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Abstract 

We propose a new, extended artificial potential field method, which uses dynamic 

internal agent states. The internal states are modeled as a dynamical system of coupled 

first order differential equations that manipulate the potential field in which the agent 

is situated. The internal state dynamics are forced by the interaction of the agent with 

the external environment. Local equilibria in the potential field are then manipulated 

by the internal states and transformed from stable equilibria to unstable equilibria, 

allowing escape from local minima in the potential field. This new methodology 

successfully solves reactive path planning problems, such as a complex maze with 

multiple local minima, which cannot be solved using conventional static potential 

fields.  

 

1   Introduction 

The investigation of agent-based systems begins with a definition of the term agent; “An 

agent is a system that tries to fulfill a set of goals in a complex, dynamic environment 

such that it can sense the environment through its sensors and act upon the environment 

using its actuators” [1]. A single agent may be fully autonomous, but its abilities may be 

limited according to resource and physical constraints. On the other hand, swarms of self-

organizing agents that exchange information may have a greater functionality than the 

individual members. Natural examples of interacting swarms of agents can be found in 

ants, bees, birds and schools of fish in the way that they create complex patterns with new 

and useful group properties [2]. In recent years, an understanding of the operating 



principles of natural swarms has proven to be a useful tool for the intelligent design and 

control of artificial robotic agents [3,4].  

Swarming robotic systems are often modelled as a two-dimensional collection of 

point agents in which members may interact with one another through attractive-

repulsive pair-wise interactions. Specific choices of potential field can lead agents to self-

organize into coherent patterns [5,6]. Recently, swarm stabilization or collapse with 

increasing constituent number has been predicted along with complex behaviour such as 

phase transitions and emergent patterns [7,8]. Virtual leaders [9] and structural potential 

functions [10] have also been introduced to provide provable group behaviour to ensure 

agents can avoid obstacles and form desired patterns. The actual realization of self-

propelled agents interacting according to virtual potentials has also been investigated 

[11]. 

These prior studies assume that the free parameters, which define the potential 

field, are fixed. However, in [12] these parameters were assumed to be internal states for 

each agent, through which the agent can manipulate the potential field in which it is 

situated. The dynamics of these internal states are defined through sets of coupled first 

order differential equations. Then, as an escape path is found, those agents with the 

greatest speed acquire a stronger attractive potential, thus forming temporary leaders to 

displace the remainder of the swarm from the local minimum. Here, the internal state 

concept is extended and applied to problems with multiple local minima. In particular, 

goal-seeking behaviour in a maze is used to demonstrate that internal states can be used 

effectively to escape from local minima. As a swarm of agents becomes trapped in a local 

minimum, the repulsive interaction between agents grows, forcing the agents from the 

local minimum. We substitute the temporary leader concept with another concept that is 

found in real biological systems, which is the concept of aggregation of the swarm’s 

individuals to face a problem [13]. As the agents escape, damping terms in the internal 

state dynamics then allows relaxation of the potential field. 

  The problem of local minima (trapped states), shown in Fig. 1, can be defined as 

the reactive problem for an agent, or swarm of agents, attracted to a goal at position G. 

An artificial potential field at G induces motion towards the goal. Then, as the agent, or 

swarm of agents, moves towards the goal, the velocity of each individual agent rises and 



the agents translate to the goal along the gradient of the potential field. However, in order 

to prevent collision with a static obstacle, an additional repulsive potential field is 

required. These two potential fields are then superimposed to form a global potential 

field, which describes the workspace of the problem. In general however, a local 

minimum may form due to the superposition of the goal potential and that of the 

obstacles, resulting in the agent, or swarm of agents, becoming trapped in a state other 

than the goal G. 

 

1.2 The Local Minimum Problem  

The local minima problem has been a serious issue for potential field methods. Early 

attempts were made to overcome this problem in a variety of ways [14 – 16], none of 

which provides as a truly efficient solution, and then several attempts have been made 

ever since. These attempts can be categorized into two approaches: local minima 

avoidance (LMA) and local minima escape (LME).  

 In LMA, local minima are produced in the workspace only at the goal position by 

modifying the potential field. Navigation functions, harmonic functions, and solenoidal 

field methods are good examples of such an approach. The navigation function method 

does not pose local minima, however significant calculations are required [17]. 

Therefore, this approach may not be practical for real-time motion planning in dynamic 

or partially known environments. In the harmonic function method, Laplace’s equation is 

applied to the path planning problem [18]. Although the resulting potential field again 

does not have local minima, off-line computation is required to provide a solution to the 

Laplace equation. The solenoidal field method [19] replaces repulsive forces by 

magnetic-type forces that lead the agent to a path along which it can follow the obstacle 

boundaries. 

 The LME approach adopts methods that overcome local minima by containing 

algorithms to escape out of the local minima region. In [14], the robot escapes the local 

minima region which is filled up using the best first method. However, filling up the 

entire local minima region is lengthy, and so again is not appropriate for real-time motion 

planning [17].  



 In the multi-potential field method, different resolution potential maps are 

produced. If a local minimum is visible in one potential field map, it can be invisible in 

another potential map with different resolution. The main drawback of the method is that 

the agent can come back again to a previously visited local minimum configuration after 

several circular moves [20]. The random walk method probabilistically enables the agent 

to escape the local minima region. However, the less informed the potential in use, the 

larger the random walks in the final path, which is considered the main drawback to the 

approach [21]. The Straight Line Select (SLS) method, which is a combination of random 

walks and a straight-line method, finds a new direction for a robot that meets a local 

minimum by drawing a straight line randomly. If the end point of the line has a lower 

potential than the local minimum position the agent selects that direction to move. 

Although combining it with random walks increases the method’s success rate, this 

approach is considered unsuitable for real-time motion planning [21]. In the virtual 

obstacle method [22] when the agent faces a concave shaped obstacle, a virtual obstacle 

is added and a virtual polygon is made inside the concavity, filling it up. This makes the 

agent to move toward a calculated point out of the polygon. The main drawback of the 

method is the heuristic selection of the polygons line lengths, which consequently causes 

the performance to fall if a poor choice of polygon length has been made.  

 Another recent example of LME is forward chaining, which is a technique whose 

target is to provide smooth adaptation of the robot’s path while maintaining persistence 

towards a goal using intermediate sub-goal attractors. These sub-goals dynamically 

reshape the potential field to form temporary stepping-stones connecting to the goal, and 

then other attempts emerge from this technique [23 – 26]. The main drawback is when 

dealing with deep concave obstacles, where a considerable number of sub goals are to be 

assigned producing a relatively expensive way of solving the problem.  

 

1.3 Swarm Model 

In [12] we introduced internal state dynamics for a swarm of interacting agents. In this 

paper we further develop our work using a model to simulate the motion of agents that 

constitute the so-called quasi-swarm, in which the swarm of agents are allowed to share 

global information. However, for the rest of the paper we will refer to the quasi-swarm as 



a swarm for simplicity. The swarm model is an extension of that of [7] and consists of Np 

agents with mass mi, position ri and relative distance rij between the i
th

 and j
th

 agents. The 

agents interact by means of a cohesive two-body generalized Morse potential Vcohesion(ri) 

with weak long range attraction and strong short range repulsion. For simplicity, we will 

consider agents of unit mass. To provide dissipation, and so convergence to a static goal, 

a dissipative term with a positive nonzero coefficient β is added [7]. The total potential 

field, which affects the i
th

 agent, is then characterized by other agent’s attractive and 

repulsive potential fields of strength Ca and Cr with ranges la and lr respectively along 

with obstacle and goal potentials of strength Cio and Cig with ranges lio and lig 

respectively. In general, the equations of motion for Np agents moving in a workspace 

that contains No obstacle points at locations rio and Ng goal points at locations rig are then 

defined by: 
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Using the generalized Morse potential to define Vcohesion(ri), the cohesion potential among 

the swarm individuals, Vgoal(rig) the attraction potential of the Ng goals and Vobstacles(rio), 

the repulsive potential of the No obstacles, will be defined as: 
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From Eq. (4-6), Eq. (3) will be defined as: 
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For a complex potential field such as that represented by Eq. (7), the potential can posses 

multiple local minima. A key issue is to identify how the agent will realize that it is 

trapped in a local minimum so that it can then attempt escape. In this case, the agent must 

be endowed with higher level perception concerning its environment to realize that it is 

trapped (located in proximity to a local minimum). Then, in order to escape it must learn 

to discount its immediate sensory information (attraction of the goal), and take action to 

solve the problem (in our method, manipulate the potential field).  

 Learning algorithms that incorporate some behaviour from animal development 

are numerous. For example, Q-learning which is a popular technique for solving a broad 

class of tasks known as reinforcement learning problems. Using this algorithm, the 

agent's goal is to modify its own behavior so as to maximize some measure of reward that 

it receives over time. Q-learning is a powerful algorithm, however it suffers a number of 

drawbacks among which are that state and action spaces can grow very large such that 

the processing time and memory requirements for the algorithm are increased [27]. In this 

paper we try to avoid these drawbacks by using an instantaneous technique, which uses 

the real-time state of the agent within the environment to enable higher level perception 

concerning the agent’s progress or otherwise towards the goal as will be discussed in the 

following section. 

 

 



2. Agent Internal States 

Escape from complex workspaces can be seen in many natural systems in which the 

system consists of a number of agents enclosed in a trap. A simple physical example is an 

ensemble of gas molecules which are enclosed in a single-exit container, while the 

molecules experience a change in their state due to a rise in temperature for example. The 

change of the internal state of the system simply changes the trap region from a local 

minimum into a region of maximum potential from which all the agents are emitted as if 

squeezed out. The repulsive interaction potential of each agent increases, leading both to 

an increase in repulsion between agents and between the walls of the trap and so leads to 

escape [12]. 

The use of agent internal states will now be considered as a means of allowing 

agents to manipulate the potential field in which they are manoeuvring. This concept will 

be applied firstly to a swarm of agents manoeuvring towards a goal in a potential field 

which contains a single local minimum, and later to a swarm negotiating a maze with 

multiple local minima. The agents’ internal states will now be defined through a set of 

first order differential equations which will allow the swarm of agents to manipulate the 

potential field in which they are manoeuvring and so escape from a local minimum. 

For a fixed set of obstacles, the repulsion potential range affecting the i
th

 agent lio can be 

represented as a function of an obstacle constant lo, which characterizes the physical size 

of the obstacle, and the agent repulsion potential range lri which characterizes the agent 

internal state. The obstacle repulsion potential strength affecting the i
th

 agent Cio will be 

represented as the obstacle constant Co. The attraction potential range of the goal 

affecting the i
th

 agent lig will be represented as a function of a goal constant lg, which 

characterizes the physical nature of the goal. The attraction potential strength of the goal 

affecting the i
th

 agent Cig will be represented as the goal constant Cg such that: 
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When an agent approaches an obstacle, as shown in Fig. 1, it will experience repulsion 

that displaces the agent away from the goal. However, the superimposed attraction of the 

goal can then lead to the formation of a local minimum in the potential field. The agent 

will never attempt to manoeuvre around the fixed obstacle simply because it never knows 

that it is trapped. Both the global and local minima of the potential field satisfy the 

equilibrium state ( ) 0=∇ itotaliV r  from Eq. (2). In addition, the speed of the centre-of-mass 

of a cohesive swarm will increase as the swarm approaches the goal and decreases as it is 

repelled by an obstacle, while the swarm is trapped if it enters a local minimum of the 

potential field. The speed of the centre-of-mass of the swarm will now be used as an 

effective mechanism for the swarm to increase its perception about its progress through 

the workspace, and so avoid trapping in local minima. The swarm individuals should be 

guaranteed to maintain a cohesive group for two reasons (1) to magnify the effect of the 

speed of the centre-of-mass of the swarm on the global perception of the swarm, (2) to 

ensure the swarm aggregates to face the problem collectively as noted in studies of real 

biological systems [13]. 

 We now introduce a function Qc, inspired from learning by reward or punishment 

in real biological systems [28,29]. The function is defined by the change of the modulus 

of the speed of the centre-of-mass of the swarm measured over some finite time interval. 

If the swarm is being repelled away from the goal Qc will have a negative value, which is 

viewed as punishment, indicating that a part of or the entire swarm is moving away from 

the goal. If Qc ≥ 0, which is the viewed as reward, the swarm senses collectively that it is 

moving towards the goal.  

 We now allow the free parameters of the potential field to be dynamic internal 

states and couple these internal states of the agent’s perception of its progress through the 

workspace. If the agent is progressing towards the goal, or the position of the centre-of-

mass rc relative to the goal rg is less than some small limit ε, then the states are fixed. 

However, if the swarm is moving away from the goal the internal states become dynamic. 



The following set of first order differential equations are now posed to express the 

internal states of the i
th

 agent:  
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Equations (12-15) express the repulsion amplitude and range and the attraction amplitude 

and range of the i
th

 agent, according to the speed of each agent as well as the value of the 

function Qc which depends on the speed of the centre-of-mass of the swarm. When the 

agents are repelled from an obstacle, the speed of the centre-of-mass of the swarm 

decreases, lio then increases due to Eq. (9,13) which turns the workspace in the 

neighborhood of the obstacles into a zone of maximum potential. This then leads to 

escape from the local minima, while the potential field relaxes after escape due to the 

damping terms in the differential equations for the internal states.  

 The cohesion generated by Eq. (14, 15), ensures aggregation amongst the swarm’s 

individuals to face the local minimum problem and the net effect is then that the trapped 

swarm is forced to simultaneously explore escape paths. Moreover, Eq. (16) ensures 

smooth manoeuvres around obstacles by linking the dissipation coefficient of each agent 



to its speed. The damping terms in Eq. (12-16) ensure that the deviation of the agent 

internal state relaxes and returns to an equilibrium value as soon as the local minimum 

problem is solved. The coefficients Ar, Br, Aa, Ba, Aβ, λq, λr, λv, λa, λβ are employed to 

scale the dynamics of the internal states.  

 

3. Analysis of Agent Internal States 

 

3.1 Analysis for Qc ≥ 0 

In this section, we will investigate the role of the function Qc to solve the local minimum 

problem. Using the dynamic internal states defined in Eq. (12-16), the potential field is 

now a function of five parameters for each agent. According to the equations of motion, 

Eq. (1, 2), and assuming unit mass, the equation of motion of the i
th

 agent is: 
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It will firstly be assumed that agent does not encounter any obstacles so that Qc≥0. From 

Eq. (7), the generalized Morse potential for an obstacle-free workspace with one goal 

scenario is defined as: 
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The effective energy of the swarm will then be defined as follows: 
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Then, from Eq. (19) it can be seen that 
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However, since Qc≥0, substituting from Eq. (8-15), it can be seen that: 
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Since βi has a positive nonzero value, it can be seen that 0
.

<φ , and so the swarm will 

converge asymptotically to the goal. 

 

3.2 Analysis for Qc < 0 

It will now be assumed that that agent does encounter an obstacle so that Qc<0. From Eq. 

(2-3) it can be seen that: 
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We note that in general the gradient terms can be replaced with scalar derivatives and 

unit vectors such that:  
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where (‘)=∂()/∂ri. Therefore, defining the location of the centre-of-mass of the swarm as 
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, Eq. (22), shows that the acceleration of the centre-of-mass of the swarm 

will be defined by:  
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Since jiij ˆˆ rr −= , the internal cohesion forces will cancel over the double summation to 

yield: 

 

 ( ) ( ) 









++−= ∑∑∑

===
ioioobstacles

N

i

igiggoal

N

i

N

i

ii
p

c
ˆ'Vˆ'V

Nd

d opp

rrrrv
r

111
2

2 1

t
β       (27) 

 

In order to demonstrate the change in stability properties of the local minimum using the 

dynamic agent internal states, we now consider a simplified 1-dimensional analysis 

where the goal, local minimum and agent are consider to be collinear so that ioig ˆˆ rr = . It 

will be shown that the effect of using function Qc along with the change in internal state 

of the agents is to convert the potential field local minimum to a local maximum. From 

Eq. (7), for a single goal and single obstacle, the potential field is then:  
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Therefore, again noting now that ioig ˆˆ rr =  it can be seen that the gradient terms in Eq. 

(27) reduce to 
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We will assume that rm is the position of a local extremum that forms in the global 

potential field according to the superposition of the goal and the obstacle potential fields 

so that ( ) 0=∂∂
= mi rr

iitotal rrV . Then from Eq. (29), it is then clear that 
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which defines the condition for equilibrium at the extremum position rm. From Eq. (29), 

it can also be seen that 
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Then, for extremum position rm and substituting from Eq. (30) it can be seen that 
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We will now consider the behavior of Eq. (32) for different signs of Qc. For a swarm that 

has a clear path to the goal, Qc ≥ 0 and so we conclude that lmo < lmg which, according to 

Eq. (32), means that ( ) 0
22 >∂∂

= mi rr
iitotal rrV , so that a local minimum forms as 

expected. However, for Qc < 0, the internal state dynamics ensure that lmo increases so 

that lmo > lmg which, according to Eq. (32), means that ( ) 0
22 <∂∂

= mi rr
iitotal rrV  and so 

the local minimum is converted to a local maximum. The damping terms in the internal 



states dynamics then ensure that the potential field relaxes after being manipulated by the 

agent. This behavior will now be demonstrated in simulation. 

 

4. Simulation Results 

 

4.1 Local Minimum Problem Solving 

First, the case of a swarm whose agents are using fixed internal states will be considered. 

Here, the free parameters describing the potential field, and so the potential field itself, 

are constant. The simulation results in Fig. 2 show a swarm of agents in which part of the 

swarm becomes trapped in the local minimum of the potential field, which forms behind 

a C-shape obstacle that is constructed from No obstacle points, while the rest of the 

swarm reaches the goal according to their initial positions. This situation has the further 

disadvantage of increasing the depth of the local minimum, thus increasing the difficultly 

for the trapped agents to escape. This is typical of conventional implementations of the 

artificial potential field method to path planning problems. 

Using the new dynamic internal states for the same environment, when a part of the 

swarm is repelled the function Qc switches to a negative value. Therefore the attraction 

potential equations in the algorithm are activated such that as the agents speed increases, 

the inter-agent attraction potential increases and they gather to form a cohesive group. 

This has the advantage of magnifying the effect of the function Qc and making the group 

aggregate to solve the problem for the entire swarm. Weak aggregation may lead to part 

of the swarm remaining trapped in local minimum. In addition, a cohesive swarm is 

required to ensure that the position and velocity of the centre-of-mass remains 

meaningful. The simulation results shown in Fig. 3 show that the swarm, which is given 

the same initial conditions as the swarm in Fig. 2, enters the local minimum as a group 

and when the swarm is repelled, the repulsion potential between the agents and the 

obstacle increases to convert the obstacle to be a zone of maximum potential to the 

agents. As the agents escape from the local minimum, the potential field relaxes due to 

the damping terms in Eqs. (12-16). In addition, the dissipation coefficient β ensures 

smooth manoeuvring of the trapped agents. The goal potential field then drags the agents 

away from the obstacle zone by defining a gradient path that the agents follow directly to 



the goal. The comparison between the results in Fig. 2 and Fig. 3 clearly shows the effect 

of using the internal state dynamics to solve the problem effectively.  

Regions I, II, III, IV and V of Fig. 4 explain the stages of the simulation 

demonstrated in Fig. 3. First the swarm is moving towards the goal with fixed internal 

states, as shown in region I. Then, when the lead part of the swarm is repelled, the 

repulsion potential increases then the velocities of the repelled agents increase and 

consequently the attraction potential increases amongst agents and they aggregate. After 

the aggregation process, region II, the potential relaxes and the swarm is attracted to the 

goal as a coherent flock. Region III in Fig. 4 shows that the interaction parameters remain 

fixed as Qc > 0 when the flock is moving towards the goal. Region IV of Fig. 4 shows 

that when the swarm is repelled by the obstacle, the average repulsion potential between 

the swarm and the obstacle increases (as an effect of using the function Qc). However the 

repulsion also makes the agent velocities to increase, which increases the inter-agent 

attraction potential, ensuring that the entire swarm escapes. It should be noted that it is 

only the increasing agent repulsion which is solving the local minimum problem. The 

increasing inter-agent attraction merely ensures that the entire swarm remains cohesive 

and escapes [12]. As soon as the problem is solved a relaxation in the potential takes 

place and the interaction parameters are fixed again at their final values, as shown in 

region V of Fig. 4.  

We use the internal state model to solve the problem for the swarm of agents 

starting from different initial positions around the obstacle to show the efficiency and 

robustness of the model. The path of the swarm’s centre-of-mass for different initial 

positions is demonstrated in Fig. 5, with the middle starting position representing the path 

of the swarm in Fig. 3. For the results shown in Fig. 3 and Fig. 5 all control parameters 

are unity.  

 

4.2 Maze Problem Solving 

We now consider two groups of agents attempting to reach a single goal in a maze whose 

potential field has multiple local minima. The groups navigate from a starting point S and 

attempt to reach a goal position G through a 4-level maze. One of these two groups, 

swarm A, is using the internal state model while the other group, swarm B, is using a 



conventional static potential field. The simulation results, shown in Fig. 6, demonstrate 

the capability of the swarm using the internal state model to solve the problem and reach 

the goal, while the other conventional swarm is trapped in the first level of the maze. Fig. 

7 shows the path of the centre-of-mass of the swarm through the maze to the goal. The 

different levels of difficulty for the different parts of the maze require the determination 

of the control coefficients to cope with the most difficult level. This may cause a 

relatively higher overshoot in flock behaviour in one of the maze levels. For the maze 

application in Fig. 7, the control coefficients are all unity except Ar =1.5, Br =1.5, Aβ 

=0.7. 

Finally, we consider another application of internal states related to crowd 

dynamics using communication through local interactions between swarm members such 

that the value of the perception function will be calculated on an individual basis (i.e. 

calculating a perception function Qi for each agent based on its behaviour). Here, we use 

a modified algorithm to ensure that those agents who have a clear path to the goal, 

emerge as the leaders for the agents trapped in the local minimum of a static potential.  

The scenario, shown in Fig. 8, demonstrates a swarm that uses fixed internal 

states in two groups. The first group has a clear path to the goal while the other group is 

trapped in a local minimum formed behind a C-shape obstacle. The individuals of the 

swarm, which are trapped in the local minimum, were clearly not led to the goal by the 

other agents that successfully reach the goal. We now compare this scenario with part of 

the swarm using the modified dynamic internal state model, as show in Fig. 9. Group a 

individuals use the internal state model that manipulates the potential field according to 

the agents internal states and group b individuals use the static potential field. It can be 

seen that group a has a clear path to the goal while group b is trapped in a local 

minimum. Group a swarm individuals, according to the modified internal state model, 

acquire leader properties (large Ca) so that the individuals trapped in the local minimum 

are attracted to them rather than to the goal, as shown in Fig. 9 (c-d). The behaviour is 

similar to related work concerning pedestrian dynamics [30]. This application has the 

advantage of only using the dynamic internal state model with some agents whose task is 

to act as ‘scouts’ for the rest of the swarm, mimicking the behaviour in real biological 

systems. 



We note that although the method is relatively simple computationally, it will 

have implementation limitations for real-world applications. Clearly, the location of each 

agent in the group must be known to every other agent in order to update the value of the 

function Qc for the entire swarm individuals. For agents with only nearest neighbour 

communication this will be difficult, since global information must then be distributed 

through the swarm via local communication. However, given the exponential decay of 

terms in the various potential fields, the algorithm, could be modified to consider only 

local interactions. 

 

5. Conclusions 

This paper presents a new method to escape from the local minima that form during 

potential field based path planning of robots by using dynamic internal states. Rather than 

a static potential field, the agents are able to manipulate the potential field through their 

internal states according to their estimation of their progress through the workspace. The 

method allows a swarm of agents to escape from and manoeuvre around a local minimum 

in the potential field to reach a goal. The method has been demonstrated in problems with 

a single local minimum and a maze with multiple local minima.  
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Figure Captions 

 

Figure 1. Behaviour of an agent with fixed internal states moving to a goal G, (a) t =0 (b) 

t =66. 

 

Figure 2. Behaviour of a swarm with fixed internal states. Np =21, No =101, Cg =50, lg 

=25, Co =4, lo =0.25, (a) t =2 (b) t =73. 

 

Figure 3. Swarm solves a reactive problem using the internal state model. Np =21, No 

=101, Cg =50, lg =25,Co =4, lo =0.25, (a) t =2 (b) t =12 (c) t =38 (d) t =49 (e) t =56 (f) t 

=61. 

 

 

Figure 4. Average interaction parameters of the swarm in Fig. 3, until t =75. 

 

Figure 5. Paths of swarms for different initial positions; middle path is the path of the 

swarm in Fig. 3. 

 

Figure 6. Maze application for agents using the internal state model; swarm A 

symbolized (*), and those with a static potential; swarm B symbolized (�). Cg =40, lg 

=15, Co =7, lo =0.1, (a) t =3 (b) t =7 (c) t =9 (d) t =16 (e) t =19 (f) t =25.  

 

Figure 7. Path of swarm A center (with the internal state model) to the goal. 

 

Figure 8. Behaviour of a swarm using fixed internal states. Np =5, Cg =50, lg =25, Co =7, 

lo =0.1, (a) t =2 (b) t = 30 (c) t =35 (d) t =70. 

 

Figure 9.  Part of the swarm individuals, group a symbolized (*), use the internal state 

model while the rest of the swarm, group b symbolized (o), use fixed internal states. Cg 

=50, lg =25,Co =7,lo =0.1, (a) t =2 (b) t =11 (c) t =19 (d) t =25 (e) t =34 (f) t =42. 
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