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Abstract

This paper considers trajectory planning problems for autonomous robots in infor-
mation gathering tasks. The objective of the planning is to maximize the information
gathered within a finite time horizon. It is assumed that either the Extended Kalman
Filter (EKF) or the Extended Information Filter (EIF) is applied to estimate the
features of interest and the information gathered is expressed by the covariance
matrix or information matrix. It is shown that the planning process can be formu-
lated as an optimal control problem for a nonlinear control system with a gradually
identified model. This naturally leads to the Model Predictive Control (MPC) plan-
ning strategy, which uses the updated knowledge about the model to solve a finite
horizon optimal control problem at each time step and only executes the first con-
trol action. The proposed MPC framework is demonstrated through solutions to two
challenging information gathering tasks: 1) Simultaneous planning, localization, and
map building (SPLAM) and 2) Multi-robot Geolocation. It is shown that MPC can
effectively deal with dynamic constraints, multiple robots/features and a range of
objective functions.

Key words: Nonlinear Model Predictive Control, Simultaneous localization and
map building (SLAM), Target Localization, Extended Kalman Filter (EKF),
Extended Information Filter (EIF), Optimization

1 Introduction

Information gathering via observations is fundamental for many autonomous
robot tasks such as target localization, exploration, mapping, search and simul-
taneous localization and map building (SLAM). These processes are subject
to uncertainty about the environment, uncertainty in the sensor measurement
and uncertainty in the process model. To enable an autonomous robot to op-
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timally exploit the sensor data, planning for information gathering needs to
effectively mitigate the adverse effects of all these uncertainties.

Several techniques currently exist for planning with uncertainty. For example,
the uncertainties can be viewed as random variables or a stochastic process.
This leads to the field of stochastic control and popular expressions include
Markov Decision Processes (MDPs) and their extensions, Partially Observable
Markov Decision Processes (POMDPs) [12]. Uncertainties can also be treated
as a deterministic signal (with a known hard bound or a known energy bound)
which leads to nonlinear l∞ bounded robust control [10] and nonlinear H∞

control [9]. All these problems are theoretically solvable and optimal solutions
can be obtained by computing the value functions defined for the belief states
[12] or the information state [9,10]. However, the computational cost involved
is extremely high and it is difficult to apply these methods in real time planning
for information gathering tasks in large scale environments.

Model Predictive Control (MPC), or Receding Horizon Control [1], is an-
other technique that can be applied in the information gathering tasks. MPC
has found many applications from its ability to incorporate constraints in
the planning process, its limited computation requirements, and its capabil-
ity of allowing feedback at each planning horizon. Recently, MPC has been
applied in trajectory planning for multi-robot planning and control under in-
put/state constraints for collision-avoidance [20], regulation of nonholonomic
mobile robots [8], and UAV navigation with passive noisy sensing [5].

In this paper, we consider the case when the information gathering task is
formulated by estimating a state vector containing features of interest in the
environment. The estimation is performed by applying either the Extended
Kalman Filter (EKF) or the Extended Information Filter (EIF). We show
that the planning problem in this scenario can be regarded as an optimal
control problem for a nonlinear system with a gradually identified model.
Then we propose the MPC strategy, which is suitable for online decision mak-
ing, changing models and dynamic constraints. Two scenarios, Simultaneous
Planning, Localization and Map building (SPLAM) [4] and Multi-robot Ge-
olocation [7] are used as case studies. The first scenario is single-robot SLAM
using an EKF. The second scenario is the case where there are multiple robots
localizing multiple targets using an EIF.

This paper builds on our recent work [11] and [15]. It is organised as follows.
Section 2 formulates the planning problem for the information gathering task
as an optimal control problem with a gradually identified model. In Section 3,
the MPC strategy for information gathering is introduced. In Section 4, the
effectiveness of the strategy is illustrated using simulation results of the two
examples. Section 5 discusses issues regarding the MPC strategy along with
some related work and possible extensions. Section 6 concludes the paper.
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2 The Trajectory Planning Problem for Information Gathering

Suppose there are n robots performing an information gathering task. The fea-
tures of interest in the environment are expressed by a state vector. The state
vector may contain the locations of the features and/or some key properties of
the features etc. depending on different applications. When the robots’ poses
(that is, their positions and orientations) are not known (such as in SLAM),
they may also be included in the state vector.

2.1 The Process and Observation Model

Suppose the discrete-time process model of the ith robot is

xri
(k + 1) = fi(xri

(k),ui(k),dxi
), (1)

where fi is a nonlinear function which depends on the type and the dynamic
model of heterogeneous robots, xri

is the pose of robot i, ui(k) is the control
input at time k (it may include velocity, turning rate, acceleration etc.) and is
assumed to be constant during [k, k + 1), and dxi

is the zero-mean Gaussian
process noise with covariance Σ.

The constraints of the robot’s motion are to be incorporated into the planning
process. The control constraints and state constraints can be expressed by

ui(k) ∈ Ui(k), xri
(t) ∈ X(k + 1), ∀t ∈ [k, k + 1], (2)

where Ui(k) is the set of admissible controls for robot i at time k and X(k+1)
describes the safe region for robots during time k to time k + 1.

The features are assumed to be stationary. Dynamic features may be consid-
ered (e.g. in moving target tracking) by introducing the process model for such
features, however stability will be an issue (see Section 5.1).

The robots are equipped with sensors that can observe the features. For each
robot i, let Ji(k + 1) denote the set of the indices of the features that robot i
can sense at time k + 1, which is expressed by

Ji(k + 1) = {j1, · · · , jl}, (3)

where the integer l depends on the pose of robot i at time k+1, the range of the
sensor equipped on robot i, and the feature distribution in the environment.
The l features may contain both previously observed features and new features.
The the observation model of robot i at time k + 1 is then

zi(k + 1) = [zij1(k + 1), · · · , zijl
(k + 1)] (4)
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where for each feature, j ∈ Ji(k + 1), the observation model is

zij(k + 1) = hi(xri
(k + 1),xfj

) + dzi
, (5)

where xfj
denotes the state of the j-th feature, hi is a nonlinear function which

depends on the model of the sensor equipped on the ith robot, and dzi
is a

zero-mean Gaussian measurement noise with covariance matrix Ri.

Furthermore, we denote

J(k + 1) = [J1(k + 1), · · · , Jn(k + 1)] (6)

as the indices of all the features that any robot can observe at time k +1, and

z(k + 1) = [z1(k + 1), · · · , zn(k + 1)] (7)

as all the observations made by the robots at time k + 1.

2.2 Information Evolution

The information gain from observations can be represented in different forms.
For example, in [14], particles are used to represent hypotheses of the cur-
rent state, and the uncertainty is described by the density of the particles.
When the distribution of the state vector can be approximated as a Gaus-
sian distribution, either the Extended Kalman Filter (EKF) or the Extended
Information Filter (EIF) can be efficiently used to update the knowledge.

In both the EKF and the EIF (e.g. [19]) formulations, the estimate of the
state vector and the corresponding covariance matrix (or information matrix)
are updated in a recursive manner. The EKF formula can be summarized as

x̂(k + 1) = F̂P (x̂(k),P(k),u(k), J(k + 1), z(k + 1)),

P(k + 1) = ĜP (x̂(k),P(k),u(k), J(k + 1))
(8)

and the EIF formula (with the information vector update equation changed
into an equivalent state vector update equation) can be summarized as

x̂(k + 1) = F̂I(x̂(k), I(k),u(k), J(k + 1), z(k + 1))

I(k + 1) = ĜI(x̂(k), I(k),u(k), J(k + 1))
(9)

where x̂(k),P(k), I(k) and x̂(k + 1),P(k + 1), I(k + 1) denote the state vector
estimate, covariance matrix, information matrix at time k and time k + 1,
respectively, u(k) is the control applied at time k, J(k + 1) and z(k + 1)
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are defined in (6) and (7). The functions F̂P , ĜP , F̂I , ĜI are determined by
the process models and observation models and the prediction and update
formulas in the EKF and/or the EIF.

In the following, we will use two examples, SPLAM and Multi-robot Geoloca-
tion, to illustrate the formulas (8) and (9).

2.2.1 Example 1: Extended Kalman Filter in SPLAM

We consider a single robot SLAM problem. The process model of the whole
state vector containing the robot pose xr and the locations of all the observed
features xf is

x(k + 1) = F(x(k),u(k),dx) =



f(xr(k),u(k),dx)

xf


 . (10)

In the EKF SLAM algorithm, the prediction step is

x̂−(k + 1) = F(x̂(k),u(k),0)

P−(k + 1) = F1(k)P(k)F1(k)T + F2(k)ΣF2(k)T ,
(11)

where x̂(k) and P(k) are the state estimate and covariance matrix at time k
(after the update), x̂−(k + 1) and P−(k + 1) are the predicted state estimate
and covariance matrix at time k + 1 (before the update), F1(k) and F2(k)
are the Jacobians of F with respect to x and dx evaluated at (x̂(k),u(k),0),
respectively.

Since there is only one robot, the observation at time k + 1 is

z(k + 1) = hk+1(x(k + 1)) + dz (12)

where the function hk+1 and the dimension of the noise vector dz depend on
J(k + 1).

The update step in EKF SLAM is:

x̂(k + 1) = x̂−(k + 1) + K(k + 1)(z(k + 1)− hk+1(x̂
−(k + 1))),

P(k + 1) = P−(k + 1)−K(k + 1)S(k + 1)K(k + 1)T ,
(13)

where

K(k + 1) = P−(k + 1)H1(k + 1)TS(k + 1)−1,

S(k + 1) = H1(k + 1)P−(k + 1)H1(k + 1)T + R,
(14)
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and H1(k + 1) is the Jacobian of hk+1 evaluated at x̂−(k + 1).

By combining equations (11) and (13), we can obtain the formula (8). Note
that H1(k + 1) depends on J(k + 1) since hk+1 depends on J(k + 1). Also,
when new features are observed, the dimension of x̂(k + 1) and P(k + 1) will
increase accordingly (for details see e.g. [4]).

2.2.2 Example 2: Extended Information Filter in Multi-robot Geolocation

In Multi-robot Geolocation [7], it is assumed that the poses of the robots
can be obtained from an external source such as GPS. The task is to localise
the features in the environment as quickly as possible from a sequence of
observations. Here, each observation zij of feature j from robot i comprises of
both bearing and elevation measurements and is given by (5).

Since the poses of robots are available and the features are assumed to be
stationary, there is no prediction step. Thus, it is convenient to apply an
EIF in the estimation process. Furthermore, because the information about
the different features is independent, the information matrix I(k) is block-
diagonal,

I(k) = diag[I1(k), · · · , Imk
(k)] (15)

where mk is the total number of features detected up to time k, Ij(k) is the
information matrix of feature j at time k, 1 ≤ j ≤ mk.

Let the state estimate at time k be x̂fj
(k) for j = 1, · · · ,mk. The formulas for

updating the estimation using EIF are

Ij(k + 1) = Ij(k) +
n∑

i=1

Hij(k + 1)TR−1
i Hij(k + 1),

x̂fj
(k + 1) = x̂fj

(k) + Ij(k + 1)−1
n∑

i=1

iij(k + 1)
(16)

for j = 1, · · · ,mk, where

iij(k + 1) =





Hij(k + 1)TR−1
i µij(k + 1), j ∈ Ji(k + 1),

0, j /∈ Ji(k + 1),

µij(k + 1) = zij(k + 1)− hi(xri
(k + 1), x̂fj

(k)), j ∈ Ji(k + 1)

Hij(k + 1) =




∇xfj

hi|(xri (k+1),x̂fj
(k)), j ∈ Ji(k + 1),

0, j /∈ Ji(k + 1),

xri
(k + 1) = fi(xri

(k),ui(k)),

(17)

for i = 1 · · · , n, j = 1, · · · , mk. If a new feature fnew is observed at time
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k + 1, then x̂fnew(k + 1) is initialized based on the observation and the infor-
mation matrix can be computed by the first equation in (16) assuming that
the information matrix at time k is zero (see e.g. [7]).

The above formulas have the same form as equation (9) where I(k) takes the
form of (15) and x̂(k) takes the form of x̂(k) = [x̂f1(k), · · · , x̂fmk

(k)].

2.3 Problem Statement

The objective of the planning is to maximise the total information gathered.
In an EKF, the information gathered is expressed by the covariance matrix
while in an EIF, it is expressed by the information matrix.

Problem Statement. Suppose the total time for the information gathering
task is T0. At time step 0, the robots poses are xri

(0), i = 1, · · · , n, the initial
estimate of the m0 features observed at time 0 are x̂fj

(0), j = 1, · · · ,m0 and
the covariance matrix is P(0) (the information matrix is I(0)). The task is to
choose suitable control actions for the n robots during [0, T0),

ui(0),ui(1), · · · ,ui(T0 − 1), i = 1, · · · , n, (18)

such that a quantitative measure of the final covariance matrix P(T0) is min-
imised (or a quantitative measure of the information matrix I(T0) is max-
imised).

Note that different quantitative measures of the covariance matrix (or the
information matrix), such as the maximal/minimal eigenvalue, determinant,
or trace of the matrix, may be used depending on the application. For example,
in our SPLAM example we minimize the trace of the covariance matrix

trace(P(T0)) (19)

while in our Multi-robot Geolocation example, we maximize the minimal
eigenvalue of the information matrix

min(eig(I(T0))) = min
1≤j≤mT0

min(eig(Ij(T0))). (20)

2.4 An Optimal Control Problem for a Gradually Identified Model

The above planning problem can be regarded as a finite-time horizon optimal
control problem for a nonlinear control system where the system dynamic is
given by (8) (for the EKF) or (9) (for the EIF). The system state includes
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the estimate of the state vector x̂(k) and the independent elements in the
covariance matrix P(k) (for the EKF) or the information matrix I(k) (for the
EIF). The objective of the control problem is to minimize trace(P(T0)) or
maximize min(eig(I(T0))), both of which are functions of the system state.

However, the systems given by (8) and (9) are not ordinary nonlinear discrete-
time control systems. The key differences are:

(a) The dimension of the system state changes at various times. For example,
as new features are detected in the environment, the dimensions of x̂(k)
and the associated covariance matrix P(k) (or information matrix I(k)) are
enlarged;

(b) The state constraints in (2) are not known a priori. For example, the
obstacle may not be detected until robot is close enough; and

(c) The dynamics of the system depends on J(k + 1) and z(k + 1). But both
J(k + 1) and z(k + 1) are not available until time step k + 1. For example,
it is difficult to predict the set of features J(k + 1) that can be observed
due to the inaccurate feature position estimation, the inaccurate robot pose
estimation, and the unknown new feature locations. In addition, the true
observation z(k + 1) contains sensor noise.

Equations (8) and (9) show that the information at time k+1 (either P(k+1)
or I(k +1)) does not depend on the true observation z(k +1); it only depends
on the information at time k, the state vector estimation at time k, the control
action taken at time k, and the set of features observed at time k+1. However,
this is only true for one step prediction. Because the estimation x̂(k) depends
on the noisy observations z(1), · · · , z(k), when we predict P(k +1) or I(k +1)
at time 0, we need to predict not only which features can be observed at each
time step, J(1), · · · , J(k +1), but also the real observations z(1), · · · , z(k). In
the special case when there are no new features and the observation noises are
very small (thus the innovations are small and x̂(i) ≈ x̂(0), i = 1, · · · , k), it is
possible to predict P(k + 1) by only predicting J(1), · · · , J(k + 1); this is the
method used in [22].

In general, as the information gathering task proceeds, knowledge about the
environment accumulates. Firstly, knowledge of the total number of features
in the environment and the locations of the obstacles accumulates, so the
control system dimension and the state constraints become clearer. Secondly,
the estimate of the locations of the features become increasingly accurate, thus
J(k +1) and z(k +1) are increasingly predictable and hence the uncertainties
involved in the dynamics of the control systems become smaller and smaller.
Because of these, we call the control systems (8) and (9), systems with a
gradually identified model.
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3 Nonlinear Model Predictive Control for Information Gathering

In the information evolution equations (8) and (9), it may be possible to use
a general representation such as MDP or POMDP to take into account all the
possible dimensions of the state vector, all the possible J(k + 1) and z(k + 1)
based on our knowledge about the feature distribution in the environment and
the sensor noise. However, the model will be extremely complex and it will be
difficult to make the planning tractable with the current computational speed.
In this paper, we propose to use Model Predictive Control (MPC), a simple
but tractable strategy, in the planning process.

3.1 Model Predictive Control

The principle of Model Predictive Control (MPC) is to “look ahead a few
steps, but only perform one step.” To state clearly, at any time k, an optimal
control problem of fixed planning horizon of N steps is solved and a sequence
of N control actions

ui(k),ui(k + 1), · · · ,ui(k + N − 1), i = 1, · · · , n, (21)

is obtained for the n robots, but only the first control action, ui(k), i =
1, · · · , n, is applied. This strategy is repeated at each time step k.

As shown in Section 2.4, the model of the information gathering problem is
gradually identified. Thus MPC is a natural strategy to solve it because the
updated knowledge is used in the new plan at each time step. However, at
each time step, a fixed control system model is required to compute the N -
step optimal control actions. So we need a way to predict J(k+1) and z(k+1)
for N steps.

There are many different possible J(k+1) and z(k+1) due to the uncertainty
of the environments and the observations, so there are different ways to predict
them. In order to plan within a limited computational capacity, we propose to
make simple multi-step predictions at each time step — i.e. use the mean value
of the current state estimate to predict J(k + 1) for N steps assuming no new
features, and perfect process models; and use the predicted J(k+1) to predict
z(k +1) assuming zero observation innovations. In the N -step optimal control
problem, we also assume the control constraints and the state constraints are
not changing.

Since the possible future changes in the model are not considered in each plan,
it is crucial to replan as soon as new estimates are available.
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3.1.1 Example 1: Multi-Step Prediction for SPLAM

In order to plan multiple steps in SPLAM, we first assume no new features
and no new obstacles will be detected.

Assumption I. For any possible control sequence u(0), · · · ,u(N − 1), the
group of features that are predicted to be observed at time k + 1 (0 ≤ k ≤
N − 1) are the same as those that will be really observed at time k + 1.
Moreover, the safe region X(k + 1) contains the safe region X(0).

In SPLAM, the real observations are required to update the state. Since the
observations z(k +1) for k = 0, · · · , N −1, are not available at time k = 0, we
need to predict their values. In the EKF implementation, we always assume
that the distribution of the true locations xk+1 is Gaussian with mean x̂−(k +
1). The observation noises are also assumed to be Gaussian with zero mean.
Thus we can say that at time k = 0, the innovations z(k + 1)− hk+1(x̂

−(k +
1)) are all random variables with zero mean. So we predict the observations
assuming that the innovations are zero at all steps.

Assumption II. The innovations at any time k + 1 are zero, i.e.

z(k + 1)− hk+1(x̂
−(k + 1)) = 0 (22)

for all k = 0, · · · , N − 1.

At time k = 0, under Assumptions I and II, the N -step optimal control prob-
lem for the gradually identified system becomes an optimal control problem
for an ordinary deterministic control system. So we can perform the following
multi-step look-ahead optimal control to find

u(0), · · · , u(k + N − 1). (23)

N-step optimal control problem. Given x̂(0) and P(0), find (23) such that
trace(P(N)) is minimized, where P(N) is given by the following equations:

P−(1) = F1(0)P(0)F1(0)T + F2(0)ΣF2(0)T ,

x̂−(1) = F(x̂(0),u(0),0),

H1(1) = ∇xh1|x̂−(1)

S(1) = H1(1)P−(1)H1(1)T + R(1),

K(1) = P−(1)H1(1)TS(1)−1,

P(1) = P−(1)−K(1)S(1)K(1)T ,

(24)
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x̂(1) = x̂−(1),
...

P−(N) = F1(N − 1)P(N − 1)F1(N − 1)T + F2(N − 1)ΣF2(N − 1)T ,

x̂−(N) = F(x̂(N − 1),u(N − 1),0),

H1(N) = ∇xhN |x̂−(N)

S(N) = H1(N)P−(N)H1(N)T + R(N),

K(N) = P−(N)H1(N)TS(N)−1,

P(N) = P−(N)−K(N)S(N)K(N)T .

(25)

Following this, at time k, similar assumptions need to be made from time k
to k + N and the objective is to minimise trace(P(k + N)).

3.1.2 Example 2: Multi-Step Prediction for Multi-robot Geolocation

By making similar assumptions as stated by Assumptions I and II, we can
perform an N -step optimal control as follows.

N-step optimal control problem. Given xri
(0), x̂fj

(0) and Ij(0), choose
control (21) to maximize the measure min

1≤j≤mN

min(eig(Ij(N))) where Ij(N) is

given by

Ij(1) = Ij(0) +
n∑

i=1

Hij(1)TR−1
i Hij(1),

Hij(1) =




∇xfj

hi|(xri (1),x̂fj
(0)), j ∈ Ji(1),

0, j /∈ Ji(1),

xri
(1) = fi(xri

(0),ui(0))
...

Ij(N) = Ij(N − 1) +
n∑

i=1

Hij(N)TR−1
i Hij(N),

Hij(N) =




∇xfj

hi|(xri (N),x̂fj
(0)), j ∈ Ji(N),

0, j /∈ Ji(N),

xri
(N) = fi(xri

(N − 1),ui(N − 1))

(26)

for i = 1 · · · , n, j = 1, · · · ,mN .

Following this, at time k, similar assumptions need to be made from time k
to k + N and the objective is to maximize min

1≤j≤mk+N

min(eig(Ij(k + N))).
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3.2 Number of Prediction Steps in MPC

A question regarding the use of MPC is how long the planning horizon N
should be. Intuitively, when the uncertainty involved is large, a short plan-
ning horizon with immediate rewards are desired. This is due to the high
likelihood that the optimal plan will change significantly once new informa-
tion is acquired. If the uncertainty is small, longer plans generally equate to
obtaining higher benefits. However, the planning horizon N is limited by the
computational capacity of the planner. So, the choice for the length of the
planning horizon N is application specific.

3.3 Optimization Techniques

Systematic techniques are required to solve the N -step optimal control prob-
lem and determine the sequence of control actions. There are many ways to
search for the optimal control sequence. The two strategies we used in our
examples are the Exhaustive Expansion Tree Search (EETS) and Sequential
Quadratic Programming (SQP).

3.3.1 Exhaustive Expansion Tree Search (EETS)

EETS conducts an exhaustive search among a limited number of control se-
quences. For each robot, the number of possible control options it can take
at each time step is Nω. Each robot i can move to Nω different poses at time
k + 1 if they were to apply Nω separate controls over the period k to k + 1.

For the N -step optimal control problem, different control options may be
chosen at different steps from step k to step k + N − 1. Thus each robot
would have (Nω)N different control sequence options. For the n robots, if a
centralized optimal control is considered, there will be (Nω)Nn combinations
of control options available. The information gain for the (Nω)Nn options need
to be evaluated and compared; hence the computation cost is O((Nω)Nn).

Constraints of no-go-zones can be enforced by an explicit condition based on
predicted feature and robot locations to omit branches from the tree search.

Since no information is obtained when the features are out of the robot’s
sensor range, it is possible that robots cannot gain any information even after
looking at all possible trajectories in N steps. This often occurs when the
robot is too far away from the features. In this case, it is beneficial to predict
further again if the computational capacity allows. However, if we simply
increase the planning horizon N and plan again, the computation load will
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increase exponentially. In our examples, we choose to double the planning
horizon N but reduce the number of control options by keeping a control
option unchanged every two steps (e.g. [k, k + 2)) instead of one step (e.g.
[k, k + 1)). Through this approach, the information gain is evaluated every 2
steps and the computational cost remains the same (the total planning time is
doubled). Although this is a coarser search, it allows the robot to look further
ahead without severely burdening the processor. If there is still no information
gain by doubling the planning horizon and the computational capacity still
allows for a replan, then the same strategy is repeated.

3.3.2 Sequential Quadratic Programming (SQP)

The benefit of an exhaustive search is that it finds the global optimum among
the finite control options. However, it can be argued that a coarse exhaus-
tive search would not obtain the optimal solution because only a few discrete
options are available. We present an alternative method for the N -step opti-
mization. This method is also used to evaluate our results from EETS. We
combine EETS with SQP because unlike EETS, SQP is an efficient method
for continuous optimization problems. In general feeding SQP with a random
guess would not result in good performance because a local optimum is often
found. Instead the system is fed the control sequence for each robot that was
obtained from EETS. This way the SQP is given a good initial condition so
that the coarseness of EETS can be refined.

4 Simulation Results

4.1 Example 1: SPLAM

Simulations for information gathering in SPLAM were conducted using a sin-
gle Pioneer robot with multiple features in a 2D environment. Large sensor
noise is given to the range measurements to create similar conditions to a
bearing-only case. The control inputs available are velocity and turn-rate. In
addition, the external constraints in the simulations are dynamic. There are
safety boundaries around the features as they are considered to be obstacles.
When new features are detected, new areas are defined to be no-go-zones.

4.1.1 Compare Paths from Different Strategies

In our first set of simulations, we compared information gathering using ran-
dom control, fixed control, the greedy method [4] and planning with MPC.
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For each of these examples, 20 features are scattered in a 20m2 search space
as can be seen in Figure 1. The tasks of the robot are to discover and localise
these features while maintaining a good estimate of itself. A terminal time of
T0 = 1000 discrete time steps is allotted to the robot. Each time step from k
to k + 1 is set to 0.4 seconds. The sensor is given a limitation of ±22.5◦ field
of view with a 5 meter range.

Figure 1(a) shows the path resulting from motions randomly selected from
a set of feasible control options. The random path swerves from left to right
heading in a predominantly straight line fashion. To prevent the robot from
heading directly out of the exploration space, we added an extra constraint.
If the robot reaches the edge of the exploration space, it will stop and turn
randomly. This constraint is indicated by the green border. It can be seen that
at the terminal time, much of the exploration space is covered but the robot
is lost and the uncertainties are extremely high.

The result of maintaining a fixed control (constant velocity and turn-rate) can
be seen in Figure 1(b). The robot was unable to cover much of the area due
to the restricted path. However it was able to localise features along the path
quite well because it continuously revisited previously observed features.

A method that is commonly used in information-based strategies is the greedy
method [4]. It is a single step optimisation technique. Figure 1(c) shows the
path of the greedy method with Nω = 5 control options. The short-sightedness
of this method is apparent when the robot has detected a new feature but does
not have the look-ahead to revisit the feature once it has moved past it. Two
features with significantly large uncertainties can be seen as a result of the
robot only visiting the nearby features that can be observed in the next step.

The path of MPC is shown in Figure 1(d). MPC is implemented using a
planning horizon of N = 5 and Nω = 5 control options. The features detected
are revisited to minimise the uncertainty of the known map. The detection of
features with MPC and the greedy method are only through chance since no
explicit exploration strategy is implemented. However there is still a trade-off
between coverage and accuracy. Having said this, we compare the two cases
of greedy and MPC where a similar amount of features have been identified;
it can be seen the final uncertainty from the MPC strategy is smaller.

For the N -step optimal control problem, in Section 3.1, if a fixed number of
control options are considered and an EETS is used to select the best option,
then the performance of N -step optimization is definitely better than the per-
formance of the one-step optimization (the greedy method). This is because
the greedy solution is one of the options considered in the N -step optimization
(N -step optimization achieves a better performance at the cost of higher com-
putation load). Similarly, performing one-step optimization is definitely better
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(d) MPC path

Fig. 1. Robot Path and Feature Uncertainties

than random control and fixed control because the fixed control solution and
the random control solution are two options considered in the one-step op-
timization. However, since we have simplified the original planning problem
by making Assumptions I and II and only look-ahead N -steps, there is no
guarantee that the proposed MPC strategy is the best for the overall planning
problem, though our simulations show that it outperforms the other strategies
in most cases.

4.1.2 Increasing Process Noise

In further trials, we removed the sensor limitations to avoid large differences in
the number of features detected. Ten trials were conducted each with Nω = 3
control options, 20 features and 1000 loops. Table 1 shows the average un-
certainty of the ten trials and the ratio of the average uncertainties over the
greedy method. As can be seen in Table 1, the benefits of planning with a
longer lookahead decreases as the process noise increases. However the results
in the table show that even at the highest noise level, a planning horizon longer
than a single step still performs better than the greedy method.

The level of the benefit attainable by applying MPC also depends on many
other factors, such as the environmental conditions (e.g. feature density) and
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(a) Brumbies in Field (b) Camera View

Fig. 2. Brumbies at CAS

system constraints (such as field of view, maximum turn-rate).

Table 1
Results from Increasing Process Noise
σ2 Vel noise 0.03 0.04 0.05 0.06
σ2 Turn noise 3◦ 4◦ 5◦ 6◦

N Trc R Trc R Trc R Trc R

0 (fixed ctrl) 0.0065 1.14 0.0084 1.17 0.0111 1.22 0.0153 1.31
1 (greedy) 0.0057 1.00 0.0072 1.00 0.0091 1.00 0.0117 1.00
3 0.0052 0.92 0.0067 0.93 0.0085 0.94 0.0112 0.96
5 0.0047 0.83 0.0061 0.85 0.0080 0.88 0.106 0.91
7 0.0042 0.73 0.0055 0.77 0.0075 0.83 0.0107 0.92
Trc = Average Trace(P)/(number of rows in P) of 10 trials
R = Ratio of Trc/Trc(greedy)

4.2 Example 2: Multi-robot Geolocation

Simulations for information gathering in Multi-robot Geolocation were con-
ducted using two UAVs (Unmanned Arial Vehicles) and three targets on the
ground. The process model for the UAVs is obtained from [13]. This model is
particular to the two UAVs (Brumbies) we have at CAS (Centre of Excellence
for Autonomous Systems), as seen in Figure 2(a). We set each UAV to fly at
different altitudes so inter-robot collision is not relevant in this case.

The control u(k) to be determined at each step is the roll. Each UAV has a
maximum bank angle limiting the roll and turn-rate. The UAVs are equipped
with a camera with ±15◦ field of view. It is mounted on the base of the UAVs
so the direction of view of the camera depends on the current roll of the UAVs,
as can be seen in Figure 2(b).
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4.2.1 MPC vs. Fixed Control

Simulations were conducted using MPC and are compared with the robots
moving in a fixed path (constant roll). It was found that the initial fixed path
violated the state constraints and the targets were not visible to the robots.
The initial poses of the robots were manually repositioned and checked to
ensure that each target was visible to at least one robot along the fixed path
as seen in Figure 3(b). The constraints of the no-go-zones were also checked
to ensure they were not violated. As shown in Figure 3(c), the fixed path
remained outside of the green circles.

Ten trials were conducted. The results of the fixed path (N = 0) are compared
to those from MPC with one (N = 1) to five (N = 5) step planning horizons.
Table 2 contains the results of the average information gain from the ten
trials. Results for the fixed control, presented in row N = 0, shows that the
information gain from MPC is much higher than that of the fixed path.

Furthermore, it can be seen that the information gain from the MPC strategy
increased as the planning horizon N increased. After 50 steps, with a planning
horizon of N = 5, MPC gained on average 426% of the information of the
greedy method. The difference in information gain is not as large after 500
steps. This is a result of the planes flying at a fixed altitude high above the
features. The eigenvalues of the information matrices in the vertical direction
eventually became dominant and could not be increased much further due to
the flight constraint. Figure 3(d) shows the vertical offset of the planes and the
uncertainties of the features with greater uncertainty in the vertical direction.

Table 2
Results from the three approaches
N Loop Nω Info Ratio N Loop Nω Info Ratio

0 (fixed ctrl) 50 NA 0.0080 0.84 0 500 NA 0.0212 0.53
1 (greedy) 50 3 0.0095 1.00 1 500 3 0.0403 1.00
2 50 3 0.0179 1.88 2 500 3 0.0535 1.33
3 50 3 0.0219 2.31 3 500 3 0.0561 1.39
4 50 3 0.0333 3.51 4 500 3 0.0584 1.45
5 50 3 0.0405 4.26 5 500 3 0.0596 1.48
Info = min(eig(I(T0))), Ratio = Info/Info(greedy).

4.2.2 Dynamic Constraints

We enforced a no-go-zone constraint: the robots cannot fly within the maximal
axis of the 95% confidence ellipse of any target in addition to a predefined
safety distance. When the uncertainty of the target location is large, this
no-go-zone constraint is larger. When the robots gain more information on
the target’s location, the no-go-zones around the targets reduce accordingly.
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Fig. 3. Brumbies’ Flight Path

Figure 3(a) shows the initial information of the target is small thus the initial
uncertainty is large, hence the path of the UAV is restricted.

A benefit of using MPC is that varying constraints can be continuously incor-
porated into the planning process. When the no-go-zones reduce, MPC takes
advantage of it and the UAVs move closer to the targets to gain more informa-
tion. Figure 3(e) shows the top-view of the paths depicting that the constraints
of no-go-zones are not violated. If new targets were discovered MPC would also
take that into account and plan paths outside of the no-go-zones. Obviously,
when using fixed control, dynamic constraints cannot be accommodated.

5 Discussion and Related Work

5.1 Stability of Nonlinear MPC (NMPC)

Linear MPC has established its reputation as a powerful and a broadly-
applicable tool [18]. However, the real applications of nonlinear MPC (NMPC)
are still limited; one of the major difficulties lies in the stability analysis of
NMPC [1].

However, for the information gathering tasks, stability is not critical when
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the features are stationary. In general, for information gathering tasks, we are
only concerned about the stability of robot motion and the convergence of the
estimation algorithms. The stability of the robot motion can be guaranteed as
long as the control actions are admissible and the obstacles are avoided. The
convergence of the estimation algorithm is generally guaranteed for any robot
motion. For example, Dissanayake et al. proved that the EKF SLAM algorithm
converges as long as successive observations are made from the robot [3]. For
the Multi-robot Geolocation problem, the information about the targets can
only be increasing (resulting in smaller uncertainties) when observations are
made. Thus the uncertainty of the target estimation is always bounded even
when no robot trajectory planning is executed.

In many information gathering tasks, as long as the chosen control policy will
not crash the robot, the worst case is only to “obtain no information from
the environment,” which is often acceptable. This makes the MPC strategy
applicable to many information gathering tasks without worrying about the
stability issue. Certainly, if dynamic features in the environment are consid-
ered, the estimation algorithm may diverge due to poor planning (e.g. losing
track of moving targets).

5.2 Computational Complexity

In the proposed MPC strategy, the computational complexity increases expo-
nentially as the planning horizon N is extended. Computational complexity
also increases with the number of possible control options at each step and
the number of robots (for multi-robot information gathering). We have shown
that in SLAM simulations, there is a limit to the benefits gained by increasing
the planning horizon especially for systems with large uncertainties, where
long-term rewards may not be realized. In our previous work [15] we have
shown that for multi-robot geolocation, a coarse discretization of the control
options is sufficient to provide a near optimal solution and that combining a
coarse EETS with SQP negates the need to implement a fine discretization.

The computational cost also depends on the dimension of state vector and
the covariance matrix/information matrix. Many techniques can be used to
further reduce the computational complexity in the optimization process. One
possible way is to compute the first control, which is implemented, exactly,
while approximating the remaining controls, which are not implemented, as
proposed by A. Zheng in [1]. Another possible way is to only use part of
the nearby features and the corresponding covariance submatrix (information
submatrix) in the planning process.
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5.3 Comparison with Related Work

The greedy methods (one-step look ahead) have been proposed for different
information gathering tasks. For example, Feder [4] et al. used the greedy
method in their SPLAM algorithm. In [23], the greedy method is used in
multi-robot mapping. A greedy strategy for information gathering in vision
and image processing called the Next Best View (NBV) is used in [17] for
the task of 3D object reconstruction. However, it can be easily proved that
planning longer than a single step can obtain improved results. Our simulation
on SPLAM and Multi-robot Geolocation (see Section 4) have confirmed this.

In contrast, the POMDP [12], nonlinear H∞ control [9] and nonlinear l∞ con-
trol [10] all aim at providing global optimal control policies. However, the curse
of dimensionality and curse of history [2] are major concerns of these global
planning strategies. Though some decomposition and approximation methods
are available to obtain the solution (such as clustering [16], implementing a
hierarchical POMDP [6] and using parameters to represent approximate con-
tinuous states [2]), it is still very difficult to make them tractable in real-time
large-scale applications with the current computational speed.

The most powerful aspect of MDPs and POMDPs is that the results from an
action can be probabilistic. However, the set of all the possible states of the
environment needs to be known before the planning process. In information
gathering tasks such as SLAM, the states of interest contain the location
of features in the environment. When defining the state space in POMDP
before SLAM is performed, all the possible numbers of the features and all
the possible locations of features need to be taken into account and this will
make the dimension of the state space extremely large. It is also difficult to
model the POMDP problem when new state constraints may be detected.
If not all the possible constraints are taken into account then the resultant
control policy may be far from reliable (needless to say optimal). On the other
hand, if all the possible constraints are accounted for then either (i) a lot of
parameters need to be identified (which makes the system more complicated),
or (ii) the states are only allowed to stay in a very limited region (which
significantly limits the solution space and the result will be far from optimal).

In the proposed MPC strategy, it is not necessary to determine the (expected)
reward for every possible state. Only a limited number of states within a
short planning horizon are evaluated at each time step. When the environment
is unknown or dynamic, it is beneficial to generate short term plans with
continual feedback from the environment. Observations are used to update the
system model to incorporate any changes in the environment. Although the
curse of dimensionality is also a limitation of MPC, computational complexity
may be reduced by maintaining a short planning horizon.
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MPC has been applied in many autonomous robot applications such as trajec-
tory planning for multi-robot collision-avoidance [20] and regulation of non-
holonomic mobile robots [8]. Recently, Frew [5] proposed to use MPC in a
few different problems such as UAV waypoint navigation, trajectory following,
safe exploration of unknown environment and aircraft see-and-avoid. However,
SLAM is not considered in [5] and the planning is for a single robot. Another
difference is that they put constraints in the cost function with a large weight,
whereas we put them as hard constraints when selecting the controls. Also,
the optimization techniques they used is breath-first random search instead of
EETS and SQP as adopted in our work. Regarding robot geolocation, Gro-
cholsky [7] also considered multi-robot target localization using the EIF. But
his work mainly focused on sub-optimal decentralized control.

The closest related work on EKF based SPLAM is [22], where an A-optimal
global planning strategy in SLAM is proposed. Especially, it was pointed out
in [22] that the trace of the covariance matrix is a better measure of map
quality in SLAM than the determinant. The main difference between the global
planning strategy suggested in [22] and our MPC strategy is that they made
the assumption that the approximate locations of all the features are available
at the beginning, thus replanning is not that critical. Another difference is that
they discretized the environment into a grid and the planning did not take
into account the robot dynamics. Furthermore, they approximately expressed
the state of the EKF as the estimated position of the robot and the trace
of the covariance matrix, which reduces the computational cost significantly
and makes global planning possible. In [21], Sim presents an approach to
information-driven exploration for SLAM. The robot is driven to a globally
optimal position for maximizing information gain of the features. However,
the work is for bearing-only SLAM and the main focus is to overcome the
stability issues.

5.4 Possible Extensions

Changing objectives: At times, it is necessary to change the control objec-
tive in an information gathering task. For example, map accuracy and coverage
are two of the most important requirements in the SLAM problem. When the
map accuracy reaches a certain level, we may prefer the robot to explore new
regions. MPC can easily accommodate the change of control objectives by
switching to a different objective in the finite time horizon optimal control.

Including heuristic long-term rewards: In general, MPC works well when
short-term actions are more important to our eventual total payoff than long-
term actions are, or if there is a high chance that the world will rearrange
itself significantly due to some unexpected events before we get to the end
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of our plan. This is probably true in the initial stage of an information gath-
ering task but not the later stage of the task. Some ways to counteract the
short-sightedness of the MPC strategy are possible. For example, a heuris-
tic potential future rewards determined by the current knowledge about the
environment (e.g. feature density) can be added in the objective function.

Using possible observation trees: In the prediction step of our current
MPC strategy, no new features and zero observation innovations are assumed.
Another improvement of the strategy may be to consider a few possible ob-
servations in the planning tree (together with the probabilities of their occur-
rence), and evaluate the average expected rewards. This will result in higher
computational costs (or smaller number of steps look-ahead within the given
computational capacity) because more branches are required to be evaluated.
However, the planning quality may be enhanced significantly.

6 Conclusion and Future Work

In this paper, we proposed to use the Model Predictive Control (MPC) strat-
egy in planning for information gathering tasks where the EKF/EIF is applied
in the estimation process. The effectiveness of the strategy is illustrated by
two examples; Simultaneous planning, localization and map building (SPLAM)
and Multi-robot Geolocation.

In our opinion, the MPC strategy is suitable for planning in the information
gathering tasks for the following reasons:

(a) Changes in the environment are managed by utilising updated models at
each time step;

(b) Dynamic constraints which cannot be detected a priori are incorporated
into the planning as they change;

(c) The prediction time horizon is flexible and can be made to meet the
computational capacity limit;

(d) The stability of MPC is not an issue in general;
(e) The strategy provides an improved control policy compared with greedy

methods; and
(f) The strategy is applicable when the objective changes at various times

(such as subgoals in an information gathering task).

Although the MPC strategy is proposed for the planning, significant effort
is still required to completely solve any specific information gathering task.
Unresolved issues include determining the best prediction time horizon and
identifying the best optimization techniques. Currently we are working on
some possible extensions of the MPC strategy. Further work is needed to
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consider both stationary features and dynamic features in the environment
and to study the related stability issues.
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