presented by Weng et al. in [13]. The linear error term in α, the smallest
eigenvector of CT C, is given by

δα ≈ H∆HT∆CT Cα

= H∆HT [α1I4 α2I4 α3I4 α4I4]δCT C

= GαδCT C = GαDCT Cδx = Dαδx

(17)

where H is the matrix of eigenvectors of CTC and ∆ is given in terms of the
eigenvalues λi as

∆ = diag
{

0, (λ1 − λ2)
−1, (λ1 − λ3)

−1, (λ1 − λ4)
−1
}

.

For a proof, see Appendix A of [13].

As the projective parameters depend linearly on α, we can find the associated
error as δl = PT δα ≈ PTDαδx = Dlδx.

We now continue to propagate the errors to bi. Let

δB = [δl1x1
, · · · , δlNxN

, δl1y1
, · · · , δlNyN

, δl1 , · · · , δlN ].

The linear approximation for the error is

δB ≈
(

diag(l) 0 diag(x1...N)
0 diag(l) diag(y1...N)
0 0 I

)

(

δx

δl

)

=
(

diag(l)+diag(x1...N)Dl 0

0 diag(l)+diag(y1...N)Dl

Dl

)

δx

= DBδx

(18)

In the following, we will skip the details on linear steps of the error propagation
to keep the discussion as brief as possible while still stating each approximation
during the nonlinear steps. Centering the set of vectors bi does not involve
nonlinear operations so no approximations need to be done to find the error
in b̃i. Then, δB̃ ≈ DB̃δx. In calculating the scale, δs ≈ GsδB̃ where

Gs =
1

∑

i ‖ãi‖2

(

b̃1,1‖a1‖

‖b̃1‖
· · ·

b̃N,1‖aN‖

‖b̃N‖

)

(19)

As stated before, the rotation matrix is now estimated using unit quaternions.
This encompasses another case of determining the eigenvector corresponding
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to the smallest eigenvalue of a matrix E, which is a non-linear combination
of previously known variables. Its error δE can be found by first finding the
errors in Ei which are linear with respect to errors in B. The error in the
matrix multiplication ET

i Ei can be propagated as in (15). Finally, the error in
E can be approximated as a matrix product δE = GE[δT

B̃
, δs]

T .

The error can now be propagated in a similar fashion as shown above for
vector α in (17). As a result, we get the unit quaternion q that represents the
rotation and its error with respect to the errors in input δq ≈ GqδE = Dqδx.
We can estimate the first order perturbation of R as δR ≈ GRδq = DRδx

where

GR = 2





















q0 q3 −q2 −q3 q0 q1 q3 −q1 q0

q1 q2 q3 q2 −q1 q0 q3 −q0 −q1

−q2 q1 −q0 q1 q2 q3 q0 q3 −q2

−q3 q0 q1 −q0 −q3 q2 q1 q2 q3





















T

(20)

which results directly from the differentiation of (13). The error in the trans-
lation can finally be estimated from the first-order Taylor expansion as

δt ≈
1

s
(RT

δb̄ + ∆R
T b̄) −

1

s2
δsR

T b̄

= GtδE = Dtδx

(21)

In summary, we have expressed the perturbations in the pose estimate as a
linear transformation of the perturbations in the input image. This allows us
also to write the covariance matrices of the pose parameters as

ΓR = DRΓxDR
T Γt = DtΓxDt

T . (22)

The following two sections outline two visual servoing methods and relate the
uncertainty in the pose estimate presented in this section to the uncertainty
in the control.

4 Position Based Visual Servoing

In position-based visual servoing (PBVS), the task function is defined in terms
of the pose transformation between the current and the desired position, which
can be expressed as the transformation cTc∗ (see Figure 2). The input image is
usually used to estimate the camera to object transformation cTo which can be
composed with the object to desired pose transformation oTc∗ to find the rela-
tion from the current to the desired pose. By decomposing the transformation
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matrices into translation and rotation, this can be expressed as

cTc∗ = cTo
oTc∗ = (

cRo
cto

0 1 )
(

oRc∗
otc∗

0 1

)

=
(

cRo
oRc∗

cRo
otc∗+cto

0 1

)

=
(

cRc∗
ctc∗

0 1

) (23)

The task function for position is then the vector ctc∗ . For orientation, the
rotation matrix can be decomposed into axis of rotation u = (u1, u2, u3)

T and
angle θ, which can be multiplied to attain the task function uθ using

θ = acos

(

trace(R) − 1

2

)

sin θ =

√

√

√

√1 −

(

trace(R) − 1

2

)2

u1 =
R32 − R23

2 sin θ
u2 =

R13 − R31

2 sin θ
u3 =

R21 − R12

2 sin θ
.

(24)

Thus, the position-based controller can be written

v = −λ







ctc∗

uθ





 . (25)

Starting from the result of the analysis of pose estimation, we first inspect
the camera to object transformation. The rotation matrix R in the image
formation model in (1) is the desired rotation from the camera to object
frames cRo. The reference frame for the translation is expressed with respect
to the object rather than the camera. Thus, we need to rotate the translation
vector to correspond to camera frame axes, and find the uncertainty for this
rotated vector using the uncertainties in both the rotation matrix and the
translation vector. The uncertainty can thus be expressed as

δcto
≈ Gcto







DR

Dt





 δx = Dcto
δx. (26)

Assuming that there is no uncertainty associated with the desired position,
the error in the rotation from the current to desired pose can be approximated
as ∆cRc∗

≈ ∆cRo

oRc∗ which can be expressed as δcRc∗
≈ GcRc∗

δcRo
. For the

translation, the corresponding errors can be written

δctc∗
≈ ∆cRo

otc∗ + δcto
= Gctc∗







δcRo

δcto





 = Dctc∗
δx. (27)

What remains is to transform the rotation matrix into a control vector for
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rotation. We use the uθ form and estimate the errors as

δuθ ≈ GuθδcRc∗
= Duθδx, (28)

where by differentiation of the product uθ

Guθ = uδθ + θδu = uGθδcRc∗
+ θGu







δcRc∗

δθ





 .

By partial differentiation of θ and u in (24) with respect to elements of R, we
can write

Gθ = −
1

2 sin θ
(1, 0, 0, 0, 1, 0, 0, 0, 1) (29)

and

Gu =





0 0 0 0 0 1

2 sin θ
0 − 1

2 sin θ
0 −

u1

tan θ

0 0 − 1

2 sin θ
0 0 0 1

2 sin θ
0 0 −

u2

tan θ

0 1

2 sin θ
0 − 1

2 sin θ
0 0 0 0 0 −

u3

tan θ



 . (30)

Assuming that a proportional control is used, the error in the control vector
v is finally estimated as

δv = −λ







δctc∗

δuθ





 ≈







−λDctc∗

−λDuθ





 δx = Dvδx. (31)

This allows us also to approximate the covariance matrix of the control error
from Γv = E[δvδ

T
v ] ≈ DvΓxDv

T . The covariance matrix now represents the
uncertainty in the control caused by the uncertainty in the image measure-
ments, and can be used to examine the uncertainty in the different degrees of
freedom of the control either separately or together.

5 Hybrid Visual Servoing

The hybrid visual servoing approach, called 2.5D servoing, was originally pre-
sented as a method suitable for avoiding the target leaving the field of view of
the camera (a PBVS problem), and to perform servoing without a complete
3D model of the target [6]. It is based on partial pose estimation using a scaled
Euclidean reconstruction with a homography decomposition. However, it can
be also used with full pose estimation.

We now briefly present the 2.5D servoing with full pose estimation used in
our work. The control scheme is based on controlling the orientation using the
estimated 3-D rotation between the current and desired poses and driving the
vector uθ to zero just as in PBVS. The position in turn is controlled using a
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single point feature that is driven towards its desired location in both image
coordinates and depth. Thus, the visibility of the feature during the servoing
sequence is guaranteed. The task vector can be defined as

e = [x − x∗, y − y∗, log(Z/Z∗), θuT ]T (32)

where (x, y) is the position of the control point in the image, Z is its depth,
and asterisks denote the desired values. The motion control law is then

v = −λ
(

L−1
v −L−1

v Lvω

0 I

)

e (33)

where

L−1
v =

(

−Z 0 −xZ
0 −Z −yZ
0 0 −Z

)

(34)

and

Lvω =

(

xy −(1+x2) y

1+y2 −xy −x
−y x 0

)

. (35)

In our framework (Figure 1), the rotation uθ and the depth Z are calculated
using the pose estimation while x and y result directly from image measure-
ments. Z can thus be written as

[X,Y, Z]T = cTo[a
T , 1]T . (36)

The sensitivity for the rotation is identical to that presented in the previous
section. However, we desire to estimate the error in the control vector to
recognize correlations between the errors in different variables. The error in
the depth can be approximated in terms of the errors on estimated rotation
and translation as

δZ = GZ [DR
T ,Dt

T ]T δx (37)

where GZ can be determined from (36). The uncertainty in the control output
v can be approximated as δv = Gv[δx, δy, δZ , δT

u , δθ]
T = Dvδx where Gv can

be determined by differentiation of (33) as

Gv = −λ
(

Gv1 Gv2

)

Gv1 =











−Z−Z log Z
Z∗

Zu3θ −2x+x∗−x log Z
Z∗

−u2θ+yu3θ

−Zu3θ −Z−Z log Z
Z∗

−2y+y∗−y log Z
Z∗

+u1θ−xu3θ

Zu2θ −Zu1θ − log Z
Z∗

−1−yu1θ+xu2θ

0 0 0
0 0 0
0 0 0











Gv2 =









0 −Zθ yZθ −Zu2+yZu3

Zθ 0 −xZθ Zu1−xZu3

−yZθ xZθ 0 xZu2−yZu1

θ 0 0 u1

0 θ 0 u2

0 0 θ u3









.

(38)

Then, the covariance of the control is approximately Γv ≈ DvΓxDv
T .
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6 Optimization based pose estimation

In this section, we show how to extend the results of the error estimation of
pose estimation to cover all optimization based pose estimation algorithms.
The analysis method does not need to take into account a particular opti-
mization method, because it only estimates how the location of the minimum
changes when the input of minimization is disturbed. The analysis is based
on [20].

Optimization-based pose estimation can be defined as minimizing the image
plane error

e =
∑

i





(

xi −
[1, 0, 0]TR(ai + t)

[0, 0, 1]TR(ai + t)

)2

+

(

yi −
[0, 1, 0]TR(ai + t)

[0, 0, 1]TR(ai + t)

)2


 . (39)

While the rotation matrix R has nine entries, it has only three degrees of
freedom. In minimization, the rotation can be represented as a three-element
vector w = θu, which encodes the rotation as an angle-axis-pair.

First-order error propagation can be used to inspect the effect of uncertainty in
2-D and 3-D point coordinates to the location of the minimum. Let Θ = {t,w}
denote the true pose parameters and X = (a1, x1, y1, . . . , aN , xN , yN)T denote
the set of coordinates without errors. The gradient of the error function with
respect to the pose parameters can now be written as

g(X,Θ) =
∂e(X,Θ)

∂Θ
. (40)

By denoting the measurements by X̂ = X + ∆X and corresponding pose
parameters by Θ̂ = Θ+∆Θ, we can write the first order Taylor approximation
for the gradient at (X,Θ) using the measurements as

g(X,Θ) =g(X̂, Θ̂) −
∂gT (X̂, Θ̂)

∂X
∆X −

∂gT (X̂, Θ̂)

∂Θ
∆Θ. (41)

The gradient of the error g(·) must be zero at both (X,Θ) and (X̂, Θ̂), so to
a first order approximation

∆Θ = −

(

∂gT (X̂, Θ̂)

∂Θ

)−1
∂gT (X̂, Θ̂)

∂X
∆X = D∆Θ∆X. (42)

The difference of this to the analysis of Sec. 3.2 is that now in addition to the
measurement uncertainty, also the uncertainty of the 3D model can be taken
into account. The uncertainty in pose parameters can then be propagated
through visual servoing laws as shown in Sections 3 and 4. The analytical

14



forms of the gradients can be calculated using (39) and (40) but they are
omitted here for the sake of brevity.

Similarly to the closed-form pose estimation, we can estimate the covariance
of Θ by denoting the covariance matrix of X by ΓX as

ΓΘ = D∆ΘΓXD
T
∆Θ. (43)

7 Experimental evaluation

In this section, we present the experiments performed to validate the presented
error analysis and to compare position based and hybrid visual servoing. We
begin by considering the pose estimation algorithm, then investigate the vi-
sual servoing approaches separately, and conclude by discussing the relative
properties of the approaches. We have also performed experiments on the es-
timation of uncertainty of optimization-based pose estimation, which indicate
that the estimates are valid but choose not to presents these results for the
sake of brevity.

7.1 Pose estimation

The validity of the analysis was evaluated using Monte-Carlo simulations. This
approach was chosen because the measurement uncertainty is a statistical phe-
nomenon, and Monte-Carlo methods allow the assessment of such quantities.
Also, the assessment of this statistical phenomenon would be very difficult
using a real robot and a vision system, because it would not be possible to
accurately estimate the ground truth of the robot motion to the required
accuracy. Figure 3 shows the validity region of the error estimation. The de-
viation of the translation with respect to image error is presented on the left
in Figure 3, while the deviation in the rotation angle is on the right. The
image coordinates used are the pixel coordinates of a simulated camera with
512 × 512 pixel resolution. The lines present the predicted deviations while
the crosses are the measured estimates from 1000 Monte-Carlo simulations. To
generate the Monte-Carlo cases, Gaussian random noise of different variances
was added to the correct point locations. The breakdown point of the error
estimation is when the standard deviation in the image coordinates is approx-
imately 5 pixels. Naturally, the breakdown point depends on the feature point
configuration. The 6-feature target and its point deviations used in the exper-
iment is shown on the left in Figure 4. Only a part of the whole 512 × 512
image is shown for better accessibility and the viewpoint corresponds to the
initial pose of the visual servoing used later in the experiments. The longest
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dimension of the target object is 0.5m and the distance is approximately 8m.
Four of the feature points lie in a plane while two are displaced by a small
amount. It should be noted that the breakdown point of the error estimation
coincides with the breakdown point of the pose estimation, that is, the error
estimation becomes invalid when the pose estimation algorithm starts to break
down. An obvious restriction of the linear error estimation is its inability to
predict the breakdown point as it is primarily a higher order phenomenon.
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Fig. 3. Measured and predicted deviations in pose estimates with respect to image
error: (left) translation; (right) rotation angle.
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Fig. 4. (left) Deviation of image points for σx = 100.65 ≈ 5 pixels; (right) Image
plane trajectories for PBVS.

The point configuration has a remarkable effect on the pose estimation ac-
curacy. To investigate this, an experiment with random configurations was
performed. Each configuration had 8 points uniformly distributed inside a
cube with 1m sides. Again, we used Monte-Carlo simulations to examine the
uncertainty. In Figure 5, the measured and predicted uncertainties are shown
for 50 random configurations for two translational axes of freedom. The un-
certainties are expressed in meters. The solid lines are the predictions and the
crosses the Monte-Carlo estimates. The predictions show high correlation to
the Monte-Carlo measurements, with correlation coefficients of ρX ≈ 0.995
and ρY ≈ 0.996. Thus, the prediction is able to describe the effect of the point
configuration. A noteworthy point is also that the peaks in the graphs in Fig-
ure 5 do not always coincide. This means that a configuration often has larger
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Fig. 5. Effect (uncertainty in meters) of point configuration on two axes.
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Fig. 6. Effect of distance on (left) translation; (right) rotation angle.

uncertainty in some directions than others.

Another parameter affecting the accuracy is the distance to the target. A
set of Monte-Carlo experiments was performed assuming constant deviation
in image coordinates. Figure 6 shows how the uncertainty grows as the dis-
tance increases. The solid lines are again the predictions and the crosses are
Monte-Carlo estimates. The errors are scaled with an exponential factor to
demonstrate the error behavior, with meters used for distance and radians for
angle. The graph on left shows the cubic root of the translational error on
one axis with respect to the distance while the right one is the square root
of the error in the rotation angle. It is easy to see that the translation error
is proportional to the third power of the distance while the rotational error
is proportional to the squared distance. The cubic nature of the translational
error was observed for the all three axes.

The analysis predicted also very high correlation between the translation in
x-axis and rotation around y-axis, as well as vice versa. This translation-
rotation-ambiguity is a well known phenomenon in structure-from-motion.
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7.2 Position-based servoing

The following experiments assume a servoing task where the camera is initially
rotated around all axes and positioned relatively far away from the goal po-
sition (around ten times the desired distance). This allows us to evaluate the
effect of the distance to the servoing and also investigate the rotation around
different axes. The target is the same as presented in the previous section.
The trajectories of the features in the image plane are shown on the right in
Figure 4.

The validity of the analysis was verified by displacing the feature locations
using a known error distribution and measuring the deviation of the control
output. In Figure 7, the predicted and measured deviations in the translational
velocities in y (dotted line) and z (dashed line) are shown, as well as in the
rotational velocities around the same axes. The units are m/s for translational
velocity and radian/s for rotation. The figure shows that the measured and
predicted deviations correspond very well, which indicates that the theoretic
analysis is valid. It should be noted that the errors are proportional to the gain
of the controller λ (see Eq. 31) which was set to unit value in the experiment.
Thus, the graphs should be only used to investigate the behavior over time,
and the absolute values are not essential.
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Fig. 7. Measured and predicted deviations in PBVS control output: (left) transla-
tion; (right) rotation.

Figures 8 and 9 demonstrate the error behavior of position-based servoing. The
results are presented in both world and camera frames because the world frame
is the most natural way to inspect the error in terms of the Cartesian controller,
while the camera frame reveals information about the directional nature of
the error. In the figures, the solid line corresponds to x-axis translation and
rotation, the dotted line to y-axis, and the dashed line to z-axis.

Left column in Figure 8 shows the negative exponential velocity of the Carte-
sian control in PBVS. The absolute deviations (in m/s) in the control are
presented in the middle of Figure 8, and relative (deviation divided by the
control output) on right. It should be again noted that the absolute values of
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Fig. 8. PBVS behavior in world frame: (left column) Velocity/control output; (mid-
dle column) Absolute errors; (right column) Relative errors; (top row) translation;
(bottom row) rotation.
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Fig. 9. PBVS behavior in camera frame: (left column) Velocity/control output; (mid-
dle column) Absolute errors; (right column) Relative errors; (top row) translation;
(bottom row) rotation.

deviation are not very important as the gain of the controller affects them. In
the relative errors the effect of the gain is negated as both the control output
and the uncertainty are affected by the same gain. Figure 9 presents the be-
havior in camera frame. It can be seen that the control in the direction of the
camera optical axis is much more reliable in terms of image errors, as is also
the rotation around the optical axis (coinciding with the world y-axis in the
goal position). There seems to be little difference in the control in the axes
perpendicular to the optical axis near the goal position, but initially when the
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object is not yet aligned to the image plane, there is some difference in the
accuracy. The maximum shown in top right subfigure of Figure 9 is caused
by the zero-crossing of the corresponding control (note that this zero-crossing
occurs only in the camera frame, not in the world frame where PBVS guaran-
tees a trajectory along a straight line). Another observation to make is that
the relative error has a minimum along the trajectory, when the distance to
the target is already quite small, but the target is still not precisely aligned.
After this minimum, the relative error continues to increase to a level that
would make the servoing impossible if the error would exist in practice.

The relative errors can be used to assess the validity of the servoing in the
direction of a certain axis so that when the relative error becomes dominant
(say, more than third of the control), the control in that axis can begin to
diverge. The target is almost perfectly aligned in z-coordinate of the world
frame, so the relative error in z-translation is very high throughout the motion,
which seems to suggest that there is no reason to control that axis.

7.3 Hybrid visual servoing

The same control task used with PBVS was also used with the hybrid ap-
proach. The results of the analysis were verified by an experiment, which is
presented in Figure 10. The predicted deviations seem to follow the measure-
ments well, which suggests that the analysis is valid.
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Fig. 10. Measured and predicted deviations in HYBVS control output: (left) trans-
lation; (right) rotation.

The error behavior of HYBVS can be seen in Figure 11 for the world frame and
in Figure 12 for the camera frame. In some respects, the behavior is similar
to PBVS. Most importantly, the errors in the translation along the optical
axis and in the rotation around it are considerably smaller than for the axes
parallel to the image plane. The behavior in rotation resembles that of PBVS,
but it is important to note that they are not identical, as the systems have a
different trajectory. It is easy to notice that HYBVS has a faster convergence
in the depth (Figure. 8 and 11), and this seems to be the reason for it to
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attain the constant error region of z-axis rotation sooner (Figures 8 and 11).
The relative errors show another characteristic of HYBVS, the occurrence
of zero-crossings in the Cartesian control. This can be seen easily from the
strong peak of the relative error in translation (Figure 8). The relative errors
also suggest the regions where the control is likely to diverge due to the errors
in pose estimation. For HYBVS it seems that translation can be controlled at
least to some degree in x and y and rotation in y and z. Now, the translation-
rotation ambiguity can be again seen as the z-axis translation corresponds to
x-axis rotation in the world frame.
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Fig. 11. HYBVS behavior in world frame: (left column) Velocity; (middle column)
Absolute errors; (right column) Relative errors; (top row) translation; (bottom row)
rotation.
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Fig. 12. HYBVS behavior in camera frame: (left column) Velocity; (middle column)
Absolute errors; (right column) Relative errors; (top row) translation; (bottom row)
rotation.
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7.4 Discussion

A common reference trajectory needs to be defined in order to compare PBVS
and HYBVS uncertainties with respect to time. Figure 13 presents the esti-
mated errors of HYBVS control when the camera is moved along the trajectory
generated using PBVS. Thus, the camera location with respect to time corre-
sponds to Figure. 8 and 9. The errors are presented in the world frame. The
absolute and relative errors for translation in Figure 13 correspond to Figure 8.
For the rotation part, the errors are not shown, as they would be identical to
the PBVS case since the rotation control is identical. PBVS has clearly smaller
absolute errors than HYBVS in the beginning. A possible explanation for this
is that the methods follow a different trajectory. Another issue is the ability
of PBVS to use all feature points for the pose estimation, while HYBVS uses
only a single point to control the trajectory parallel to the image plane. The
relative errors have some similarities, in particular the order of the axes is the
same. For the translation along y (which is closest to the optical axis, and
which has the longest initial distance), the relative error amplitudes seem to
be comparable. For the x-axis, which has some initial error, PBVS is initially
less prone to errors, while later in the trajectory the errors become compara-
ble. For the z-axis, HYBVS has slightly smaller error, but it is unlikely that
either can be used for efficient control, as the error is large. In addition, the
reason that HYBVS has smaller relative error is that it initially controls the
axis away from the point of convergence as was seen in the existence of the
zero-crossing discussed earlier.
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Fig. 13. HYBVS translation errors on PBVS trajectory: (left) absolute; (right) rel-
ative.

8 Summary and Conclusion

In this paper, we have analyzed the effect of measurement errors in visual
servoing. The main contribution of this paper is the idea of the propagation
of image error through pose estimation and visual servoing control law. In
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particular, we have investigated the properties of the vision system and their
effect to the performance of the control system. Two servoing approaches
have been evaluated: i) position-based, and ii) 2 1/2D visual servoing. In
our approach, the analysis is performed using a particular pose estimation
algorithm and two visual servoing approaches. Since the general methodology
can be used with any other pose estimation algorithm, we believe that this
work provides novel information and serve as an example that our analysis
framework is suitable for visual sevoing. It is also possible to extend the results
to other servoing strategies. Particularly, we show how any optimization-based
pose estimation approach can be analyzed. However, we feel that a closed-
form solution is better suited to visual servoing because of real-time issues
involved. We believe that our evaluation offers a valid tool to design hybrid
control systems based on, for example, switching [18] or partitioning [6].

Our future work will investigate the following questions: Can we use this mea-
sure of uncertainty to control only viable degrees of freedom? For example,
to first control the robot to a more reasonable distance from an initially dis-
tant pose and then, when close to target, control the more difficult degrees of
freedom. Recently, a stacked controller architecture has been proposed which
could be used to implement this type of control [21]. We also want to propagate
the error through the pure image based visual servoing control law and com-
pare this to the results presented here. The last question we want to answer
is: Can we use this type of evaluation to find favorable feature configurations
so to obtain optimal or stable behavior, especially in the case of image based
visual servoing, [22].
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