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a b s t r a c t

We present an attractor based dynamics that autonomously generates trajectories with stable timing
(limit cycle solutions), stably adapted to changing online sensory information. Autonomous differential
equations are used to formulate a dynamical layer with either stable fixed points or a stable limit cycle.
A neural competitive dynamics switches between these two regimes according to sensorial context
and logical conditions. The corresponding movement states are then converted by simple coordinate
transformations and an inverse kinematics controller into spatial positions of a robot arm. Movement
initiation and termination is entirely sensor driven. In this article, the dynamic architecture was changed
in order to cope with unreliable sensor information by including this information in the vector field.
We apply this architecture to generate timed trajectories for a Puma arm which must catch a moving

ball before it falls over a table, and return to a reference position thereafter. Sensory information is
provided by a camera mounted on the ceiling over the robot. A flexible behavior is achieved. Flexibility
means that if the sensorial context changes such that the previously generated sequence is no longer
adequate, a new sequence of behaviors, depending on the point at which the changed occurred and
adequate to the current situation emerges.
The evaluation results illustrate the stability and flexibility properties of the dynamical architecture

as well as the robustness of the decision-making mechanism implemented.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Trajectory planning has been extensively studied over the last
few years, ranging from the addition of the time dimension to
the robot’s configuration space [10], visibility graph [27], cell
decomposition [14] or neural networks [17]. There are several
results for time-optimal trajectory planning [12,11].
Despite the efficient planning algorithms that have been devel-

oped and the advances in the control domain which validated dy-
namic, robust and adaptive control techniques, the path planning
problem in autonomous robotics remains separated in theory from
perception and control. This separation implies that space and time
constraints on robot motion must be known beforehand with the
high degree of precision typically required for non-autonomous
robot operation. Such systems remain inflexible, cannot correct
plans online, and thus fail both in non-static environments – such
as those in which robots interact with humans – and in dynamic
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tasks or time-varying environments which are not highly con-
trolled. In order to develop autonomous robot systems capable of
operating in changing and uncertain environments, tight coupling
of planning, sensing and execution are required.
A very relevant aspect of trajectory generation is timing, that is,

the time structure of movement. This is a very critical issue in sev-
eral robotic problems such as: the achievement of events in time
varying environments; avoidance of moving objects; coordination
of multiple robots or generating sequentially structured actions.
Some approaches have addressed this issue [21], but essentially
generate a singlemotor act in rhythmic fashion. The flexible activa-
tion of different motor acts in response to user demands or sensed
environmental conditions ismore difficult to achieve at the control
level.
In this article, we address the timing problem considering tasks

that involve sequentially structured actions, in which subsequent
actions must be initiated only when previous actions have
terminated or reached a particular phase. Our solution generates
time structure at the level of control and its inspired from the
neural mechanisms underlying movement control in animals [42]
which are modeled in terms of nonlinear dynamical systems.
We generate time structure by assuming that complex

movements can be generated through the sequencing of simpler
movement primitives modeled as discrete and rhythmic dynam-
ical systems. Discrete stands for goal directed movements, while
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rhythmic represents a motion stage based on amplitude and a
frequency. This sequencing is controlled by another dynamical
system. Trajectories are generated by activating and deactivating
(sequencing) these primitives according to time intervals which
depend on local sensor control and global task constraints. Move-
ment initiation and termination is entirely sensor driven and
autonomous sequence generation is stably adapted to changing
unreliable online visual sensory information. These trajectories
represent the temporal evolution of movement. Transformation
onto spatial positions of a robotic manipulator are achieved by co-
ordinate transformations and an inverse kinematics controller.
This movement decomposition and the chosen primitives are

supported by current neurological and human motor control
findings [32,41]. The present study aims at creating systems
that autonomously bifurcate from single point attractors for
discretemovements to limit cycles for rhythmicmovements,when
relatively low-level, noisy sensory information is used to initiate
and steer action.
Specifically, we address the following questions. Is it possible

to flexibly generate timed trajectories comprising sequence gen-
eration? Can the generated trajectories be stably and robustly im-
plemented in a robot arm with modest computational resources?
Here flexibility means that if the sensorial context changes such
that the previously generated sequence is no longer appropriate,
then a new sequence of behaviors suitable to the current situation
emerges.
These questions are positively answered and shown in

exemplary situations inwhich a PUMA robot arm catches amoving
object launched by a human subject, and returns to a reference po-
sition thereafter. Target information is internally acquired by a vi-
sual systemmounted over the robot. Although several applications
could be implemented in order to test the proposed approach, with
this particular application we intend to demonstrate the strength
and flexibility of the approach when working in complex and un-
structured environments and in situations that depend on interac-
tionswith humans. Our perspective ismainly an engineering one in
the sense that we address the problem of how dynamical systems
composed of stable limit cycles and fixed points can be designed to
solve an engineering problem and a technological application. This
is essential given that the particular task studied can be solved by
conventional techniques.
The controller consists of a dynamical system composed of

stable fixed points and a stable limit cycle (an Hopf oscillator).
Trajectories are generated through the sequencing of these
primitives, in which the limit cycle is activated over limited time
intervals. This sequencing is controlled by a ‘‘neural’’ competitive
dynamicswhich is build entirely around fixed points, atwhich only
one neuron is active. Parameters of the neural dynamics express
sensory and logical conditions for the activation of any particular
neuron and the corresponding movement state. By controlling
the timing of a limit cycle, the system performs well tasks with
complex timing constraints. The online linkage to noisy sensorial
information, is achieved through the coupling of these dynamical
systems to time-varying sensory information [33,28].
The attractor based dynamics is based on previous work [35],

in which the architecture was simulated, but the dynamic
architecture is changed in order to cope with unreliable sensor
information by including this information in the vector field.
In [28,31], was implemented in a real vehicle and integrated
with other dynamical architectures which do not explicitly
parameterize timing requirements. We have also generated
temporally coordinated movements among two PUMA arms [35]
and among two vision-guided vehicles [29].
Results of the implementation of this controller on a real

robot are shown. These results reveal the method’s feasibility.
The intrinsic properties of dynamical systems, enable the system
to exhibit responsiveness and flexibility. The final behavior
involves sequentially structured actions that depend on the
environment situation and on the system state. The key point
lyes in the manner how the spatio-temporal structure comes
about without explicit design and despite a noisy and imperfect
world. This is a major benefit of the proposed method compared
to conventional techniques. However, classical conventional
techniques are powerful, and have their place in many industrial
applications in which the environment can be highly controlled.
Therefore, the proposed solution should be faced as an extension of
these classical methods and not as their replacement and, as such,
be used for other robotics control tasks.
Interesting properties of the system include: (1) the possibility

to include feedback loops in order to do online trajectory
modulation and take external perturbations into account, such
that the environmental changes adjust the dynamics of trajectory
generation; (2) online modulation of the trajectories with respect
to the amplitude of the rhythmic patterns, while keeping the
general features of the original movements, (3) robustness to
ambiguity in the environment; (4) the possibility to theoretically
tune movement parameters such that it is possible to account for
relationships among them; and (5) a global optimized behavior
resulting from local sensor control and global task constraints.
The analytically solvability and the generalization to sequence
generation, are two distinguishable features of the proposed
solution.
In the rest of the article, we will first review recent work on

trajectory generation. Section 2 presents the proposed dynamical
systems approach and discusses its intrinsic properties. Section 3
presents the technical setup for the catching application, the vision
system, the controller architecture and behavioral specification.
Section 4 presents the obtained results for several experiments.
We conclude by presenting the conclusions and presenting future
directions for the work (Section 5).

2. State of the art

In this work we present a model able to deal with the timing
control of motor acts. This model is inspired on the ideas described
on [15,37,4,38,32,18,34] and extends current work [28,31,33,29]
(in particular [35], where a simulation study was discussed).
We apply autonomous differential equations [33] to model the
manner how behaviors related to locomotion are programmed in
the oscillatory feedback systems of ‘‘central pattern generators’’
(CPGs) in the nervous systems [9,42]. Control approaches based on
CPGs are widely used in robotics to achieve tasks which involve
rhythmic motions such as biped and quadruped locomotion [37,
15], juggling [7], drumming [19] and playing with a slinky toy [40].
There is a growing interest in nonlinear dynamical systems

in the generation of timed trajectories: pattern generators for
locomotion, potential field approaches for planning [7] and basis
field approaches for limb movements [16].
The motivation for using these systems and oscillators in

particular in engineering applications and in robotics is manifold.
First, rather natural, stable and smooth complex movement
patterns can arise from relatively simple sets of equations without
the need to explicitly plan every movement detail. They solve
timing and sequencing problems by forming flexible spatio-
temporal patterns. Second, they exhibit the common features of
structurally stable dynamical systems such as smooth changes
under parameter variation and intrinsic robustness against small
perturbations and noise. This structural stability makes it possible
to fuse in input without destroying the autonomous dynamics of
the system. Third, a small number of simple (scalar) parameters
can control the output patterns.
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Other properties are the low computation cost which is well-
suited for real time; the possibility to synchronize with external
signals and to add sensory feedback pathways. The dynamics
of the system globally encode a task (i.e. the whole attractor
landscape) with the goal state as the point attractor. Once properly
designed, this property allows robustness against perturbations
and provides the ability to smoothly recover from perturbations
by means of coupling terms in the dynamics, in contrast to
other approaches such as finite state machines [3]. External
coupling terms can be inserted into the dynamical systems that
can modulate the output of the equations in useful ways, e.g., as
needed in synchronization with external events, in situations
with contact forces, or in general when external perturbations
need to be compensated for. In this project, the online linkage
to sensory information is achieved though the coupling of the
nonlinear dynamical systems to time-varying sensory information.
This property enables us to include feedback loops in order to do
online trajectory modulation and take external perturbations into
account, such that the environmental changes adjust the dynamics
of trajectory generation. Another particularity is that these systems
produce coordinated multidimensional rhythms of motor activity,
under the control of simple input signals. Such systems are deemed
to strongly reduce the dimensionality of the control problem: only
constant inputs to modulate high-dimensional oscillator outputs
(in contrast to filter banks [39] or the like). Furthermore, planning
in terms of autonomous nonlinear attractor landscapes promises
more general movement behaviors than traditional approaches
using time-indexed trajectory planning. By removing the explicit
time dependency one can avoid complicated ‘clocking’ and ‘reset
clock’ mechanisms.
A motivation for using the dynamical systems framework in

the context presented in this article is the possibility to flexibly
generate structured actions according to the current sensorial
context and the system state. The proposed solution creates spatio-
temporal patterns in which the observed, emergent patterns are
described by a small number of variables. These patterns can be
modulated by some parameters, which offers the possibility to
smoothly modulate the trajectories.
Furthermore, the proposed approach is based on a rigorous

mathematical framework using nonlinear dynamical systems. In
robotics, in most approaches, the proposed solutions are not based
on a rigorous framework, i.e. they are based on heuristics and
ad-hoc approaches. Since the design of the model is entirely
described by continuous nonlinear differential equations on
continuous behavioral variables, we guarantee the stability and
the controllability of the overall system by obeying the time scale
separation principle. This also leads to a continuous behavior.
Further, typically engineering approaches decompose trajec-

tory planning and control in which the application of the proposed
controller on a robot would be on top of a rather classical level of
low level control that ensures that the trajectories are followed.
Here we argue that to not fully control every aspect of the robot
provides for higher flexibility.
In this work, decision making, timed path planning and control

are generated from attractor solutions of nonlinear dynamical
systems. The possibility of integrating multiple constraints and
generating decisions through instabilities andmultistabilitymakes
such systems much more flexible than other more conventional
techniques. We take benefit of intrinsic properties, such as
stability, bifurcation, andhysteresis, that enable planningdecisions
to be made and carried out in a flexible, yet stable, way even
if noisy sensory information is used to initiate action. Another
possible approach would be by means of symbolic computation.
However, in such case one looses flexibility, an intrinsic property
of the dynamic approach, achieved in that planning decisions may
change continuously, but also discontinuously in response to the
changing sensed environment. Changes in sensory information
lead to a qualitative change of behavior brought about by
instabilities. Decision making is designed by using bifurcation
theory such that the behavioral dynamics go through a specific
and chosen bifurcation under the adequate conditions. Conversely,
symbolic computation requires that every possible behavioral
situation is known in advance such that an algorithm defines
which behavior must be active for every combination of possible
behavioral states.
The hysteresis property of the dynamic approach leads to a

stable integration of decision making into the control behavior
and path planning. This property enables the maintenance of
stability within the decision zone in ambiguous situations. The
system is prevented from oscillating among possible solutions
due to hysteresis in case of multistable dynamics. By contrast, in
symbolic computation the switch among possible behaviorswould
happen instantaneously possibly violating the requirement that
the system should at all times be in or near to an attractor state
of the dynamical system. Thus, the missing stability property of
the symbolic computationmakes it difficult to integrate into stable
control.
Furthermore, the dynamic approach can easily be scaled up

to the design of more complex tasks. By contrast, the integration
of new behavioral requirements within a symbolic algorithm
requires the reconfiguration of the overall structure of the previous
system.
Within our approach there is no differentiation between logics

and control since the logics is contained in the parameters of the
differential equations and not in an explicit program. A smooth
stable integration of discrete events and continuous processes
is thus achieved. The inherent stability property of the dynamic
approach to control is carried over to logic control.
Another general advantage of this approach is that it does

not make unreasonable assumptions, or place unreasonable
constraints on the environment in which the robot operates. The
fact that the dynamical architecture does not explicit represent
any properties of the real world and establishes a direct linkage
between actuators and sensors assures a quick reaction to eventual
changes in the sensed environment. This characteristic is shared by
some other approaches in the field of artificial life [24,6].
To the best of our knowledge, the framework of sequencing of

discrete and rhythmic movements has not been applied to timed
movement generation within robotics (but see [32,18]). Other
solutions [26,21,8,40] have tried to address the timing problem, by
generating time structure at the level of control. More generally,
the nonlinear control approach to locomotion pioneered by [26]
amounts to using limit cycle attractors that emerge from the
coupling of a nonlinear dynamical control systemwith the physical
environment of the robot. A limitation of such approaches is that
they essentially generate a single motor act in rhythmic fashion,
and remain limited with respect to the integration of multiple
constraints, and planning was not performed in the fuller sense.
However, as it was stated previously, our perspective is mainly

an engineering one in the sense that we attempted to solve an
engineer problem and a technical application using dynamical
systems. It also differs from most of the literature in that it is
implemented on a real robot and extends the use of oscillators
to tasks on an arm robot. In alternative engineering approaches,
e.g. visual servoing, very powerful results and methods have been
developed which should be used as long as appropriate.

3. Timed trajectories generation for a PUMA arm

In this article we try to solve a robotic problem applying the
dynamical systems approach to timing. Fig. 1 depicts the problem
setup: a PUMA arm must catch a green ball at the end of the
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Fig. 1. The PUMA arm must catch the ball before it falls over the table. The x
and z coordinates for catching position are fixed and known. A camera acquires
visual information that enables the system to calculate the y coordinate of catching
position and the time it takes for the ball to be at that location.

Fig. 2. The overall architecture of the system. Ball movement is detected
by a visual system and transformed onto time-varying parameters of a timed
trajectory controller. Timed movement in real time, m, is obtained by integrating
the dynamical systems. An additional movement execution stage by means of
coordinate transformations and an inverse kinematics controller transforms this
timed movement onto planned joint values Eθ . Real joint values, Ẽθ , result from the
servo motors of the PUMA.

table on which the ball is moving. The task is to generate a timed
movement from an initial posture to intercept an approaching ball.
Movement with a fixed movement time (reflecting manipulator
constraints) must be initiated in time to catch the ball before
it falls over the table. Factors such as reachability and approach
path of the ball are continuously monitored through online visual
sensory information, leading to a return of the arm to the resting
position when catching becomes impossible (e.g., because the ball
hits outside the workspace of the arm, the ball is no longer visible,
or ball contact is no longer expected within a criterion time-to-
contact). After catching the ball, the arm moves back to its resting
position, ready to initiate a newmovement whenever appropriate
sensory information arrives.

3.1. Overall architecture

The overall system architecture is depicted in Fig. 2. The green
ball movement is captured by a visionmodulewhich calculates the
point-of-contact ((x, y, z) coordinates of catching position) and the
time-to-contact, τt2c, that is, the time it takes to the ball to intersect
the arm at this point in space.
Timed movement in real time is generated by a controller

formulated in terms of nonlinear dynamical systems for dynamical
variables (m, n). Timedmovement is obtained by integrating these
dynamical systems. The time courses of the m dynamical variable
evolve from an initial to a final value, yielding a timed movement
with amplitude A. The state of the movement is represented by
the dynamical variable, m, which is not directly related to the
spatial position of the PUMAend-effector, but rather represents the
effector temporal position.
Ball movement is transformed onto time-varying parameters

that control the parameters of the (m, n) dynamical systems that
generate timed movement in real time. More precisely, these
parameters specify the time-to-contact, τt2c, and the amplitude
A of the movement, controlled by the point-of-contact given by
the vision module. The inclusion of these feedback-loops enables
online trajectory modulation.
PUMAend-effector and ballmovement are expressed in aworld

cartesian reference frame. PUMAend-effector position varies along
a straight path from the initial PUMA end-effector resting position
to the ball catching position. Transformation from the temporal
dynamical variable, m, to PUMA end-effector spatial position,
(xR, yR, zR), is achieved by simple coordinate transformations (see
Eq. (13)) that depend on the calculated ball catching position,
point-of-contact, which is given by the vision module.
An additional movement execution stage by means of an

inverse kinematics controller (based on the geometrical solu-
tion [13]) transforms these desired positions onto motor com-
mands which are used as inputs for the servo motors of the PUMA

robot and result in the actual
−→
θ̃ joint values and actual (x̃R, ỹR, z̃R)

PUMA end-effector positions.
A starting end-effector orientation is established and kept con-

stant during motion. During movement execution, the dynamical
variable, m, is continuously transformed into PUMA end-effector
position, (xR, yR, zR), from which joint angles,

−→
θ , are computed

through the inverse kinematic transformation.

3.2. The dynamical systems trajectory generator

Our aim is to propose a control architecture that is able to
generate trajectories for a robot arm such that it reaches in time an
approaching ball. These trajectories should be smoothlymodulated
when simple control parameters change.
The proposed controller is modeled by a dynamical system that

can generate trajectories that have both discrete and rhythmic
components. The system starts at an initial time in an initial
discrete position, andmoves to a new final discrete position,within
a desired movement time, and keeping that time stable under
variable conditions. The final discrete position and movement
initiation change and depend on the visually detected ball, on
the current joint values and on the robot internal model. Thus,
trajectories generated by this architecture are modulated by
sensory feedback.
The overall controller architecture is depicted in Fig. 3.

3.2.1. Fixed points and limit cycle solutions generator
The developed controller is divided in three subsystems,

one generating the initial discrete part of movement, another
generating the oscillatory part and another generating the final
discrete part of movement. A dynamical system for a pair of
behavioral variables (m, n) is defined to generate the timed
movement [35,28]. Although only the variable, m, will be used to
set the robotic variable, a second auxiliary variable, n, is needed to
enable the system to undergo periodic motion.
This dynamical system can operate in three dynamic regimes

that correspond to the stable solutions of the individual dynamical
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Fig. 3. Mechanism for timed trajectory generation. Timed movement is generated
through the sequencing of stable fixed points and a stable limit cycle. This
sequencing is controlled by a neural competitive dynamics according to sensorial
context and logical conditions. Trajectories are modulated by particular choices of
parameter A.

systems: two discrete states (stationary states) and a stable
oscillation (a limit cycle solution). It is defined as follows:(
ṁ
ṅ

)
= 5|uinit|

(
m
n

)
+ |uhopf|fhopf

+ 5|ufinal|
(
m− A
n

)
+ gwn. (1)

The ‘‘init’’ and ‘‘final’’ contributions describe a discrete motion
whose solutions converge asymptotically to a globally attractive
point atm = 0 for ‘‘init’’ andm = A for ‘‘final’’ with n = 0 for both.
Speed of convergence is controlled by τ = 1/5 = 0.2 time units. If
only the final contribution is active (uhopf = uinit = 0; |ufinal| = 1),
each time A is changed, the system will be attracted by the new A
value, generating a discrete movement towards A.
The ‘‘Hopf’’ term describes anHopf oscillator, that generates the

limit cycle solution (as defined in [35,28]) and is given by:

fhopf =
(
α −ω
ω α

)(m− A2
)

n


− γ

((
m−

A
2

)2
+ n2

)(m− A2
)

n

 (2)

where γ = 4 α
A2
controls the amplitude of the oscillations, ω

is the oscillator intrinsic frequency and α controls the speed of
convergence to the limit cycle. This oscillator in isolation (uinit =
ufinal = 0; |uhopf| = 1), contains a bifurcation from a fixed point
(when α < 0) to a structurally stable, harmonic limit cycle with
radius A = 2

√
α
γ
, cycle time T = 2π

ω
= 4 time units and relaxation

to the limit cycle given by 1
2α γ , for α > 0. Thus, it provides a stable

periodic solution (limit cycle attractor)

m(t) =
A
2
+
A
2
sin(ωt). (3)

Because the system is analytically treatable to a large extent,
it facilitates the specification of parameters such as frequency,
amplitude or offset. This analytical specification is an innovative
aspect of our work. Relaxation to the limit cycle solution occurs at
a time scale of 1/(2 α) = 0.2 time units.
The fixed pointm has an offset given by A2 . For α < 0 the system
exhibits a stable fixed point atm = A

2 .
This Hopf oscillator describes a rhythmic motion which

amplitude of movement is specified by A and its frequency by ω.
The dynamics of (1) are augmented by a Gaussian white noise

term, gwn, that guarantees escape fromunstable states and assures
robustness to the system.
The switching between the 3 possible modes of movement is

controlled by a neural dynamics through three ‘‘neurons’’ ui (i =
init, hopf, final). This switch is controlled by several parame-
ters including calculated time-to-contact and point-of-contact,
acquired by the vision system.Moreover, the amplitude A ofmove-
ment depends on the calculated point-of-contact and this provides
for online trajectory modulation. By modifying on the fly these pa-
rameters, one can easily generate different stable trajectories.
Here the system is able to cope with fluctuations in amplitude

A because quantities that depend on sensory information are
included in the vector field. Online trajectory modulation is
achieved through the inclusion of this feedback loop that enables
us to take ball movement into account, such that when a change
occurs in the ball movement, the system online adjusts the
dynamics of trajectory generation.

3.2.2. Neural dynamics
The ‘‘neuronal’’ dynamics of ui ∈ [−1, 1] (i = init, final, hopf)

switches the dynamics from the initial and final stationary states
into the oscillatory regime and back. Thus, a single discrete
movement act is generated by starting out with neuron |uinit| = 1
activated, the other neurons deactivated (|uhopf| = |ufinal| = 0),
so that the system is in the initial stationary state (m = 0).
Then, neuron |uinit| = 0 is deactivated and neuron |uhopf| = 1
activated and the system evolves along the oscillatory solution.
After approximately a half-cycle of the oscillation, this oscillatory
solution is deactivated again turning on the final postural state
instead (|uhopf| = 0; |ufinal| = 1).
These switches are controlled by the following competitive

dynamics

αu u̇i = µi ui − |µi| u3i − 2.1
∑
a,b6=i

(
u2a + u

2
b

)
ui + gwn, (4)

where ‘‘neurons’’, ui, can go ‘‘on’’ (=1) or ‘‘off’’ (=0). The first two
terms of the equation represent the normal form of a degenerate
pitchfork bifurcation: A single attractor at ui = 0 for negative µi
becomes unstable for positiveµi, and two new attractors at ui = 1
and ui = −1 form. We use the absolute value of ui as a weight
factor in (1).
The third term is a competitive term, which destabilizes any

attractors in which more than one neuron is ‘‘on’’. For positive µi,
all attractors of this competitive dynamics have one neuron in an
‘‘on’’ state, and the other two neurons in the ‘‘off’’ state [34,20].
The dynamics of (4) are augmented by the Gaussian white noise
term, gwn, that guarantees escape fromunstable states and assures
robustness to the system.
Fig. 4 presents a schematic illustrating this dynamics. This dy-

namics enforces competition among task constraints depending on
the neural competitive parameters (‘‘competitive advantages’’),µi.
As the environmental situation changes, the competitive param-
eters reflect by design these changes causing bifurcations in the
competitive dynamics. The neuron, ui, with the largest competi-
tive advantage, µi > 0, is likely to win the competition, although
for sufficiently small differences between the different µi values
multiple outcomes are possible (the system is multistable) [20].
In order to control switching, µi parameters are explicitly

designed such that their functions reflect the current sensorial
context and the global constraints expressing which states are
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Fig. 4. Schematic representation of the neural dynamics. Current sensorial context
and global constraints change as the environmental situation changes. By design,
theµi parameters reflect these changes causing bifurcations in the neural dynamics
and activation of a neuron ui ∈ [−1, 1] (i = init, final, hopf). These neurons enable
the system to appropriately control sequencing of movement primitives.

Fig. 5. Vision module.

more applicable to the current situation. They are defined as
functions of robot position, parameters returned by the visual
system and internal states and control the sequential activation
of the different neurons (see [36], for a general framework
for sequence generation based on these ideas and [35] for a
description). Herein,we vary theµ-parameters between the values
1.5 and 3.5: µi = 1.5 + 2bi, where bi are ‘‘quasi-boolean’’ factors
taking on values between 0 and 1 (with a tendency to have values
either close to 0 or close to 1). Hence, we assure that one neuron is
always ‘‘on’’.
The time scale of the neuronal dynamics is set to a relaxation

time of τu = 1
αu
= 0.02, ten times faster than the relaxation

time of the (m, n) dynamical variables. This difference in time
scale guarantees that the analysis of the attractor structure
of the neural dynamics is unaffected by the dependence of
its parameters, µi on the dynamical variable, m, which is a
dynamical variable as well. Strictly speaking, the neural and
timing dynamics are thusmutually coupled. The difference in time
scale makes it possible to treat m as a parameter in the neural
dynamics (adiabatic variables). Conversely, the neural weights can
be assumed to have relaxed to their corresponding fixed points
when analyzing the timing dynamics (adiabatic elimination).
The adiabatic elimination of fast behavioral variables reduces
the complexity of a complicated behavioral system built up by
coupling many dynamical systems [31,36]. By using different time
scales one can design the several dynamical systems separately.

3.3. Coupling to sensorial information

In order to intercept an approaching ball it is necessary to be at
the right location at the right time. We use the visual stimulus as
the perception channel to our system bymounting a camera in the
ceiling over the robot workspace.
In our application, the goal is to robustly track a green ball

moving in a table in an unstructured, complex environment, using
inexpensive consumer cameras and avoiding calibration lenses
procedures. Specifically, we have to deal with the following main
computer-vision problems: (1) a clutter environment, including
non-uniform light conditions and different objects with the same
color pattern (distractors); (2) irregular object motion due to
perspective-induced motion irregularities; (3) image noise and (4)
a real-time performance application with high processing time.
The overall vision module showing outputs and information

flow is depicted in Fig. 5.
(a) Presence of a distractor
element.

(b) Variations in lighting
conditions.

Fig. 6. Application of the CAMSHIFT algorithm to a real, clutter environment,where
some computer vision problems in visual object tracking are addressed.

Themost common algorithms for visual object tracking in robot
applications are typically based on the detection of a particular
cue, most commonly edges, color and texture [23,25,2,5,22,1].
Conventional single-cue algorithms typically fail outside limit
tracking conditions which degrade performance. Although such
algorithms fail to catch variations like changes of orientation and
in shape, if flexibility and/or simplicity, speed and robustness are
required, as in our case, they are a good option. Specifically, we
have chosen a color based real-time tracker, ContinuouslyAdaptive
Mean Shift (CAMSHIFT) algorithm [5], that handles the described
computer-vision application problems during its operation. This
algorithm uses a search window to track the moving object,
ignoring objects outside this search window. Further, handles
perspective-induced motion irregularities by scaling the search
window to object size. The used color space is the HSV which
eliminates much of the noise present in the image. Using only the
hue histogram and ignoring pixels with high or low brightness
provides wide lighting tolerance.
The CAMSHIFT algorithm segments the image and tracks the x′,

y′ image coordinates and area of the color blob representing the
green ball.
Image coordinates are transformed ontoworld coordinates by a

general perspective transformation assuming that the table height
is fixed and known (the Z coordinate remains the same for the
entire ball path) and that camera lens with a focal distance which
produces negligible distortion have been used.
We illustrate two real applications of this algorithm to a real,

clutter environment where the environment has non-uniform
light conditions and there exist several different objects with
the same color pattern. Fig. 6 shows the result of this algorithm
in the presence of a distractor element. In Fig. 6 the incident
illumination as been increased by a factor of 1.5. In both situations,
the algorithm is able to track the ball.
In this application, the robot arm catches the ball at the end

of the table in which the ball is moving (Fig. 1). This is point-of-
contact (x(τt2c), y(τt2c), z(τt2c)).
For simplicity, in this application x(τt2c) is always constant and

has a known value (x(τt2c) = −154 mm). z(τt2c) corresponds
to the table’s height and thus z(τt2c) = −519 mm. Further,
we consider that ball movement has a linear trajectory in the 3D
cartesian space with a constant approach velocity. Thus, time-to-
contact, τt2c, and y(τt2c) are extracted from the obtained visual
information through straightforward formulae:

y(τt2c) =
(x (τt2c)− x (0)) (y (0)− y (t))

x (0)− x (t)
+ y (0) (5)

τt2c =

√
(x (τt2c)− x (t))2 + (y (τt2c)− y (t))2√

v2x + v
2
y

(6)

where x(0) and y(0) are the coordinates of the ball at t = 0; vx and
vy the velocity of the ball as calculated by the CAMSHIFT algorithm.
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Movement amplitude, A, is set as,

A =
√
(y(τt2c)− yR(0))2 + (z(τt2c)− zR(0))2, (7)

where yR(0) and zR(0) denote end-effector position previously to
movement initiation.

3.4. Behavior specifications

These two measures, time-to-contact and point-to-contact,
fully control the neural dynamics through the quasi-boolean
parameters. A sequence of neural switches is generated by
translating sensory conditions and logical constraints into values
for these parameters.
The parameter, binit, controlling the competitive advantage of

the initial postural state, is controlled by sensory input: it changes
from 1 to 0 when the time-to-contact of the approaching ball
computed from sensory information is below a certain value.
Movement is initiated in thismanner. binitmust be ‘‘on’’ (=1)when
the sensed actual position of the effector is close to the initial state
0 (bxR close xinit(x)); and either of the following is true: (1) ball not
approaching or not visible (τt2c ≤ 0); (2) ball contact not yetwithin
a criterion time-to-contact (τt2c > τcrit); (3) ball is approaching
within criterion time-to-contact but is not reachable (0 < τt2c <
τcrit; breachable = 0); (4) ball stopped (bstopped = 1); (5) ball was
caught (bcaught = 1); (6) ball has disappeared (bdisappeared = 1).
Note that sensed actual position of the effector, xrobot,

represents the temporal position of the effector. It has been trans-
formed from the spatial position of the effector in world coordi-
nates, (x̃R, ỹR, z̃R).
The factor bxRclosexinit(xrobot) = σ(0.15A−xrobot) has values close

to one while the sensed actual position of the effector is bellow
0.15A and switches to values close to zero elsewhere. This switch
is driven from the sensed actual position of the robot. Herein, σ(·)
is a sigmoid function that ranges from 0 for negative argument to
1 for positive argument, chosen here as

σ(x) = [tanh(100x)+ 1]/2, (8)

although any other functional form will work as well.
These logical conditions can be expressed through this mathe-

matical function:

binit = σ(0.15A− xrobot)[σ(τt2c − τcrit)+ σ(−τt2c)
+ σ(τt2c) σ (τcrit − τt2c) σ (1− breachable)
+ bstopped + bcaught + bdisappeared]. (9)

(bstopped), bcaught and bdisappeared are flags set to 1 in order to indicate
that the ball stopped, was caught or disappeared, respectively.
These conclusions are taken dependent on the acquired visual
sensory information.
Multiplication and sum of ‘‘quasi-booleans’’ realizes the ‘‘and’’

and ‘‘or’’ operations among logical conditions, respectively.
A similar analysis derives the bhopf parameter, controlling the

competitive advantage of the oscillatory state. bhopf parameter
must be ‘‘on’’ (=1) when either of the following is true:

1. The sensed actual position of the effector is no longer close
to the initial state 0 (σ (xrobot + 0.15A)), and either of the
following is true: (1) ball contact not yetwithin a criterion time-
to-contact (τt2c > τcrit); (2) ball not approaching or not visible
(τt2c < 0); (3) impact is not reachable (breachable = 0); (4)
the sensed actual position of the effector is not yet close to
the final postural state A (σ (0.85A− xrobot)); (5) ball stopped
(bstopped = 1); (6) ball was caught (bcaught = 1); (7) ball has
disappeared (bdisappeared = 1).

2. Ball is approachingwithin criterion time-to-contact (0 < τt2c <
τcrit); and point of impact is reachable (breachable = 1); and the
sensed actual position of the effector is not yet close to the final
postural state A (σ (0.85A− xrobot)).
In the following expression for bhopf, the ‘‘or’’ is expressed with
the help of the ‘‘not’’ (subtracting from 1) and the ‘‘and’’:

bhopf = 1− (1− [σ(0.15A− xrobot) σ (τt2c)σ (τcrit − τt2c)
× σ(breachable)]) · (1− [σ(xrobot + 0.85A)
×{σ(1− breachable)+ σ(−τt2c)+ σ(τt2c − τcrit)
+ σ(0.85A− xrobot)+ σ(bstopped)+ σ(bcaught)

+ σ(bdisappeared)}]). (10)

Analogously, bfinal, which controls the competitive advantage
of the final postural state, must be ‘‘on’’ (=1) when none of the
following is false: (1) ball is approaching within criterion time-to-
contact (0 < τt2c < τcrit) and; (2) estimated impact is reachable
(breachable) and; (3) the sensed actual position of the effector is close
to the final postural state A. This parameter is given by:

bfinal = σ(τt2c)σ (τcrit − τt2c)σ (breachable)σ (xrobot − 0.85A)
× σ(1− bstopped)σ (1− bdisappeared). (11)

3.5. Velocity

The puma velocity, Vpuma, is set as:

Vpuma = |ṁ|, (12)

wherem is the dynamical variable given by (1).
Previously to timed trajectory generation, the robot arm is

moved to a pre-defined location, (xR, yR, zR)(0) = (−154,−393,
−123) mm. Robot arm movement only happens in the Z and
Y plane because xR(0) equals x(τt2c). The m dynamical variable
is then transformed onto the yR and zR coordinates of robot
movement by the following coordinate transformations

xR = xR(0)
yR = yR(0)+ cos(β)m
zR = zR(0)+ sin(β)m,

(13)

where

β = arctan
z(τt2c)− zR(0)
y(τt2c)− yR(0)

. (14)

3.6. Robotic setup

The dynamic architecture was implemented and evaluated on
a PUMA arm. A schematic of the implementation is presented in
Fig. 7. The PUMA 560 is a six-joint industrial robot manipulator,
whose original LSI/11 processor, the VAL-II operating system and
the joint controllers, were replaced by a new system based on
the Trident Robotics cards: TRC004, TRC100, TRC041 (Puma cable
card set) [30] and a personal computer (PC). The TRC004 is a
general purpose interface board for servo applications, mounted
and wired to the backplane by the TRC041 card. The TRC100 is a
general purpose RISC processor board for servo control and data
acquisition applications. In our case, this card provides an interface
between the TRC004 and the ISA bus of the PC. The interface
between the TRC100 and TRC004 is accomplished by a software
developed by Trident Robotics (a DLL for Windows environment
and some software placed in the EPROM of TRC100). This new
installed architecture gives direct access to the joint positions and
bypasses the old joint controllers, enabling the implementation of
new strategies for each of the joint controllers, the generation of
trajectories or task planning algorithms. The PUMA arm is set in a
blockingmode. In order to process and start amovement command
the PUMA controller takes around 40 ms.
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Fig. 7. Schematic depicting the robotic setup. TR stands for Tridents Robotics.

The CCD color cameras are FireWire with a resolution of 640×
480 pixels RGB. Image processing is done on a 2GHz PentiumMPC.
The image sensorial cycle for acquiring and processing an image
takes around 63 ms.
During tracking, the processing time of the CAMSHIFT algo-

rithm has a mean value of 14.3 ms and a standard deviation of
0.7 ms. When the algorithm, during the ball movement, looses the
track of the ball the search window is resized to full image size.
The processing time increases to a mean value of 17.8 ms with a
standard deviation of 0.9 ms.
The dynamics of timing and competitive neural of the trajectory

generator are numerically integrated in this PC using the Euler
method with a Euler step around 2 ms (cycle time or sensorial
cycle).
The two PCs are connected to an Ethernet network. In

order to exchange information between the three processes, we
implemented a communication mechanism based on sockets.
This interprocess communication uses the client server model, in
which the trajectory generator process (the server), connects to
the vision and puma processes (the clients) to make a request
for information. By applying this process separation, we obtain
independent processes and may consider that the cycle time for
the trajectory generator is 2 ms if PUMA position is updated only
every 20 sensorial cycles and considering an image is acquired only
every 35 sensorial cycles. This yields a movement time (MT) of 2 s.

4. Experimental results

In order to ensure the generality of the proposed architecture
we have performed several experiments. Frequency has been set
to ω = π

MT in regards with motor and other hardware limitations,
but keeping the demonstration feasible. Dynamical parameters
controlling speed of convergence of each dynamical system were
Fig. 9. Trajectories of variables and parameters in autonomous ball catching and
return to resting position. The top three panels represent timing variables, neural
variables and quasi-booleans. The bottom panel shows the time-to-contact, which
crosses a threshold at about 3 time units. At thismoment, the arm initiates its timed
movement.

chosen in order to respect stability during the integration process;
the required separation in the time scales and feasibility of
the experiments, as previously described. Trajectories from the
joints incremental encoders were recorded as well as planned
trajectories.

4.1. A simple experiment

The sequence of video images shown in Fig. 8 illustrates
the robot motion when the PUMA arm successfully catches an
approaching ball. In the video sequence, time increases from left
to right.
The detailed time courses of the relevant variables and

parameters are shown in Fig. 9. The real point-to-contact is at
(x, y, z) = (−154,−553,−519) mm which yields a movement
amplitude of 427 mm.
As the ball approaches, the current time-to-contact becomes

smaller than a critical value (here 3 s), at which time the quasi-
boolean for motion, bhopf becomes one, triggering activation of the
corresponding neuron, uhopf, and movement initiation. Movement
is completed (m dynamical variable varies between the initial
postural state at zero and the final postural state at A = 422 mm)
before actual ball catching is made. The arm waits in the final
posture. Ball catching is detected by the vision system which
activates the bcaught flag and leads to autonomous initiation of the
backward movement to the arm resting position.
Fig. 10 depicts snapshots of the PUMA arm for the situation

where the point-of-contact is unreachable. Movement is not
initiated and the arm rests in its reference position.
A rate of failure of 12% is achieved when 20 experiments

are done for the same ball movement. Let dcollision represent
the distance between the end-effector position and the real ball
position at the point-to-contact location. The mean value of this
Fig. 8. A sequence of video images illustrates robot motion when the PUMA arm successfully catches an approaching ball (left to right). Point-to-contact is at (x, y, z) =
(−154,−553,−519) mm which yields a movement amplitude of 427 mm. Robot movement is autonomously initiated at t = 3 s. Movement is completed before actual
ball catching is made. Ball catching is successfully detected by the vision system and an autonomous initiation of the arm back to the resting position is done.
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Fig. 10. A sequence of video images illustrates system behavior when the
approaching ball is unreachable.

variable within the 20 simulations is 4.5 mm, while in cases where
no solution was proposed to cope with a noisy point-to-contact
(simulation work described in [35]), themean value of dcollision was
100 mm. The proposed solution leads to improvement.

4.2. Properties of the generated timed trajectory

An advantage of this approach is that because the system
is analytically treatable, smooth trajectory online modulation of
the trajectories with respect to the amplitude and frequency
parameters is now possible, while keeping the general features of
the original movements. A simple modulation of the parameters
can generate an infinite variation of stable trajectories.
Different points-of-contact calculated using visual online

sensory information result in different reaching trajectories which
are generated in real-time. Trajectories are thus modulated
according to the environment, such that action is steered by online
modulation of the parameters. Meaning, there is no need to re-
design the system for different points-of-contact and time-to-
contact.
The system is conceived to catch any point-of-contact within

the reachable workspace and several ones were tried. Here in, we
only present results for the one depicted in Fig. 8, as results were
basically the same for different locations.
The fact that trajectories are generated online by integrating

differential equations in real time, allows to change the parameters
on the fly. For instance, if the ball is abruptly moved, a new point-
of-contact is calculated and the system smoothly changes the
trajectories accordingly. These feedback loops enable us to take
ball movement into account, and this provides for online trajectory
modulation. This situation is illustrated in Fig. 15.

4.2.1. Stabilization of decision to initiate movement
Intrinsic stability properties are inherent to the Hopf oscillator,

which has a structurally stable limit cycle. Thus, the generated
trajectories are robust to the presence of noise and stable to
perturbations.
The yR and zR real robot trajectories for experiment shown

in Fig. 9 are illustrated in Fig. 11. Noisy sensory information
produces amplitude fluctuations in point-to-contact. However,
these fluctuations are included in the vector field and thus are
filtered. Despite the noisy amplitude, the robot trajectories are
almost not affected.
This experiment illustrates how the generation of the timing

sequence resists against sensor noise: the noisy time and point-
to-contact data led to strongly fluctuating quasi-booleans (noise
being amplified by the threshold functions). The neural and
timing dynamics, by contrast, are not strongly affected by sensor
noise so that the timing sequence is performed as required.
This demonstrates approach robustness. This property is specially
useful for adding feedback pathways because sensory information
is forgotten as soon as it disappears from the environment. Note
how the autonomous sensor-driven initiation of movement is
stabilized by the intrinsic hysteresis properties of the competitive
neural dynamics, so that small fluctuations of the input signal
back above threshold do not stop the movement once it has been
initiated [34,35].
Fig. 11. yR and zR illustrate the timed trajectory as recorded by the Puma arm
for the situation depicted in Fig. 9. Initially, the y coordinate for point-to-contact,
yB(τt2c), and the yB coordinate of ball trajectory, as acquired by the visual system
are quite noisy. The robot trajectories and the calculated coordinates for contact
coincide after movement time, and the ball is successfully caught.

The hysteresis property allows for a special kind of behavioral
stability that leads to a simple kind of memory which determines
system performance depending on its past history and enables the
system to be robust to ambiguity in the environment.

4.2.2. Sensory conditions for ball interception become invalid
A globally optimized behavior results from the coupling of the

different behavioral modules which define the overall dynamics
(Eq. (1)). By obeying the time scale separation principle for
specification of speed of convergence of the different dynamical
systems, the system is designed such that the final behavior results
from local sensor control and global task constraints without a
representation of the entire behaviors the system can perform.
This decision making mechanism allows to intelligently combine
information frommultiple sources and select appropriate behavior
according to the environment situation.
Specifically, the system is expected to catch a ball exhibiting the

following sequence of behaviors or events: (1) stopped at the arm
resting positionwhilewaiting formovement initiation; (2)moving
from this position towards the ball catching position; and (3)
moving back to arm resting position after ball catching. However,
sequence generation of behaviors depends on the local sensory
information and on the system state. This responsiveness and
flexibility is the major benefit of the proposed approach compared
to conventional techniques.
The system is able to make decisions such that it flexibly

responds to the demands of any given situation while keeping
timing stable. The decision is dependent on local information
available at the system’s current position. This is achieved by
obeying the principles of the Dynamic Approach and illustrates the
power of our approach: the behavior of the system itself leads to
the changing sensor information which controls the change and
persistence of a rich set of behaviors.
The design of the quasi-boolean parameters of the competitive

dynamics guarantees that flexibility is fulfilled: if the sensorial
context changes such that the previously generated sequence is no
longer adequate, the plan is changed and a new sequence of events
emerges.
Thus, when sensory conditions change an appropriate new

sequence of events emerges. When one of the sensory conditions
for ball interception is invalid (e.g., ball becomes invisible,
unreachable, or no longer approaches with appropriate time-to-
contact), then one of the following happens depending on the point
within the sequence of events atwhich the change occurs: (1) If the
change occurs during the initial postural stage, the system stays in
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Fig. 12. Similar to Fig. 11, but the ball is suddenly shifted at about 2.4 time units
leading to a time-to-contact larger than the threshold value (3 s) required for
movement initiation. The arm is in themotion stage at this point and thus continues
its movement a full cycle, until captured by the initial postural state when the arm
is back to the reference position.

that postural state. (2) If the change occurs during the movement,
then the system continues on its trajectory, now going around a
full cycle to return to the reference posture. (3) When the change
occurs during posture in the target position, a discrete movement
is initiated that takes the arm back to its resting position.

Perturbations at the time-to-contact
Consider the ball is suddenly shifted away from the armat about

2.4 time units, leading tomuch larger time-to-contact, well beyond
threshold for movement initiation. The arm is in the motion stage
at this point and hence continues its movement a full cycle, until
captured by the initial postural state when the arm is back to
the reference position. At the perturbation time, uhopf neuron is
activated (Fig. 12) and the other neurons are deactivated. The uhopf
neuron rests activate while the arm continues its movement a full
cycle. At the time the m dynamical variable is captured by the
initial postural state (m = 0), the quasi-boolean binit becomes
one, triggering the activation of the neuron, uinit, and bhopf becomes
zero, deactivating the corresponding neuron uhopf. The arm rests
in the reference position. This behavior emerges from the sensory
conditions controlling the neuronal dynamics. However, because
sensory conditions are appropriate, a new movement is initiated
and the ball is successfully caught.
Fig. 13 shows that a new sequence of events emerges when

the change occurs during posture in the final posture position
(at approximately 3.5 time units). This change invalidates the
sensorial context for quasi-boolean bfinal which changes to zero
while bhopf goes to one. The neurons switch accordingly and a
discrete movement is initiated backwards taking the arm back to
its resting position.

Perturbations at the point-to-contact
If the ball becomes unreachable another type of sensorial

condition change occurs. At about 1.9 time units, the ball is
suddenly shifted away from the arm leading to a point-to-contact
no longer reachable. Fig. 14 shows how the arm rests in the
reference position when the change occurs during motion stage
but still in the vicinity of initial posture state.
When reachability condition changes during the periodic mo-

tion phase, the system continues its periodic motion, as shown in
Fig. 15. These experiments demonstrate that sequence generation
is stably adapted to changing online sensory information.
Fig. 13. Similar to Fig. 11, but time-to-contact change occurs at about 3.5 timeunits.
A discrete movement is initiated taking the arm back to its resting position.

Fig. 14. The ball is suddenly shifted away from the arm at about 1.9 time units,
leading to an unreachable position, out of the robot workspace. The arm is still in
the vicinity of the initial posture state and rests in the reference position.

Fig. 15. Similar to Fig. 14, but reachability condition change occurs at about 2 time
units, leading to an unreachable point-of-contact. The arm continues in the motion
stage at this point.

5. Conclusion/Outlook

In this article, an attractor based dynamics autonomously gen-
erated temporally discrete movements and movement sequences
for a Puma arm. The task was to generate a timed movement from
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an initial posture to catch an approaching ballmoving in a complex,
unstructured environment. After catching the ball or in case catch-
ing becomes impossible, the armmoves back to its resting position,
ready to initiate a new movement whenever appropriate sensory
information arrives. Movement initiation and termination was en-
tirely sensor driven and autonomous sequence generationwas sta-
bly adapted to changing unreliable online visual sensory informa-
tion. Ball tracking was robustly achieved by applying a CAMSHIFT
algorithm [5] to the visual sensory information acquired by an in-
expensive FireWire camera.
The implementation described provides a rigorous test of the

dynamic architecture robustness and probes how its inherent
stability properties play out when the sensory information is noisy
and unreliable.
Results enable us to positively answer the two questions

asked in the introduction. The first was if timed trajectories
comprising sequence generation can be flexibly generated. Results
illustrate the dynamic architecture robustness and show that
synchronization properties of this type of oscillator can be
exploited to successfully generate sequence and timed actions.
This flexibility property was illustrated in real experiments.
Some basic inherent properties of structurally stable dynamical
systems, such as stability, bifurcation, and hysteresis provide the
ability to modify online the generated attractor landscape to the
demands of the current situation, depending on the sensorial
context. In other words, we have explored the fact that the
resultant behavior is a combination of the intrinsic dynamics
and external input. Stability and controllability of the overall
system was guaranteed by obeying the time scale separation
principle. Other distinguishable feature of the proposed approach,
is the analytically solvability, which facilitates the specification
of parameters. This was exploited providing a theoretically based
way of tuning the movement parameters, such as movement time,
movement extent, etc, such that it is possible to account for
relationships among these. Smooth trajectory onlinemodulation of
the trajectories with respect to the goal, amplitude and frequency
is now possible according to the environmental changes, such that
action is steered by online modulation of the parameters. Thus,
there is an independence relative to the specification of individual
movement parameters. Also, a globally optimized behavior was
achieved through local sensor control and global task constraints.
The second question asked was if these generated trajectories

can be stably and robustly implemented in a robot arm with
modest computational resources. Results show that this approach
does not place unreasonable constraints on the environment in
which the robot operates and assures a quick reaction to eventual
changes in the sensed environment.
The approach shows up several appealing properties, such as

perception-action coupling and reusability of the primitives. In
the field of robotics, the proposed approach holds the potential to
become a much more powerful strategy for generating complex
movement behavior for systems with several degrees-of-freedom
(DOFs) than classical approaches. This type of control scheme has
a great potential for generating robust locomotion and movement
controllers for robots.
Currently, we are addressing the approach extension to robust

locomotion generation and movement controllers for robots as
this framework finds a great number of applications in service
tasks and seems ideal to achieve intelligent and more human like
prostheses.
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