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Abstract

In this paper, we investigated sensory mechanisms to regulate the tran-

sition from the stance to swing phases in the generation of adaptive human

bipedal walking based on a neuromusculoskeletal model. We examined the

contributions of the sensory information from the force-sensitive afferents in

the ankle extensor muscle and from the position-sensitive afferents from the

hip, inspired by a neuro-mechanical simulation for the stepping of the hind

legs of cats. Our simulation results showed that the sensory signals related to

the force in the ankle extensor muscle make a larger contribution than sen-

sory signals related to the joint angle at the hip to produce robust walking

against disturbances, as observed in the simulation results of cat locomotion.

This suggests that such a sensorimotor mechanism is a general property and
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is also embedded in the neuro-control system of human bipedal walking.

Keywords: human bipedal walking, neuromusculoskeletal model, central

pattern generator, phase resetting, stance-to-swing transition.
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1. Introduction

Humans and animals produce adaptive walking in diverse environments

by cooperatively and skillfully manipulating their complicated and redun-

dant musculoskeletal systems. Many studies have been conducted to eluci-

date their neuro-control mechanisms. Physiological studies using lampreys

and decerebrate cats have greatly contributed to elucidating locomotor mech-

anisms by examining the configurations and activities of neural systems [13,

25, 29, 34, 37, 41]. However, completely clarifying the mechanisms in terms

of the nervous system alone is difficult because locomotion is a well-organized

motion generated through dynamic interactions among the body, the nervous

system, and the environment. To overcome limitations, simulation studies

have recently attracted attention, since physiological and anatomical find-

ings allow us to construct reasonably realistic mathematical models of mus-

culoskeletal and nervous systems and to investigate the neuro-mechanical

interactions in locomotor behavior [6, 9, 10, 17, 30, 32, 38, 39, 40, 42, 44].

Elucidating sensorimotor interactions is important to clarify the mecha-

nisms to create adaptive locomotor behavior. During cat locomotion, two

types of sensory information are used for the phase transition from stance

to swing: force-sensitive afferents in the ankle extensor muscles [8, 43] and

position-sensitive afferents from the hip [12, 15]. Ekeberg and Pearson [9]

performed computer simulations with a musculoskeletal model of the hind

limbs of cats to investigate the roles of such sensory information by prepar-

ing four phases for the leg movements: swing, touchdown, stance, and liftoff.

They determined the muscle activation patterns depending on the phases

and switched them based on the following triggering rules:
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1. from swing to touchdown phase: threshold of hip and knee joint angles

2. from touchdown to stance phase: ground contact information

3. from stance to liftoff phase: unloading rule or hip extension rule

4. from liftoff to swing phase: loss of ground contact information,

where the unloading rule indicates that when the force in the ankle exten-

sor muscle is low, the liftoff phase starts. The hip extension rule means that

when the hip joint is sufficiently extended, the liftoff phase commences. They

examined these two rules to regulate the transition from the stance to liftoff

phases and showed that stable locomotion was not established when the hip

extension rule was used alone. They demonstrated that the unloading rule

makes a larger contribution than the hip extension rule to the generation

of robust locomotor behavior against disturbances, which gives a great in-

sight for sensorimotor integration to produce adaptive locomotor behavior

for animals.

In our previous work [1], we constructed a neuromusculoskeletal model for

human bipedal walking and examined the roles of the phase transitions based

on foot-contact information, similar to the transitions from the touchdown

to stance phases and from the liftoff to swing phases in [9]. In this paper,

we modified our neuromusculoskeletal model, especially the phase transition

rule, and investigated the contributions of the sensory information from the

force-sensitive afferents in the ankle extensor muscles and from the position-

sensitive afferents from the hip for the stance-to-swing transition to create

adaptive human bipedal walking. That is, we examined the roles of the un-

loading and hip extension rules for human bipedal walking. Our simulation

results showed that the unloading rule contributes more than the hip exten-
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sion rule to produce robust bipedal walking against disturbances, as observed

in [9], suggesting that such a sensorimotor mechanism is a general property

and is also embedded in the neuro-control system of human bipedal walking.
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Figure 1: Musculoskeletal model [1, 2]. The skeletal model is composed of seven rigid links

that represent HAT (head, arms, and trunk), thighs, shanks, and feet and the muscle model

for one leg is composed of nine principal muscles; six muscles (IL, GM, VA, BFS, TA, and

SO) are uniarticular, and three (RF, BFL, and GC) are biarticular.

2. Model

2.1. Musculoskeletal model

We used the musculoskeletal model in [1, 2], originally constructed in [28]

(Fig. 1). For the skeletal model, we used seven rigid links that represent

the HAT (head, arms, and trunk), thighs, shanks, and feet. For the muscle

model, we used nine principal muscles for each leg; six muscles (IL, GM,

VA, BFS, TA, and SO) are uniarticular, and three (RF, BFL, and GC) are

biarticular.

A muscle receives command signals from its corresponding α-motoneuron

and generates muscle tension depending on the force-length and force-velocity
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relationships. We modeled muscle tension Fm (m = IL, GM, VA, BFS, TA,

SO, RF, BFL, and GC) based on a contractile element, and passive elastic

and damping elements parallel to the contractile element [1, 2]. Muscle

activation for the contractile element is given by a low-pass filter for the

output from the α-motoneuron determined in the nervous system model.

2.2. Nervous system model

We used the nervous system model for human bipedal walking constructed

in our previous work [1] (Fig. 2) and modified the phase transition rule based

on phase resetting to investigate sensory mechanisms to regulate the tran-

sition from the stance to swing phases. In our model, the output from α-

motoneuron consists of the following three components: 1) movement control,

2) phase resetting, and 3) posture control. The movement control produces

periodic signals in a feedforward fashion at the spinal cord level to create

periodic limb movements for forward motion. The phase resetting regulates

the timing to produce the feedforward signals of the movement controller at

the spinal cord level based on sensory signals. The posture control creates

command signals in a feedback fashion based on somatosensory information

at the brainstem and cerebellar levels to regulate postural behavior. The

output from α-motoneuron um is given by

um = Movm + Posm (1)

where Movm and Posm are the outputs of the movement and posture con-

trols, respectively.
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Figure 2: Nervous system model. Red blocks and arrows indicate movement control, blue

blocks and arrows indicate posture control, and green blocks and arrows indicate phase

resetting.

2.2.1. Movement control

Physiological studies suggest that central pattern generators (CPGs) in

the spinal cord strongly contribute to rhythmic limb movements, such as

locomotion [13, 29, 37]. Their organization remains unclear, and various

CPG models have been proposed [14, 24]. However, recent neurophysiological

findings suggest that CPGs consist of hierarchical networks composed of

rhythm generator (RG) and pattern formation (PF) networks [5, 23, 35,

36]. The RG network generates the basic rhythm and alters it by producing

phase shift and rhythm resetting based on sensory afferents and perturbations

(phase resetting). The PF network shapes the rhythm into spatiotemporal

patterns of the activation of the motoneurons through interneurons. CPGs

separately control the locomotor rhythm and the pattern of the motoneuron

activation in the RG and PF networks, respectively.

We constructed a locomotor CPG model based on a two-layered hierar-

chical network model. For the RG model, we employed two phase oscillators
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that follow the dynamics

φ̇left = ω − Kφ sin(φleft − φright − π)

φ̇right = ω − Kφ sin(φright − φleft − π) (2)

where φi (i = left, right) is the oscillator phase for the corresponding leg

(0 ≤ φi ≤ 2π), ω is the basic frequency, and Kφ is the gain parameter.

From analysis regarding muscle synergy, Ivanenko et al. [18, 19] showed

that although the electromyographic data recorded during human bipedal

walking are complex, they can be accounted for by a combination of only five

basic patterns. They suggested that CPGs produce the basic patterns and

manage the timing based on sensory information. The basic patterns are de-

livered to the α-motoneurons through interneurons, and the α-motoneurons

receive combinations of the basic patterns. Based on this suggestion, we used

five rectangular pulses CPGi(φ) (i = 1, . . . , 5) for the basic patterns for the

PF model inspired by [20, 21], whose timing of the initiation of bursting and

duration depend on oscillator phase φ from the RG model (Fig. 3A)

CPGi(φ) =

⎧⎨
⎩

1 φStart
i ≤ φ < φStart

i + Δφi

0 otherwise
i = 1, . . . , 5 (3)

where φStart
i is the phase value when the rectangular pulse starts to burst and

Δφi is the duration of the rectangular pulse. These five pulses are delivered

to the α-motoneurons, and the output of movement control Movm is given

by

Movm =
5∑

i=1

wmiCPGi(φ) (4)

where wmi is the weighting coefficient (wmi ≥ 0). As shown in Fig. 3B,

CPG3(φ) contributes to the liftoff of the stance leg to start the swing phase.
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Figure 3: CPG produces five basic patterns delivered to α-motoneurons and manages tim-

ing of firing based on sensory information. A shows five rectangular pulses and command

signals of movement controller composed of combination of five rectangular pulses. B

shows activated muscles by five rectangular pulses.

2.2.2. Phase resetting to regulate the stance-to-swing transition

Physiological findings suggest that CPGs manage the timing of firing of

the basic patterns [19]. In addition, the RG network in CPGs probably

modulates its basic rhythm by producing phase shifts and rhythm resetting

based on sensory information (phase resetting) [23, 35].

In this paper, we investigated the roles of the unloading and hip exten-

sion rules to regulate the transition from the stance to swing phases in the
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generation of adaptive bipedal walking. For that purpose, we reset oscillator

phase φ to start firing basic pattern CPG3(φ) based on these rules. For the

unloading rule, we used the muscle tension of ankle extensor muscle FSO and

reset oscillator phase φ when FSO < F ∗
SO. For the hip extension rule, we

used hip joint angle θHip and reset oscillator phase φ when θHip < θ∗Hip. To

incorporate phase resetting, we modified oscillator phase dynamics (2) by

φ̇left = ω − Kφ sin(φleft − φright − π) − (φleft − φLift)δ(t − tLift
left − τDelay)

φ̇right = ω − Kφ sin(φright − φleft − π) − (φright − φLift)δ(t − tLift
right − τDelay)

(5)

where δ(·) is Dirac’s delta function and tLift
i (i = left, right) and φLift are the

time and phase values to be reset when the condition for the rule is satisfied.

This phase resetting depends on the sensory information of the force of the

ankle extensor muscle for the unloading rule and the hip joint angle for the

hip extension rule. To incorporate the delay in the spinal cord that receives

the sensory information, we set the transmission delay τDelay to 30 ms.

2.2.3. Posture control

For posture control to regulate postural behavior at the brainstem and

cerebellar levels, we focused on two factors to maintain a vertical trunk pitch

and move the center of mass forward at the desired velocity [1].

For the trunk pitch, we determined the command Trum using muscles IL

and GM of the standing leg by

Trum =

⎧⎨
⎩

−KTrunk
m (θTrunk − θ̂Trunk) − DTrunk

m θ̇Trunk when GRF > 0

0 otherwise
(6)
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where θTrunk and θ̇Trunk are the trunk pitch angle and angular rate, θ̂Trunk is

the reference angle, KTrunk
m and DTrunk

m are the gain parameters (KTrunk
m =

DTrunk
m = 0 when m �= IL or GM), and GRF is the vertical ground reaction

force.

For the COM velocity, we determined the command COMm using muscles

TA and SO of the standing leg by

COMm =

⎧⎨
⎩

−KCOM
m (vCOM − v̂COM) when GRF > 0

0 otherwise
(7)

where vCOM is the COM velocity, v̂COM is its desired value, and KCOM
m is the

gain parameter (KCOM
m = 0 when m �= TA or SO).

By incorporating the transmission delay, we determined the output of the

posture control Posm by

Posm(t) = Trum(t − τSomato − τDescend) + COMm(t − τSomato − τDescend) (8)

where τSomato and τDescend are the delays in receiving transmission of so-

matosensory information at the brainstem and cerebellar levels and sending

the command signal to the spinal cord level, respectively.
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3. Results

3.1. Generation of steady walking

We conducted a numerical simulation based on our neuromusculoskeletal

model. To fairly compare the contributions of the unloading and hip exten-

sion rules, we determined parameters F ∗
SO, θ∗Hip, and φLift for phase resetting

to establish identical steady walking both with and without phase resetting,

similar to [1], as follows: F ∗
SO = 1.97 × 103 N, θ∗Hip = −0.207 rad, and

φLift = 2.53 rad, which allows us to clearly investigate the difference only

of the response to the perturbations. We used the same value for the other

parameters of the nervous system model as our previous work [1]. Figure 4

shows the simulation results. A shows the joint angles, where HC and TO

indicate heel contact and toe off, respectively. For the hip extension rule,

when the hip joint extends to be θHip < θ∗Hip before the end of the stance

phase, the oscillator phase is reset to regulate the transition from the stance

to swing phases. B illustrates simulated walking behavior with a stick dia-

gram and a display interval of 0.1 s. C shows the muscle tensions and the

command signals of the movement controller (MC) composed of a combi-

nation of five rectangular pulses. For the unloading rule, when the muscle

tension of the ankle extensor muscle FSO is less than F ∗
SO before the end of

the stance phase, the oscillator phase is reset.

3.2. Roles of unloading and hip extension rules in tolerance of perturbing

forces

To investigate the roles of the unloading and hip extension rules, we exam-

ined adaptability to the perturbing forces by comparing three cases: without
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Figure 4: Simulation results of steady walking. A: joint angles, B: stick diagram, and C:

muscle tensions (lines) and command signals of movement controller (MC) (gray blocks).

HC and TO indicate heel contact and toe off. θ∗Hip and F ∗
SO are thresholds for hip extension

and unloading rules, respectively.

phase resetting, phase resetting based on the hip extension rule, and phase

resetting based on the unloading rule. Specifically, after the walking model

established steady walking, we added a perturbing force for 100 ms to the

center of the mass of HAT in the horizontal direction (forward or backward)

and used various magnitudes and timings of perturbation to thoroughly ex-

amine the robustness of the responses.

Figure 5 shows the simulation results, where white boxes indicate that
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the walking model continued walking over 10 s after being disturbed, gray

boxes indicate that it fell down within 10 s after being disturbed, and black

boxes indicate that it fell down within 5 s after being disturbed. When we

used phase resetting based on the hip extension rule, the model easily fell

down compared to the results without it. On the other hand, when we used

phase resetting based on the unloading rule, the model kept walking longer,

indicating that the unloading rule increased the robustness of the responses.
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4. Discussion

In this paper, we investigated the sensory mechanisms to regulate the

transition from the stance to swing phases in the generation of adaptive hu-

man bipedal walking by modifying the phase resetting model in our previous

neuromusculoskeletal model [1]. In particular, we examined the contribu-

tions of the unloading and hip extension rules, inspired by neuro-mechanical

simulations for stepping in the hind legs of cats by Ekeberg and Pearson [9].

They prepared muscle activation patterns for four phases (swing, touchdown,

stance, and liftoff) related to limb movements and switched the phases based

on triggering rules. We prepared five basic patterns for muscle activations

inspired by the analysis of muscle synergy [18, 19] and controlled the timing

to start bursting of the basic pattern based on the unloading or the hip ex-

tension rule. Our simulation results showed that the unloading rule makes

a larger contribution than the hip extension rule to produce robust walking

against disturbances (Fig. 5), as observed in [9].

In the steady walking, the basic pattern of the movement controller re-

lated to the liftoff of the stance leg (CPG3) starts bursting before the force

of the ankle extensor muscle becomes low (Fig. 4), which caused us to use

a relatively high value for threshold F ∗
SO of the unloading rule and to reset

the oscillator phase just after the force of the ankle extensor muscle starts to

decrease. In addition, different from [9], our model has an intrinsic rhythm

by using a CPG model and uses the coupling between the phase oscillators in

(5) that helps produce stable alternating leg movements [1]. Of course, there

are also differences in the musculoskeletal systems of cats and humans, but

our simulation results showed that the unloading rule increases the robust-
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ness of the responses more than the hip extension rule, as observed in [9],

which suggests that such sensory mechanism is a general property for pro-

ducing locomotor behavior and is also embedded in the neuro-control system

of human bipedal walking.

Humans and animals integrate various sensory information and create

motor commands. To produce adaptive and efficient movements, the kind

of sensory information they use and when and how they use it is crucial.

Modulating the timing to produce motor commands based on sensory infor-

mation during locomotion allows both humans and animals to regulate the

locomotor rhythm and movements depending on the situations. However,

different sensory information causes different dynamic characteristics in lo-

comotor behavior, as investigated in this paper and [9]. Humans and animals

must use adequate sensory information at proper timing. Computer simu-

lation seems a useful tool to examine sensorimotor integration mechanisms

during locomotion.

Many studies have elucidated the adaptation mechanisms in humans and

animals. Physiological studies have investigated the configurations and ac-

tivities of neural networks that contribute to locomotor behavior, revealing

the important roles in controlling movements in nervous systems [13, 25, 29,

34, 37, 41]. However, there are limitations to fully elucidate the mechanisms

from nervous systems alone, since locomotion is a well-organized motion pro-

duced through dynamic interactions among the body, the nervous system,

and the environment. To surmount limitations, various approaches have

been conducted. One approach is a simulation study to investigate neuro-

mechanical interactions by constructing neuromusculoskeletal models based
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on physiological and anatomical findings, as performed in this paper. An-

other is a robotic study to demonstrate real-world dynamic characteristics by

constructing legged robots and their control systems based on physiological

findings [7, 11, 16, 22, 27, 31, 33]. Although many sophisticated robots have

recently been developed, a clear design principle has not been established to

create adaptive locomotor behavior, as in humans and animals. When the

functional roles in the neuro-control mechanisms are clarified from the simu-

lation studies, those findings can be applied to improve the control systems of

robots. Actually, the phase resetting mechanism in this paper has been used

for robot controllers to produce adaptive walking [3, 4, 26, 27]. Constructive

approaches using computer simulations and robots are expected to improve

the understanding of the neuro-control mechanisms in humans and animals.
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