
Please do not remove this page

Extending BDI plan selection to incorporate
learning from experience
Singh, Dhirendra; Sardina, Sebastian; Padgham, Lin
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Extending-BDI-plan-selection-to-incorporate/9921857782501341/filesAndLinks?
index=0

Singh, D., Sardina, S., & Padgham, L. (2010). Extending BDI plan selection to incorporate learning from
experience. Robotics and Autonomous Systems, 58(9), 1067–1075.
https://doi.org/10.1016/j.robot.2010.05.008

Published Version: https://doi.org/10.1016/j.robot.2010.05.008

Document Version: Submitted Version

Downloaded On 2024/04/26 13:27:53 +1000
© 2010 Elsevier B.V. All rights reserved
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Extending-BDI-plan-selection-to-incorporate/9921857782501341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Extending-BDI-plan-selection-to-incorporate/9921857782501341
http://doi.org/doi:https://doi.org/10.1016/j.robot.2010.05.008
https://researchrepository.rmit.edu.au

Extending BDI Plan Selection to Incorporate Learning

from Experience

Dhirendra Singh & Sebastian Sardina & Lin Padgham

RMIT University, Melbourne, Australia

Abstract

An important drawback to the popular Belief, Desire, and Intentions (BDI)
paradigm is that such systems include no element of learning from experience.
We describe a novel BDI execution framework that models context conditions
as decision trees, rather than boolean formulae, allowing agents to learn the
probability of success for plans based on experience. By using a probabilistic
plan selection function, the agents can balance exploration and exploitation
of their plans. We extend earlier work to include both parameterised goals
and recursion and modify our previous approach to decision tree confidence to
include large and even non-finite domains that arise from such consideration.
Our evaluation on a pre-existing program that relies heavily on recursion
and parametrised goals confirms previous results that naive learning fails in
some circumstances, and demonstrates that the improved approach learns
relatively well.

Keywords:
BDI Intelligent Agents, Machine Learning, Hybrid Systems

1. Introduction

Agents are an important technology that have the potential to take over
contemporary methods for analysing, designing, and implementing complex
software systems suitable for domains such as telecommunications, industrial
control, business process management, transportation, logistics, and aeronau-
tics [1, 2, 3, 4]. The BDI model of agency [5, 6] is a popular and well-studied

Email address: {firstname.lastname}@rmit.edu.au (Dhirendra Singh & Sebastian
Sardina & Lin Padgham)

Preprint submitted to Elsevier April 10, 2010

E72964
Typewritten Text

E72964
Typewritten Text
Citation:Singh, D, Sardina, S and Padgham, L 2010, 'Extending BDI plan selection to incorporate learning from experience',Robotics and Autonomous Systems, vol. 58, no. 9, pp. 1067-1075.

E72964
Typewritten Text

E72964
Typewritten Text

approach with substantial theoretical and practical work. It has its roots in
philosophy with Bratman’s [7] theory of practical reasoning and Dennett’s
theory of intentional systems [8]. A recent industry study [9] analysing sev-
eral applications claimed that the use of BDI (Belief-Desire-Intention) agent
technology in complex business settings can improve overall project produc-
tivity by up to 500%. Also the agent approach allowed the business to change
and extend solutions quickly helping to bridge the semantic gap between the
business side and IT development. BDI systems have built into them an
ability to balance pro-actively pursuing a goal, with reactively responding to
the environment. They also have a well developed failure recovery mecha-
nism. This makes them very suitable for robotics applications operating in
a physical world which is often more error prone than a software domain.

BDI systems, despite their strengths, do not however incorporate any
ability to learn from experience. Our work makes a start at addressing this
issue, focussing specifically on learning which plan to select next, to resolve
a particular goal in a particular world state.

There are many agent programming languages and development plat-
forms in the BDI tradition, including JACK [10], JADEX [11], and Jason [12]
among others. All of them follow a similar basic architecture, whereby ab-
stract plans written by programmers are combined and used reactively in
real-time, in a way that is both flexible and robust. Concretely, a BDI agent
is built around a plan library, a collection of pre-defined hierarchical plans
indexed by goals and representing the standard operational procedures of the
domain (e.g., landing a plane). A context condition attached to each plan
states the conditions under which the plan is a sensible strategy to address
the corresponding goal in a given situation (e.g., it is not raining). The ex-
ecution of a BDI system then relies on context sensitive subgoal expansion,
allowing agents to “act as they go” by making plan choices at each level of
abstraction with respect to the current situation. Although this is quite flex-
ible and effective, an important drawback is the lack of ability to learn from
ongoing experience. An ability to learn plan selection in particular situations,
adds a whole new layer of robustness and flexibility. Firstly there may be sit-
uations where it is difficult to determine in advance the exact situation under
which a particular approach is likely to succeed. This is especially the case
when it involves complex combinations of values of environmental variables.
Secondly, an environment may change over time, or be slightly different in
different deployment locations. The ability for the agent system to observe
and learn from its performance is obviously a very desirable property.

In our work we achieve this by replacing (or augmenting) the usual

2

boolean formula for representation of context conditions, by a decision tree
[13] which is learnt based on experience. Our plan selection is then based
on a probabilistic approach, usually choosing the plan which has the high-
est likelihood of success, based on experience. This probabilistic approach
is also more suitable than the standard boolean approach for complex and
often partially observable worlds, where various plans may be worth trying,
but have different chances of success.

There are however various nuances that must be addressed for such online
learning. There is the usual balance between exploration and exploitation ev-
ident in all learning. Moreover, learning is impacted by the structure imposed
by the hierarchical representation of BDI programs. We have addressed these
issues in previous papers [14, 15], looking at various approaches to the prob-
lem. In this paper we add the ability to deal with paramaterised goals and
with recursive calls, both of which are essential for real applications. Unfor-
tunately, once we add this expressivity our previous preferred approach does
not scale. Consequently we develop a simplified approximation to achieve
the same basic intuition which we have previously shown to be correct in
principle. We then empirically evaluate our approach by taking an existing
BDI program from the JACK tutorial, removing the context conditions, and
learning the appropriate use of the plans provided using our framework.

Our approach can easily be combined with the standard plan selection
mechanism, by allowing the agent programmer to provide initial context
conditions that could later be automatically “refined” by the agent system.
By doing so, one can effectively take a BDI program and “tune it” using our
learning framework. For simplicity, though, context conditions are learnt
from scratch in our experimental work.

In the next section we introduce both BDI programming and our learn-
ing framework, as well as an overview of our previous approaches. We then
describe in detail the learning framework that incorporates the additional
aspects of parameterised goals and recursive calls, with our revised approach
to address previously identified issues. We show empirical evaluation on an
example program developed by Agent Oriented Software for their JACK tuto-
rial, by removing the context conditions and applying our learning approach.
We finish with a discussion of outstanding issues and related work.

2. Preliminaries

2.1. BDI Agent Systems
BDI agent-oriented programming is a popular, well-studied, and practical

paradigm for building intelligent agents situated in complex and dynamic en-

3

SENSORS

ACTUATORS

dynamic static

Beliefs

E
n
v
ir

o
n
m

e
n
t

Pending Events

Intention Stacks

BDI engine

actions

events

Plan

library

(a) BDI-style architecture.

G

P1 Pi

GA

PA

GA1

√ ×

×3
GA2

√ ×

×3

×

×3
GB

×

×3

PB

GB1

√ ×

×3
GB2

PB2

√
P ′

B2

×

×3

P4
.

(b) A BDI Goal-Plan Hierarchy.

Figure 1: BDI Architecture and Goal-Plan Hierarchy.

vironments with (soft) real-time reasoning and control requirements [16, 9].
Generally speaking, BDI agent-oriented programming languages are built
around an explicit representation of propositional attitudes (e.g., beliefs, de-
sires, intentions, etc.). A BDI architecture addresses how these components
are represented, updated, and processed to determine the agent’s actions.

A BDI agent consists, basically, of a belief base (akin to a database) which
stores the agent’s knowledge about the world, a set of pending event-goals,1

which include both external percepts or messages and internal goals, a plan
library, and an intention structure. Figure 1(a) depicts a typical BDI archi-
tecture. The plan library contains rules of the form e : ψ ← δ indicating that
δ is a suitable procedure for achieving event-goal e when context condition
ψ is true. Among other operations, the plan body procedure δ will typi-
cally include the execution of actions (act) in the environment and subgoals
(!e) that are in turn resolved by selecting suitable plans for those subgoals.
For example, the following plan rules may be part of the plan library of an
elevator controller:

Serve(floor) : Serving(floor)←!GoTo(floor); Open;Close;Off (floor)

GoTo(floor) : At(x) ∧ x > floor ← GoUp; !GoTo(floor)

That is, to serve a request from a floor (i.e., event Serve(floor)) which the
elevator is supposed to serve (i.e., condition Serving(floor) is true), can be

1In this paper the terms event-goal, event, and goal are used interchangeably.

4

achieved by first going to the floor (by solving the !GoTo(floor) sub-goal),
then opening and closing the door, and finally turning the floor’s request
light off. In turn, to go to a floor that is above the current location of the
elevator, it needs to go up one floor (i.e., execute primitive action GoUp) and
then post again the (sub)goal of reaching the floor in question.

The basic reactive goal-oriented behavior of BDI systems involves the
system responding to events by selecting an appropriate plan from the library,
and placing its program body into the intention base, a structure containing
the current, partially instantiated, plans that the agent has committed to
in order to achieve some event-goals. A plan is appropriate if it is designed
for the event in question (relevant) and its context condition is believed true
(applicable). In contrast with traditional planning, execution happens at
each step. The use of plans’ context-preconditions to make choices as late as
possible, together with the built-in goal-failure mechanisms, ensures that the
system is responsive to changes in the environment. In this paper we focus
on the plan library to investigate ways of learning appropriate or better plan
selection based on experience.

By grouping together plans responding to the same event (or goal) type,
the plan library can be seen as a set of goal-plan tree templates: a goal node
has children representing the relevant plans for achieving it; and a plan node,
in turn, has children representing the subgoals (including primitive actions)
of the plan. These structures can be seen as AND/OR trees: for a plan to
succeed all subgoals and actions of the plan must be successful (AND); for a
subgoal to succeed one of the plans to achieve it must succeed (OR).

Consider, for instance, the hierarachical structure shown in Figure 1(b).
A link from a goal to a plan means that this plan is relevant (i.e., potentially
suitable) for achieving the goal (e.g., P1 . . . P4 are the relevant plans for
event goal G); whereas a link from a plan to a goal means that the plan
needs to achieve that goal as part of its (sequential) execution (e.g., plan
PA needs to achieve goal GA1 first and then GA2). For compactness, an
edge with a label ×n states that there are n edges of such type. Leaf plans
directly interact with the environment and so, in a given world state, they
can either succeed or fail when executed; this is marked accordingly in the
figure for some particular world (of course, in other states, such plans may
behave differently). In some world, given successful completion of GA first,
the agent may achieve goal GB by selecting and executing PB, followed by
selecting and executing two working leaf plans to resolve goals GB1 and GB2.
If the agent succeeds with goals GB1 and GB2, then it succeeds for plan PB,
achieving thus goal GB and the top-level goal G itself. There is no possible

5

successful execution though, if the agent decides to carry on any of the three
plans labelled P ′

B2
for achieving the low-level goal GB2.

As can be seen, plan-selection is critically important. Standard BDI sys-
tems leverage domain expertise by means of the context conditions of plans.
In this work, we are interested in exploring how a situated agent may learn
plan selection based on experience, in order to improve goal achievement.

2.2. Learning for BDI Plan Selection

In order to facilitate learning regarding which plan should be executed for
a given goal in a particular world state, we first replace each plan’s boolean
formula that is the standard representation for context conditions in BDI
programming languages, with a decision tree [13] that provides a judgement
as to whether the plan is likely to succeed or fail for the given situation.

To select plans based on information in the decision trees, we use a proba-
bilistic method that chooses a plan based on its believed likelihood of success
in the given situation. This approach provides a balance between exploita-
tion (we choose plans with relatively higher success expectations more often),
and exploration (we sometimes choose plans with lower success expectation
to get better confidence in their believed applicability by trying them in more
situations). This balance is important because ongoing learning influences
future plan selection, and subsequently whether a good solution is learnt.

The resolution of goals in BDI execution results in the invocation of plans
that in turn may post sub-goals that are further handled by sub-plans in a
hierarchical manner. In a programming context, this is equivalent to making
a function call that in turn calls sub-functions. However a sub-goal may have
a number of possible plans for achieving it, some of which will work better
in particular situations than others. In our learning context, where we do
not yet know which plans work well in which situations, a plan may fail not
because the plan was a bad choice in the given situation, but instead because
the run-time choice of sub-plans was incorrect for the situation.

Our first approach [14] to address the learning problem was that of careful
consideration whereby failures are recorded for learning purposes only when
we are sufficiently sure that the failure was not due to poor sub-plan choices.
We have shown that this conservative approach is more robust, though often
slower, than a more aggressive approach which records all experiences, but
can in some particular cases completely fail to learn.

Our second approach reported in [15] was to adjust the plan selection
probability based on some measure of our confidence in the decision tree.
We consider the reliability of a plan’s decision tree in a given world state

6

to be proportional to the number of sub-plan choices (or paths below the
plan in the goal-plan hierarchy) that have been covered in that world state.
Here coverage [15] refers to the set of explored paths relative to the set of
all possible paths. The greater the coverage, the more we have explored and
the greater the confidence in the resulting decision tree. By biasing the plan
selection probability with a coverage-based confidence measure we achieved
the same robustness as that of conservative recording of failure cases. The
coverage approach, however, is more flexible as the extent to which this is
used can be readily adjusted by parameters in the selection formula.

A limitation with the previous approaches is that events were assumed to
be propositional atoms, i.e., parameterised event-goals were not considered.
By parameterised we mean an event-goal that may contain “data” as part of
its definition. For instance, event travelTo(dest) may represent the goal to
travel to location dest . In general, a goal to move to location A may require
different strategies than those for addressing a goal to move to location B,
and the learning must account for this. Another limitation is the assumption
that the agent’s plan library does not include recursive subgoaling, so that
the goal-plan tree structure induced is always finite. For example, the above
plan rule in the elevator controller’s library for handling subgoal GoTo(floor)
would not be allowed, since its procedure involves posting the same subgoal
event as the rule’s head. Clearly both limitations would preclude the ap-
plicability of the approach in many practical domains where hierarchies are
usually expressed in a compact manner by using parameterised goal events
and plans, and often make use of (direct or indirect) recursive procedures to
encode iterative strategies.

Furthermore, the coverage approach [15] does not scale to recursive struc-
tures. Conceptually we can unfold the recursive structure to a specified
depth. However, the number of paths is exponential in the recursion num-
ber and further compounded by parameterised event-goals and the number
of possible world states. An additional limitation is that coverage does not
consider domain complexity. For instance, a leaf plan that has no sub-goals
will achieve full coverage when it is tried once, after which selection will be
fully biased towards the plan’s decision tree classification. However, the de-
cision tree that at this point has only witnessed one world will generalise the
outcome to all as-yet-unseen worlds leading to misclassification.

In the following section we present the details of our learning approach,
incorporating both parametrised goals, and recursion, as well as a new sim-
pler confidence measure that is based on the general idea of coverage but
does not suffer from its limitations.

7

3. The BDI Learning Framework

Our learning task is as follows: Given past execution data and the current
world state, determine which plan to execute next in order to best address the
given event-goal. In the BDI sense, our task is to learn the context condition
of each plan in the goal-plan hierarchy. In this section we describe our BDI
Learning Framework that enables such learning. In particular we describe the
use of decision trees for learning context conditions and the confidence-based
probabilistic plan selection that incorporates this learning, while focusing on
parameterised event-goals and recursion.

3.1. Integrating Decision Trees into Context Conditions for Plans

A plans context condition is a logical formula that is constructed at design
time and evaluated against an event-goal at run time to determine if the plan
is applicable in the given world state.2 To allow the context condition to be
learnt over time, we annotate each plan’s context formula with a decision
tree.3[14] The idea is that the agent starts with some necessary but possibly
insufficient conditions for each plan (provided by the designer), and over
time and in the course of trying plans in various world states will refine each
plan’s context condition using the learnt decision tree.

The choice of decision trees for learning is motivated by several factors.
Firstly, decision trees support hypotheses that are a disjunction of conjunc-
tive terms and this representation is compatible with how context formulas
are generally written. Secondly, decision trees can be converted to if-then
rules that are human readable and can be validated by a domain expert. Fi-
nally, decision trees are robust against training data that may contain errors.
This is specially relevant in stochastic domains where applicable plans may
nevertheless fail due to unforeseen circumstances.

For each plan, the training set for its decision tree contains samples of the
form [w, o], where w is the world state in which the plan was executed and
o was the boolean outcome (success or failure). The world state w itself is a
set of discrete attributes that together represent the state of affairs. Initially
the training set is empty and grows as the agent tries the plan in various
world states and records each result. Over time the decision tree learnt from

2Context formulas may reference internal beliefs as well as environment states, and for
this study we treat both as included in the world state.

3It is perfectly feasible to combine the existing logical formula with the decision tree
classification, but to aid our understanding of the decision tree learning in this study we
always use an empty initial formula.

8

the training set will contain only those attributes of world state w that are
relevant to that plans context condition.

The number of attributes in world state w and their range has a bearing
on the size of the training set required to correctly learn the context condition.
In general, world state w should be constructed with all attributes that are
possibly relevant to the context condition. For instance, for a plan to pick
objects using a robotic arm, the attributes objectSurface and gripperWet
are likely relevant and should be included, while the attribute dayOfWeek
possibly is not and may be exluded. The choice of attributes to include in
the world state w is eventually a design decision and dependent on domain
knowledge. For our purposes we assume that the designer provides a set of
all attributes that are considered possibly relevant to the context condition
of the plan.4 In the worst case, this set is the full set of available attributes.

The decision tree inductive bias is a preference for smaller trees. In other
words, the induction will trade-off some accuracy in classification for com-
pactness of representation. This means that some training samples get incor-
rectly classified in the wrong “bucket” (where the bucket name is success or
failure in our case) when the actual outcome class of those training samples
is different. So in a given bucket (or class) one may get a total of m train-
ing samples out of which n are misclassified. The ratio 1− (n/m) gives the
likelihood of class membership,5 and is the fraction we use as the expected
likelihood of success of the plan.

3.2. Support for Recursive Event-Goals

Recursion in our context refers to the case where the resolution of an
event-goal instance G(~x1) involves first the resolution of goal-event instance
G(~x2) of the same type G. The result is a growing stack of pending G(~xi)
event-goals that eventually terminate in G(~xn) whose parameters satisfy the
termination conditions where a non-recursive plan choice is made.

In order to understand the impact of recursion on context learning, we
use the notion of an execution trace of the form G0(~x0)[P0 : w0] ·G1(~x1)[P1 :
w1] · . . . ·Gn(~x1)[Pn : wn], that represents a sequence of event-goals along with
the plans selected to handle them and the world state in which the selections

4An automatic compilation of potential relevant propositions can be done by analysing,
if available, the preconditions and effects of actions that might be executed when handling
a goal. This, however, is out of the scope of this paper.

5In our study we use algorithm J48, a version of c4.5 [13], from the weka learning
package [17] that automatically provides this ratio.

9

G(~x1)

P1 P2

G(~x2)

P1

√
P2

G(~x4)

P1 P2 P3

G(~x5)

P1 P2 P3

P3

G(~x3)

P1 P2

G(~x6)

P1

√
P2 P3

G(~x7)

P1 P2 P3

×

P3

P3

Figure 2: Goal-plan hierarchy containing a parameterised goal G handled by three plans
P1, P2 and P3. Here plan P2 posts two instances of G resulting in recursion. Two levels of
recursive unfolding are shown. Dashed P2 nodes indicate unexplored recursive sub-trees.

were made. So Gi(~xi)[Pi : wi] captures the case where plan Pi was selected
in world state wi in order to achieve the goal-event Gi(~xi).

Consider the example BDI goal-plan hierarchy of Figure 2. The structure
has just a single parameterised goal G and three options to handle it, one of
which, P2, in turn posts two instances of the same parameterised goal G. In
this way, the only plans that take an action in the environment are P1 and
P3. The figure highlights an execution trace as follows:

λ = G(~x1)[P2 : w1]·G(~x2)[P1 : w1]·G(~x3)[P2 : w2]·G(~x6)[P1 : w2]·G(~x7)[P3 : w3].

The first choice in the execution results in the selection of plan P2 to
handle event-goal instance G(~x1) in a given world w1. Plan P2 in turn imme-
diately posts the event-goal instance G(~x2) that is successfully handled by
the non-recursive node P1. Plan P2 then posts the second event-goal instance
G(~x3), which then is handled by itself in a recursive manner. The outcome is
that λ traces a path that involves the successive execution of leaf plan P1 for
event-goal G(~x2) followed by another execution of P1 for event-goal G(~x6),
finally terminating in the failure of leaf plan P3 for event-goal G(~x7). Note
that if plan P2 had instead been selected to handle G(~x7) then a deeper re-
cursive call would have ensued. Similarly if earlier in the execution trace plan
P2 was selected to handle event-goal G(~x2) then a different recursive sub-tree
(shown in Figure 2 as dotted nodes under G(~x2)) would have unfolded.

The immediate implication of a recursive goal-plan structure is that the

10

size of the hierarchy is no longer static but instead unfolds in a dynamic
manner. The risk then is that since the conditions that terminate recursion
are not ready at the start (we are trying to learn them), then the agent
may get trapped in an infinite recursive loop during exploration. This has
implications for any strategy that relies on the structure being finite. For
instance, our conservative recording approach [14] and coverage-based confi-
dence measure [15] both suffer from this problem. Incidentally, the simpler
aggressive recording approach [14] is not impacted by recursion as it does
not consider the goal-plan structure.

One way to resolve this issue is to treat all recursive goals simply as sub-
trees in a static structure and limit the recursive unfolding to a maximum
allowed depth. In this study we use this bounded recursion approach for han-
dling recursive structures. It follows then that wherever a recursive structure
applies, a maximum recursion value must be supplied. This may not be an
unrealistic requirement given that the domain expert will usually have some
idea of how much recursion is sufficient for a given parameterised event-goal.

3.3. Calculating Confidence in the Decision Tree Classification

The typical use of decision trees lies in the offline induction from a com-
plete training set. In that sense, the use of decision trees in our framework is
unorthodox since the training set is built incrementally by recording samples
after each new execution. This results in the training set being incomplete
in the early stages of learning,6 leading to misclassification. A confidence
measure in the decision tree classification is therefore desirable to address
this issue. Previously [15] we showed how the coverage of possible execution
paths below the plan in the goal-plan hierarchy may be used to build such a
measure. Here we propose a new confidence measure that builds on the idea
but that does not suffer from its limitations (Section 2.2).

Our requirement for the confidence measure is that it be a monotonic
function whose values transition from no confidence (0.0) to full confidence
(1.0) based on experience. Specifically, the experiences we are interested
in should constitute coverage of the plan complexity (number of sub-plan
choices) and the domain complexity (number of world states in which the
plan applies). Since an exact calculation of such coverage does not scale for
all practical purposes then we are interested in an approximate coverage that
is still representative of the state of affairs but is simpler to compute.

6Training data is incomplete in the sense that the agent has only collected a portion of
the full data set required to learn the correct classification.

11

One way to achieve this is to use a monotonic decay function7 (for instance
ǫi = ǫi−i ∗ δ where δ < 1.0) but where the decay factor δ is tied to the
complexity involved. This way, a plan that has a larger number of sub-
plan choices will utilise a slower decay factor δ taking longer to reach full
confidence (1− ǫ) than another plan that has less choices to make. For goal-
plan complexity this decay δPt may be calculated offline by analysing the
goal-plan hierarchy. In this work, we have calculated δPt in terms of average
breadth and depth of the structure, where depth is the maximum level of
recursion in this case, to provide an approximation of the complexity of the
structure.8 A similar treatment is possible for domain complexity although
the decay factor in this case cannot be pre-determined since the number of
world states is not known upfront and is dependent on the domain. For
domain complexity then, it may be reasonable to treat the decay factor δPd

as a parameter specified by the domain expert.

cP = (1.0− ǫPt) ∗ (1.0− ǫPd). (1)

Equation 1 shows how the final confidence cP is calculated for a given plan
P . Here ǫPt is the plans tree complexity decay while ǫPd is the plans domain
complexity decay. The actual updates to the decay values are performed
each time the plan P is executed while the rate of decay is governed by the
decay factors δPt and δPd accordingly.

3.4. Handling Parameterised Event-Goals

Our BDI learning framework account presented earlier [14, 15] did not
account for parameterised event-goals but only for event-goal instances. In
practical BDI systems, it is often the case that a single plan will handle
all instances of a parameterised event-goal. Furthermore event-goal instance
parameters will generally be included in the context logical formula.

Consider again the goal-plan structure in Figure 2 and the highlighted
solution path terminating in the leaf plans indicated by the

√
symbol. An

important point here is that the indicated solution applies to the event-goal
instance G(~x1) and to that instance alone. For a different instance G(~y1)

7This technique is frequently applied in machine learning algorithms for balancing
between exploration of choices and exploitation of learning.

8There are other ways of calculating δPt (e.g., in [15] we have used an accurate calcu-
lation of the number of choices below plans; however this is not feasible anymore when
goals and plans are schemas with possibly infinite instances); the main idea is to somehow
measure the complexity of a hierarchical structure, and is the subject of ongoing work.

12

the solution path would likely be different (one way to visualise this in the
Figure 2 is to think of it as an animation where the event-goal parameters
and the placement of the

√
symbols changes on each frame). This means

that event-goal instance parameters must also be considered as input for a
plan’s decision tree in order to learn solutions per event-goal instance.

We include such an account by augmenting the training samples for the
decision tree with the event-goal parameters. As such, the training set now
contains samples of the form [w, x, o] where the world state w is the initial
set of all relevant attributes that represent the state of affairs, x is the set
of all event-goal parameters, and o is the outcome class (success or failure).
Incorporating the event-goal parameter set x in the training data is sufficient
for learning with parameterised event-goals, and no fundamental change to
the framework is required.

3.5. Calculating Plan Selection Weights based on Confidence

Typical BDI platforms offer several mechanisms for plan selection from
a set of applicable plans, such as plan precedence and meta-level reasoning.
However, since these mechanisms are pre-programmed and do not take into
account the experience of the agent, we provide a new probabilistic plan
selection function for this purpose.

For each plan, given its expectation of success (as determined by its de-
cision tree learning) and a confidence measure in this expectation (based on
coverage), we calculate a final selection weight that is indicative of the like-
lihood of the plan being selected for execution. Equation 2 shows how the
plan selection weight ΩP (w) is calculated for a given world state w.9 Initially,
the confidence cP is zero and the weight takes the default value of 0.5. Over
time, as the confidence improves towards the final value of 1.0, the selection
weight approaches the value κP (w) estimated by the plan’s decision tree.

ΩP (w) = 0.5 + [cP ∗ (κP (w)− 0.5)] . (2)

Given the set of applicable plans for resolving event-goal G in world state
w then, our probabilistic plan selection mechanism chooses a plan Pi with a
probability directly proportional to its selection weight ΩPi

(w). Such selec-
tion ensures a balance between the exploitation of current know-how and the
exploration of new choices that is necessary for online learning tasks.

9The formulation of the plan selection weight is described in [15].

13

4. A Case Example: The Hanoi Towers Robot

To evaluate our learning framework we consider an existing BDI program
from the JACK agent platform distribution [10]. The example involves a robot
playing the well-known Towers of Hanoi game where the goal is to stack discs
of decreasing size onto a single pin. The rules of the game forbid discs to
be moved onto smaller discs, however top discs may be moved onto discs of
larger size across three pins. The problem is interesting for our purposes since
the example solution makes use of parameterised event-goals and recursion.
Furthermore, unlike our previous evaluations [14, 15] with synthetic plan
libraries, here the evaluation criteria is clear: does our learning framework
achieve the performance of the existing system?

The example solution consists of a Player agent that solves the game for
any given legal initial configuration. The game solving strategy is encoded in
plan DiscStacker that solves for one disc at a time starting from the largest
and ending with the smallest onto a chosen pin. This in turn is achieved by
posting event Solve(d ,p) for solving disc d onto pin p. There are four plans
that are relevant for this purpose:

SolveRight This plan solves moving a disc to the pin it is already on.
Since the goal is already true, the plan does nothing.

SolveTopMove This plan moves the disc d to the destination pin p if the
disc is not already there and if the move is legal. The actual move is perfomed
by the primitive action move(p2 ,p), where p2 is the source pin of disc d .

SolveTop This plan solves for the case when the disc d may be legally
lifted but cannot be legally placed at the destination because the top disc on
the destination pin is smaller than d . In this case, the plan first moves all the
discs in the destination pin that are smaller than disc d to the third (auxil-
iary) pin, and then re-posts the sub-goal to move d to pin p i.e. Solve(d ,p).

SolveMiddle This plan solves moving a disc from the middle of a stack.
In this case, the plan first clears the source pin so that disc d becomes the
new top of the pin. This is done by solving for sub-goal Solve(d2 ,p2) where
disc d2 is the disc currently on top of d and p2 is the auxiliary. Subsequently
the plan re-posts the sub-goal of moving d to pin p i.e. event Solve(d ,p).

Figure 3 illustrates the goal-plan hierarchy for the domain. Here we focus
on learning the recursive parameterised Solve(d ,p) event for which we remove
the context conditions from the example plans and apply our framework.

4.1. Experimental Setup

The aim of this study is to evaluate our learning framework for recursive
event-goals. For this reason our experimentation with the Hanoi problem

14

BuildTower(p)

DiscStacker(p)

Solve(1,p) Solve(i,p)

SolveMiddle

Solve(d2,p3) Solve(i,p)

SolveRight SolveTopMove SolveTop

Solve(d2,p3) Solve(i,p)

Solve(n,p).

Figure 3: Goal-plan hierarchy for the Towers of Hanoi domain.

focusses on learning to resolve the recursive event Solve only and not on
learning the strategy that solves the full Hanoi towers problem (this is done
by DiscStacker(p)). Since the full set of possible Solve events and initial
pin configurations is large, our first step is to construct a sufficiently rich
subset that we will use to evaluate our learning approaches. nd then re-po
We proceed by running the original Hanoi program for a number of randomly
generated Solve events. For each run we record the Solve event, the initial
pins configuration, and the maximum recursion encountered for the solution.
This gives us a bag of several initial configurations for each recursion level
that is a subset of all possible configurations.

Next, we run each candidate approach on the set of saved configurations
for a given recursion level. i.e. where all solutions lie exactly at the specified
recursion number. We use a fixed random generation seed for each experi-
ment so that the same sequence of Solve events is generated for each learning
approach. This isolates any environmental factors and allows us to attribute
any differences in performance to the learning approaches alone.

4.2. Results

The following results are for a Hanoi problem with five discs.10 Each
plans domain complexity decay factor for the confidence calculation of Equa-
tion 1 are set to δPd = 0.9. For goal-plan tree complexity, we use δPt = 1
for non-recursive plans and δPt =

[

1− (1/rk)
]

for recursive plans. Here r is

10We use five discs in order to keep the state space rich enough yet sufficiently small to
allow learning runs to be completed and evaluated in reasonable time.

15

1000 2500 4000
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

(a) ACL

1000 2500 4000
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

(b) ACL+Ω

Figure 4: Agent performance under ACL and ACL+Ω schemes for solutions at recursion
levels one (pluses), three (circles) and five (crosses). Each point represents results from 5
experiment runs using an averaging window of 100 samples.

the run-time recursion level and k is arbitrarily set to 4.0,11 and controls the
rate of change of decay i.e. the number of steps to reach full confidence. In
all experiments, the recursion is bound to a maximum of eight levels that
is sufficient to solve all configurations for a five-disc Hanoi problem. The
performance of two learning configurations is contrasted. The baseline learn-
ing algorithm ACL refers to the original aggressive learning approach of [14]
and [15] using the original probabilistic plan selection function that has no
confidence-based bias (uses decision tree expectation of success only). The
new algorithm is referred to as ACL+Ω and uses the same aggressive learning
approach as the former but combined with the new confidence-based proba-
bilistic selection function (Equation 2) presented in this study.

Experiment 1. To understand how the two approaches perform for solutions
of varying difficulty we conducted a set of tests with solutions at different
recursive levels. Each test consisted of resolving a known set of Solve event
configurations, saved earlier as described in Section 4.1, whose solutions all
required a given recursive depth. Figure 4 shows that as the solution diffi-
culty increases from one to five recursion levels, ACL performance drops much
more significantly compared to that of ACL+Ω. For instance, for solutions
requiring five levels of recursion (crosses in Figure 4), ACL achieves only 50%
success at 5k iterations whereas ACL+Ω achieves 95% success by 3.5k iter-
ations. The poor performance of ACL may be attributed to the fact that

11In future work we hope to establish principles for determining general parameters.

16

5k 10k 15k
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

(a) Success Rate

15 30 45
0k

4k

8k

12k

16k

20k
Iterations

Solutions

(b) Solutions Found

Figure 5: Agent performance under ACL (circles) and ACL+Ω (crosses) schemes. Each
point represents an average result from 5 experiment runs.

deeper solutions require more move(p2 ,p) steps and where an earlier success
does not exist to guide selection at each resulting state the exploration is
mostly random. On the other hand, the confidence-based measure of Equa-
tion 2 takes into account the goal-plan tree complexity and is able to guide
the ACL+Ω exploration towards the deeper solutions.

Experiment 2. Next, we conducted an experiment that consisted of resolving
the full set of saved Solve events i.e. the set of all solutions for recursion
levels one to five. Figure 5(a) shows the results for the two approaches where
ACL+Ω performs better than ACL as expected from the previous experiment
results. For the same experiment, we also recorded the number of solutions
found. Figure 5(b) shows that ACL+Ω resolves all 52 goals within 12k iter-
ations whereas ACL resolves only 47 by the end of the experiment at 20k.
At a similar point of comparison, to resolve 47 goals ACL+Ω takes around
6.4k iterations whereas ACL takes more than twice as long at 17.7k. The
vertical dashed lines in Figure 5(a) and Figure 5(b) mark the 47th and 52nd
solutions.

Experiment 3. Finally, we ran a third experiment to understand the impact
of applicability thresholds. In the classical BDI framework plans are either
applicable or not in a boolean decision. However, in our modified framework
plans are applicable according to the selection weight given by Equation 2.
Since plan execution is often not cost-free in real systems, it is likely that
an adequate plan selection scheme would not select any plan if they all have
too low an expectation of success, and an agent may fail a plan without even

17

trying. To represent this scenario we setup an applicability threshold of 20%
whereby plans with expectations of success less than this threshold would not
be selected. In this case ACL shows a complete inability to learn as reported
earlier [15]. In contrast ACL+Ω benefits from the adjusted selection weights
of Equation 2 and shows similar performance as before (Figure 5(a)).12

Analysis. Observe in Figure 5(a) that ACL+Ω does not reach the performance
of the hand-crafted JACK program and converges to about 90% success even
though it successfully discovers all solutions (Figure 5(b)). This is because
the decision tree representation does not guarantee that the training data
will always be correctly classified (we discuss this accuracy versus compact-
ness trade-off in Section 3.1). For instance, a decision tree may report a
poor likelihood of success for a given state even when the associated training
sample indicates success, due to the sample being misclassified in the fail-
ure “bucket”. One could guarantee correctness by referencing the training
data directly, for instance using a look-up table. However, the decision tree
representation is preferable for its compact representation combined with the
ability to generalise to as-yet-unseen world states. Currently, when our learnt
decision trees are converted to rules they do not “look” like the original ones
but are far more complex. This is mainly due to representational differences
as our simple representation is propositional whereas the original conditions
are relational.13

5. Discussion and Conclusion

This paper builds on earlier work [14, 15] that extends the typical BDI
programming framework to use decision trees as (part of) a plan’s context
condition, with a probabilistic plan selection mechanism that caters for both
exploration and exploitation of plans. Previously we have shown that due to
the structure of BDI programs, care must be taken in how learning is used,
to avoid problems in certain situations. In some cases these problems lead
to failure to learn at all, as we also show here.

In this paper we extend previous work to allow for parameterised goals
(e.g. travelTo(dest)) and also for recursion, both of which are necessary for

12The threshold of 0.2 while somewhat arbitrary is consistent with that used earlier [15].
The difference between the default weight (0.5) and the threshold weight (0.2 in this case)
decides how much “give” we have in the exploration. The closer the threshold is to 0.5
the greater the chance that the plan will be aborted before a solution is found.

13We hope to address this using relational decision trees in future work.

18

real applications. In doing this our previous confidence measure which relied
on a finite goal-plan tree did not scale, so we have provided an approximate
measure, relying on the principles that have been shown correct, but without
the limitations. This paper also takes an existing BDI program involving
parameterised goals and recursion, and evaluates our approach using this
program. By removing the existing context conditions, and then learning
the correct behaviour, we show that we are able to obtain good (although
not perfect)14 performance. We also demonstrate that the naive approach to
learning, that does not account for the BDI program structure fails to learn
given some program structures and an applicability threshold.

There is still work to be done before our framework may be applied for
practical on-line learning in situated agents. Firstly, the framework has not
been integrated with standard BDI failure handling and recovery. Clearly this
will be needed (and is the subject of ongoing work), but we do not expect
this to undermine any results described here. In fact a careful integration
of failure handling could improve the speed of learning as multiple attempts
could be made to achieve a (sub)-goal. However care needs to be taken
regarding changes to world state and possible interactions between failed
attempts and eventually successful ones.

Secondly, our use of decision trees is naive. For instance, currently exe-
cution data is maintained forever and decision trees re-built after each plan
execution. Furthermore, we learn using actual world states, whereas an im-
provement would be to learn using relational world information. While not
ideal, our setup nonetheless allows us to focus on the nuances of learning in
BDI programs first without worrying about the underlying techniques.

Finally, we do not detect and learn interactions between sibling goals in
the context of a particular parent; each subgoal is treated “locally.” To han-
dle such interactions, the selection of a plan for resolving a sub-goal should
also be predicated on the goals higher than the sub-goal, that is, it should
take into account the “reasons” for the sub-goal. Addressing this would
require substantial modification to the BDI programming style in terms of
representation, which is out of the scope of this work.

The issue of combining learning and deliberative approaches for online de-
cision making in BDI-like systems has not been widely addressed. Hernández
et al. [18] give a preliminary account of how decision trees may be induced
on plan failures in order to find alternative logical context conditions in a

14We would hope that when learning is combined with programmer provided context
conditions, the problems preventing perfect learning here would be avoided.

19

deterministic paint-world example. In [19] learnt user preferences are incor-
porated during BDI plan selection in a dialogue manager application using a
decision tree learner. In contrast, [20] take the approach of refining existing
BDI plans or learning new plans as a sequence of recorded actions based on
prescriptions provided by the domain expert. In [21], low level robot soc-
cer skills are learnt offline and then used in the deliberative decision making
process once deployed. More recently, [22] give a comprehensive account of
integrating learning in BDI deliberation for a real world ship berthing lo-
gistics domain. Here a neural network module is first trained offline on the
available shipping port data and then used in a deployed BDI system to
improve plan selection. Their results show significant improvement in berth
productivity over the existing system of human operators.

A closely related area to BDI is that of hierarchical task network (HTN)
systems where task decompositions used are similar to BDI goal-plan hierar-
chies. Recently, in similarly motivated work to ours, [23] proposed a method
for learning HTN method preconditions under partial observations. There,
a set of constraints are constructed from observed decomposition trees that
are then solved offline using a constraint solver. In contrast, in our work
learning and deliberation are fully integrated in a way that one impacts the
other and the classical exploration/exploitation dilemma applies.

The BDI architecture has also been shown [24] to be related to Markov
Decision Processes that are heavily used for solving optimisation problems in
reinforcement learning [13]. A sub-area of work related to ours is hierarchical
reinforcement learning [25] where task hierarchies similar to BDI are used.
When the aim is to find locally optimal solutions for each sub-MDP in the
hierarchy, similar issues as ours arise, such as goal inter-dependence. In
general, global optimality is possible only when information is fed into the
sub-task (i.e. value functions use the entire state space), consistent with our
analysis of goal inter-dependence issues. Interestingly, work by Dietterich
[26] also supports the use of simultaneous learning at all levels (similar to
our ACL based approaches) instead of waiting for the children to converge
(analogous to our conservative approach [15]).

Although there is still work to do before we can expect learning to be suc-
cessfully integrated into a fully autonomous BDI agent, the work reported
here is significant in that it provides a solid foundation for adding new capa-
bilities to BDI agents to allow them to learn and adapt based on experience.

[1] N. R. Jennings, An agent-based approch for building complex software sys-
tems, Communications of the ACM 44 (4) (2001) 35–41.

20

[2] R. A. Belecheanu, S. Munroe, M. Luck, T. Payne, T. Miller, P. McBurney,
M. Pechoucek, Commercial applications of agents: Lessons, experiences and
challenges, in: Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS), ACM Press, Hakodate, Japan, 2006, pp. 1549–1555.

[3] M. Ljungberg, A. Lucas, The OASIS air-traffic management system, in: Pro-
ceedings of the Pacific Rim International Conference on Artificial Intelligence
(PRICAI), Seoul, Korea, 1992.

[4] Z. Tu, M. Ferry, G. Prickett, C. Heinze, Truly autonomous UAVs and teaming,
in: Twelfth Australian Aeronautical Conference, 2007, pp. 483–489, engineers
Australia.

[5] M. E. Pollack, The uses of plans, Artificial Intelligence Journal 57 (1) (1992)
43–68.

[6] M. Bratman, D. Israel, M. Pollack, Plans and resource-bounded practical
reasoning, Computational Intelligence 4 (4) (1988) 349–355.

[7] M. Bratman, Intentions, Plans, and Practical Reason, Harvard University
Press, 1987.

[8] D. C. Dennet, The intentional Stance, MIT Press, 1987.

[9] S. S. Benfield, J. Hendrickson, D. Galanti, Making a strong business case for
multiagent technology, in: Proceedings of Autonomous Agents and Multi-
Agent Systems (AAMAS), ACM Press, 2006, pp. 10–15.

[10] P. Busetta, R. Rönnquist, A. Hodgson, A. Lucas, JACK intelligent agents:
Components for intelligent agents in Java, AgentLink Newsletter 2 (1999)
2–5, Agent Oriented Software.

[11] A. Pokahr, L. Braubach, W. Lamersdorf, JADEX: Implementing a BDI-
infrastructure for JADE agents, EXP - in search of innovation (Special Issue
on JADE) 3 (3) (2003) 76–85.

[12] R. Bordini, J. Hübner, M. Wooldridge, Programming Multi-agent Systems in
AgentSpeak Using Jason, Wiley Series in Agent Technology, Wiley, 2007.

[13] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[14] S. Airiau, L. Padham, S. Sardina, S. Sen, Enhancing adaptation in BDI agents
using learning techniques, International Journal of Agent Technologies and
Systems (IJATS) 1 (2) (2009) 1–18.

21

[15] D. Singh, S. Sardina, L. Padgham, S. Airiau, Learning context conditions for
BDI plan selection, in: Proceedings of Autonomous Agents and Multi-Agent
Systems (AAMAS), Toronto, Canada, 2010, to appear.

[16] M. P. Georgeff, F. F. Ingrand, Decision making in an embedded reasoning
system, in: Proceedings of IJCAI, Detroit, USA, 1989, pp. 972–978.

[17] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann, 1999.

[18] A. Guerra-Hernández, A. E. Fallah-Seghrouchni, H. Soldano, Learning in BDI
Multi-agent Systems, Vol. 3259 of LNCS, Springer, 2004, pp. 218–233.

[19] A. Nguyen, W. Wobcke, An adaptive plan-based dialogue agent: integrating
learning into a BDI architecture, in: Proceedings of Autonomous Agents and
Multi-Agent Systems (AAMAS), ACM Press, New York, NY, USA, 2006, pp.
786–788. doi:10.1145/1160633.1160771.

[20] S. Karim, B. Subagdja, L. Sonenberg, Plans as Products of Learn-
ing, IEEE Computer Society, Washington, DC, USA, 2006, pp. 139–145.
doi:10.1109/IAT.2006.100.

[21] M. Riedmiller, A. Merke, D. Meier, A. Hoffman, A. Sinner, O. Thate,
R. Ehrmann, Karlsruhe brainstormers - a reinforcement learning approach
to robotic soccer, in: RoboCup 2000: Robot Soccer World Cup IV, 2001.

[22] P. Lokuge, D. Alahakoon, Improving the adaptability in automated vessel
scheduling in container ports using intelligent software agents, European Jour-
nal of Operational Research 177 (3) (2007) 1985–2015.

[23] H. Zhuo, D. Hu, C. Hogg, Q. Yang, H. Munoz-Avila, Learning HTN Method
Preconditions and Action Models from partial Observations, in: Proceedings
of the Twenty-First International Joint Conference on Artificial Intelligence
(IJCAI-09), 2009.

[24] G. I. Simari, S. Parsons, On the relationship between MDPs and the BDI
architecture, in: Proceedings of Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), ACM Press, New York, NY, USA, 2006, pp. 1041–1048.
doi:10.1145/1160633.1160818.

[25] A. Barto, S. Mahadevan, Recent Advances in Hierarchical Reinforcement
Learning, Discrete Event Dynamic Systems 13 (4) (2003) 341–379.

[26] T. Dietterich, Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition, Journal of Artificial Intelligence Research 13 (2000)
227–303.

22

