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Abstract

We propose a new vision-based method for global robot localization using an omnidirectional camera. Topological and metric localization
information are combined in an efficient, hierarchical process, with each step being more complex and accurate than the previous one but
evaluating fewer images. This allows us to work with large reference image sets in a reasonable amount of time. Simultaneously, thanks to
the use of 1D three-view geometry, accurate metric localization can be achieved based on just a small number of nearby reference images. Owing
to the wide baseline features used, the method deals well with illumination changes and occlusions, while keeping the computational load small.
The simplicity of the radial line features used speeds up the process without affecting the accuracy too much. We show experiments with two
omnidirectional image data sets to evaluate the performance of the method and compare the results using the proposed radial lines with results
from state-of-the-art wide-baseline matching techniques.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A fundamental issue for an autonomous device is self-
localization. In general, we can distinguish three localization
tasks: (1) global localization (also known as the kidnapped
robot problem), (2) continuous localization, and (3) simulta-
neous localization and map building (SLAM). The work pre-
sented in this paper is focused on the initial or global localiza-
tion, where the robot has to self-localize without any historical
information, i.e. it only disposes of the data currently captured
by the device and some kind of (precomputed) reference map
of the environment. The solution we propose is a purely vision-
based one, and uses the simplest reference map possible in that
case, namely a set of more or less organized images.

Several recent publications have focused on this problem of
global localization using visual reference information, e.g. [1,
2]. They point out the importance of this initial localization.
Sometimes, global localization is a goal in itself. For instance,
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when a museum-guide is started by a visitor somewhere in a
museum to receive information about that particular location,
the initial global localization is all that counts. Sometimes,
global localization information is used as an initialization step
for continuous localization or simultaneous localization and
map building methods. Recently, global localization results
have also been used for submap alignment [3].

The representation of the “world” information in the
reference set (or map) must allow the robot to localize itself
with as much accuracy as needed for the task to be performed.
For instance, for navigation the robot needs to localize itself
accurately, and therefore to correct the trajectory due to
odometry errors. In order to achieve this, metric localization
information is needed. In other situations, the robot just needs
topological localization information, less precise but indeed
more intuitive information to communicate with humans,
e.g. identifying in which room it is.

We propose a hierarchical vision-based method that allows
both topological and metric global localization, with respect
to a set of reference omnidirectional images, which we coin our
Visual Memory (VM). This VM consists of a database of sorted
omnidirectional reference images, including some topological
information (the room where they belong) as well as some
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metric information (relative positions between neighboring
views stored). This kind of topological map can be built from
sub-sampling a robot video stream captured in exploration, as
done in our experiments or in [4], or with a more complex
processing of the video stream, e.g. in order to deal with similar
locations in the environment [5] or to build automatically
a minimal topological map [6]. The first two steps of our
hierarchical process provide the topological localization (the
current room identification). In order to find the most similar
room in the VM to the current view, a similarity evaluation
algorithm is run. It is based on the pyramidal matching kernels
introduced in [7]. They showed very good results in object
classification, and here we also show its good performance
for scene identification. In the third and final step, the metric
localization relative to the VM is reached. There we use
local feature correspondences in three views to simultaneously
estimate a robust set of matches and the 1D trifocal tensor.
The relative location between views can be obtained with an
algorithm based on the 1D trifocal tensor for omnidirectional
images [8]. The 1D trifocal tensor was previously studied in [9]
and [10].

Both hierarchical methods and omnidirectional vision are
subjects of interest in the robotics field. Omnidirectional
vision has become widespread over the last few years, and
has many well-known advantages, but unfortunately also has
some extra difficulties compared to conventional images. There
has been much recent work in this field, using all kinds
of omnidirectional images, e.g. images from conic mirrors
applied in [11] for map-based navigation, or localization
based on panoramic cylindric images composed of mosaics
of conventional ones [12]. Hierarchical approaches are also of
great interest, especially to deal with big reference sets in an
efficient way. The hierarchy consists of several steps, of which
the initial one, evaluated on the entire reference set, tries to
reduce the set of candidates as much as possible, such that
the computationally more expensive steps have to be evaluated
only on a minimal sub-set of the initial one. For example, the
localization at different levels of accuracy with omnidirectional
images was previously proposed by Gaspar et al. [13]. Their
navigation method consists of two steps: a fast but less accurate
topological step, useful in long-term navigation, followed by a
more accurate tracking-based step for short distance navigation.

One of the advantages of our hierarchical method is that it
achieves accurate metric localization with a minimal number
of nearby reference images. Most of the previously proposed
vision-based approaches for global localization do not go
further than the scene identification. An example is [4], where
the performance in scene recognition using image global
descriptors, histograms, is compared against local features,
SIFT. In other approaches that aim at metric localization,
the location of one of the images from the VM is given
as the final localization result. This implies that accurate
results can only be achieved with a relatively high density
in the stored image set. For example in [14], a hierarchical
localization method for omnidirectional images based on the
Fourier signature is proposed. It returns a location area around
the selected reference images from only one environment.
It is computationally efficient but the density of reference
images stored directly influences the accuracy obtained in
the localization. Nevertheless, with the metric localization we
propose, the stored images density is only restricted by the
wide-baseline matching that the local features are able to deal
with. Recently in [2], the scene recognition was followed
by a proposal for two-view metric localization estimation,
with some promising results. However, in our work several
substantial changes are proposed, both in the scene recognition
with a different method, and in the metric localization
achievement through three bearing-only data views. The use
of three views of bearing-only information in the last step
gives additional interesting properties to this approach, besides
solving the structure of the scene. Matches in three views are
more robust than two view ones, and moreover, since two
reference views are used the scale and multiplicity of solutions
problems are directly solved.

The image features used in this work are vertical scene
lines, which are projected in omnidirectional images as radial
ones (supposing a vertical camera axis). They are quite
suitable for our needs: to be able to deal with wide baselines,
illumination changes and occlusions to an acceptable extent,
without increasing too much the execution time of the method.
The number of features proposed for matching has increased
largely over the past few years, where SIFT [15] has become
very popular. In addition, many modifications of this feature
have been proposed, with some simplifications to improve the
performance for real time applications, e.g. in [16] or [17]. Yet,
in this work we use the radial lines because of their interesting
advantages, especially when working with omnidirectional
images.

The radial lines together with their descriptors are detailed
in Section 2. Next, all of the steps of the localization method
are explained in Section 3. Finally, in the experimental results,
Section 4, we evaluate the performance of the developed
method, using the proposed radial lines and compare it
with results obtained by using a state-of-the-art wide-baseline
matching technique, namely the scale invariant features (SIFT)
extractor provided by Lowe [15]. The results show significantly
lower computational cost using our radial lines without too
much loss in performance and as such prove the effectiveness
of the different steps of the hierarchical method.

2. Lines and their descriptors

In this proposal, the features used are scene vertical lines
with their image support regions. As mentioned before, these
lines show several advantages, especially when working with
omnidirectional images. They can be extracted and processed
quickly and they represent interesting natural landmarks in
the scene, such as doors or walls. Moreover, they allow
us to automatically estimate the center of projection in
omnidirectional images and are less sensitive to optical
distortions in that kind of image (every vertical line in the scene
will be projected as a radial one in the image).

Each line should be described by a set of descriptors
that characterize it in the most discriminant way possible,
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Fig. 1. Left: detail of some LSRs, divided by their line (the darkest side on the right in blue and the lighter on the left in yellow). A red triangle shows the lines
direction. Right: all the radial lines with their LSR extracted in one image. The estimated center of projection is marked with a yellow star (∗) and the image center
with a blue cross (+). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
although it is necessary to find a balance between invariance
and discriminative power, as the more invariant the descriptors
are the less discriminant they become. In this section, we first
explain the line extraction process (Section 2.1), whereafter we
shed light on the kind of descriptors proposed to characterize
them (Section 2.2).

2.1. Line extraction

The line features and their Line Support Region (LSR)
are extracted using our implementation of the algorithm [18].
Firstly, this extraction algorithm computes the image brightness
gradient, and it segments the image into line support regions,
which consist of adjacent pixels with similar gradient direction
and gradient magnitude higher than a threshold. Secondly, a line
is fitted to each of those regions using a model of brightness
variation over the LSR [19]. Some LSRs with their fitted line
are shown in Fig. 1.

As mentioned before, only vertical scene lines are used.
The optical axis of the camera is supposed to be perpendicular
to the floor and the motion is assumed to be planar. Under
these conditions, those lines are the only ones that always keep
their straightness, being projected as radial lines in the image.
Therefore, they are quite easy to find and we can automatically
obtain from them the center of projection in the omnidirectional
image, an important parameter to calibrate this kind of image. It
is estimated with a simple ransac-based algorithm that checks
where the radial lines are pointing. As can be seen on the
right of Fig. 1, the center of projection is not coincident with
the image center. The more accurate we find its coordinates
the better we can estimate later the multi-view geometry and
therefore, the robot localization.

2.2. Line descriptors

We propose to use the following descriptors to characterize
the radial lines features. All descriptors except the last group
(geometric descriptors) will be computed separately over each
side in which the LSR is divided by its line (Fig. 1).

• Color descriptors. We have worked with three of the color
invariants suggested in [20], based on combinations of the
generalized color moments,

Mabc
pq =

∫ ∫
LSR

x p yq
[R(x, y)]a[G(x, y)]b[B(x, y)]cdxdy (1)

where Mabc
pq is a generalized color moment of order p + q

and degree a + b + c and R(x, y),G(x, y) and B(x, y)
are the intensities of the pixel (x, y) in each RGB color
band centered around its mean. These invariants are grouped
in several classes, depending on the scheme chosen to
model the photometric transformations. In order to keep a
compromise between complexity and discriminative power,
we chose as the most suitable for us those invariants
defined for scale photometric transformations using relations
between couples of color bands. The definitions of the 3
descriptors chosen are as follows:

DSRG
=

M110
00 M000

00

M100
00 M010

00
DSRB

=
M101

00 M000
00

M100
00 M001

00
DSG B

=
M011

00 M000
00

M010
00 M001

00
. (2)

• Intensity frequency descriptors. We also use as descriptors
the first seven coefficients of the Discrete Cosine Transform,
DCT, over the intensity signal (I ) along the LSR of each line.
The DCT is a well known transform in the areas of signal
processing [21] and is widely used for image compression.
It is possible to estimate the number of coefficients necessary
to describe a certain percentage of the image content.
For example with our test images, seven coefficients are
necessary on average to represent 99% of the intensity signal
over a LSR.

• Geometric descriptors. Finally two geometry-related param-
eters are obtained from the lines. Firstly, the line orientation
θ in the image (in the 2π range). The second geometric pa-
rameter is the line direction δ, a boolean indicating whether
the line is pointing to the center or not. This direction is es-
tablished depending on which side of the line is the darkest
region.

From the options studied, the following 22 descrip-
tors are proposed to describe the lines: 3 color descrip-
tors (DSRG , DSRB, DSG B) and 7 frequency descriptors
(DCT1,DCT2 . . .DCT7) computed on each side of the LSR,
and 2 geometric properties (orientation θ and direction δ). No-
tice that to deal with large amounts of images, it would be
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Fig. 2. Diagram of the three steps of the hierarchical localization.

convenient to decrease this number. Then, in the second step
of the proposal (similarity evaluation), which works with the
features from a large amount of reference images, a reduced
12-descriptors set will be used: the same as described above
but using only the two first DCT components (DCT1,DCT2).
The descriptors explained were chosen after extensive empiri-
cal tests, taking into account some initial matching results and
the weights given to each descriptor in a Principal Component
Analysis (PCA).

3. Hierarchical localization method

Our proposal consists of a hierarchical vision-based global
localization performed in three steps. With this kind of
localization, we can deal with large databases of images in an
acceptable time. This is possible because we avoid evaluating
the entire data set of images in the most computationally
expensive steps. Note also that the VM can already store
the extracted image features and their descriptors. Even the
matches between adjacent images can be also precomputed.
Fig. 2 shows a scheme of the three steps of the method, which
are detailed later in this section.

As mentioned previously, the time complexity increases in
each step of the method with regard to the previous ones:

• The first step (Section 3.1) has constant complexity with the
number of features in the image. Here, all of the images in
the VM are evaluated.

• The second step algorithm (Section 3.2) has linear
complexity with the number of features. Only the images
that passed the previous filter step are evaluated here, using
12 descriptors per feature.

• The third step process (Section 3.3) has quadratic
complexity with the number of features, and a 22-element
descriptor vector per feature is used. However, it evaluates
only the query image and two images from the VM.

Indeed, in each step we have a computational cost linearly
proportional to the number of images remaining on it.

3.1. Global descriptor filter

In this first step, three color invariant descriptors are
computed over all of the pixels in the image. The descriptor
Fig. 3. Example of pyramidal matching, with correspondences in level 0, 1 and
2. For graphic simplification, with a descriptor of 2 dimensions.

used is DS, described previously in Section 2.2, that is
computed for each possible pair of RGB bands. All of the
images in the VM are compared with the current one, with
regard to those descriptors, and images with a difference over an
established threshold are discarded. This step intends to quickly
reject as many wrong candidates as possible, with a rough but
quick global evaluation of the colors in the image.

3.2. Pyramidal matching

This step finds the image that is the most similar to the
current one. For this purpose, the set of descriptors of each
line is used to implement a pyramid matching kernel [7]. This
consists of building for each image several multi-dimensional
histograms (each dimension corresponds to one descriptor),
where each line feature occupies one of the histogram bins.
The value of each line descriptor is rounded to the histogram
resolution, which gives a set of coordinates that indicates the
bin corresponding to that line.

Several levels of histograms are defined. In each level, the
size of the bins is increased by powers of two until all of
the features fall into one bin. The histograms of each image
are stored in a vector (pyramid) ψ with different levels of
resolution. The similarity between two images, the current (c)
and one of the visual memory (v), is obtained by finding the
intersection of the two pyramids of the histograms:

S(ψ(c), ψ(v)) =

L∑
i=0

wi Ni (ψ(c), ψ(v)), (3)

where Ni is the number of matches (LSRs that fall in the same
bin of the histograms, see Fig. 3) between images c and v in
level i of the pyramid. wi is the weight for the matches in that
level, that is the inverse of the current bin size (2i ). This distance
is divided by a factor determined by the self-similarity score of
each image, in order to avoid giving advantage to images with
bigger sets of features, so the normalized distance obtained is

Scv =
S(ψ(c), ψ(v))

√
S(ψ(c), ψ(c)) S(ψ(v), ψ(v))

. (4)

Notice that the matches found here are not always individual
feature-to-feature matches, as the method just counts how many
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features fall in the same bin. The more levels we check in the
pyramid the bigger the bins are, so the easier it is to get multiple
coincidences in the same bin (as can be seen in Fig. 3).

Once the similarity measure between our actual image and
the VM images is obtained, we choose the one with highest Scv .
On the basis of the annotations of this chosen image, the robot
identifies the current room.

3.3. Line matching and metric localization

This section details the third step of the hierarchical method,
which will provide more accurate localization information if
needed. As mentioned before, from previous steps the matches
are not all feature-to-feature. Besides, the method used there is
likely to provide outliers as it is based only on appearance. At
this point, individual matches are required to simultaneously
estimate a robust set of three-view matches and the 1D trifocal
tensor and afterwards, the localization from it. Once we obtain
the most similar image from the previous step, we find two-view
line matches between the current and the most similar image,
and between that most similar and one adjacent in the VM
(Section 3.3.1). Next, these two-view matches will be extended
to three views in order to estimate the 1D tensor (Section 3.3.2).

3.3.1. Line matching algorithm
The two-view line matching algorithm we propose works as

follows:

• First, decide which lines are compatible with each other.
They must have the same direction (δ). Besides, the relative
rotation between each line and one compatible in the other
view has to be consistent, i.e., it must be similar to the global
rotation between both images obtained with the average
gradient of all image pixels.

As explained, the rest of the descriptors are computed in
regions along the line in both sides. Then to finally classify
two lines as compatible, at least the descriptor distances
on one side of the LSR should be below the established
threshold.

• Second, it is necessary to compute a unique distance. This
is done using all of the distances from color and intensity
frequency descriptors between each pair of compatible lines.
Instead of using the classical Mahalanobis distance, which
needs a lot of training to compute the required covariance
matrix with satisfying accuracy, we just normalize those
distances between 0 and 1. The purpose is to have the
distances of the different kinds of descriptors in similar
scales, to be able to sum them. The simple normalization
used works well in practice and it is more adaptable to
different queries. A correction or penalty is also applied to
increase the distance with the ratio of descriptors (Nd ) whose
differences were over their corresponding threshold in the
compatibility test. So the final distance considered between
two lines, i and j , will be

di j = (dMin
RGB + dMin

DCT)(1 + Nd), (5)

where dMin
RGB and dMin

DCT are the smallest distances (in color
and intensity descriptors respectively) of the two LSR sides.
• Then, a nearest neighbor matching between compatible lines
is performed.

• Next, we apply a topological filter to the matches, to help
to reject non-consistent ones. An adaptation of the filter
proposed in [22] is done for radial lines in omnidirectional
images. It is based on the probability that two lines will
keep their relative position in both views. It improves the
robustness of this initial matching, although it can reject
some good matches. However, those false negatives can be
recovered afterwards and robustness is more important in
this step.

• Finally, we run a re-matching step, that takes into account
the fact that the neighbors to a certain matched line should
rotate from one view to the other in a similar way.

3.3.2. Metric localization using the 1D radial trifocal tensor
It is well known that to solve the structure and motion

problem from lines at least three views are necessary [23].
After computing two-view matches between the two couples
of images explained before, the matches are extended to
three views intersecting both two-view sets. These trios of
corresponding features compose what we call a Basic matching
set.

A robust method (ransac in our case) is applied to the
three-view matches to simultaneously reject outliers from the
Basic matching and estimate a 1D radial trifocal tensor. The
orientation (θ ) of each line r in the image is expressed by 1D
homogeneous coordinates (r = [sin θ, cos θ ]). The trilinear
constraint, imposed by a trifocal tensor on the projection
coordinates of a line v in three views (r1, r2, r3), is defined as
follows

2∑
i=1

2∑
j=1

2∑
k=1

Ti jk r1(i) r2( j)r3(k) = 0, (6)

where Ti jk (i, j, k = 1, 2) are the eight elements of the 2×2×2
trifocal tensor and subindex (·) are the components of vectors r.
Fig. 4 shows a vertical line projected in the three views and the
location parameters to estimate.

With five matches and two additional constraints defined for
the calibrated situation (the internal parameters of the camera
are known), we have enough to compute a 1D trifocal tensor [9].
In the case of omnidirectional cameras, the 1D radial trifocal
tensor is used and only the center of projection has to be
calibrated. From this tensor, we can get a robust set of matches,
the camera motion and the structure of the scene [8]. The results
obtained with that method are estimated up to a scale and with a
double-solution ambiguity, but both issues can be solved easily
with the a priori knowledge we have (the relative position of
the two images in the VM).

4. Experiments and results

In this section, the performance of the proposed algorithms
is shown, both for recognizing the current room (4.1) and for
metric localization (4.2).

Two data sets have been used: Almere and our own (named
data set LV). Fig. 5 shows a scheme of the rooms from
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Fig. 4. Projection of a landmark v in three views and the parameters of the
second and third location relative to the first: rotations, α21 and α31, and
translations, [tx21, ty21] and [tx31, ty31].

both databases, the second one with details of the relative
displacements between views. All images have been acquired
with omnidirectional vision sensors with hyperbolic mirrors.

- Data set LV consists of 70 omnidirectional images (640 ×

480 pixels). From these, 37 are classified, sorted in different
rooms (from 6 to 15 images per room depending on the size
of the location). The rest corresponds to unclassified ones
from other rooms, other buildings or outdoors. All images
from this data set composed the visual memory VMLV used
in the experiments.

- The Almere data set was provided for the workshop [24],
as well with the images sorted in different rooms. In the
presented experiments, we used the low quality videos
(about 2000 frames per round) given there, from rounds 1
and 4 of a robot moving around a typical house environment.
These rounds were obtained in dynamic environments, with
people walking around. Only every 5 frames were extracted
for the experiments, half for reference (the even frames:
fr10-fr20-fr30-. . . ) and the other half for testing (the odd
frames: fr5-fr15-fr25-. . . ). Taking only one fifth of the
frames from round-1 selected for reference (fr50-fr100-
fr150-. . . ), another visual memory (VM1) was built for the
experiments.

- Finally, both data sets VMLV and VM1 were joined,
composing a bigger visual memory, VMALL, to make more
exhaustive tests about the robustness of the method.

The timing information given in some of the tests intends
only to allow some efficiency comparisons. It should be
taken into account that all tests were run in Matlab, and the
implementations were not optimized for speed (the complexity
of all the steps was analyzed previously in Section 3). Besides,
there is no pre-computation performed for any of the steps
that could afford it, e.g. the feature extraction and matching
between the images in the VM, that would be done for real-
time executions.

4.1. Topological localization: Finding the current room

In this section, experiments of the first two steps of the
method are shown to evaluate the topological localization.
Exhaustive tests with query images from Almere round-1
(Almere-1) and round-4 (Almere-4) and data set LV were
performed. Every classified image in data set LV was compared
with the rest of the VMLV (i.e. all the possible 37 tests), and to
execute a similar number of tests for Almere data, we took 1
fifth of the frames selected from there for testing, both from
(Almere-1) and (Almere-4).

First step
The purpose of this first step is a pre-filtering of the reference

images, to quickly reject those which look very different from
the current query. After different tests with all of the available
data, a threshold of 60% was established for the difference
allowed in the three color global descriptors comparisons
(explained in Section 3.1). Every reference image with a
higher difference than that threshold is already discarded at this
point.
Fig. 5. Schemes of the rooms from data sets used in the experiments. Left: data set Almere. Right: Data set LV with the locations of the views that compose it.
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Fig. 6. Images rejected and false negatives in step 1 for two cases of study.
Table 1
Topological localization (room recognition) using VMLV and VM1

Almere-1 ∝ VM1 Almere-4 ∝ VM1 Data LV∝ VMLV
Pyr (%) IM (%) TPyr (s) TIM (s) Pyr (%) IM (%) TPyr (s) TIM (s) Pyr (%) IM (%) TPyr (s) TIM (s)

Lines 90 80 0.35 0.95 52 50 0.35 0.9 82 93 0.1 0.3
SIFT 78 85 130 35 60 70 140 36 45 95 38 8.7

Pyr: Correct tests with the pyramidal matching similarity score. IM: Correct tests with the individual matching similarity score. TPyr, TIM: Execution time for each
comparison of a query image with one from the reference set for each method respectively.
Indeed this pre-filtering should have the minimum amount
of false negatives possible (reference images rejected which
belong to the same room as the query). The performance using
queries from data set LV compared to reference views from
VMLV or queries from Almere-1 compared to VM1 was quite
similar, with an acceptable average in both cases of less than
four false negatives for the threshold chosen (60%). The pre-
filter behaviour in one of these cases using different criteria
(threshold) is shown on the left of Fig. 6. The performance
was indeed worse in a third more difficult case, where queries
from Almere-4 were used with reference images from VMALL.
Most original images from VMLV were properly rejected in
this step, however the false negative ratio increased. This is
because of the important differences in the global appearance
of the images, due to many occlusions and moving people in
Almere-4. The performance in this case, using query images
from Almere-4, of the pre-filtering with different threshold
criteria is shown on the right of Fig. 6. Global image descriptors
must be carefully used because they show no robustness against
occlusions, and for example they could reject all possible
correct reference images.

Second step
The goal of this step is to give the topological localization of

the current view. In order to achieve that, a similarity evaluation
was run with the images that passed the previous pre-filtering
step. The most similar image found was considered a correct
localization if it belonged to the same room as the query. This
step was evaluated using the proposed line features as well
as SIFT, which can be considered as the state-of-the-art in
local feature matching, using the implementation provided by
Lowe [15]. Firstly in this step, note that to build the pyramid
of histograms, a suitable scaling and/or normalization of the
feature descriptors is required. The discrete size of the pyramid
bins makes it necessary to have all of the descriptors in the same
range and well distributed.

Pyramidal vs. individual matching to get a similarity score
To better evaluate this second step, its performance was

compared with the same task done using individual matching.
The results of the algorithm developed for matching lines in
Section 3.3 could also be used for searching the most similar
image. For this purpose, we can compute a similarity score that
depends on the matches found (n) between the pair of images,
weighted by the distance (d) between the lines matched. In
addition, the number of features not matched in each image (F1
and F2 respectively) weighted by the probability of occlusion
of the features (Po) has to be taken into account. The defined
dissimilarity (DIS) measure is

DIS = n d + F1(1 − Po)+ F2(1 − Po). (7)

Results for both methods in the room recognition tests are
shown in Table 1, for the three cases studied and using radial
lines or SIFT features. A test was considered correct if the
image chosen as the most similar was from the correct room.

In the case of using radial lines as image features, the
correctness in the results was similar for both similarity
evaluation methods. However, there is a clear advantage in
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Table 2
Topological localization (room recognition) using VMALL

Almere-1 ∝ VMALL Almere-4 ∝ VMALL Data set LV ∝ VMALL
Pyr (%) IM (%) TPyr (s) TIM (s) Pyr (%) IM (%) TPyr (s) TIM (s) Pyr (%) IM (%) TPyr (s) TIM (s)

Lines 80 70 0.18 0.2 50 63 0.1 0.15 86 90 0.14 0.3
Sift 70 90 92 9 60 70 64 6 75 86 50 5

Pyr: Correct tests with the pyramidal matching similarity score. IM: Correct tests with the individual matching similarity score. TPyr|TIM: execution time for each
comparison of a query image with one from the reference set for each method.
Fig. 7. Data set LV ∝ VMALL. Evolution of the performance in room identification when the density of reference images in the VM decreases. Right: using
individual matching. Left: using the pyramidal matching.
efficiency for the pyramidal matching, that takes around one
third of the time of the individual matching. On the other hand,
the correctness in the results for SIFT was also similar with
both similarity evaluations methods, but much faster with the
individual matching. A worse performance of SIFT using the
pyramidal matching could be expected, as that method is not
suitable for features descriptors as long as the SIFT one. In this
case the dimension of the histograms increases a lot, then too
much time is required by this method in the computations and
to find correspondences in the bins of the pyramids. Therefore,
the correctness in the results was good for both features, with
a small advantage for SIFT when the data used was more
challenging, but with much higher computational cost than the
radial lines. Notice that it takes a similar time to compare
one query with one reference image using SIFT with its best
performance (35 s) than to compare one query with the whole
VM using radial lines (0.35 s * 40 reference views).

In the tests Almere-4 ∝ VM1 the performance was always
lower than in the other cases, but we should take into account
that the queries belong to Almere-4, a video recorded with
many occlusions, while the reference set (Almere-1) is from a
“cleaner” round. This makes the first step work worse and the
global appearance based descriptors less useful. This confirms
the importance of using local features to deal with occlusions.
If we skip the first step that is based only on global appearance,
the performance increases but also the computation time will
increase quite a lot.

Some other experiments were performed to test the
robustness of the process using VMALL, the biggest VM
available. The experiments shown before were repeated using
this VMALL, and the new results are shown in Table 2. The
results there show that increasing the number of possible rooms
and the VM size does not reduce the classification rates too
much.

In addition, the behaviour of the method when the size of the
VM is decreased (to half, one third, one quarter, . . . ) has been
studied, and the results showed the method to be quite robust in
this aspect too. As long as there is still some correct reference
image in the VM and the density of images per room decreases
in a similar way for all rooms, the performance remains similar.
Note that when the VM is reduced, the number of possible
correct reference images is reduced, but so is the number of
images that could cause misclassifications. Fig. 7 represents the
results of the method when the VM size decreases, with the
percentage of correct room identification tests using lines and
SIFT. Only one of the cases of study considered is shown here,
as the behaviour was quite similar in all of them.

4.2. Metric localization results

As explained before, we need three views to get the metric
localization. Then, trios of correspondences are obtained from
the two-view matches between the current image and the most
similar selected, and between this one and one of its neighbors
in the VM. The 1D radial trifocal tensor is robustly estimated
from those trios, and simultaneously a robust set of three-
view matches is established (those who fit the geometry of the
tensor). Fig. 8 shows an example of the robust line matches
and localization parameters (rotation and translation direction)
obtained after applying the whole method to a query image
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Fig. 8. Example of triple robust matches obtained between the current position or query (first image) and two images from the VM (second and third images). Table
with rotation and translation direction between each of the two reference images and the query one. Results obtained with manual line matching (manual Lines),
with automatic line matching (auto. Lines) and with SIFT (auto. SIFT).
from Almere-4 using the VM1. Ground truth was not available
for this experiment, so results using SIFT and manual line
matching are shown for comparison with the results obtained
using our automatic line matching. In this test, we can see a
clear example of the advantage of the method used to obtain
the metric localization, with regard to methods that give as
localization the location of the most similar image. In this case
the most similar image is rotated around 160o in relation to
the query. That would be the rotation estimation error if the
localization would be determined by the most similar image
location. In this situation, of a more challenging matching case,
SIFT seems to behave a little better than the radial lines.

Detailed ground truth was only available for data set LV,
therefore a slightly more detailed evaluation of this metric
localization was done with the data from this set. In Fig. 9
there is an example showing robust matches together with
camera and landmarks location recovery information. Notice
the small average errors, especially if we take into account the
uncertainty of our ground truth (obtained with a metric tape and
goniometer), as well as the consistency of the results showing
quite small standard deviations. Radial lines seem quite suitable
for the scene reconstruction, because they give fewer matches
than SIFT but they correspond with significant objects in the
scene (such as corners or doors). Moreover, the radial lines
seem to have a more accurate orientation in the image, giving
better reconstruction results. Probably, the best option for the
metric localization would be to use a mixed solution, that
includes the advantages of both lines and SIFT.

5. Conclusions

In this work, a new efficient vision-based method for global
localization has been proposed. Our three-step approach uses
omnidirectional images and combines topological and metric
localization information. The localization task computes the
position of the robot relative to a set of reference images
from different rooms. After a rough selection of a number of
candidate images based on a global color descriptor, the best
resembling image is chosen based on a pyramidal matching
with wide-baseline local features based on radial lines. This
kind of feature enables the grid of reference images to be less
dense as well as improving the behaviour against occlusions,
illumination changes or noise. The image chosen as the most
similar provides the topological localization (current room).
A third step involving the computation of the omnidirectional
trifocal tensor yields the metrical coordinates of the unknown
robot position. As a result, our approach provides accurate
localization with a minimal reference data set, contrary to
the approaches that give as current localization the location
of one of the reference views. The experimental results on
two different data sets of omnidirectional images show the
efficiency and high accuracy of the proposed method.
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Fig. 9. Experiment 2R. Top: Omnidirectional images and robust line matches estimated with the tensor, and scheme of scene reconstruction obtained through the
tensor computed with line matches (pink o) and ground truth (blue +). Bottom: tables with robot and landmarks localization errors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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