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For human-robot interaction to proceed in a smooth, natural manner, robots must adhere to human social
norms. One such human convention is the use of expressive moods and emotions as an integral part of
social interaction. Such expressions are used to convey messages such as “I'm happy to see you” or “I want
to be comforted,” and people’s long-term relationships depend heavily on shared emotional experiences.
Thus, we have developed an affective model for social robots. This generative model attempts to create

natural, human-like affect and includes distinctions between immediate emotional responses, the overall
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mood of the robot, and long-term attitudes toward each visitor to the robot, with a focus on developing
long-term human-robot relationships. This paper presents the general affect model as well as particular
details of our implementation of the model on one robot, the Roboceptionist. In addition, we present
findings from two studies that demonstrate the model’s potential.
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1. Introduction

Social robots, such as those that operate in healthcare
institutions and in museums, need to communicate with people
in ways that are natural and easily understood, even by non-
roboticists. We believe that one way to improve these interactions
is to have robots display changing moods and emotions, just as
humans do. This paper describes a generative model of affect that
attempts to strongly mimic how people emote in order to produce
as natural-seeming a system as possible. The model is designed
particularly for robots that interact with people over long periods
of time. As such, our focus is on modeling the long-term aspects
of, and interactions between, emotions, moods, and attitudes. We
have implemented our affective model on the Roboceptionist, a
robot that interacts with people on a daily basis [ 1]. In addition, we
have run several experiments to demonstrate the model’s use in
social situations, which show that people do recognize emotional
expressions on the robot’s face (Fig. 1) and that such expressions
can significantly influence how people interact with the robot.

1.1. Human interaction

Affect, such as mood and emotion, plays a major role in
human interaction. Quite often,emotional reactions are caused
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by social interactions, influenced by societal and cultural norms,
or used to communicate desires to other people [2]. Emotions
carry conversational content, allowing conversational partners to
form common ground and communicate more effectively [3]. For
instance, an expression of sadness—facial, vocal, or behavioral—
may indicate a desire to be comforted. Furthermore, what mood
a person is in has a strong impact on how that person interacts
with others [4]; for example, people who are interacting may
“catch” each other’s moods and emotions, unconsciously matching
their own emotional states to their conversational partners’ [5].
Frijda argues that the primary reason for social interaction is,
in fact, to experience emotions, which serve to form a “sense
of coherence with others” [6]. Suppression of emotions can be
highly detrimental to relationship forming and is disruptive to
conversations [7].

A well-studied effect of human-computer interaction is that
people tend to treat computer agents in the same way that they
treat other people, forming social relationships with them [8].
We believe that this tendency to form social relationships with
computers will also apply to robots, perhaps even more so. If that is
the case, then people will respond to a robot’s emotions as though
the robot were human, and will expect the robot’s emotional
responses to be consistent across multiple interactions.

1.2. Human-robot social interaction

In recent years, the robotics community has seen a gradual
increase in social robots, that is, robots that exist primarily to
interact with people. Museum tour-guide robots [9] and robots
that interact with the elderly [10] demonstrate not only the
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Fig. 1. Two of the graphical faces used on the Roboceptionist. On the left is Tank
displaying happiness; on the right is Valerie displaying sadness.

benefits of having robots interact with people, but also the need
for the interactions to be smooth and natural. Many of these robots
have incorporated at least some rudimentary emotional behaviors,
but such behaviors are usually ad hoc and not generalizable to
other robots. Robots with infant-like abilities of interaction, such
as Kismet [11], have been used to demonstrate the ability of
people to interpret and react appropriately to a robot’s displays
of emotions. Experiments with the robot Vikia [12] demonstrated
the effectiveness of an emotionally expressive graphical face for
encouraging interactions with a robot. All of these, however, have
focused on short-term interactions with the robot. We believe
that a richer model of affect is necessary for forming long-term
human-robot relationships.

The exploration of affect in social robots currently lags behind
similar research in software agents. For example, the Affective
Reasoner [13] is an implementation of a virtual world populated
by software agents, wherein the agents can detect and react to
each other’s emotions; however, the agents do not interact directly
with humans. In contrast, Embodied Conversational Agents (ECAs)
are designed explicitly to mimic human-human interaction [14].
Many ECAs are capable of expressing emotions (see [15] for an
overview). One such system, called FearNot!, has been shown to
invoke empathy in its users in response to the agents’ emotional
displays [16]. However, the emotional models used in these types
of systems are typically ad hoc, incomplete, or poorly documented,
and thus difficult to extend to other systems. Many systems rely
on a computational model of emotions developed by Ortony, Clore,
and Collins [17], but again, this model does not account for affective
behavior beyond very short-term emotional responses. In contrast,
the system described by El Jed and colleagues [ 18] includes longer-
term moods and personality in addition to emotions, but we
believe that our model provides more human-like behavior for
long-term interactions, as we will discuss in the following sections.

The most developed affective model specifically for robots
that we are aware of at this time is the TAME architecture [19],
which considers the four categories of personality traits, attitudes,
moods, and emotions. Our model follows a similar breakdown of
categories (namely, attitudes, moods, and emotions). However, the
TAME model does not account for the interplay between different
affective phenomena, nor does it specify how the robot’s affect
may be influenced by its interactions with people. In contrast,
we have tried to provide a complete model of affect with a
strong psychological backing, designed specifically for long-term
human-robot interaction.

2. Affect

As background, this section provides a brief description of
affect and how it relates to human interaction. Affect is a
general term relating to emotions, moods, and other such states
with varying degrees of positivity or negativity—that is, states
with valence. While a great deal of psychological research has

focused on affect, only a few researchers distinguish between
terms such as “emotion” and “mood,” and very few agree on the
meanings of these terms. Following the categorization suggested
by Scherer [20], we consider the following phenomena to be of
importance in developing an affective model: emotions, moods,
and attitudes.

2.1. Emotion

An emotion, or “emotional response,” is an immediate affective
response to the evaluation of some event (or other stimuli)
as being of major significance. While psychologists may debate
whether emotions have distinct facial responses (see e.g. [21,22]),
when considered solely for interaction purposes emotions are
meaningless unless they result in some outward change in the
robot, including facial, vocal, or behavioral modifications.

In the psychological and cognitive science literature, there are
two primary views on the representation of emotions: categorical
and continuous. Ekman [23] and others argue for a set of “basic”
emotions that are innate and universal across cultures. All other
emotional categories are then built up from combinations of these
basic emotions. Others, such as Russell [24], argue that all emotions
lie in a continuous two-dimensional space, where the dimensions
are typically taken to be valence (how positive or negative the
emotion is) and arousal (the energy or excitation level associated
with the emotion). Both representations have been used in robotic
applications; for example, Sage [9] uses a categorical model,
whereas Kismet [11] uses a continuous model. In both cases,
people identified the robots’ emotions and reacted appropriately;
the underlying representation does not seem to have a major effect
on people’s understandings of a robot’s emotional displays. In our
work, we employ a categorical model of emotions, as discussed in
Section 3.1.

2.2. Mood

Moods are more “diffuse” affective states [20] that typically do
not have a single antecedent. They are typically of lower intensity
than emotions and have fairly low variance over the course of a
single day. Moods may be caused by a variety of things, including
changes in physiological state (such as lack of sleep or illness) [25],
rapidly occurring emotional responses [25], or complex cognition
regarding emotional life events [26].

Several studies have indicated that positive moods tend to re-
duce negative emotions (in frequency and intensity), and negative
moods tend to reduce positive emotions [25,27]. Additionally, ev-
idence from psychology indicates that daily moods tend to have
plateaus, during which repeated emotional events will not cause a
large shift in mood [28]. In particular, mood due to life stresses is
fairly stable and is not strongly influenced by most emotional re-
actions. However, many similar emotions in a row will eventually
alter the mood significantly.

Interacting with other people can have a strong impact on one’s
mood, but the exact effects of such social interactions are still
not well understood. Some evidence indicates an asymmetrical
crossover model, wherein positive social exchanges will increase
a positive mood but have little effect on a negative mood, while
negative social exchanges will erode any mood [29].

2.3. Attitude

An attitude is an amalgamation of emotions experienced with
a particular person (or thing), reflecting one’s relationship with
that person over time. Three primary characteristics of attitudes
are that they are learned over time, they predispose one to certain
behaviors, and they imply evaluations on an affective scale [30].
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Fig. 2. A visitor interacting with Valerie, the Roboceptionist. The robot’s virtual
head is displayed on a monitor that rotates to face visitors. The robot’s body—an
RWI B21r—is “dressed” in a suit.

Changes in attitudes may result from emotions inspired by the
focus of the attitude, co-experienced emotional events, or the
frequency and duration of the relationship. A person’s attitude
toward a conversational partner can influence many aspects of
the conversation; for example, people are less likely to express
emotions in the presence of strangers [31]. Attitudes are a key part
of long-term relationships.

Emotions, moods, and attitudes all interact. In particular, both
emotions and attitudes help to shape the overall mood, and, at
the same time, the mood effects how strongly emotional reactions
occur. Additionally, changes in mood during social interactions
result in changes of attitude. The exact mathematical interactions
used in our affective model are described below.

3. Implementation

As discussed, several models of human affect have been
postulated, and which model is “correct” remains undetermined.
However, we require only that our robot’s behavior is human-like;
the underlying model need not precisely match human cognition.
That is, we wish to design a generative model, rather than an
explanatory one. Accordingly, we have taken the approach of
selecting a simple, straightforward model of human affect to serve
as the basis of our computational model.

Our current platform for social robotics research is the
Roboceptionist [1]. The mechanical base of the robot is an
RWI B21r with an LCD “head” that can rotate to face visitors.
The robot is housed in a booth near a high-traffic entrance
to a computer science building at Carnegie Mellon University,
and is generally available 8 hours a day, 5 days a week. A
keyboard and small monitor on the booth’s desk allow for human
input with visual feedback; speech recognition is not used due
to high environmental noise. The LCD head displays a highly
expressive, graphical face, which can display a wide range of easily
recognizable emotional expressions. In a collaboration with the
Drama Department, the robot has gone through two character
iterations, each with a unique background and a complex, evolving
storyline. Visitors to the booth can ask the robot questions about
its life in order to hear the continuing story, according to which the
first Roboceptionist, Valerie (shown in Fig. 2), left her job to become

a singer and was replaced with Tank, a paranoid ex-CIA agent.
These stories are intended to provide interest and to encourage the
formation of long-term relationships with the robot.

3.1. Emotions

We chose to implement a categorical model of emotions,
primarily due to the relative ease of implementing several
distinct emotional expressions versus defining a mapping between
continuous multidimensional space and the robot’s expressions.
In particular, we implemented a subset of the “basic” emotions
suggested by Ekman [23]. These emotions are: joy (happiness),
sadness, disgust (frustration), and anger, as shown in Fig. 3. While
this list is in no way comprehensive, additional emotions (such as
fear or surprise) can be added easily, as desired. Each emotion has
an associated intensity level, represented as a real number ranging
from O (non-existent) to 1 (highest intensity), as well as a valence
rating (positive or negative). For each emotion, we defined a series
of expressions of differing intensities, which can be displayed on
the robot’s graphical face. Specific intensities are generated by
a linear interpolation of the muscle positions between the two
nearest defined intensity expressions (see example in Fig. 4). The
emotional expressions used were based on Delsarte’s code of facial
expressions as implemented for the robot Vikia [12].

Since this model is intended for social robots, emotions are
caused primarily by interactions that the robot has with people.
For example, a new person interacting with the robot may cause
happiness, and insults typed to the robot may generate sadness
or anger. We have implemented a mechanism within the robot’s
language model in order to trigger specific emotions directly. That
is, certain statements by visitors carry specific emotional content,
such as compliments causing happiness or insults resulting in
sadness. Currently, the emotional intensities are hand-coded, but
a deeper model could be implemented using the cognitive model
proposed by Ortony, Clore, and Collins [17], in which emotions
occur as the agent evaluates events, objects, or other agents.
Bartneck [32] provides more information on how this model could
be used.

Emotions are displayed immediately after an event, and last
the duration of the robot’s verbal response. In this way, emotions
are short-lived, but are displayed long enough to be recognized.
Emotions do not occur concurrently in our model, thus avoiding
the question of how different base emotions might interact or
“blend.” This greatly simplifies the display of emotions. Since
emotions are short-lived, multiple emotions can be displayed
sequentially.

3.2. Moods

Our robot’s moods are primarily caused by its personal history
and “life” events. That is, because the robot has an ongoing life
story, it can feel positive (or negative) about past (or future)
events. Values for the moods are assigned to the storyline by
the dramatic writers, as they see fit. The mood generated from
these events is considered as the robot’s “baseline” mood for each
day. The robot’s overall mood is influenced by the emotions it
experiences throughout the day, as explained below. In different
robots, moods may also be influenced by other circumstances, such
as internal power levels or the ability to complete assigned tasks.
Our robot’s moods are indicated by posture, particularly the tilt
of the head (e.g. a downcast face indicates a negative mood). A
more sophisticated indication of mood might also include vocal
and behavioral modifications.

After a life event has occurred, that event’s contribution to
the robot’s mood fades over time. Events that cause more intense
moods take longer to fade than lesser events. Similarly, anticipated
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(a) Happiness.

g0

(c) Disgust.

g0

(b) Sadness.

g0

(d) Anger.

Fig. 3. Four emotional expressions, shown on both Tank and Valerie's faces. Both faces have a similar range of expressions. Each emotion is displayed at its highest intensity.

8888

Fig. 4. Interpolation of emotional expressions between neutral (far left) and very
angry (far right).

events will increase in salience as the date of the event approaches,
causing an increase in the mood contribution in the days preceding
the event. Specifically, if the event will occur in d days and will
cause a mood of strength m on the day it occurs, then that event’s
contribution c to the mood is computed according to the sigmoid
curve given below:

m

c=m— ————.
1+ e—ldi+/10m|

(1)
Events that have already occurred follow the same curve. Some
examples can be seen in Fig. 5. Multiple events’ contributions to
the mood are additive.

In our model, the robot’s mood has one primary plateau [28],
at the baseline mood as computed for each day. As discussed in
the next sections, various events throughout the day may create an
offset from the baseline, causing the mood to change dynamically.
We constrain the mood to change smoothly and to approach
the extremes of the facial expressions asymptotically, so that the
model will never attempt to generate an expression outside the
normal bounds of the facial muscles. To model this effect, the
robot’s displayed mood follows a generalized logistic (growth)
curve, as given in the following equations:

1+my .
T+ e Bmmirmy 1 1Mo <0
mg = {mp ifm,=0 (2)
1—my .
+my ifm, >0

1+ e-Bmo—M(i—my))

where my is the displayed mood, m, is the offset from the base-
line mood, and m,, is the baseline mood. These equations follow a
logistic curve with a growth rate of B; this influences how quickly

the mood changes between the plateau and each extreme. Our cur-
rent implementation uses B = 15, but this value can be modified,
if necessary, for specific robots. The time of maximum growth of
each half-curve (that is, the inflection points) occurs at M (1 £ my),
where in our implementation M = 0.35. This point is scaled
according to the baseline to keep the rate of change of the mood
similar across different baselines. These equations may be bet-
ter understood by viewing some examples for different baseline
moods, shown in Fig. 6. While the baseline mood and offset may
be any real numbers, the curves given in Eq. (2) constrain the dis-
played mood to a range of —1 (extremely negative) to +1 (ex-
tremely positive), with O representing a neutral mood.

Variables such as B and M can be thought of as representing the
robot’s “personality traits.” Varying their values will alter how long
the robot remains in the baseline plateau (M) and how quickly its
mood changes outside of the plateau (B).

3.3. Interaction between mood and emotion

To model human behavior, the robot’s mood level should modu-
late the intensities of its emotions [25,27]. In our implementation,
we model this effect by scaling the strength of the emotional re-
sponse linearly, according to the current mood. Mood-congruent
emotions (that is, emotions that have the same valence as the
mood) are increased in intensity, while incongruous emotions are
diminished. Specifically, if an emotion of nominal strength s (0 <
s < 1) and valence v (v = =£1) occurs during a mood of m, then
the emotion’s strength is scaled according to Eq. (3):

s’=s<1+}1vm>. (3)

The exact scaling may be moderated by a particular robot’s
personality traits [33].

In addition to the mood influencing emotional responses,
emotions in turn influence the mood. In our implementation, the
robot’s mood dynamically changes due to its interactions with
people. For example, the robot may be in a negative mood due
to some event in the storyline, but can be “cheered up” through
repeated happy interactions during the day.

As discussed above, positive social exchanges increase positive
moods while negative exchanges erode any mood [29]. If the robot
experiences a negative emotion during any mood or a positive
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(b) Blind date that went badly (anticipated
m = 0.4, actual m = —0.3).

Fig. 5. Examples of different events and how they contribute to the overall mood over several days. Each event occurs at day 0.
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Fig. 6. How the displayed mood changes based on the underlying mood level, expressed as an offset from the “baseline” mood. Offsets result from changing emotions

throughout the day.
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Fig. 7. An example of how attitude and interactions influence mood. Here, the
baseline mood is —0.5, and a previous interaction has lowered the mood even
further. A well-liked person (A, = 0.4) approaches to begin interaction at time
t1, which immediately improves the robot’s mood. The person interacts from t1 to
t2, largely trying to cheer up the robot, improving its mood considerably. When the
person leaves, the mood drops once again, but remains at a higher level than before.
After the interaction, the mood begins to decay toward the baseline.

emotion during a positive mood (i.e. m,+m, > 0), the mood offset
(m,) changes by one fifth the strength of the emotion—a change
that is small enough to be unnoticeable after only a small number
of exchanges, but may cause a significant change in the robot’s
expression (see Eq.(2)). Positive exchanges during a negative mood
have little effect, increasing the mood offset by only half what other
exchanges cause (that is, one tenth the strength of the emotion).

While the overall mood changes dynamically due to interac-
tions with people during the day, the “baseline” mood is designed
to dominate the robot’s mood. That is, after a person has stopped
interacting with the robot, any effect that the person had on the
robot’s mood will begin to decay. Currently, we implement this
decay by decreasing the mood offset (m,) by small increments at
regular intervals (currently, 10% every 30 s). Thus, if there are no
further interactions over time, the mood will eventually return to
the baseline level.

3.4. Mood and attitude

An attitude is essentially a long-term mood associated with
some person (or thing). Each person who visits the robot may cause
various emotional responses in the robot, thus changing the robot’s
mood, and those changes influence the robot’s “opinion” of that
person. How well the robot “knows” the person may influence how
the robot’s attitude changes toward that person. For the robot to
maintain believability, its attitude toward someone should remain
consistent across multiple interactions with that person.

In our model, attitudes consist of a mood level (A;;) and a
familiarity rating (Ay). Familiarity is computed by combining how
many hours a person has ever spent interacting with the robot and
how many days since the person last visited the robot. Because we
could find no psychological evidence for a computational model of
familiarity, we have chosen a simple linear combination of these
two values, as given in Eq. (4). A person has the highest possible
familiarity rating (1) if she has interacted with the robot for at least
10 hours (including all past interactions with the robot), and the
last time she interacted with the robot was that same day. Visitors
are assigned familiarity ratings as follows:

1 1 1
A== (1 + 5 min(hours, 10) — 30 min(days, 30)> . (4)

2 1
A stranger is assumed to have interacted infinitely many days ago,
and so his familiarity rating is 0.

When a person begins an interaction with the robot, the robot’s
attitude toward that person has an immediate effect on its mood.
Specifically, the mood offset changes to the average of the current
offset (m,) and the attitude’s mood level (A,). Strangers to the
robot are given an attitude level of 0, which will pull the robot’s
mood closer to the baseline plateau—making the robot less likely
to display emotions to strangers. When a person leaves the robot,
the robot’s mood offset becomes the average of its mood offset
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User
Tank
User
Tank
User
Tank
User

Tank

User
Tank
User

Tank

Good afternoon

Welcome to Newell Simon. [happy 0.1]

I am a new student here

Do you enjoy your job?

Yes

That’s good. I like my new job here.

What’s your job

T can do all sorts of tasks. I can give directions. I can help you find a room
or a faculty or staff member in the School of Computer Science. I know the
current weather for all the major cities of the world.

Could you please tell me where is Dr. [name|?

[name] is in [room number] Newell Simon Hall. Would you like directions?
Yes, please

You are already on the third floor of Newell Simon Hall. Go across the

atrium... [further directions]

User Do you know where I can find a map

Tank Sorry. I don’t know who or what that is

User ok

Tank [nods]

User thanks

Tank You're welcome. [happy 0.4]

User Have a nice day

Tank Glad to have helped. Have a pleasant day.

User bye

Tank Thanks for visiting Newell Simon. Come back and see me again
User sure :)

Tank I didn’t understand that. It might help if you rephrase that. Or, ask me

something simple. [disgusted 0.5]

Fig. 8. An interaction between the robot and a novice user.
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immediately before the person arrived and its mood offset when
the person leaves. Furthermore, the robot’s attitude toward that
person changes by a fraction of the robot’s mood change during
the interaction Eq. (5). Higher levels of familiarity result in a more
stable attitude across interactions. An example of how a person can
alter the robot’s mood can be seen in Fig. 7.

Ay, = Am + (Am, during interaction) (1 — Ay). (5)

4. Interactions

While it is difficult to determine what might constitute
a “typical” interaction with the Roboceptionist, the following
examples may provide some insight into how interactions may
progress. Both examples are from actual visitors to the Tank the
Roboceptionist.

4.1. New visitor

The text of this interaction is shown in Fig. 8. In this interaction,
which occurred in August of 2009, the visitor identified himself as
new to the University. This visitor triggered three emotional re-
sponses from the robot: two instances of happiness at being help-
ful, and one instance of disgust/frustration at not understanding
the user’s response. The robot’s mood began as slightly negative
before the interaction (my = —0.017), peaked at my = 0.017,

returned to neutral (my = 0) at the end of the interaction, and fi-
nally returned to a somewhat negative value after the visitor left
(mg = —0.017).

4.2. Emotional

This interaction, shown in Fig. 9, occurred in January of 2009. In
this interaction the visitor invoked multiple emotions in the robot.
This visitor was recognized by the robot, and had the associated at-
titude of Ay = 0.50 and A;, = 0. Before the interaction, the robot’s
mood was neutral my; = 0. During the interaction, the robot’s
mood drops to a low of —0.10 after the extremely angry response
(according to Tank’s backstory, its real name is “Marion LaFleur,”
which it hates). After the person leaves, the robot is left in a slightly
negative mood (my = —0.02), and the robot’s attitude toward the
person has dropped to (A, = —0.09). Note that the robot’s current
interaction model does not maintain context of the interaction, so
that each time the visitor typed “lol” (an abbreviation for “laughing
out loud”), the robot reacts with amusement, improving its mood—
even though a human would likely have experienced annoyance. A
better dialog manager could improve the consistency of the robot’s
emotional responses.

5. Analysis

We conducted experiments to test components of our affect
model. In particular, we verified that people can recognize the
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User idiot

Tank How rude. I am not used to that type of abuse. [angry 0.5]
User lol

Tank I'm glad you are amused. [happy 0.3]

User marion

Tank I've told you people: DON'T CALL ME MARION! [angry 0.8]
User lol

Tank I'm glad you are amused. [happy 0.3]

Fig. 9. A short interaction with the robot that triggered multiple emotional
responses.

robot’s expressions of different emotions at various intensities, and
we have studied the effect of the robot’s apparent mood on how
people interact with it.

5.1. Emotions

We ran a short web-based survey to verify whether people are
able to “read” the robot’s emotional expressions.

5.1.1. Procedure

In the survey, participants were asked to watch a series of video
clips of a graphical face (either Valerie or Tank, see Fig. 1) displaying
either a neutral expression or a single emotional expression
(happiness, sadness, anger, or disgust) in various intensities (half-
strength or full intensity). The expressions for different intensities
of each emotion were computed as discussed in Section 3.1; the
muscle motions to express each emotion were identical across
robot faces. Expressions were shown in random order, and each
participant viewed all 18 video clips. Each clip lasted about 1 s
and showed the graphical face changing from a neutral expression
to the emotional expression (or in the case of the neutral clips,
just small eye and head movements). Participants could replay the
videos as often as they wished. For each video, participants were
asked to rate the robot’s valence and arousal, on scales of 1-9.
Note that participants were not asked to assign emotion words
to the video clips; they were asked only for these valence and
arousal ratings. Additionally, participants were asked some basic
demographic information, including gender and whether they had
ever interacted with the Roboceptionist.

5.1.2. Results

While over 200 people completed at least part of the survey,
we report only on the 110 respondents who completed the entire
survey. Roughly 58% of the participants were male, and nearly all
(95%) were between the ages of 18-34. Of the participants, 61%
stated that they had interacted with the Roboceptionist (either
Tank or Valerie) on at least one occasion.

To analyze whether participants could distinguish between the
various intensities of each emotion, we ran four separate two-way
(robot x emotion intensity) multivariate analyses of covariance
(MANCOVAs), with valence and arousal as the dependent variables.
Additionally, all analyses controlled for the participant’s gender
and previous interaction with the Roboceptionist. The “neutral”
clip was used as intensity 0 for each emotion. Participants’ ratings
of the different emotions at different intensities can be seen in
Fig. 10. Emotional intensities were compared by two orthogonal
contrasts: neutral versus the low intensity expression, and the high
intensity expression versus both neutral and low intensity. For
all emotions, there was a significant main effect of intensity on
participants’ ratings of the robot’s valence and arousal (F's >16.7,
p’s < 0.0005). While both contrasts were useful in differentiating

the conditions, the contrast of high intensity versus the lower
intensities contributed more strongly to the discriminant function.
Which robot was viewed also had a significant effect (F’s > 9.94,
p’s < 0.0005); in general, Tank was rated as higher in both valence
and arousal than Valerie.

Similarly, we ran a two-way (robot x emotion type) MANCOVA,
again controlling for gender and prior interaction, to determine
whether participants could differentiate between the different
emotional categories. For this analysis, we considered only the
responses to the high intensity emotional expressions, due to their
greater discriminatory power as found in the previous analyses.
We defined three orthogonal contrasts to explore the differences
between the emotions: a valence contrast (happy versus the
three negative emotions), a passivity contrast (sad versus angry
and disgusted), and a final comparison between similar negative
emotions (angry versus disgusted). We found that the differences
between the emotions were significant (F[6, 101] = 69.8,p <
0.0005). Individual univariate tests indicated that valence best
differentiated between happiness and the negative emotions and
between anger and disgust, while arousal best differentiated
between sadness and the other negative emotions (p’s < 0.0005).
The robot had a significant effect on participants’ responses
(F[2,105] = 15.2, p < 0.0005), following a similar trend as
mentioned in the previous analysis, with Tank receiving higher
valence and arousal ratings than Valerie.

5.1.3. Discussion

This study showed that people are able to detect differences
between the robot’s emotional expressions as well as differentiate
between the intensities of each emotion. Furthermore, the
valence and arousal ratings for each intensity followed roughly
linear trends in the appropriate directions for each emotion
(e.g. increasing happiness resulted in increasing valence and
arousal, while increasing sadness resulted primarily in decreasing
valence). We believe that this validates our model's use of
interpolation between differing intensities of emotions.

It is interesting to note that, while both faces use the same
underlying musculature structure and the same muscle position
definitions for each emotion, participants rated the different faces
as significantly different. It may be that the more mechanical
face (Tank) is simply seen as more “pleasant” or appropriate than
the more human-like face (Valerie), or that the gender of the
robot’s face causes different interpretations. Thus, for the model
to be consistent across different robots, each robot’s emotional
expressions may need to be adjusted until they are seen as
equivalent by people interacting with the robots. This could be
done by repeating the study presented here in order to analyze
which expressions of emotion are viewed as equivalent across
different robots.

Furthermore, because this study was run on-line, participants
viewed only the graphical face of the robot, but not the robot itself.
Clearly, the robot’s physical embodiment has a strong influence
on people’s perceptions. However, we do not expect that people’s
recognition of the emotional expressions will change significantly
when seen on the robot rather than on a separate display, as the
facial expressions will remain the same.

Finally, we note that this study served primarily to validate the
linear interpolation of emotional expressions. While it is important
that participants were able to identify the specific expressions,
this aspect of the study does not easily generalize to other robots
(particularly those with mechanical faces). Each implementation
of a particular emotional expression must be validated. However,
such validation need be done only for the most extreme intensity
of each emotion, as lower intensities can be reliably interpolated.

5.2. Moods

While we have shown that people are able to recognize the
robot’s emotional expressions,our model focuses strongly on the
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Fig. 10. Mean participant ratings for three intensities of each emotion, averaged across the robot face condition. Note that both valence and arousal follow linear trends
with respect to intensity, and these trends differ for each emotion. Intensity level 0 for each emotion corresponds to the same video of “neutral,” and thus is identical for

each emotion. Error bars indicate standard deviations. N = 110.

Fig. 11. The three expressions used to test the effect of the robot’s mood: neutral,
positive, and negative (left to right). Differences include eyebrow and eyelid
positions, mouth shape, and head angle.

effect of the robot’s long-term mood. Thus we have run a study
to determine how the mood of the Roboceptionist (as Valerie)
influences people’s interactions with it during a longer-term study.

5.2.1. Procedure

The study was run for a total of nine weeks, with the robot
typically operating eight hours per day, five days per week. During
each day, the robot displayed either her usual “neutral” mood or a
positive or negative mood. We altered the moods across days and
weeks both to match the robot’s life stories and to account for daily
differences in interactions. The different moods were indicated by
a change in facial posture, as shown in Fig. 11, as well as minor
behaviors the robot performed during conversations while waiting
for the visitor to type a statement. These behaviors included:

e In the neutral condition, Valerie either smiled and performed a
single head nod or briefly glanced away from the visitor. These
were the same behaviors that Valerie typically performed prior
to this study.

e In the positive condition, Valerie either smiled and nodded as
with neutral (but with a wider smile), or bounced her head from
side to side in a seemingly happy, energetic motion.

e In the negative condition, Valerie either looked away from the
visitor or appeared to sigh.

Within each condition, the different behaviors were selected
randomly with equal likelihood during pauses in the interactions.
We pre-tested the facial expressions and behaviors and found
that people could accurately determine the intended moods. To
avoid bias due to incongruent mood displays, the positive mood
was run during weeks in which the storyline was also positive,
and the negative mood during weeks in which the storyline was
negative. No other changes were made to the interaction structure.
As described elsewhere [1], people can interact with Valerie by
typing on a keyboard, and Valerie responds using automatic speech
generation. Visitors have the option of swiping an ID card in
Valerie’s cardreader to identify themselves tothe robot, but the

robot otherwise has no means of identifying interactors even if
they had previously interacted with the robot.

During each day of the experiment, we used the laser
rangefinder in the booth to detect and record the number of people
who interacted with the robot. For each interactor, the robot logged
the following: the time the interaction began, the number of sec-
onds from the start of interaction until the visitor left the laser’s
detection range (about two meters away from the keyboard), the
number of lines of input typed to the robot during the interaction,
and whether any other visitors interacted with the robot during the
same time, such as when a group of people took turns interacting.

At various points during the study, we approached visitors who
had just interacted with the robot to conduct a brief anonymous
verbal survey. Initially, we asked participants to rate the robot’s
valence, arousal, and mood appropriateness, as well as their
entertainment, on a 5-point scale. As the study progressed, we
determined a need for additional data in the positive and neutral
conditions, resulting in a second survey, which asked about the
robot’s valence and arousal, how natural, likable, and entertaining
the robot was, the clarity (or enigma) of the robot’s thoughts, and
the person’s comfort and mood level with the robot, using a 7-point
scale.

5.2.2. Results

We considered the number of seconds each person spent with
the robot as a measure of how much that person interacted with
it. We considered the following independent variables in our
analyses:

e Mood refers to the affective condition of the robot: positive,
negative, or neutral.

e Based on prior experience with Valerie, we had reason
to suspect that the time of day would influence people’s
interactions with the robot. We grouped times into three
categories: morning (before noon), afternoon (noon to 3 pm),
and evening (after 3 pm).

e We also considered whether a person interacted with Valerie as
part of a group of interactors or individually.

Over the course of the experiment, we observed that several
of the weeks coincided with events at the University that brought
unusually large numbers of visitors past the robot’s booth. Because
we observed different interaction patterns during these weeks of
high visitor traffic versus weeks of low visitor traffic, we conducted
separate analyses for each level. We began with a three-way (affect
x time x group) analysis of variance (ANOVA) on the time spent
with the robot. Given the large number of observations, we chose
to remove higher-ordered interactions with F values less than 1
from the analysis. This allowed us in many cases to report on effects
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Table 1
Days, number of interactors (I) in each condition, and average interactors per day
(I/D), by high and low visitor traffic weeks.

Condition Low traffic High traffic

Days I I/D Days I /D
Neutral 9 458 50.9 7 483 69.0
Positive 7 410 58.6 8 636 79.5
Negative 8 380 47.5 4 312 78.0
Total 24 1248 52.0 19 1431 75.3

of single variables (i.e. main effects) without the added confusion
of interactions between multiple variables. We will not discuss
dropped terms. Furthermore, due to space constraints, we focus
here only on the influence of the robot’s mood (further analyses
can be found in [34]).

5.2.2.1. Low visitor traffic weeks. Few visitors came to the Univer-
sity during five of the nine weeks of the study. That is, these weeks
had no major events that brought a large number of visitors to the
University, so most of the people who interacted with the robot
likely had some degree of familiarity with it. The robot was avail-
able for 24 days during these weeks, during which time a total of
1248 people interacted with it by typing at least one line of text.
The number of interactors in each condition is given in Table 1.

After dropping terms as described above, our final model of
seconds included the main effects of mood, time of day, and group,
and the interaction of mood and time of day. This model predicted
approximately 1.8% of the variance of seconds spent talking with
the robot. The interaction between mood and time of day was not
significant (F[4, 1230] = 1.32, n.s.). We found significant main
effects for each of mood (F[2, 1230] = 2.95, p = 0.05), time of
day (F[2, 1230] = 2.92, p = 0.05), and group (F[1, 1230] = 8.55,
p = 0.004).

The main effect of mood can be explained as follows. People
interacted with Valerie for similar times in the neutral and negative
conditions (neutral M = 69.0, negative M = 67.7), but for less
time in the positive condition (M = 57.9), as can be seen in
Fig. 12. Comparisons of mean values (contrast tests) showed that
the neutral condition did not differ significantly from both mood
conditions (F[1, 1238] = 0.73, n.s.). However, people interacted
for significantly less time in the positive condition than in the
neutral condition (F[1, 1238] = 3.70, p = 0.05).

5.2.2.2. High visitor traffic weeks. We classified the remaining
four weeks as “high visitor traffic” weeks. During these weeks,
unusually high numbers of University visitors passed through the
building in which the robot is located, resulting from events such
as summer classes for visiting high school students and scheduled
visits for incoming undergraduates and their families. The robot
was available for 19 days during these weeks, during which time
1431 people interacted with it (Table 1). Significantly more people
interacted with the robot per day during the “high visitor traffic”
weeks than during the “low” weeks (F[1, 41] = 19.44,p < .001),
which is consistent with the hypothesis that many people who
interacted with the robot during these weeks were visitors who
were likely unfamiliar with the robot.

As with low-traffic weeks, we performed an ANOVA on sec-
onds, modeling all main and interaction effects of mood, time of
day, and group. The three-way interaction effect did not satisfy
the F < 1 heuristic for removal discussed earlier, so the model
was not changed. This model explained approximately 2.8% of the
variance in seconds. The three-way interaction was not signifi-
cant (F[4, 1413] = 1.12, n.s.), nor were the two-way interactions
between mood and time of day (F[4, 1413] = 1.18, n.s.) or be-
tween mood and group (F[2, 1413] = 0.81, n.s.). Unlike the “low”
weeks, there was a significant interaction effect between group
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Fig. 12. Average seconds spent with the robot in each mood condition, compared
across low and high visitor traffic weeks.

Table 2
Average ratings of the robot’s valence and arousal from Survey 1. All variables are
on a scale of 1-5. N = 62.

Question Neutral Positive Negative

M SD M SD M SD
Valence 2.73 1.03 3.00 1.15 2.50 0.86
Arousal 2.50 0.88 3.06 1.24 2.45 1.14

and time of day (F[2, 1413] = 3.23, p = 0.04). Additionally,
there were significant main effects of mood (F[2, 1413] = 4.18,
p = 0.02), time of day (F[2, 1413] = 3.35, p = 0.04), and group
(F[1, 1413] = 15.0,p < 0.001).

We performed contrast tests to describe the effects of mood. In
contrast to the “low” weeks, people in the neutral condition inter-
acted for a significantly shorter period of time than in either emo-
tional condition (neutral M = 60.1, positive M = 72.4, negative
M = 66.7; F[1, 1413] = 4.53, p = 0.03). The number of seconds
spent interacting in the negative and positive conditions were not
significantly different (F[1, 1413] = 1.64, n.s.).

5.2.2.3. Survey 1. The two surveys were designed to measure vis-
itors’ subjective experiences of the robot. Over two weeks, we col-
lected 62 responses to the first survey: 16 on positive days, 22 on
negative days, and 24 on neutral days. This survey measured partic-
ipant’s ratings of the robot’s valence and arousal, appropriateness
of mood to what was said (mood congruency), and their entertain-
ment. Initially, we placed the surveys on the robot’s booth with a
sign requesting interactors to complete the survey. As this collec-
tion method proved insufficient, the remainder of the surveys were
collected by hand. The “self-survey” condition was included as an
independent variable in the following analyses.

Valence and arousal were correlated (r = 0.43,p < 0.001),
but no other measures were significantly correlated (at the p <
0.01 level), indicating that each question measured a different
aspect of the visitor’s experience. When analyzed individually,
none of the four questions (i.e. valence, arousal, mood congruency,
and entertainment) differed significantly between the three mood
conditions. However, by analyzing people’s ratings of the robot’s
valence and arousal with a multivariate analysis of variance
(MANOVA), we found that people were able to differentiate
between the mood conditions (F[2,58] = 2.39,p = 0.10).
The positive condition had the highest valence/arousal ratings,
negative had the lowest, and neutral fell in between, as shown in
Table 2. The differences were marginal, but this may be a result of
the small sample size or the granularity of the scales used.

Neither appropriateness nor entertainment differed signifi-
cantly across the mood conditions (appropriateness F[2, 58] =
1.68, n.s.; entertainment F[2, 58] = 1.62, n.s.). Overall, respon-
dents responded near the scale’s midpoint for both the appropri-
ateness of the robot’s mood (M = 3.63, SD = 1.27) and their
entertainment (M = 3.19, SD = 1.27). The presence of the experi-
menter had an effect only on the rating of appropriateness, with
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Table 3

Results from Survey 2, by robot condition. Variables are on a scale of 1-7.N = 61.
Question Neutral Positive

M SD M SD F p

Robot valence 3.91 1.06 4.27 143 1.08 0.30
Robot arousal 3.00 0.93 3.76 1.23 6.57 0.01
Natural 3.46 1.14 4.08 1.28 3.75 0.06
Likable 4.58 1.18 4.30 1.29 0.77 0.38
Entertainment 4.46 1.18 3.97 1.54 1.73 0.19
Enigmatic 5.08 1.21 422 1.57 5.29 0.03
Comfort 5.42 1.28 5.08 1.26 1.02 0.32
Person valence 5.33 1.24 4.49 1.33 6.25 0.02

individuals responding on their own rating the robot’s mood as
less appropriate (self-survey M = 3.00, face-to-face M = 3.78;
F[2,58] = 6.99,p = 0.01).

5.2.2.4. Survey 2. We collected 61 responses to the second survey:
37 on positive days, and 24 on neutral days. The survey was
designed to investigate the low interaction times in the positive
condition during low-traffic weeks, and so no responses were
collected on negative days. As discussed, this survey contained
questions regarding both the robot’s and the respondent’s states.
Results for each question are shown in Table 3.

As with the first survey, we computed a MANOVA on the robot’s
valence and arousal. Respondents rated the robot’s valence/arousal
as significantly higher in the positive condition than in the neutral
condition (F[1,59] = 4.22, p = 0.04). They found the positive
robot significantly less enigmatic and slightly more natural than
the neutral robot. There were no significant differences in ratings
of the robot’s likability, entertainment, or participant’s comfort.

5.2.3. Discussion

Both surveys showed that people who interacted with the
robot could distinguish between the robot’s moods, and the
robot’s mood did have an effect on people’s interactions with
it. However, this effect varied across high and low visitor traffic
weeks. The differences were fairly large—on the order of £10 s,
while interactions averaged only about a minute. As we expected,
more people interacted with the positive robot, and fewer with
the negative robot, during the low visitor traffic weeks. Though
we expected that people would interact longest with the positive
robot and shortest with the negative, we found that people
interacted for significantly less time with the positive robot during
those weeks. We believe that this finding can be explained by
relying on the theory of common ground [35]. Past studies have
shown that people’s perception of common ground with robots
results in shorter, more “efficient” speech [36]. Smiling carries
a certain amount of conversational content, so people may not
have felt that they needed to interact as long with the positive
robot to come to the same level of understanding as when the
robot did not smile. This theory is supported by the results of
Survey 2; participants found the positive robot to be significantly
less enigmatic—that is, easier to understand—than the neutral
robot. Additionally, participants found the positive robot more
natural than the neutral robot, which could also contribute to a
sense of common ground.

During high-traffic weeks, in contrast, visitors interacted the
least in the neutral condition and the most in the positive con-
dition. One possible explanation for this result may be that the
moody robot appeared more interesting; perhaps any form of af-
fect in a robot may be compelling enough to sustain interactions.
Though we did not analyze the common ground theory during the
high-traffic weeks, we believe that people with little experience
with the robot may have required more time to form common
ground with the robot. That is, because visitors to the University
may have lacked prior knowledge of the robot, they may not have

noticed the robot’s smile (or frown) as a change from prior behav-
ior, and thus not have felt stronger common ground with the smil-
ing robot. Furthermore, interactions during the high-traffic weeks
were likely biased due to a novelty effect, while visitors during low-
traffic weeks may have been more used to the robot’s presence.

A potential shortcoming of our analysis is that we do not
currently have any means of automatically identifying whether
any particular person has previously interacted with the robot or
even been familiar with the robot prior to his or her interaction
during this study, and so we cannot be certain that the differences
between high and low visitor traffic weeks are primarily due to
the visitors. However, we do know that the weeks we considered
“high visitor traffic” did have an unusually high number of visitors
to the University. Those same weeks also had more interactors per
day and different interaction patterns than usual. Thus we feel that
our assumptions regarding people’s familiarity with the robot are
valid.

5.3. Summary

We have run two studies that have helped validate the emotion
and mood components of our affect model. The first study found
that people can identify the robot’s expressions of happiness,
sadness, anger, and disgust and, furthermore, that people can
distinguish between different intensity levels of each emotion. This
study also showed that people do not necessarily assign the same
valence and arousal ratings to the same emotions on different
robotic faces (i.e. Valerie versus Tank), which experimenters need
to consider when designing studies on different robots. The second
study showed significant differences in how people interact with a
robot based on its apparent mood. In particular, the study showed
that people tend to change their interaction patterns with the robot
when it displays different moods, but that exactly how people’s
patterns change depends on whether they have prior familiarity
with the robot. In general, these findings are consistent with the
study of common ground in human-human interaction.

Because not many people choose to identify themselves to
the robot (using the cardreader), we have not yet validated the
attitude portion of the affective model. Such research will be
conducted once the robot is better able to identify visitors. Since
we have shown that people interact with the robot differently
based on their prior familiarity with the robot, we believe that
better incorporating attitudes toward individuals will also enhance
people’s interactions with the robot.

6. Conclusion

Humans increasingly need to communicate with robots, and we
are working toward making human-robot interaction be smooth
and natural. This paper has presented a generative model of affect
that accounts for emotions, moods, and attitudes, including the
interactions between them. The model tries to mimic human
behavior, particularly with regard to long-term affective responses.
We have presented our implementation of this model on the
Roboceptionist, along with findings from studies that tested the
emotion and mood components of the model.

Our research shows that people are able to understand the
robot’s expressions of emotion and that only slight changes in
a robot’s expressions—and no changes in the structure of the
interactions—influence how people perceive and interact with the
robot. Different expressions create different expectations of the
robot, with many people avoiding the negative robot or feeling
more common ground with the positive robot. Furthermore, we
found that people with different levels of familiarity with the robot
react to the robot’s mood in different ways. This shows that a social
robot needs to remember people who have interacted with it, and
interact differently with those people than with newcomers.The
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robot should utilize its emotional expressions differently based
on how much common ground it shares with a person, which is
addressed by the attitude portion of our affective model.

We have had this model running on the Roboceptionist
system—first on Valerie and currently on Tank—since August 2005.
We have been working to improve the robot’s person identification
system in order to fully test the robot’s attitudes toward different
people. In addition, such identification is necessary to understand
how the affective model as a whole influences human-robot
interaction. Furthermore, we hope to extend the testing of this
model to other robots, as we have found that people do not view
similar expressions on different faces to be identical, even when
displayed on the same physical robot. We believe that this model
will prove useful for a wide variety of social robots, as we believe
that a robot’s moods and emotions will greatly improve its ability
to communicate with people.
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