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Abstract

Cooperative control is a key issue for multirobot systems in many practical applications. In this paper, we address the
problem of coordinating a set of mobile robots in the RoboCup soccer middle size league. We show how the coordination
problem that we face can be cast as a specific coalition formation problem and we propose a distributed algorithm to
efficiently solve it. Our approach is based on the distributed computation of a measure of satisfaction (called Agent

Satisfaction) that each agent computes for each task. We detail how, each agent computes the Agent Satisfaction

by acquiring sensor perceptions through an omnidirectional vision system, extracting aggregated information from
the acquired perception, and integrating such information with the ones communicated by the team mates. We
empirically validate our approach in a simulated scenario and within the RoboCup competitions. The experiments
in the simulated scenario allow us to analyse the behaviour of the algorithm in different situations, while the use of
the algorithm in the real competitions validates the applicability of our approach to robotic platforms involved in a
dynamic and complex scenario.
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1. Introduction

The growing interest to develop colonies of robots
engaged in complex tasks like search and rescue,
monitoring environmental phenomena and surveil-
lance in security applications, has caused an increas-
ing interest towards coordination approaches which
can provide flexible and reliable solutions. In fact,
the coordination of the robotic platforms’ activities
can increase both the efficiency of the global task
execution and the robustness of the system to indi-
vidual robot failures.

However, devising flexible and effective coordina-
tion methods for multirobot systems is a very com-
plex and challenging task. Coordination in these do-

mains is particularly difficult because it requires the
solution to be distributed among the robots to en-
hance robustness and avoid the existence of a cen-
tral point of failure; moreover, the environment that
robots face is highly dynamic and unpredictable,
therefore the coordination method should be able to
react to unexpected changes and provides good qual-
ity solutions minimising the reaction time; finally,
robotic platforms interact with the world through
sensors and actuators which are inherently noisy and
inaccurate; this results in uncertainty both in per-
ceptions and actions.

Agent-Based coordination techniques are widely
used to achieve cooperative behaviours in dis-
tributed settings, and in particular, here we focus
on coalition formation (17). In coalition formation,

Preprint submitted to Elsevier 16 October 2009



a set of robots must cooperate to accomplish a set
of tasks (or roles). Each robot can execute one task
at the time but the robots can form coalitions to
cooperate on specific tasks. Coalitions can perform
tasks better (e.g., faster or in a more reliable way)
than single robots, and the quality of the execution
of a specific task 1 depends both on the individual
capabilities that each robot has for that task, and
on how the capabilities can be combined together.
Several approaches have been studied to address the
coalition formation problem (e.g., (17; 16)) which
are able to compute the optimal solution. However,
coalition formation is known to be an NP-Hard
problem and even if consistent improvements have
been achieved on the computation time of the op-
timal solution, such approaches have still limited
applicability in dynamic scenarios where the value
associated with a coalition changes very rapidly
over time.

In this paper we present an approach to coalition
formation explicitly targeted for dynamic uncertain
environments. The approach is based on (6) and
computes in a distributed way, a measure of satis-
faction called Agent Satisfaction. The Agent Satis-
faction represents the level of satisfaction that each
agent has for a task being executed by a set of agents.
Each agent computes the Agent Satisfaction by ac-
quiring sensory perceptions (which in our specific
case are images coming from an omnidirectional vi-
sion system), extracting aggregated information and
integrating them with information transmitted by
other team mates.

The proposed coordination approach is explicitly
designed for scenarios where tasks to be executed
can be ranked according to priorities. By exploiting
this assumption the method is able to address in an
efficient way the coalition formation problem and
is of practical use in dynamic environments, where
agent capabilities to execute the tasks can rapidly
change over time.

Specifically, we apply our approach to the
RoboCup soccer scenario, and in particular to the
middle size league. In the RoboCup soccer mid-
dle size league, two teams of robots play a soccer
game against each other. This scenario is particu-
larly interesting as a benchmark for coordination
algorithms, because it is highly dynamic and the
game evolution is highly unpredictable. Moreover,
the RoboCup competitions have become, over the

1 This is usually called the value of the coalition for that

task.

years, a very important event attracting hundreds
of researchers from all the world, to compete with
robotic systems in a specific scenario. Therefore
they represent a unique testbed for comparing dif-
ferent systems and approaches to various robotic
problems and specifically coordination.

We validated our approach by means of experi-
ments both in a simulated soccer scenario and in
the RoboCup competitions. The simulated experi-
ments allow us to analyse the behaviour of our algo-
rithm in a controlled setting and under different op-
erative conditions, while the data collected from the
RoboCup competitions validate the applicability of
our approach in an autonomous multirobot system.
The coordination method described here was used
by the EIGEN team during the RoboCup compe-
titions since 2004 and the effectiveness of the coor-
dination method is confirmed by the excellent re-
sults that the team achieved during the competitions
(first place in 2004 and 2005, third place in 2006 and
second place in 2007).

The rest of the paper is organised as follow: sec-
tion 2 details a formalisation of the coalition prob-
lem that we address, while section 3 introduces and
discusses the cooperative control method we pro-
pose. Section 4 shows how the aggregated informa-
tion needed by the cooperative control method are
extracted from the robot’s perceptions. Section 5
specifies our approach to the RoboCup scenario and
presents the experimental results from the simulated
environment, while Section 6 presents the EIGEN
team control architecture and the validation of the
systems during the RoboCup competitions. Section
7 discusses relevant previous work and finally, Sec-
tion 8 concludes the paper.

2. Problem Formalisation

In this section we detail a formalisation of the co-
operative control problem that we face. We have a
set of robots that must be assigned to a set of roles
(or tasks), and while each robot can assume only
one role, it can be beneficial for robots to assume
the same role. For example, when considering the
RoboCup soccer scenario, a defence role might re-
quire two robots to completely block the opponent
and thus prevent it from shooting.

This problem can be naturally formalised as a
coalition formation problem (17). In coalition for-
mation robots have different capabilities to perform
each task, and when they cooperate on the same
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task, the utility they gain is a function of their capa-
bilities. The output of the coalition formation prob-
lem is a partition of the robot set into coalitions that
are allocated to a specific task. The objective is to
maximise the sum of the utility of the coalition as-
signment. The general problem of coalition forma-
tion can be cast as an instance of the Set Partition-
ing Problem, which is known to be NP-hard (9).

However, in our scenario, we face a specific ver-
sion for the coalition formation problem. In particu-
lar, we can assume that roles have a predefined pri-
ority. For example, in the RoboCup soccer domain
that we consider here, the role priority is usually de-
fined by a game strategic layer. The strategic layer
assigns priorities to tasks according to contextual
information, e.g., if the team is winning the strat-
egy layer might assign high priority to the defence
task, in order to maintain the current result and win
the match (see sect. 5 for further details). Suppose
a Defence schema is used, where three roles can be
performed: Defence, Support and Offence. Further-
more, suppose that in this schema Defence has prior-
ity over all the other roles, and Support has priority
over Offence. The priority of roles, entails that the
value that the team obtains by performing the De-
fence role is higher than the value that they can ob-
tain by performing any combination of all the other
roles. This concept of role priority is very natural
for the RoboCup domain and was already used in a
previous work on coordination in this scenario (10).

More precisely, we can formalise our problem
as following: we have a set of robotic agents R =
{R1, ..., Rn} and a set of tasks (or roles) T =
{t1, ..., tm}. Each robotic agent Ri has capabili-
ties to perform each task represented by a vector
Si = 〈s1

i , ..., s
m
i 〉 where s

j
i ∈ ℜ represents the level

of performance that Ri can achieve when allocated
to role tj . Each task tj has a desired achievement
level lj ∈ ℜ that needs to be reached by the agents
accomplishing the task. The level of achievement
of a task represents an objective of the whole sys-
tem and will be called therefore System Objective
in the following. Considering this interpretation
of the achievement level, each of the s

j
i , can then

be interpreted as the level of satisfaction that the
agent will obtain if it is allocated to the task or
Self Evaluation of the agent. In other words, the
Self Evaluation is an estimation that each agents
computes of its capability to perform a task.

A coalition C is a set of agents and thus C ⊆
P(R), where P(R) is the powerset of R. We indi-
cate with Cj the coalition of agents assigned to task

tj and the set C = {C1, ..., Cm} represents the set of
coalitions assigned to all tasks; on the set C the fol-
lowing properties hold: i) Ci

⋂

Cj = ∅ ∀i, j | i 6= j

ii)
⋃i=m

i=1 Ci = R; in other words, the set C is a par-
tition of R. We define a function F : P(R) × T ⇒
ℜ, and F (C, ti) represents the amount of work that
agents in coalition C can perform for task ti. This
measure is an aggregation of the si

k of all agents Rk

in coalition C when the coalition works on task ti.
The aggregation can be any function, for example
in the RoboCup soccer domain is a summation as
will be detailed in Section 5.2. We represent with
Vi(C) the utility that the system can gain when a
coalition successfully accomplish a task ti, i.e. when
F (C, ti) ≥ li. If a coalition C cannot perform the
required workload for task ti then Vi(C) = 0, oth-
erwise Vi(C) = vi, where vi ∈ ℜ+. To model the
priority among tasks, we assume that vi ≫ vi+1 i =
1, · · · , m− 1. And in particular, we assume that ac-
complishing a task of higher priority is always bet-
ter than executing any combination of lower priority
tasks. The value Vi(C) represents an aggregation of
the individual agents’ self evaluations, and indicates
the total level of satisfaction that the agents inside
the coalition have for task ti, we call this value Agent
Satisfaction.

Given the above definitions our objective is then:

argmax
C

m
∑

i=1

Vi(Ci) (1)

Coalition formation is usually a one-shot problem
where coalitions values are known in advance, and
once coalitions are formed and allocated to tasks,
robots will simply carry on their tasks. However, in
our domain robots have to deal with a more complex
setting. In fact, since we have an opponent playing
against our team, the situation changes very rapidly;
this means that the Self Evaluation that each robotic
agent computes for each task will change over time as
well as the value of coalitions, the priorities of tasks
and the System Objective. In particular, priorities of
tasks and the System Objective can change due to
many domain specific issues. For example, role pri-
orities can change because the context of the game
changed, e.g., the team is no longer winning and thus
the defence role is no longer the most important.
Similar considerations hold for the System Objective
that can be different for different game strategic sit-
uations. Moreover, since we are dealing with hard-
ware devices, robots may have wrong estimation of
their Self Evaluation that can be refined over time;
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also, robots might fail unexpectedly and messages
communicated among robots might be lost, leading
the team to have temporarily misaligned knowledge
about the current situation.

3. Cooperative Control Method

Hereafter we shall present a cooperative control
method to address the problem outlined in sect. 2.
The basic idea is to evaluate and share the Self Eval-
uation for the roles that the robots can perform.
This evaluation compacts sensory information that
each robot collect from the environment in a single
value that is shared with the teammates.

Based on the evaluation of the teammates each
robot computes the best allocation of robot coali-
tions to tasks and then decides which role it should
execute. Such process is iterated over time to react
to environment dynamism, changes in task priori-
ties and possible robot failures or malfunctioning.
In particular, the algorithm is run at a predefined
execution rate, which is specified according to the
application domain, and at each execution all infor-
mation required to run the algorithm are acquired
by the robots through sensor perception or through
communication. Therefore, at each execution the al-
gorithm considers the most recently available infor-
mation that reflect possible changes in the scenario.

The assumptions underlying this method are the
following: i) robots are able to compute their Self
Evaluation for each role depending on their current
state and the state of the environment; This is done
every time the algorithm is run, by using the infor-
mation acquired through sensors (see Section 4 for
details). ii) each robot can estimate the Self Evalu-
ation for each role and each of their team mates. In
particular, in our approach the estimates are broad-
cast to all other teammates. iii) The System Objec-
tive (i.e., the desired achievement level for each role
li) is known to all the robots. iv) Tasks to be allo-
cated have priorities which are known to the whole
team; task ti has a higher priority than task ti+1.

Given the above assumptions, the cooperative
control method includes three main steps: i) each
robot computes the Self Evaluation value for each
task; ii) robots broadcast the computed Self eval-
uation value, for each task, to all team members;
iii) each robot computes the coalitions to allocate
to each task based on the information received by
team mates. The last step uses a greedy algorithm
based on task priority. The three steps are executed

continuously over time, to take into account pos-
sible unexpected changes in the environment the
team need to react to.

Figure 1 reports the pseudo-code description of
the allocation method which is executed by every
agent. It takes as input the tasks to be executed, the
available agents (including the one executing the al-
gorithm), and the desired achievement level for each
task; the output is the task which should be exe-
cuted by the agent running the algorithm. Basically,
it sorts the tasks according to their priority (line
1), and then for each task computes the best agent
coalition for that task.

To compute the best coalition, the algorithm sorts
agents according to their ability to fulfil the task
(line 4), and then incrementally builds a set of as-
signed agents for the task. At each iteration the al-
gorithm checks whether the achievement level of the
task has been reached (line 7), by computing the cur-
rent Agent Satisfaction which expresses the coalition
value of the current set of allocated agents for that
task. The Aggregate(AgentCoalition) function ag-
gregates the achievement values of the agents and
computes the achievement level of the coalition.

The inner loop terminates either because the algo-
rithm found a set of agents that satisfies the achieve-
ment level of the task, or because the task is not
achievable with the current available agents. In the
latter case the algorithm sets the set of assigned
agents to be empty (line 13), otherwise it removes
from the set of available agents the assigned agents
(line 16). Before proceeding for the second task the
algorithm checks whether the agent executing the
algorithm (mySelf) is assigned to the current task;
in this case it terminates returning the task to ex-
ecute. Otherwise the algorithm proceeds to the fol-
lowing task. If the agent is never assigned a special
value NoTask is returned (line 23).

Notice that the algorithm always terminates be-
cause at each iteration of the inner while loop one
agent is removed from SortedAgents list and in
the while condition at line 7 the algorithm checks
whether the SortedAgents list is empty. Therefore,
at most the algorithm repeats the statements inside
the while loop until all agents have been included in
the coalition. Similar reasoning holds for the outer
while loop over tasks.

Also, since allocated agents are removed from the
list of available agents (line 16) agents allocated to
one task will never be considered for another task,
and thus we will never have an agent being part of
two different coalitions. Finally, all agents have the
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1: Input: Tasks, Agents, SystemObjectives, SelfEvaluations

2: Output: TaskToExecute

3: SortedTaks← Sort Tasks given priority
4: while SortedTasks 6= ∅ do

5: Task← Pop(SortedTasks)
6: SortedAgents← Sort Agents given Self Evaluation for Task

7: AgentSatisfaction← 0
8: AssignedAgents(Task)← ∅
9: while AgentSatisfaction < SystemObjectives(Task)∧ SortedAgents 6= ∅ do

10: AssignedAgents(Task)← AssignedAgents(Task) ∪ Pop(SortedAgents)
11: AgentSatisfaction← Aggregate(AssignedAgents(Task))
12: end while

13: if AgentSatisfaction < SystemObjectives(Task) then

14: AssignedAgents(Task)← ∅
15: else

16: Agents← Agents \AssignedAgents(Task)
17: end if

18: if mySelf ∈ AssignedAgents(Task) then

19: TaskToExecute← Task

20: return TaskToExecute

21: end if

22: end while

23: return NoTask

Fig. 1. Allocation procedure

same input data, because the set of tasks and the
desired achievement levels are known a-priori, and
agents communicate their Self Evaluation for each
tasks. Since all agents execute the same algorithm
on the same input data, the allocation to tasks will
converge to a common solution.

As for solution quality, let us consider the follow-
ing property of the domain: Given two coalitions
and a task tj , if the sum of the estimated level of
performance for the agents in coalition C′ is greater
than the sum of the estimated level of performance
for the agents in coalition C′′ then the value of al-
locating coalition C′ to tj is higher than allocating
coalition C′′. Considering the formalism described
in Section 2 this amounts to

∀tj ∈ T, ∀C′, C′′ ∈ C if
∑

i∈R(C′)

s
j
i ≥

∑

k∈R(C′′)

s
j
k

then F (C′, tj) ≥ F (C′′, tj)

Where R(C) indicates the set of indexes of the
agents in coalition C. When the above property is
verified the allocation computed by the agents is
optimal with respect to equation 1. Notice that this
assumption is verified for example when F (C, tj) is
the sum of the Self Evaluation of the agents forming
coalition C to perform task tj .

This is because tasks are sorted according to their
priority, and it is always preferable to accomplish
a higher priority task than any other lower priority
task combination (as stated in Section 2). In addi-
tion, for each task, agents to be inserted in the coali-
tion are sorted according to their ability to perform
the task. Therefore, if the property above holds, by
executing the Algorithm 1 we always evaluate the
best coalition for the most important task first, thus
maximising 1.

4. Sensor-driving activation of a collective

behaviour

In this section we describe how relevant informa-
tion for the coordination process can be extracted
from the robot’s sensor perceptions. In particular,
we need to aggregate the reading that the robots
acquire at each time step to recognise environmen-
tal patterns which are relevant for the coordination
process and specifically to compute the above men-
tioned Self Evaluation measure for each agent.

The computation of the Self Evaluation measure
is a key component to ensure a correct behaviour of
the overall coordination method. In particular, the
data processing method described here is respon-
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Fig. 2. Omnidirectional vision system

sible to filter out the inherently noisy reading, ob-
tained from the sensors, and provides to the cooper-
ative control method, stable and accurate estimates
for the Self Evaluation. In the following we detail
how this process is realised using an omnidirectional
vision system.

4.1. Vision Depth

We represent the robot team as a set of moving
points {R1, R2, ..} on a plane surface. Now, let us
define the objects each robot perceives in the oper-
ating field considering that the main sensor system
is based on an omnidirectional camera where each
object appears reflected on a conic surface with an
angle θ, referred to the ahead direction as appears
in fig 2. So, θ varies on a 2π range, namely, −π <=
θ <= π and, the object is positioned at a distance
r from the origin of the frame of reference centered
on the robot itself.

We introduce on the arena a fixed frame of ref-
erence and we consider the positions 〈xi, yi〉 and
〈xj , yj〉 of the robots Ri and Rj , respectively. The
distance d between the points can be easily com-
puted by the means of the well-known euclidean for-
mula

d2 = (xi − xj)
2 + (yi − yj)

2

= r2
i + r2

j − 2rirj cos(ϕi − ϕj)

= (ri − rj)
2 + 2rirj(1− cos(ϕi − ϕj))

= (ri − rj)
2 + rirj(ϕi − ϕj)

2

where we have used both Cartesian and polar co-
ordinates, referring to the standard translation for-
mula, and the first term approximation of the co-

sine in the last equality 2 . Different robot positions
result in different evaluations of the term rirj ; how-
ever, we could substitute this quantity for its mean
value p2,

p2 =
2

N(N − 1)

∑

i6=j

rirj

over N robot detections in the scene. In this way, the
scalar quantity w, defined by the relation

w =
√

r2 + p2θ2 (2)

can be taken as an approximated estimation of the
distance d between robots, where r = ri − rj is the
distance evaluation when the position vectors ri and
rj belongs to the same line 3 and θ = ϕi −ϕj is the
relative angle between the two robots.

Now, let us generalise the previously discussed
scenario by introducing a mobile frame of reference
for each robot and let us consider its vision field.
If the robot perceives the objects Q1 and Q2, they
are univocally determined by their position vectors
r1 and r2, respectively. Again, we compute the dis-
tance r = r1 − r2 as the objects and the robot were
on the same straight line and the angle θ = ϕ1 −ϕ2

takes into account their relative position in the vi-
sion field. We can justify the previous approxima-
tion by considering the special case of several objects
disseminated around the robot at the same distance
from it.

Because they are visible under different angles but
they belong to the same circle, their displacement
can be evaluated along the circle: their relative po-
sition doesn’t change by overestimating their rela-
tive distance. Nevertheless, in the general case, the
objects around the robot are positioned at different
distances: we choose a reference circle with the re-
spect to which we evaluate their relative distance.
To this aim we consider a circular strip, where the
objects of interest are positioned and whose middle
circumference is taken as a reference circle by linking
it to the conic surface of the vision system. Then, we
project all objects on it but, firstly, we record their
relative distance from it; the term r2 is merely used
to correct the approximated distance evaluation on
the reference surface 4 by explicitly considering they
are positioned on different conic surfaces 5 .

2 We shall justify this approximation in the next paragraph.
3 Namely, we evaluate the distance between the two circum-

ferences with radii ri and rj , respectively, and centered on

the fixed frame of reference.
4 The middle circumference on the circular strip, in our

model.
5 Circles in our model.
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Considering this, the parameter p in eq. 2 denotes
the vision depth of the omnidirectional vision system
so that an object appears reflected as a reference
point, with pθ a linear coordinate expressing the
distance on the conic surface 6 referred to a well-
specified point ahead the robot. Moreover, if rmin

and rmax are the radii of the circles 7 including all
the observed objects, then

p =
rmin + rmax

2

so that we could assign the vector w = 〈r, pθ〉 to ev-
ery visible object falling in the robot vision field. If
two or more objects fall in the vision field we have
〈r1, pθ1, r2, pθ2, r3, pθ3, ...〉 yielding to a more gen-
eral coordinate system.

4.2. Focusing Lens

The vision depth previously discussed is useful to
focalise the objects of interest for the robot task.
Changing the value of the parameter p the robot
focuses on different environment configurations as
they were different layers of a complex scene. A more
subtle control of the scene could be implemented if
each layer were accessible with a different focusing
property. To this aim we shall introduce a transfor-
mation matrix to modify how vision parameters are
acquired. The most general transformation H(ϕ),
which doesn’t warp the relative angles of an object
after a rotation of an angle ϕ around a vertical axis,
takes the form

6 Within our model a circle positioned at the distance p
from the robot.
7 The circular strip, in the preceding discussion.
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H(ϕ) = p











1

qC2
cosϕ −

1

pC1
sin ϕ

1

qC2
sinϕ

1

pC1
cosϕ











(3)

whose effect is to map the vector w into the new
vector w

′

having the magnitude

w
′

= p

√

(

r

qC2

)2

+

(

θ

C1

)2

(4)

where p is the vision depth, q is a given constant
which takes into accounts the distance unit, whereas
C1 and C2 are two dimensionless arbitrary quanti-
ties which work as scaling factors. If we choose the
preceding parameters to satisfy the following iden-
tity

pC1 = qC2 (5)

the transformation matrix given by eq. 3 simplifies
to

H(p) =
1

C1









cosϕ − sinϕ

sin ϕ cosϕ









(6)

Under this particular condition, the distance w from
an object in the scene, defined in this frame of ref-
erence, yields to

w
′

=
w

pC1
(7)

and it has the following interpretation: a robot while
focusing on an event in the environment, situated
around a distance p, can magnify it by a factor C1.

4.3. Tracking an Object

The task completion of an individual teammate
could require a behaviour to properly track an ob-
ject Q, initially positioned in the point represented
by the vector w according to the omnidirectional
vision system of the robot. In many cases only the
distance w from the mobile frame of reference is ac-
tually necessary but the vision system could mag-
nify it by properly scaling the object. The required
transformation is made by the matrix H(ϕ) applied
to w. In our case, it reduces to eq. 7 which can be
taken as a basis to estimate the relevance of the ob-
ject for the task completion, by considering its neg-
ative exponential weight

E(w) = λ exp(−
w

kp
) (8)
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where p is the vision depth parameter and k rep-
resents the magnify factor, through which the in-
dividual robot is monitoring the object Q. In fact,
eq. 8 could be assimilated to a component term of
a partition function in the almost same fashion it
appears in statistical mechanics. We shall use this
function as a basis to evaluate the progress of the col-
lective task. In (7) Fujii has shown actual computa-
tions of the quantity E(w) within different scenarios.
Finally, notice that λ plays the role of normalisation
factor, which could be evaluated by either summing
up all the terms like eq. 8, where wi is the variable
parameter, or by integrating the same terms on the
proper ranges of variability to include all the points
of interest. However, in the applications such con-
stant values are established experimentally in order
to adjust possible sensor distorsions. If we choose the
normalisation over the range 0..1, then we can in-
terpret E(w) as a probability density function, which
resembles the Boltzmann distribution in statistical
mechanics with the temperature substituted for the
vision depth, and kj dimensionless constant quanti-
ties.

Some complex situations require two or more ob-
jects to be tracked at the same time; in such cases
different solutions can be devised, for example, by
squaring the relevant components and also taking
into account the possible alignment degree between
objects

E(w1, w2) = λe
−

√

(

w1

k1p1

)

2

+
(

w2

k2p2

)

2

+
(

θ1−θ2

k12

)

2

(9)

Fig. 4. Simulation environment

The rationale of this approach is the interpretation
of the objects detected by each individual robot.
This is done by comparing the observed positions of
specific reference objects with their expected posi-
tions. Specifically, the robots evaluate the most prob-
able distribution of the objects with respect to rele-
vant patterns to be recognised. The continuous mon-
itoring of such patterns, through probability dis-
tribution evaluation, drives the computation of the
Self Evaluation. The specific computation of the Self
Evaluation for the RoboCup scenario is detailed in
the next Section.

5. RoboCup Scenario

In this section we specify the computation of the
cooperative control method described in Section 3
and the extraction process for the required informa-
tion described in Section 4 to the RoboCup scenario.
In particular this amounts to specify how the Agent
Satisfaction and the Self Evaluation are computed.
We then present the simulated environment used to
evaluate our approach and the obtained results.

5.1. Self Evaluation

Let us consider the coalition formation problem
from the point of view of each individual robot,
whose movement depends on the trajectories of all
its teammates. In such a general case, eq. 7 gener-
alises to

E(w1, w2, ...) = exp



−

√

√

√

√

N
∑

i=1

(

wi

kip

)2


 (10)

where N is the number of objects 8 to be tracked and
we assume that every object is differently focused by
the vision system but no alignment among objects
is taken into consideration.

However, the more objects are counted the more
computation is needed to evaluate the actual proba-
bility distribution against the expected one; so, the
implemented coordination schema considers either
one or two objects to be focused at the same time.
The environmental evaluation E of the event in
the scene is given through eq. 8 or eq. 9 and the
resulting value can be understood in terms of prob-

8 For example, number of teammates, opponents, ball when

we explicitly consider the RoboCup scenario.
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ability. Nevertheless, a more useful quantity is ob-
tained by means of the following definition

S(w) =
αE(w)

1 + E(w)
=

α

1 + λ exp( w
kp

)
(11)

so that its rate of change due to the object moving
within the vision field, takes the form of the gener-
alised logistic function

S
′

(w) = −
S(w)

kp
(1−

S(w)

α
) (12)

and it is the basis for the quantitative self-

evaluation of the offence, support and defence
tasks. In the preceding equation kp defines the in-
verse growth rate whereas α is the asymptotic value
of S(w).

Three compatible instantiations of the sigmoidal
function for the mentioned features are reported in
fig. 3. They are taken as a basis for the application
examples discussed below in the section where, in-
stead of using directly the sigmoid function, we have
used the straight-line approximations, in the same
fashion they appear in (7) and they are specified as
follows:
– offence, which refers to the upper line in fig. 3,

Soff =

{ 2 if Eoff > 0.5

1 if 0.2 < Eoff ≤ 0.5

0 if Eoff ≤ 0.2

(13)

– support, which refers to the lower line in fig. 3,

Ssupp =

{

1 if Esupp > 0.6

0 if Esupp ≤ 0.6
(14)

– defence, which refers to the middle line in fig. 3,

Sdef =

{

1 if Edef > 0.5

0 if Edef ≤ 0.5
(15)

The experimental evidence has suggested us the
choice of the specified thresholds. The thresholds
are also experimentally tuned to avoid passive oscil-
lations during sensor data acquisitions. More details
on possible implementations are discussed by Fujii
in (7).

5.2. Agent Satisfaction

The Agent Satisfaction, discussed in Section 2,
drives the task allocation process as explained in
Section 3. However, when applied to the RoboCup

Fig. 5. Effective cooperation among robots

Soccer scenario, specific domain knowledge are used
to make the algorithm more effective and efficient.

For example, in the context of RoboCup soccer
middle size league, robots belonging to the same
team are usually heterogeneous. In particular, most
of the teams have a specialised robot to act as the
goalkeeper. For this role the designed robot is always
desirable to any other robot even if the Self Eval-
uation value for the role goal keeping of the other
robots might be higher.

To take this aspect into account, we introduce the
concept of priority of a robot over the other robots
for each task. Conceptually we want that if a robotic
agent Ri is somewhat specialised for a task tj , then
Ri will always be considered, before all the not-
specialised robotic agents, in the computation of the
Agent Satisfaction for task tj . To this aim we actu-
ally order the list of agents for a given task, based on
the agents’ priority first and then on the self evalu-
ation for that task. This results in changing line 6 of
Algorithm 1 to sort agents reflecting their priority.
Notice that priority differs from the Self evaluation
of a robotic agent for a task. The former represents
a static concept that does not change over a specific
game, i.e., a goalkeeper may have specialised hard-
ware that will help him to defend the goal better
than any other robotic agents in the team. On the
other hand, the Self Evaluation depends on dynamic
properties of the robotic agents, which change very
rapidly during the game (e.g., position and orienta-
tion). By sorting the robotic agents according to pri-
ority first we ensure that an agent that is specialised
for a task will always be preferred over a non spe-
cialised one. However, by sorting robotic agents that
have the same priority, according to their Self Eval-
uation, we ensure that among robotic agents having
the same level of specialisation for a task, we choose
the most capable ones.

9



Moreover, in the RoboCup scenario the aggrega-
tion function used in 1 to compute the Agent Sat-
isfaction is the sum of each agent’s Self Evaluation
value.

Therefore, summarising the cooperative control
method proceeds as follows:
Step 1. Each agent computes its own Self Evalu-
ation for all tasks, according to the current per-
ceived situation.

Step 2. Each agent broadcasts the values of Self
Evaluation for all tasks, to all its team mates.

Step 3. Each agent executes Algorithm 1, the al-
gorithm computes the Agent Satisfaction consid-
ering the most recent available information (e.g.,
most recent values for Self Evaluation communi-
cated by team mates). The algorithm returns the
task that agent will execute, according to the com-
puted Agent Satisfaction and the predefined Sys-
tem Objective.
Figure 5 shows a graphical scheme of a specific ex-

ecution of the cooperative method described above
for a specific task. As one can see, at the end of the
algorithm the coalition for the task includes agent
C and D. Agent D belongs to the coalition because
it is the only one having priority for the task, while
agent C belongs to the coalition because it has the
highest Self Evaluation among the remaining agents.

Fig. 6. Role exchange among 3 robots

Agent A and B do not belong to the coalition and
will thus focus on other tasks, because they know
that the System Objective will be reached by the se-
lected coalition and therefore their contribution is
not required.

From a different point of view (12), the execution
of Algorithm 1 can be interpreted as a social rule;
where each robot is required to evaluate the achieve-
ment level of all other robots by comparing their
behaviour with its own task achievement. This is a
kind of individual-social evaluation and it motivates
why we use the term Agent Satisfaction.

As a final remark, we can observe that the robust-
ness of the method strongly stems from the simplic-
ity of the algorithm so that its execution is taken at
very high rate; data are exchanged very often and
thus, misaligned knowledge appears only for short
time interval. Moreover, since the allocation is com-
puted very frequently, the algorithm computes the
allocation with freshly updated values for the Self
Evaluation. This ensures good quality for the allo-
cation even when the system faces abrupt changes
of the system configuration, such as robot failures

5.3. Simulation Environment

In the Robocup Middle Size League scenario, the
general situation described in Sects. 2, 3 and 4 sim-
plifies as follow. The multiagent team is made up on
three kinds of robot: the Goal-keeper KP, the De-
fender DF, both using a differential drive, and the
Field Player FP, equipped with an omnidirectional
drive. Because we have four such kinds of agent we
can write

R1 ∈ GK,

R2 ∈ DF,

R3, R4, R5, R6 ∈ FP

(16)

However, the roles (tasks) we want to assign them
are Defense, Support and Offense and each agent
estimates its own ability 9 to perform one of the
previously listed tasks accordingly to the formulas
13, 14 and 15. Thus, the agent’s capabilities Si

10 to
perform each task istantiates to

Si = {s1
i , s

2
i , s

3
i }

= {Sdef , Ssupp, Soff}
(17)

9 Self Evaluation
10which is a vector of real values
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Now, in this specific situation, we can optimise the
computation of the agent satisfaction performed in
the inner loop of the allocation procedure 1. Specif-
ically, we can avoid sorting the agents according to
priorities and then according to their self evaluation
by computing directly the agent satisfaction. We can
do this by using the following formulas:

Vk(l) =

p
∑

i=1

sk
i +

n
∑

i=p+1

gk
i (l)

gk
i (l) =

{

sk
i if sk

i > sk
l

0 if sk
i ≤ sk

l

(18)

where p is the number of the prioritized agents and
Vk(l) is the agent satisfaction referred to the task
tk computed from the point of view of the agent
Rl. The computation proceeds by considering that
agents R1 and R2 are prioritized agents, while the
self evaluation of the others are compared with the
self evaluation of the agent which is executing the
computation (recall that this computation is made
concurrently by each agent involved in the coordi-
nation process).

This cooperation schema, devised accordingly to
the previous sections, is central in controlling the
collective behaviours of the team, by the activa-
tion and maintenance of the required individual be-
haviours.

To the aim of a more precise behaviour analysis,
we have implemented the cited algorithm in a simu-
lated RoboCup environment. Before discussing the
obtained results, we briefly describe the simulation
environment we used. In fig. 4 it is shown the 2D sim-
ulated field where two teams of six individual robots
are disposed at the beginning of the simulation. The
ball is positioned, as in the competition, at the cen-
ter of the field and data are collected during a single
test as reported below. The opponent team is just a
clone of the evaluating team so that the coordinat-
ing algorithm is equally executed on both teams.

The simulated vision system has been properly
devised to extract all the relevant information to es-
timate the Self Evaluation for every agent Ri. This
is computed according to the discussion of Section
4 where each robot must recognise some critical ob-
jects, given the depth of vision field and the related
magnification. As it has been already pointed out,
some constants have been determined empirically
and also the thresholds which definitely assign inte-
ger values to those quantities.

Each agent knows the System Objective (the de-
sired level of achievement on the completion of the
task).

5.4. Results obtained in the simulated environment

The results reported here are for a scenario in-
volving three tasks: 〈Defence, Offence, Support〉.
The Offence task represents the behaviour of carry-
ing the ball towards the goal. A robotic agent is in the
best position to perform this task when it is near the
ball and when the robot position, the ball position
and the center of the goal are aligned. The evalua-
tion of the Support objective is computed based on
the distance between the actual robot position and
the position needed to support other robots. On the
contrary, the Defence objective evaluation only de-

Fig. 7. Role exchange among 4 robots
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pends on the position of the robot. Robots have a
high defence evaluation value when they are placed
between the ball and the goal. The computed values
of the Self Evaluation are obtained according to the
eqs. 13, 14 and 15.

Figure 6 reports results for three agents cooper-
ating while Figure 7 reports results for four agents.
In both figures we report the task that each robot is
performing over time. Consequently, on the x axis
we report time while on the y axis we report a nu-
merical code for the tasks: 1 is Defence, 2 is Offence
and 3 is Support.

Figure 6 shows how the coordination algorithm
is able to balance the effort of the three robots
on different tasks. In particular, while the Defence
task is almost always carried out by only one robot,
both the Offence and Support tasks involve more
robots forming coalition and collaborating on the
same task. This is because these tasks benefit from
the cooperation of more robots, and therefore the
coordination algorithm will try to allocate more
team mates to these tasks.

In Figure 7, it is possible to see that a similar be-
haviour can be observed when four robots are coop-
erating. In this case the amount of time that more
than one robots are executing the same task is ob-
viously higher, but as before, the Defence task is
almost always carried out by a single robot, while
robots cooperate more on the Offence and Support
tasks. As before the coordination algorithm is also
able to balance the team effort in order to cover all
the roles and thus having an effective coordination.

6. The RoboCup Middle Size League testbed

In this section we briefly present the control archi-
tecture used by the EIGEN team in the RoboCup
middle size soccer competitions. Moreover, we dis-
cuss the results obtained by the application of the

Fig. 8. EIGEN Team

Fig. 9. The flow of information during cooperation

proposed cooperative control method in the compe-
titions.

6.1. Cooperative Control in the RoboCup scenario

The EIGEN team robots are shown in fig. 8. Each
teammate has an omnidirectional drive system with
four roller wheels. The motivation is that its employ-
ment improves the movement and the stability of the
platform also by increasing its capability to change
direction. Each robot is equipped with an omnidi-
rectional vision system. This system has the same
features as it has been presented at RoboCup2005,
described in (7) and (6). However, since the year
2007 some robots have been equipped with two ex-
tra cameras and a gyro sensor in addition to the
omnidirectional vision system.

The control architecture is shown in fig. 11; en-
vironment information, acquired by each robot
through its own sensors, are used mainly to recog-
nise white lines and landmarks. Hence, it calculates
its position and orientation, which are commu-
nicated to the other robots, allowing it to share
information about the ball, relative teammates
positions, task achievement evaluation and so on.

12



Fig. 10. Cooperative action at RoboCup 2007

Evaluating the task achievement of the group re-
sults in both selecting a group formation and the
task assignment for each robot, firing the appropri-
ate action module. In particular, the formation mod-
ule provides the task assignment algorithm with the
priority on the tasks. These modules are designed as
action schema to solve a well-specified task, such as
Offence, Support and so on. Finally the robot gen-
erates the action by the extended Fuzzy Potential
Method (19) according to the environment informa-
tion.

The cooperative method is the one described in
Section 5.2 but now the environment information
are directly acquired from sensors, and the informa-
tion required by the cooperative control method are
computed as described in Section 5.1. In particu-
lar, robots do not use any explicit synchronisation,
they share information at each iteration of the algo-
rithm, using an UDP protocol, and they use the last
received message from each team mate as the cur-
rent valid information. To avoid using out of date
information, if messages from a team member are
not received for a predefined period of time then the
information regarding that team mate are ignored.

Figure 9 reports a detailed view of the information
flow for the multirobot system used in the actual

competitions.

6.2. Experimental Results

As previously mentioned the coordination method
described here was used by the EIGEN team within
the RoboCup competitions since 2004. The method
was able to effectively coordinate the robotic plat-
form during the competition, and it constitutes one
of the key reasons for the excellent performance of
the team in the RoboCup competitions.

To provide a sample of how the coordination
mechanism behaved during the actual competition
we report in Figure 10 a sequence of images from
RoboCup 2007 (11). In (a) and (b), the marked
robot in the lower left corner tried to get ball from
its opponent and the marked robot in the upper
right corner was supporting it. In (c), the lower
left marked robot could not get the ball, because
of prevention by opponents. In (d), the upper right
marked robot took the offence role and eventually
got the ball. Similar scenes were often shown during
the competitions.

Videos from the RoboCup competitions showing
relevant coordination actions can be seen at
http://www.yt.sd.keio.ac.jp/robocup/eigen_movie.html.
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Fig. 11. Cooperation architecture

7. Related Work

Cooperation in multirobot systems has been
addressed with several different approaches as dis-
cussed in (5). Cooperation approaches range from
not coordinated, to weakly coordinated (where
each robot considers only simple state information
about team mates when choosing its actions) and
strongly coordinated approaches (where robots co-
ordinate their action using a specified coordination
protocol). Strongly coordinated approaches are fre-
quently used when dealing with complex scenarios
as the one we consider in this paper.

Within the strongly coordinated approaches,
ALLIANCE (14) and BLE (21) are examples of
behaviour-based approaches to multi-robot task
allocation. In the former motivational behaviours
monitor and dynamically reallocate tasks by pro-
viding fault tolerance and adaptiveness. In the
latter, each robot executes a task through a specific
behaviour. Task selection is implemented by con-
tinuously broadcasting locally computed utilities
using a greedy algorithm to determine the most
useful task. Another behaviour-based example of
task allocation in multi-robot systems stems from
the concept of vacancy chains as discussed by Dahl
and Mataric (3). This approach is implemented
in groups of homogeneous robots where vacancy
chains emerge through reinforcement learning.

In contrast to these works, our work is based on
the higher level concept of roles and tasks rather
than behaviours. Moreover in our work robots ex-
plicitly form coalitions to execute tasks.

The task assignment problem has been frequently
addressed in multirobot systems using market-based
methods (1; 8; 4; 22) In market-based approaches

robots bid and negotiate to obtain tasks. The negoti-
ation process can be of various types but auctions are
often used. For example, in TraderBots (4), an auc-
tion mechanism, through a revenue/cost mapping
function, greedily assign tasks to the highest bidders
In this system, a RoboTrader module on each robot
coordinates the activities of the agent and its inter-
actions with other agents. Specialised dynamic role
assignment methods have been used for robotic soc-
cer, as in Pagello et al. (13) and Stone and Veloso
(18), where the robots dynamically switch between
roles such as attacker and defender or master and
supporter. Burgard et al. (2) consider task alloca-
tion and coordination for multi-robot exploration.
For each robot, the trade-off between the utility and
cost of potential target points are evaluated for ex-
ploration with the aim to be properly assigned to
each robot.

In contrast to these works in this paper, we fo-
cused on a coalition formation problem rather than
task assignment.

Coalition formation has been also addressed
in multirobot systems. Parker and Tang (15) ad-
dress the problem of single-task robots performing
multi-robot tasks while developing heterogeneous
robot coalitions that solve single multi-robot tasks.
ASyMTRe (Automated Synthesis of Multirobot
Task solutions through software Reconfiguration)
is the paradigm they use to generate multi-robot
coalitions using complete information and it has
been implemented on tasks that require multiple
robots to share sensor and effector capabilities. Vig
and Adams’ approach (20) refers to a multi-robot
coalition formation algorithm which uses an adap-
tation of Shehory and Kraus algorithm (17). The
algorithm comprises two stages: in the first one
robots compute the initial coalition values for all
possible coalitions in a distributed way; in the sec-
ond stage of the algorithm, robots agree on which
coalitions should be formed.

In contrast to these works, here we focus on de-
vising a specific coalition formation algorithm able
to work in a very dynamic and complex scenario. In
particular with respect to (20) we focus on a simpler
setting, where tasks have a predefined priority and
the value of a coalition can be computed by summing
up the Self Evaluation 11 of the coalition members;

11Recall that the Self Evaluation is an estimation of the ca-

pability to perform a task, thus summing up the Self Evalu-
ation agents are effectively summing up their estimation of

the capabilities
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in this way we can avoid the computation of all the
possible coalition values needed for the algorithm
presented in (17) and (20). Avoiding this computa-
tion in our setting is important because the value of
a coalition is dependent on variables which are very
dynamic (e.g., robot’s heading, ball position etc. )
and subject to uncertainty in the value estimation.

8. Conclusions

In this paper we present an approach to cooper-
ative control based on objective achievement. The
approach is explicitly designed for dynamic uncer-
tain environments, and solves a distributed coalition
formation problem. This is done by aggregating the
information that each agent acquires from the en-
vironment and the information communicated from
the team mates.

We apply this approach to the RoboCup Soccer
domain, and show how the aggregated information
required by the algorithm are extracted from the
sensor readings of the robotic platforms. When spe-
cialised to the RoboCup soccer domain our method
is able to optimise the allocation of robot coalitions
to tasks in a distributed and efficient way.

The approach has been empirically evaluated
both in a simulated environment and during the
RoboCup Middle Size League competitions by the
EIGEN team. The results obtained show that the
approach is able to balance the effort of the robotic
platform on different tasks providing an efficient
and effective coordination mechanism.
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