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Abstract

We study distributed coverage of environments with unknown extension using a
team of networked miniature robots analytically and experimentally. Algorithms are
analyzed by incrementally raising the abstraction level starting from physical robots,
to realistic and discrete-event system (DES) simulation. The realistic simulation is
calibrated using sensor and actuator noise characteristics of the real platform and
serves for calibration of the DES microscopic model. The proposed algorithm is
robust to positional noise and communication loss, and its performance gracefully
degrades for communication and localization failures to a lower bound, which is
given by the performance of a non-coordinated, randomized solution. Results are
validated by real robot experiments with miniature robots with a size smaller than
2cm x 2cm x 3cm in a boundary coverage case study. Trade-offs between the abilities
of the individual platform, required communication, and algorithmic performance
are discussed.

Key words: Distributed Coverage, Networked Robotic Systems, Modeling of
Multi-Robot Systems

1 Introduction

Multi-robot coverage [1–7] requires the coordination of a team of robots to
entirely cover an environment with a specific end-effector (sensor or actuator)
mounted on each robot. Different metrics are possible, the most common being
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coverage duration and coverage redundancy. Applications are cleaning [8], de-
mining [9], or inspection of structures [10], to name a few. In the case of
previously unknown environments, complete coverage goes side by side with
complete exploration of the environment [3,5,7,11]. In this case, an (optimal)
coverage path cannot be planned in advance.

When compared with a single robot approach, a multi-robot solution poten-
tially offers advantages in terms of robustness toward failures, expedited task
completion due to working in parallel [1, 3, 4, 7], or improved accuracy by
exchanging sensory information [7]. Complete coverage of an area by a tool
mounted on the robot should not be confused with mapping an environment
which requires complete coverage of the environment by a long-range sen-
sor [11, 12], or the permanent coverage of an area by a set of sensors [13] for
surveillance and environmental measurement tasks.

1.1 Contribution of this paper

We present an algorithm that leads to complete coverage of a previously un-
known environment using miniature robots subject to severe sensor and actu-
ator noise. The algorithm is fully distributed and requires only local communi-
cation. The algorithm is robust toward localization errors and communication
failure and allows us to calculate lower bounds for the probability to complete.
In particular, the performance degrades gracefully under influence of sensor
and actuator noise and is demonstrated on miniature robots with extremely
limited localization, navigation, and communication abilities.

We study the effect of erroneous localization information and limited range
communication on the coverage performance experimentally and by modeling
the system at multiple levels of abstractions. The models are calibrated by
measuring low-level parameters such as sensor and actuator noise on the real
hardware and higher level parameters, such as the probability of successfully
completing a certain behavior, in realistic simulation. By explicitly modeling
sensor and actuator noise, we show that the dynamics of a complex distributed
system can be quantitatively correct predicted.

1.2 Related work

Algorithmic performance and controller design for a multi-robot system are a
function of the capabilities of the individual platform (e.g., in terms of per-
ception, actuation, communication) and the system as a whole (e.g., amount
of a priori knowledge, centralized vs. decentralized approaches), which makes
comparison of different algorithms using a single metric difficult.
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Regardless of the complexity of the chosen approach for coordination in terms
of computational and communication requirements, the ability to perform a
more or less crude on-line cellular decomposition of the environment is the
basis for most coverage algorithms (see [14] for an overview) except those that
are fully probabilistic (see [10] for a comparison on a suite of fully reactive
algorithms) or those where the environment is completely known in advance
[3, 4], which allows for decomposing the environments into cells off-line. For
online cellular decomposition, some algorithms only require bumper sensors
[15], assuming rectinlinear environments, while others use long range sensors
[7, 9, 11, 12].

An important question is also, whether robots will make up for potential fail-
ures of themselves or of other robots as in e.g. [2, 12] or [16]. Sources of error
include both sensor and actuator noise. Sensor noise is usually addressed by
associating probabilities for coverage or exploration with parts of the envi-
ronment (e.g., using occupancy grids as in [12]), whereas actuator noise and
complete robot failure are usually faced by deriving provably complete poli-
cies for coordination (as in [2, 16]) that require at least one robot not to fail.
Notice that coping with sensor and actuator noise are dual problems, i.e. it
is difficult to detect one when the other is also uncertain. For this reason
both [2, 16] assume perfect localization. An attempt to solve this problem
is to use simultaneous localization and mapping (SLAM) techniques [12, 17].
Here, recent sensor information is matched to the stored occupancy grid in
order to achieve a maximum likelihood estimate of the robot’s position. This
approach, however, requires the availability of vast sensory information and
computational power and does not completely resolve uncertainty.

With respect to coordination, we distinguish approaches that collaborate sim-
ply by exchanging information [12] or explicitly arbitrate coverage tasks among
robots [4,16], which usually require extensive communication among the agents.
In [16], an auction-based algorithm [18] is used for arbitrating coverage among
the robots. Calculating bids, which involves solving an instance of the travel-
ing salesman problem for an optimal solution [10], however, requires additional
computational capabilities of miniature robotic platforms such as those con-
sidered in this paper.

2 Networked Multi-Robot Coverage

Before presenting our case study and its specific assumptions, the algorithms
and their properties are presented for the general case with arbitrary cellular
decompositions.
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Fig. 1. An arbitrary environment with a cellular decomposition V×E consisting of a
set of vertices V and a set of edges E . Dashed edges can only be partially navigated
and dashed cells are obstacles.

2.1 Non-Collaborative Coverage

We describe the cellular decomposition of the environment as an undirected
graph G = (V, E) with vertices V and edges E [10]. Each cell is represented
by one vertex, and edges represent navigable routes between vertices and can
be traversed by a robot in either direction. We denote v ⊆ V an individual
vertex, and Ev = {ev

1, . . . , e
v
nv
} ⊆ E the set of nv edges incident to v. Obstacles

and borders are also represented in V with a vertex and are identified as non-
navigable upon exploring the edge leading to it. We refer to the neighborhood
Γ(v) of v as those vertices that are connected by an edge to v. We assume
that the robot can determine all edges incident in v. A sample environment
with an arbitrary cellular decomposition is depicted in Fig. 1.

For each time t > 0, a robot i’s state is described by V i
t × E i

t ⊂ V × E . Thus
one robot’s knowledge about its environment at a certain point in time is the
subgraph Gi

t = V i
t × E i

t ⊆ G. Thus, robots construct G independently from
each other.

After reaching and covering vertex v, assuming the average time to do so is
τ v, the robot’s state is updated with

V i
t+τv =V i

t ∪ {v} (1)

E i
t+τv = E i

t ∪ Ev.

We define the set DV i
t ⊆ V i

t to be the discovered but not yet visited vertices
as those vertices where one and only one vertex of a known edge is a visited
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vertex, i.e.

DV i
t = {v ∈ V | (v∗, v) ∈ E i

t ∧ v∗ ∈ V i
t ∧ v �∈ V i

t } (2)

where (v∗, v) is the edge connecting v∗ and v.

Similarly, we define the set RV i
t (v) ⊆ V i

t to be the vertices that are reachable
from vertex v by the following recurrence relation:

(RV i
t )j(v) = {v∗ ∈ V | (v, v∗) ∈ E i

t ∧ v ∈ (RV i
t )j−1(v)} (3)

with (RV i
t )1(v) = {v}. In other words, (RV i

t )j(v) contains all vertices that are
reachable from v by at most j edges.

Finally, the set of discovered, reachable and not visited vertices DRV i
t is de-

fined by the intersection of the set of vertices RV i
t that are reachable from

the current robot’s location with the set of discovered, but not visited vertices
DV i

t :
DRV i

t = RV i
t ∩ DV i

t (4)

To determine the next vertex to visit, the robot picks the closest vertex from
the set of discovered, reachable and not visited vertices DRV i

t by solving

x = arg min
x∈DRV i

t

C(v, x) (5)

where C(v, x) is a cost function that is proportional to the time the robot
needs to move between the centroids of the cells corresponding to the vertices
v to x. The value of C(v, x) is the solution to the shortest-path on a graph
problem from v to x on G. Computationally, this requires to calculate the
distance to all vertices in DRV i

t and then pick the vertex with the shortest
distance. If there is more than one x which minimizes C, one of them is chosen
at random.

For grid environments without obstacles (as in this paper), C(v, x) corre-
sponds to the Manhattan Distance. In a plane with v at (v1, v2) and x at
(x2, y2), C(v, x) is then given by ‖x1 − x2‖ + ‖v1 − v2‖.

Finally, the best next vertex v′ ∈ Γ(v) to visit on the path toward x is deter-
mined by once again determining the shortest path from v to x.

We will now show that the algorithm leads to complete coverage if at least
one robot does not fail.

Proposition 1 Complete Coverage for a single robot: Coverage is completed,
when minx∈DRV i

t
C(v, x) = ∅ (5), that is there are no discovered, unvisited

vertices (DRV i
t = ∅) and all vertices are reachable (RV i

t (v) = V , ∀v ∈ V ),
i.e. the graph is fully connected.
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PROOF. Using (4), DRV i
t is an empty set, when all discovered vertices

have been visited (DV i
t = ∅). Using (2) this is the case if there exist no edge

that connects an unvisited to a visited vertex. When there are no edges with
unvisited vertices, RV i

t (v) = V, ∀v ∈ V . �

When working without explicit collaboration, it is possible that the environ-
ment is effectively covered before the individual robots complete, which is
given by ⋃

i∈{1...N0}
V i

tcomplete
= V. (6)

where N0 are the total number of robots. In other words, even when each
robot’s i coverage subgraph is only a subset of V , the union over all coverage
sub-graphs might well comprise the entire graph. Throughout this paper, we
are using the definition of tcomplete from (6) when referring to time to comple-
tion.

2.2 Collaborative Coverage

Endowing robots with communication capabilities allows them to share their
coverage map. Assume robot j has visited a vertex. It will update its state Gj

t

according to (1) and then broadcast it. When robot i receives the coverage
map Gj

t from robot j, it will update its own state by merging the two maps,
that is

Gi
t+ε = Gi

t ∪ Gj
t (7)

where ε is the necessary time for communication and information processing.
Notice that a robot needs to evaluate (5) each time new information is avail-
able as the current goal vertex might already have been visited by another
robot. Notice also that a robot shares his complete state and not the differ-
ence between his old and new state. This policy minimizes the potential loss
of information due to communication faults, although it has clearly higher
communication/energetic cost.

As robots do not arbitrate coverage paths beforehand, but only share infor-
mation about actual coverage progress, completeness of collaborative cover-
age follows directly from the proof of completeness for the individual robot
(Proposition 1).

2.3 Collaborative Coverage with Imperfect Localization

On a miniature robotic platform there are two main causes of errors that
lead to erroneous localization. First, imprecise actuators (e.g., wheel-slip) can
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lead to a navigation failure when traveling from vertex to vertex in open-loop
control. If a robot is dead-reckoning in the environment, such a failure might
lead to a complete loss of positional information. Second, an imprecise sensor
such as a global positioning system (GPS), e.g. provided by beacons/unique
markers in the environment, can lead to an erroneous belief about the robot’s
whereabouts. As errors in localization potentially jeopardize the completeness
property of any coverage algorithm, we propose an extension of our algorithm
for environments where perfect localization cannot be guaranteed.

The basic insight is that as soon as perfect localization cannot be assumed,
a robot has to associate a probability of actual coverage with each covered
vertex. In order to increase this probability, the group of robots needs to
repeatedly cover the whole environment, i.e. they need to do multiple tours
or patrol in the environment. When robots do not communicate, this can be
achieved by setting V i

t+ε = ∅ as soon as V i
t = V, which will start a new tour.

Using communication, we need to take into account that not all robots com-
plete one tour at the same time (the time τ v is an average value for the time
to reach and cover one vertex, reflecting slip-noise and navigation errors). We
associate with each vertex v ∈ V a tour index T i(v). Upon visit of a vertex
v, T i(v) is increased by 1. Initially, ∀v ∈ V, T i(v) = 0. Notice, that if the
probability of incorrect localization is pf , the likelihood of failing T i(v) times

is given by p
T (v)
f and thus the likelihood of the vertex v being covered at least

once is 1 − p
T (v)
f .

The set of vertices a robot should visit next is then given by

DV i
t = {v ∈ V | (v∗, v) ∈ E i

t ∧ v∗ ∈ V i
t ∧ (v �∈ V i

t ∨ T i(v) = Tmin)} (8)

which will now direct a robot to visit a vertex with the lowest tour index,
given by T i

min = minv∈Vi
t
T i(v), or in other words, bias exploration toward

areas with the lowest likelihood of completion. At the same time (8) ensures
that robots will complete one tour before beginning the next. For all v ∈ Vj

t ,
T j(v) is broadcasted along the information mentioned in Section 2.2. Upon
receipt, robot i will additionally update its state as follows.

T i(v) = max(T j(v), T i(v)) (9)

2.4 Algorithm Properties

Communication complexity: The collaborative coverage version of the algo-
rithm requires O(‖V‖) broadcasts of state information: for each successfully
covered vertex, the new robot state is broadcasted. These broadcasts are of
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average size O(N(N+1)
2

), where N = ‖V‖ + ‖E‖. On the whole, the amount of

data transferred is in the order of O(‖V‖2).

Memory requirement: Immediately out of the definition of the robot state, the
memory requirement of O(N) follows.

Algorithm complexity: The complexity of the algorithm is dependent on the
choice of the cost function C. Assuming that C ≈ O(‖V‖ log ‖V‖), worst-case
complexity is O(‖V‖2), as C has to be calculated for each unvisited vertex
once. However, typically, C needs to be evaluated only on a small subset of V
in the neighborhood of the robot, thus decreasing the effective complexity.

For time to completion as well as for other metrics, we rely on the simulations
described below to give practical results.

Proposition 2 Probabilistic Completeness Given a probability pf of failure
of correct localization, M ≥ � ln α

ln pf
� tours are required to achieve an average

coverage level of 1 − α.

PROOF. The probability of erroneously localizing itself in M independent
trials is given by pM

f , which leads to the inequality pM
f ≥ α for the probability

α to fail on an individual cell. Assuming pf to be constant over the whole
environment, α can also be understood as the fraction of cells where localization
failed. �

For example, in order to achieve coverage of 95% given a sensor that provides
correct localization with a probability of 70%, M = 3 tours are required. M
is an upper bound as our analysis does not take into account that each robot
will potentially visit cells that have already been covered by one or more other
robots while on the way to an unvisited cell. Due to this redundancy, which
potentially makes up for failures of other robots, the effective coverage is much
higher.

3 Case Study: Boundary Coverage of Regular Structures using a
Swarm of Miniature Robots

Our case study is concerned with complete sensor coverage of the boundary
of all elements in an environment. Inspection of the compressor section of a
jet turbine engine is a motivating application [19]. The boundary coverage
problem for structures with identical elements (Fig. 2) is equivalent to cover
all vertices of a graph by a team of robots, which corresponds to coverage of
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all cells of a grid when the elements are aligned in a regular pattern (as it is
the case in [1, 2, 20]).

3.1 Experimental Setup and Robotic Platform

A 60cm×65cm arena is populated with 25 blades in a regular pattern (Fig. 2
and Fig. 3), mimicking the rotor and stator blades of a jet turbine.

The Alice II robot is endowed with a PIC micro controller (368 bytes RAM,
8Kb FLASH), has a length of 22 mm, and a maximal speed of 4 cm/s. Four IR
modules can serve as crude proximity sensors (up to 3 cm) and local commu-
nication devices (up to 6 cm). The response of the distance sensors is highly
non-linear with a high resolution in close proximity (sub-millimeter) and a low
resolution in the centimeter range (one increment in the sensor value corre-
sponds to multiple millimeters). Robots are able to distinguish between blades,
the arena boundaries, and other robots.

For inspection and localization, we use a VGA color CCD camera that is sub-
sampled to 30x30 pixels [10]. The upper part of the blades are equipped with a
unique color marker that consists of three colored horizontal bars (see Figure
2, right). Presence or absence of the 3 color channels (red, green, and blue) in
the RGB camera image is used to encode 3 bits per color. Using the middle
gray bar as reference (all channels at 50%) allows us to encode 64 different
codes of which we are using 25 to identify each blade.

For communication and eventually transmitting sensory information to a base
station, we developed a 2.4GHz radio module running TinyOS [10]. The radio
also provides additional computational power and memory (8Mhz CPU, 4k
RAM, 4MBit flash memory) and is used for executing the deliberative part of
the coverage algorithm.

3.2 Reactive-Deliberative Robotic Controller

Exploiting the regularity of the environment for navigation, the Alice can
construct a graph with the blades as vertices, and possible routes between a
blade and its 4-neighborhood as edges (Fig. 4, right, for an example graph).
Edge traversal is achieved by a combination of dead reckoning and navigation
along way points on a blade’s boundary, (Fig. 4, left). At the same time,
collisions are avoided reactively.

Way points can be distinguished by the robot’s on-board sensors which can
detect a blade’s tip as well as measure the curvature of the blade using odome-
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Fig. 2. Left : Overview of the turbine set-up in the realistic simulator. Right : Close-up
on an Alice module equipped with a radio module in the real-world setup that is
the motivation for the presented algorithms. Blades are equipped with a two-color
code that serves for unique identification of a blade and therefore allows for the
(discretized) localization in the environment.

try. For being able to read the barcode on a blade that is used for localization,
the robot has to position itself so that the camera plane is parallel to the
tangent of the blade’s boundary. To achieve this, we implemented a closed-
loop control algorithm that relies on distance measurements of the left and
the right infra-red sensor. Near-optimal values for this controller as well as
the near-optimal distance to the blade have been selected based on systematic
experiments.

The feedback controller for aligning the robot in front of the blade deals well
with the sensor non-linearities that are identical on the left and right side
and has a high likelihood to succeed (see below for quantitative results for
the success likelihood of the overall behavior including localization). Distin-
guishing the waypoints on the blade has been much harder despite the large
difference in shape between sharp and round end. This is mainly due to the
non-linearity of the distance sensor, which leads to drastical changes in sensor
patterns for slight changes in distance to the blade. These changes are induced
by wheel-slip that occurs when circumnavigating the blade using differential
drive as well as varying amount of ambient light that offset the sensors.

Notice that although this experiment is very specific, the described implemen-
tation is an example for possible sensor-based navigation in miniature robots,
which is prone to errors due to sensor noise or wheel-slip. In particular, sensor
and actuator noise makes the execution time for the behaviors above non-
deterministic and lead potentially to complete failures (see below).

Using the behaviors described above (refer to [10, 21] for more details), the
graph is constructed on-line and systematically explored by the networked
multi-robot coverage algorithm described above.
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Fig. 3. The experimental setup endowed with colored markers that allow for unique
identification of a blade using the on-board camera.

3.3 Microscopic Modeling and Simulation

We quantitatively analyze the performance of the algorithm at two different
model abstraction levels. Both models are microscopic, i.e. model the system
at the level of an individual agent. On the lowest abstraction level, we simulate
the environment and the robotic platform using a module-based realistic sim-
ulator Webots [22], Fig. 2, left. Webots is able to faithfully reproduce discrete
intra-robot modules such as sensors, actuators, and transceivers for which the
experimenter can specify dedicated nonlinear and potentially noisy responses.
For instance, in all our simulations, Webots simulates wheel-slip of 10% if not
otherwise noted.

We also implemented a Discrete Event System (DES) simulator of the model
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Fig. 4. Left: Way-points on a blade’s boundary that can be navigated to using
on-board sensors. Right: Possible trajectory for a single robot along a spanning-tree
in a 5x5 blade environment (bold line). Backtracking paths are not shown.

described above using MATLAB, which corresponds to a microscopic agent-
based simulator. The DES simulator models robots as points moving from
vertex to vertex on the graph representing the environment. Multiple (body-
less) robots can occupy one vertex, without interfering with each other. One
simulation step consists in moving to a vertex with a certain probability of
success, determining the vertex to visit next and potentially communicating
state information. We calculated the histogram of the time needed for covering
one vertex (including edge traversal) as well as the likelihood of successfully
edge traversal for 6000 instances in Webots for different amounts of wheel-slip.
The histogram of blade-to-blade navigation and coverage time as well as the
relative likelihood for successfully traversing a certain number of edges are
shown in Figure 5 for 10% of wheel-slip. We also performed measurements for
40% of wheel slip, which corresponds to that measured on the real miniature
robot (not shown) [10].

Out of this distribution we randomly choose the time one simulation step is
taking for one robot. Hence, results from the DES simulator are provided in
seconds (rather than number of elements covered) and can be compared with
the results of the Webots simulation.

On both abstraction levels, communication is simulated loss-less albeit for
different ranges. In Webots, communication range is specified by the radius
of an imaginary disc with a robot at its center, whereas in the DES simulator
communication range is specified in terms of neighborhood relations on the
graph (same vertex, 4-neighborhood, or global).

For the cost function C, which is used at both modeling abstraction levels,
we chose Dijkstra’s algorithm with an uniform edge weight of 1. We also set
C(v, x) = ∞ if x �∈ RV i

t , thus (4) can be simplified to DRV i
t = DV i

t .

12



0 50 100 150
0

500

1000

1500

2000

τ v

N
um

be
r 

of
 o

cc
ur

re
nc

es

5 10 15 20
0

0.05

0.1

0.15

Number of edges traversed

R
el

at
iv

e 
lik

el
ih

oo
d

Fig. 5. Left: Histogram of times needed for blade-to-blade navigation including
complete coverage (τv). Right: Relative likelihood of successfully traversing 1 to 20
edges without failure. A geometric distribution (dashed) is super-imposed, which
allows calculating πe.

4 Results

In a first experiment, we show that the realistic simulation and the DES simu-
lator produce quantitatively and qualitatively correct predictions for the same
configuration (a configuration is defined by team size, environment size, com-
munication range and reliability of localization) and investigate the limitations
of the different modeling abstractions. We then rely on the DES simulator to
explore a wider range of configurations. In particular, we vary the graph size
and study the impact of varying communication range. We then compare the
collaborative and the non-collaborative algorithm to a hypothetical optimal
coverage algorithm. Then, we gradually decrease the reliability of localization
and give results in terms of area covered and coverage time. We conducted 100
simulations for each configuration. As coverage performance shows a long-tail
distribution, we provide the median time to completion and its 95% confi-
dence interval for each experiment. Finally, results of 9 experiments with 5
Alice miniature robots are compared to predictions of DES and Webots sim-
ulations.

4.1 Matching of Modeling Abstraction Levels

We first compare median coverage performance for 1 to 10 robots obtained by
realistic simulation (Webots) and DES simulation (Fig. 6, left). We used the
non-parametric Wilcoxon rank-sum test at 95% to determine if the qualitative
match in medians seen in Fig. 6, left between data from realistic and DES
simulation for different number of robots can be statistically verified. In other
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Fig. 6. Left: Time needed to achieve complete coverage for DES (∗) and realistic
simulation (·) on a 5x5 square lattice, with (—) and without (· · · ) communication.
Right: Time for average coverage of one vertex by the team (the time to complete
coverage is normalized by the total number of vertices for environments of various
size) in DES simulation with (—) and without (· · · ) communication for environ-
ments of 5x5 (o), 10x10 (∗), and 15x15 (�).

words, the probability that data from realistic and DES simulation have a
different distribution is less than 5%. The agreement is better for smaller
teams, which comes from the fact that DES simulation does not take into
account collisions among the robots. This is an important observation showing
the artifacts arising when comparing models at different abstraction levels.

4.2 Impact of the Environment Size

In order to test the performance of our collaboration policy for different envi-
ronment sizes, we used configurations which span two order of magnitude in
terms of number of vertices: a 5x5 square lattice which corresponds to the real
setup, as well as 10x10 and 16x16 square lattices. In terms of average time
needed to inspect one vertex, robots show similar behavior on all environment
sizes, for the smaller three configurations we show the results in Fig. 6, right.
We see that when robots are not communicating, coverage progress (in terms
of average time needed for covering a new vertex) is lower in larger environ-
ments. Thus, the larger the environment is, the more useful it is to let the
robots communicate. This observation is confirmed by additional simulations
on larger lattices (not shown).
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Fig. 7. Left: Time needed to achieve complete coverage with limited communication
range: no communication (· · · ), same vertex communication (– – –), neighborhood
communication (–·–), global communication (—) (from top to down). Right: Com-
parison of the collaborative algorithm against optimal coverage on a 10x10 grid, 1
to 20 robots. The bar height represents how much worse our algorithm performs
over a hypothetical optimal coverage algorithm compared to global communication
(�) and no communication (�).

4.3 Communication Range

As global communication is a strong assumption that can not always be guar-
anteed, we ran the DES simulator for four communication range configura-
tions: no communication, robots communicate only when they are on the same
vertex (range 0), robots communicate only with robots on a neighboring ver-
tex (range 1), and global communication (infinite range). Time to completion
for a 10x10 square lattice are depicted in Fig. 7, left. We observe that there
is already considerable improvement in performance when communication is
limited to robots being on the same or neighboring vertices.

4.4 Optimal Coverage

We calculate a lower bound for the optimal coverage Topt as

Topt =
‖V‖τ v

N0
(10)

where N0 are the total number of robots, and τ v is the average time needed to
cover one vertex. In Fig. 7, right, we explore the relative improvement an op-
timal coverage policy would give over the collaborative and non-collaborative
algorithm for growing team sizes in a 10x10 environment from 1 to 20 robots.
We observe that communication drastically increases the benefit of a larger
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Fig. 8. Left: Median coverage time and its 95% confidence interval for global commu-
nication and different localization errors; comparison with randomized and Webots
simulation (40% error only). Right: Improvement in terms of relative coverage com-
pletion time for having global communication over no communication.

team size, when compared with the same algorithm in which robots do not
communicate.

4.5 Imperfect Localization

We implemented the algorithm version with imperfect localization on the DES
simulator for the 5x5 square lattice. At every vertex, a robot was provided with
a random position with probability pf , which corresponds to the probability
of erroneous localization. We calibrated this value by taking 100 pictures per
code from a blade labeled with the color code mentioned in Section 3.1, lead-
ing to erroneous localization in pf = 5.03% of the cases. As these results do
neither include possible misalignments of the robot to a blade nor the possi-
bility of a robot trying to read the code from a blade’s tip, this value of pf

can be considered a lower bound in a real deployment. We thus ran simula-
tions also for pf = 10%, 20%, 30% and 40% in addition to all communication
configurations described in Section 4.3. Notice that error in localization not
only leads to sub-optimal path planning but also to wrong information shared
with other robots. Time to completion for different pf as well as for a fully
randomized approach are shown in Fig. 8, left. In the randomized version of
the algorithm, robots do not coordinate but choose the next blade to visit
at random with equal probability. Results comparing no-communication with
global communication for different pf are shown in Fig 8, right. We see that
when pf increases, the benefits of using communication get smaller. Up to
a certain number, using more robots which communicate obviously improves
the results.
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Fig. 9. Comparison of real robot experiments (left), DES simulation (middle), and
realistic simulation (right) for 40% wheel-slip and pf = 33%. 100, 100, and 9 repli-
cations for Webots, DES, and real robots respectively.

In Fig. 8, left, we also show the results of a Webots simulation run when
pf = 40%, which we can compare to the DES simulation configured at 40%
error probability using the test described above in Section 4.1. Results are in
good quantitative agreement when the number of robots is less than seven. We
also compared the experiment where inspection is randomized and the config-
uration with 75% error probability. In a mostly 4-regular graph as in our case
study, for less than 7 robots they lead to roughly equivalent outcomes (more
than 95% significant), as choosing one out of 4 edges randomly is equivalent
to a deliberative choice subject to 75% localization error.

In order to validate Proposition 2, we also measured coverage progress after
every robot performed M = 2 tours (for pf = 10% and pf = 20%), to M = 3
tours for pf = 30% and to M = 4 tours for pf = 40% error; the number of tours
were calculated for a 95% coverage level (i.e. α = 0.05). In all simulations, the
average coverage was above 99% (α ≤ 0.01) confirming that the tour values
calculated with Proposition 2 represent a conservative upper bound.

4.6 Real Robot results

The algorithm has been implemented on a team of 5 miniature robots. Robots
broadcast coverage maps periodically as defined by the algorithm. A static
communication node was used to repeat the received coverage maps, which
allowed considerable savings of energy on the individual robots as the radio
could have been turned off when not used without missing messages. Result of
9 experiments are compared to DES and Webots simulations (100 replications)
with 40% wheel-slip in Figure 9.
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5 Discussion

The DES simulator, which numerically solves the recurrence equations (1)
and (7) on the graph by sampling from the provided probability distributions,
models the environment of our case study faithfully for the basic case where
localization is perfect on the 5x5 square lattice (Fig. 6, left), as well as for 40%
error in localization (Fig. 8, left). This allowed us to explore a wide range of
other configurations on the computationally less demanding DES simulator.

There is improvement in time to completion even when the communication
range is limited (Fig. 7, left). As robots keep on meeting, information prop-
agates slowly to all robots. This is an important finding (see also [3]), as in
most environments global communication cannot be guaranteed, either due to
limitations on power consumption or due to environmental constraints that
lead to communication loss; incidentally this is also the case for the miniature
robotic platform and the case study being the motivation for the algorithms
developed in this paper.

As the extension of the environment is unknown to the robots a priori, it is
unlikely that the robots partition the environment optimally by chance. This
is even more so when the number of robots is increased, as our algorithm
does not perform any pro-active planning. Nevertheless, with increasing team
size performance drastically benefits from communication (Fig. 7, right). The
performance when using communication stays relatively close to the one of a
optimal solution; without, it quickly worsens considerably. However, there is a
point where adding more robots is no longer useful. In the 5x5 configurations,
this point seems to be reached when there are 6 or more robots present (Fig.
7, left). This is the case regardless of the choice of communication range,
different ranges will plateau at different average coverage times but for the
same approximate number of robots.

We observe that using communication is still beneficial even with a large
localization error of 40%, albeit its benefit gets relatively smaller (Fig. 8,
right). Above 40% localization error the completion time comes close to that of
a randomized approach (Fig.8, left). In this case a randomized approach might
become competitive, in particular as it requires a less sophisticated robotic
platform with less demand in power and computational resources and no need
for communication. Then, a larger number of potentially smaller robots could
achieve the same overall performance.

In all our experiments, randomized initial drop-off locations scattered over
the whole area were chosen. We opted for this experimental setup, as we want
to focus on the coordination aspect rather than a potential bias stemming
from a particular initial configuration (e.g., central deployment vs. deployment
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in a corner). We investigated the effect of the initial robot distribution in
additional experiments (results not shown in this paper). We observe that
whereas the performance for centralized deployments is generally lower than
that of randomized ones due to navigation overhead generated by the crowded
starting location, the algorithmic properties discussed above have shown to be
persistent also in such scenarios.

6 Conclusion

We described an on-line algorithm for networked multi-robot coverage of en-
vironments with unknown extensions by a swarm of robots that can localize
themselves, but are subject to significant sensor and actuator noise. The algo-
rithm is formally described by a set of recurrence equations on a graph that
are simulated using DES simulation, and validated in the realistic simulator
Webots, which is known to faithfully reproduce real-world artifacts, and on a
team of 5 miniature robots with a footprint smaller than one cubic inch with-
out relying on any external computation or a central supervisor. Real robot
experiments and both model abstraction levels provide good quantitative and
qualitative agreement.

By carefully measuring sensor and actuator noise on the real platform and
using realistic simulation, DES simulation allows us to explore various config-
urations, which model real-world use cases for various team sizes. In particular,
we show that the proposed algorithm scales almost linearly with the number
of robots employed when using communication. Thus, doubling the number
of robots cuts the inspection time nearly in half, on the average, which is
not the case when coverage is performed independently. We also show that
even when communication and localization are strongly distorted, as it is the
case during the real robot experiments, the algorithm stays robust and per-
formance gracefully degrades to that of the non-collaborative or randomized
algorithm, respectively. We could also demonstrate that it is possible to make
probabilistic guarantees about the average coverage performance that explic-
itly take into account the limitations of an individual robotic platform in terms
of positional noise.
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