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Abstract 

Embryonic development of multi-cellular organisms is governed by gene regulatory networks (GRNs), which are a collection 

of genes that interact with one another and with other chemicals in the cell. Inspired by the morphogenesis of biological 

organisms, in this paper, we propose a morphogenetic approach using a gene regulatory network (GRN) for swarm robotic 

systems to form complex shapes in a distributed manner.  The target pattern, represented by non-uniform rational B-spline 

(NURBS), is embedded into the gene regulatory model, analogous to the morphogen gradients in multi-cellular development. 

Since the total number of robots is unknown to each robot, a dynamic neighborhood adaptation mechanism is proposed to evenly 

deploy the robots on the boundary of the target pattern. A theoretical proof of the system convergence is provided. Various 

simulation studies demonstrate that the proposed algorithm offers an effective and robust distributed control mechanism for 

swarm robotic systems to construct complex shapes. Furthermore, proof-of-concept experiments were successfully undertaken 

using e-puck mobile robots, which demonstrate that the proposed model works well with physical constraints of real robots.    
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1. Introduction 

 

Swarm robots involve a large number of simple robots 

with limited computing, communication and sensing 

capabilities. Compared to more expensive and sophisticated 

individual robots, swarm robots are able to accomplish 

inherently distributed tasks in the presence of uncertainties. 

To this end, we need to develop self-organizing algorithms 

for swarm robotic systems, whose global behaviors emerged 

from local interactions of the robots are flexible and robust to 

the changing environments.   

Major applications of self-organizing swarm robotic 

systems include surveillance and monitoring of large areas, 

urban search and rescue, deployment of sensor networks [1, 

2], large area exploration [3], hazardous material collection, 

mine detection, map building [4], among others. One 

common requirement in these tasks is that robots need to 

form complex shapes to accomplish the given task. 

Therefore, we concentrate in this work on complex shape 

formation for swarm robotic systems, which, nevertheless 

serves as an example of real-world problems where 

self-organization and self-repair are indispensible. 

In the last two decades, multi-robot pattern formation has 

been extensively studied. Initially, most research work 

focuses on leader/neighbor-following formation [5-10], 

where the major control goal is to keep the consensus of the 

robots’ movements, and most of the methods are supported 

by a rigorous theoretical proof of the system convergence. 

Later on, some potential-field based methods [11-21] have 

been developed for formatting various patterns, where robots 

follow the gradients of the potential fields, which is the sum 

of the virtual attractive and repulsive forces. However, due to 

the inherent features of potential fields, sometimes robots 

may get trapped at some local optimal points.  

Recently, a few bio-inspired methods have been proposed 

for robust pattern formation, which either use hormone-based 

models [22, 23] or cellular mechanisms [24-29]. Most of 

these algorithms have demonstrated promising results for 

simple clustering or migration tasks. However, more 

complex behaviors such as deploying a group of robots onto 

the boundary of particular complex patterns remain to be 

achieved. Furthermore, most bio-inspired approaches only 

provide heuristic local rules and cannot provide theoretical 

proof of the system convergence.  To tackle these issues, in 

this paper, we develop a new bio-inspired approach for 

distributed multi-robot pattern formation with a theoretical 

proof of system convergence.   

This work is mainly inspired by the biological 

morphogenesis in multi-cellular organisms. Increasing 

evidence has shown that biological morphogenesis is a 

self-organizing and self-assembling process through cellular 

and molecular interactions under genetic and environmental 
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control [30]. The process of multi-cellular morphogenesis is 

under the control of gene regulatory networks (GRNs), and 

many computational models for GRNs have been proposed 

[31-33]. These models not only help us in understanding 

biological processes, but also provide us new powerful tools 

for designing engineering systems, such as self-organizing 

robotic systems.   

In biological systems, zygotes containing the same genetic 

material will grow into a multi-cellular organism with the 

similar phenotype despite that they are in slightly different 

environments and that genetic changes occur from time to 

time during the development. Biological morphogenesis can 

be seen as a self-organization process where cells move to 

their destination governed by gene regulatory dynamics and 

cell-cell interactions.  

The basic idea of the self-organizing algorithm proposed 

in this work is inspired from biological morphogenesis. In the 

approach, each robot is seen as a cell containing a virtual 

DNA (a GRN-based controller), in which the target global 

pattern formation is encoded.  By following the control 

dynamics described by this GRN-based controller, the robots 

are able to form the global target pattern in a distributed 

manner.   

A preliminary GRN-based model for multi-robot 

formation was reported in our previous work [34], where we 

showed that the model is scalable to the number of robots, 

and is robust to parameter changes and individual robot 

failures [35]. However, the previous model has several major 

limitations. First, robots can only build simple shapes such as 

circles or squares as an analytic function has to be used for 

describing the target shape. Second, the total number of 

robots in the system is assumed to be known to the robots for 

an even deployment on the target pattern. Third, the model 

was verified in simulations only.  

This paper substantially extends our preliminary model in 

the following ways:  (1) A new shape representation method 

is proposed using the non-uniform rational B-spline 

(NURBS) model [36], which is a powerful tool for 

representing arbitrarily complex 2D or 3D shapes that may or 

may not be described by an analytic function. (2) The total 

number of robots in the system needs not to be known 

beforehand. To this end, a neighborhood adaptation 

mechanism is proposed to automatically adjust the distance 

between the neighboring robots so that robots will be evenly 

deployed on the target pattern. (3) A theoretical proof of the 

system convergence to the target pattern is provided to 

guarantee that the multi-robot system can eventually 

converge to any target pattern that can be defined by a 

NURBS representation. (4) Two proof-of-concept 

experiments using multiple e-puck mobile robots are 

performed in an indoor environment to evaluate the 

feasibility and effectiveness of the proposed model with 

physical constraints of robots. 

The paper is organized as follows.   Section 2 describes the 

problem statement.  The morphogenetic approach using a 

GRN-based controller for self-organizing swarm robotic 

systems is presented in Section 3, together with a theoretical 

proof of system convergence. The neighborhood adaptation 

mechanism is also described in Section 3. To evaluate the 

effectiveness and robustness of the proposed method, various 

simulation scenarios have been studied and discussed in 

Section 4. Experimental results using e-puck mobile robots 

are given in Section 5. Conclusions and future work are 

presented in Section 6. 

 

2. Problem Statement   

 

The problem we are considering in this paper is to deploy a 

swarm of autonomous mobile robots onto the boundary of 

arbitrarily complex 2D/3D target pattern as evenly as 

possible. A general assumption is that each robot has limited 

computing power and limited communication and sensing 

capabilities. 

A few more specific assumptions have also been made for 

this model.  First, each robot can localize itself within a 

global coordinate system using its onboard sensors, such as 

encoders and gyroscope.  Second, each robot can measure the 

relative distance to its neighbors if they are within its sensor 

range using their onboard distance sensors, such as sonar or 

infrared sensors. Each robot can communicate with its local 

neighbors within its sensor communication range. Third, 

since this is a distributed homogeneous multi-robot system, 

each robot has to make its own decisions using the same 

proposed GRN-based controller based on its own local 

environment and interactions with other robots. Last, the 

global target pattern represented by the NURBS model is 

embedded into the GRN-based controller.  But each robot 

doesn’t know its own destination position on the target 

pattern. In other words, each robot has to make its own 

decisions (based on its local view of the environment) to find 

an appropriate destination position on the target pattern.    

 Please be noted that providing the information of the 

target pattern to each robot doesn’t mean that the proposed 

method is a centralized approach since no robot has a global 

view of the whole system and there is no centralized control 

in the system, as discussed in [37].      

 

3. The Approach 

3.1. Computational Models of Gene Regulation 

Multi-cellular morphogenesis is under the control of gene 

regulatory networks. When a gene is expressed, information 

stored in the genome is transcribed into mRNA and then 

translated into proteins. Some of these proteins are 

transcription factors that can regulate the expression of their 

own or other genes, thus resulting in a complex network of 

interacting genes termed as a gene regulatory network 

(GRN). To understand the emergent morphology resulting 

from the interactions of genes in a regulatory network, 

reconstruction of gene regulatory pathways using a 

computational model has become popular in systems biology 

[38].  A large number of computational models for GRNs 

have been suggested [31-33, 39, 40,].  Among others, 



 

 

 

ordinary or partial differential equations have widely been 

used to model regulatory networks.     

The model used for self-organizing swarm robotic systems 

in this work is basically inspired from a GRN model for 

describing the gene expression data of developmental 

processes [41], which can be considered as a generalized 

reaction-diffusion model with a sigmoid function: 
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where ijg denotes the concentration of j-th gene product 

(protein)  in the i-th cell.  The first term on the right-hand side 

of Eqn. (1) represents the degradation of the protein at a rate 

of j , the second term specifies the production of protein ijg , 

and the last term describes protein diffusion at a rate of jD .  

  is an activation function for the protein production, which 

is usually defined as a sigmoid 

function ( ) 1/(1 exp( ))z z    .  The interaction between 

the genes is described with an interaction matrix jlW , the 

element of which can be either active (a positive value) or 

repressive (a negative value).  j  is a threshold  for 

activation of gene expression.  ng is the number of proteins.   

3.2. Shape Representation Using NURBS  

     We use the non-uniform rational B-spline (NURBS) 

model to represent complex shapes to be constructed by the 

robots. NURBS is a mathematical model commonly used in 

computer graphics and structural design for generating and 

representing curves and surfaces. NURBS can offer one 

common mathematical form for both analytic and freeform 

shapes.   

A NURBS curve is defined by its order, a set of weighted 

control points, and a knot vector.  The control points define 

the shape of the curve, and the knot vector is a set of 

parameters that determines where and how the control points 

affect the NURBS curve. A NURBS model can represent 

both curve and surface in a two- or three-dimensional 

Cartesian space. Let , ( )i kB u  be the B-spline basis functions 

of the NURBS model, where i corresponds to i-th control 

point, and k denotes the degree of the basis function. In the 

NURBS model, a curve can be defined as a combination of a 

set of piecewise rational basis functions with n+1 control 

points pi and the associated weights iw as follows [36]: 

,
1

,
1

( )

( )

( )

n

i i i k
i

n

j j k
j

w B u

u

w B u











p

c                                   (2) 

where n is the number of control points, u is a parameter in 

the NURBS representation. For basis functions of degree k-1, 

a NURBS curve has n+k+1 knots ti in a non-decreasing 

sequence: 0 1 ... n kt t t    . The basis functions are defined 

recursively as: 
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The range of the parameter is 1 1k kt u t   . The readers are 

referred to [42] and [36] for a more detailed description of 

NURBS.  

3.3. The GRN-based Model  

In the GRN-based model, it is assumed that each robot 

corresponds to a single cell in a cell-robot metaphor. Within 

each cell, there are two different types of protein products, 

namely types G and P. Protein type G consists of two 

proteins, which correspond to the x and y positions of a robot 

in a 2D environment, respectively. If a 3D shape is to be 

formed, then three proteins of type G are needed to describe 

the position of the robot.  Similarly, protein type P consists of 

two proteins for a 2D environment and three proteins for a 3D 

environment, which represent an internal state vector of the 

robot.  Meanwhile, proteins of type G can diffuse into the 

neighboring cells, thus influencing the protein production in 

these cells. This kind of local diffusion through cell-cell 

signaling can, in the robot metaphor, prevent the robot from 

colliding with its neighbors. Finally, the production of 

proteins is regulated by a maternal morphogen gradient M, 

which corresponds to the embedded information of the target 

pattern for the robots to form.  

From the biological point of view, the regulatory 

relationship between the artificial morphogen M, protein type 

P and protein type G can be depicted in Fig. 1. In Fig. 1, we 

can see that morphogen M regulates the production of both 

protein type P and protein type G (indicated by the arrow).  

Protein type P can also regulate the production of protein 

type G, and protein type P can auto-regulate itself.  
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Fig. 1. The GRN structure in our model (from biological system 

point of view). 

 

Based on the structure illustrated in Fig. 1, the dynamics of 

the GRN controller for robots to build a 2D pattern can be 

described by the following differential equations: 
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where i is the index of robot, i =1,2,…, n, and n is the total 

number of robots in the system. yixi gg ,,  and are x-, 

y-position of robot i, respectively (corresponding to protein 

concentrations of type G  in cell). yixi pp ,,  and  represent the 

internal states of robot i (corresponding to protein 

concentrations of type P in cell i).   For any 3D pattern 

formation, we only need to add one more vector on the 

z-coordinate which can be defined similarly as x- and 

y-coordinate. This rule will be applied to all the following 

variables as well.      

In Eqn. (4), the first term denotes the decay of the internal 

state vector },{ ., yixi ppp , the third term denotes the 

diffusion process. iD denotes the sum of normalized 

distances to robot i from its neighboring robots 

(corresponding to the overall diffused protein concentration 

perceived by cell i emitted from its neighboring cells), which 

is defined as: 
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where Ni denotes the number of  neighbors of robot i.  
j
yi

j
xi DD ,,  and  represent the normalized distances in x- and  

y-coordinate from robot j to robot i , respectively 

(corresponding to the protein diffusions from cell j to cell i ) 

which are defined as followings: 
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 a, b, c, m, and k are constant coefficients.  

The target pattern defined by NURBS into the GRN-based 

model for pattern formation is embedded into the second 

term in Eqn. (4), where )( ,xiwf and )( , yiwf is defined as the 

following sigmoid function:   
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        (8)                        

And },{ ., yixi www is defined as  

)(     ),( ,,,,,, ucgwucgw yiyiyixixixi                (9)                         

where )( and )( ,, ucuc yixi are x- and y-coordinates of a 2D 

target curve represented by the NURBS model.  Here, u is the 

parameter of NURBS model ranging from 0 to 1.   According 

to our model, given a fixed u  [0,1] and Eqns. (3) and (4), 

robots should be able to converge to a point on the target 

pattern represented by the NURBS model. Ideally, robot i 

should go to an unoccupied point on the target pattern closest 

to its current position. To this end, the u for the robot i ( iu ) 

should satisfy the following condition: 

)min(arg 2
,

2
, yixii wwu  .                          (10) 

Since we do not have an analytic function to calculate 

)(c and )( ,, uuc yixi , we discretize u in the range of [0,1] based 

on the estimated number of robots in the system, which will 

be discuss in detail in Section 3.7.  Assume that there are n 

robots in the system based on the estimation, u can be 

discretized into u = [0, 1/(n-1), 2/(n-1), …, 1]. 

     Since none of the robots have any predefined position on 

the target pattern, each robot has to randomly pick one of the 

values (i.e., one destination point) from u. Thus, it is possible 

that more than one robot picks the same destination point.   

However, due to the diffusion term in Eqn. (4), robots will 

adjust their dynamics automatically to keep a certain distance 

from each other. Eventually, each robot will pick a unique u 

value that leads to the minimization of Eqn. (10) based on the 

local interaction between the robots. Similarly, the diffusion 

term in Eqn. (4) can also be used for robot-obstacle 

avoidances. When a robot is near an obstacle, it would sense 

its distance to the obstacle, and thus a diffusion term is 

generated and added into Eqn. (4). This diffusion term would 

influence the motion dynamics of the robot so as to keep the 

robot away from the obstacle. 

3.4. Discussions 

From Eqn. (3), we can see that the robot aims to reduce the 

position errors from its current position to the 

dynamically-selected destination position on the target 

pattern represented by NURBS model. Meanwhile, it is also 

regulated by the internal state vector p, which consists of 

auto-regulation from itself and diffusion regulation from/to 

other robots or obstacles.      

From the engineering control point of view, the proposed 

GRN model can be illustrated in Fig. 2, where it is a position 

control system with several intricately interplayed regulation 

terms: feedback regulation, feed forward regulation, auto 

regulation and diffusion regulation. It is this intricate 

interplay of different regulations in the GRN model that 

makes the proposed model to be robust to both internal and 

external system perturbations.  

Different to the potential-field based gradient-following 

algorithms, in which the gradient information is passed to the 

robot only once, in our GRN-based model, the morphogen 

gradient will regulate two types of proteins (i.e., G and P) 

simultaneously, as shown in Fig. 1. This coherent regulation 

is helpful for preventing the robots from being trapped in 

local optima.  As we know that local optimal are the points 

that make either Eqn. (3) or (4) equal to zero. In our model, 

even when either Eqn. (3) or (4) equals zero, the other 

equation will still enable the robot to change its dynamics, 

which get the robot move out of the local optimum. Note, 

however, the problem of getting trapped in a local optimum 

has not been fully resolved in the proposed model. 



 

 

 

Nevertheless, the probability of a robot being getting trapped 

in a local optimum can be reduced significantly in this model.  
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Fig. 2 The GRN-based model from engineering perspective 

 

So far, we have introduced the morphogenetic approach 

for swarm robots pattern formation. Two important questions 

remain to be answered. First, how to guarantee that all robots 

will converge to the target pattern given the dynamics 

described in Eqns. (3) and (4)?  Second, how do we optimize 

the local behaviors of each robot to achieve optimal global 

behavior? We will address these two issues in the next 

sections.  

3.5. Theoretical Analysis of System Convergence 

In this subsection, we will analyze the dynamics of the 

GRN-based model and show theoretically that robots driven 

by the dynamics described in Eqns. (3) and (4) will move to 

the target pattern defined by the NURBS model and stabilize 

there. 

As clarity, we will first neglect the diffusion term in Eqns. 

(4) in the following proof. We will come back to this point 

later.  By neglecting the diffusion term, Eqns. (3) and (4) can 

be rewritten as follows: 
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Here, we also omit the subscript i since it is a homogeneous 

system and all robots share the same dynamics.   

We will introduce the following lemma before giving the 

main result on the system convergence. 

 

Lemma 1: For the sigmoid activation function defined in Eqn. 

(8), | ( ) | | |f x x  holds for all x .  

 

The proof is straightforward and thus omitted here. 

  

Theorem 1: The system states  and x yg g  in Eqn. (11) will 

converge to the target pattern defined by the NURBS model 

and the states  and x yp p  in Eqn. (12) will converge to zero, 

provided that m k a c   and , , , 0k c a m  . 

 

Proof: According to Invariant Set Theory [43], we can 

conclude that the system defined by Eqns. (11) and (12) is 

asymptotically stable if we can find a scalar function 

( , , , )x y x yV g g p p  that satisfies the following conditions:  

(1) ( , , , )x y x yV g g p p is positive definite; 

       (2) ( , , , )x y x yV g g p p


is negative semi-definite; 

       (3) The set of points that satisfy the condition  0
dV

dt
  

are all on the target pattern defined by the NURBS model. 

 

The four parameters, a, m, c, and k in the GRN-based 

model should all be positive for the system to be stable. The 

following scalar function can be defined: 
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 >0. From Eqn. (9), we know 

that )(   and  )( ucgwucgw yyyxxx   and. Although u 

may change occasionally to satisfy Eqn. (10) during the 

convergence, it is nevertheless a time-invariant constant. 

Therefore, we can assume that 0/))(( dtucd x and 

0/))(( dtucd x .  Then we have  

dt

dg

dt

dw xx      and  
dt
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dt
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Now we will follow the steps of Invariant Set Theory to prove 

that the system will converge asymptotically.  

 (1) 0V( s )  , which is obvious since s>0 
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   , i.e., m k a c   , then 0

dV

dt
 . 

 

Now we need to verify that the states in Eqn. (11) will 

converge to the target pattern, provided that 0
dV

dt
  holds.   

(3) When 0
dV

dt
 , all the ‘less than’ conditions should 

satisfy the ‘equal to’ condition, which means that 

| ( ) | | |f w w  becomes | ( ) | | |f w w . From Lemma 1, 

| ( ) | | |f w w if and only if 0w  .  Therefore, if 0
dV

dt
 , we 

have 0xw   and 0yw   which means that 

( ) 0x xg g u  and ( ) 0y yg g u  , where u is a constant 

ranging from 0 to 1.  In other words, ( )x xg g u  and 

( )y yg g u hold when the system is stable. Since ( , )x yg g   

denotes the position of the robots, and ( ( ), ( )x yg u g u ) 

defines a certain point on the target pattern, we can conclude 

that when 0
dV

dt
 , all robots driven by the regulatory 

dynamics described by Eqns. (11) and (12) will converge to 

the target pattern. This completes the proof. 

 

According to the above theorem, we show that all robots will 

converge to the target pattern, provided that m k a c   and 

, , , 0k c a m  . 

The above proof was given by omitting the diffusion term 

in Eqn. (4). We now explain that this omission does not affect 

the convergence proof if the neighborhood of the robots is 

defined such that nd T , where dn is the neighborhood size, 

T is a threshold, which is defined as T = L/n for closed-form 

shapes and T = (L-1)/n for open-form shapes, where L is the 

total length of the periphery of the target shape, and n is the 

number of robots. We can distinguish three cases under this 

condition. In the first case, the distance between all 

neighboring robots on the target shape is larger than dn, then 

the diffusion term defined in Eqn. (5) equals zero 

automatically. In the case that the initial distance between 

some of the neighboring robots on the target shape is smaller 

than the neighborhood size, these two robots will push away 

from each other driven by the diffusion term until the distance 

is equal to or greater  than the neighborhood size. Then the 

diffusion term will disappear too. Ideally, if nd T , then the 

robots will distribute evenly on the target shape while the 

convergence condition is not violated, but this statement 

holds only for those shapes that consist of linear curves.  For 

shapes that consist of non-linear curves, dn is actually greater 

than T, which belongs to the third case.  Finally, if nd T , 

which is the third case, then some of the robots may be 

pushed away from the target shape until the diffusion term 

equals zero. Note however, that a neighborhood adaptation 

has been proposed, which is able to adapt the neighborhood 

size such that dn will be smaller than or equal to T. 

According to the analysis, the neighborhood size is critical 

to the system convergence. Therefore, we propose a 

neighborhood adaptation mechanism (will be discussed next), 

which will ensure the robots to reach an optimal 

neighborhood.   

3.6. Parameter Selection through Multi-Objective 

Optimization 

The proof in the previous section indicates under which 

condition the robots converge to the target pattern. In this 

section, we will further optimize the system performance by 

tuning the parameters in the regulatory model. In this work, 

we consider two performance indices, namely, the total 

traveling distance of all robots and the time for the whole 

system to converge to the target pattern. This can be seen as a 

multi-objective optimization (MOO) problem, where the 

objective function is no longer a scalar value, but a vector. As 

a consequence, a number of Pareto-optimal solutions should 

be achieved instead of one single optimal solution.  

In this paper, NSGA-II [44], which is a popular and 

efficient evolutionary algorithm for solving multi-objective 

optimization problems, has been adopted for optimizing the 

parameters of the GRN-based self-organization model. 

Simulated binary crossover (SBX) [45-46] and polynomial 

mutation [44] have been employed to generate offspring.  

After the offspring population is generated, the elitist 

non-dominated sorting algorithm is used for selecting parents 

for the next generation. As a result, a set of Pareto-optimal 

solutions that tradeoff between the convergence time and the 

travel distance of the robots have been achieved.  It should be 

pointed out that by using NSGA-II, which is a stochastic 

search algorithm, we cannot guarantee that we can always 

find the global Pareto-optimal solutions. Fortunately, our 

problem is a small optimization problem with 5 parameters 

that are well defined to satisfy the convergence condition. 

Meanwhile, it is also sufficient for us even if we achieve a set 

of local Pareto-optimal solutions.  



 

 

 

3.7. Neighborhood Adaptation Mechanism 

We have assumed that the total number of robots in the 

system is unknown to the robots.  In order to deploy the 

robots on the boundary of the target pattern as evenly as 

possible, an algorithm for adapting the local neighborhood 

size is needed.    

Since the target pattern is given, the length of the perimeter 

of the target pattern can be calculated, which is notated as L. 

The adaptation process starts with an initial neighborhood 

size d0. Theoretically, the needed number of robots is n’= L/ 

d0 to cover the boundary evenly. With this estimated number 

of robots, n’ points can be generated on the target pattern 

according to the NURBS. The robots will then move to the 

generated points autonomously driven by the GRN dynamics. 

If d0 is too small, i.e., the number of generated desired points 

is larger than the number of robots, some of the points will 

not be covered by any robot. As a result, some of the robots 

will detect that they have only one neighboring robot within 

its neighborhood. In this case, neighborhood size d0 should 

be increased.  

    On the other hand, if d0  is too large, i.e., the number of 

generated desired points is smaller than the number of robots, 

there must be some robots competing for the same point on 

the target pattern, resulting in a large positioning error, which 

can be detected by comparing the real and the desired 

positions of the robot. Here, the desired position can be 

calculated from the parameterized target pattern 

representation and the real position can be estimated from the 

self-localization mechanism of the robot.  

A robot that either has insufficient number of neighbors or 

has a large positioning error will send a signal to its neighbors 

(and its neighbors will send this information to their 

neighbors, etc.) so that all robots know that an adaptation of 

the neighborhood size is necessary. Note that the 

neighborhood size should be limited by two physical 

parameters of the robot, i.e., the bumper range and the sensor 

range.  

The major steps of the neighborhood size adaptation are 

listed as follows. 

1) Initialization: d_min and d_max are initialized as the 

bumper range and sensor detection range of a robot, 

respectively, and the initial neighborhood size is 

estimated by 

0
2

d _ min d _ max
d


                                 (15) 

2) If 0d is too small, we keep d_max the same and  update 

d_min and 0d  as follows: 

0d _ min d                                                (16) 

0 0

1

2
d ( d d _ max)                                  (17) 

3) If 0d  is too large, we keep d_min the same and update 

d_max and 0d as follows: 

0d _ max d                                              (18) 

0 0

1

2
d ( d d _ min)                                  (19) 

4) Repeat step (2) or (3) until the optimal neighborhood 

size is found. 

 

To save the computational cost, when 

0
*| d d |   ,                                 (20) 

we assume that a robot has found the optimal neighborhood 

and does not need to update 0d  anymore, where   is a 

predefined threshold. 

From the adaptation process, we can see that the system 

requires communications among the robots. Furthermore, in 

the adaptation mechanism, a robot only needs to 

communicate with its neighbors when it realizes that 

0d needs to be updated (either the robot has insufficient 

number of neighbors or it has a large positioning error). 

Therefore, the number of iterations that robots need to update 

0d  can be used as the metric to measure the communication 

load. 

The proposed neighborhood adaptation mechanism is a 

typical searching problem. The largest number of 

communication iteration needed between robots to find the 

optimal neighborhood can be estimated by: 
















 




min_max_
log2

dd
n                     (21) 

where  x  denotes the floor of x (i.e., the largest integer 

less than or equal to x). 

The probability that a robot needs k ( 0 k n  ) 

communication iteration with others to find the optimal 

neighborhood range is: 

Case 1: when k = 0, which means that *d  is within the 

range of * *
0 0[ , ]d d d d  , so the probability is 

2

_ max _ min
kP

d d





  .                       (22) 

Case 2: when 0<k<n, every time 0d  is updated and a new 

search is started, the search space will shrink by half. Thus, 

the probability at which *d  is found on this iteration will be 

twice that of the previous iteration, but this is a conditional 

probability given that  
*d  has not been found in the previous 

(k-1) iterations, so the probability will be: 
11

0

2
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Case 3: when k = n, *d has been found, so the probability 

is equal to the probability at which  *d  has not been found in 

the previous n-1 iteration:  
1

0

1
k

k i
i

P P




                                         (24) 

Therefore, the expected number of updates can be 

expressed as: 



 

 

 




n
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kkPE
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                                         (25) 

Due to the complexity of Eqns. (23) and (24), it is hard to 

provide a simple analytical function of the expected number 

of updates.  We will give an example to show the number of 

needed update iterations for the robots to reach *d .  Here, we 

shall clarify that each time a robot updates 0d , all other 

robots will perform the same update so that all robots keep  

the same 0d . In this way, all the robots in the system have the 

same communication load.  The system’s communication 

load can be gauged as n times of individual robot’s 

communication load, where n is the number of robots in the 

system. 

Suppose that 2d _ min  , 200d _ max  , and 0.5  , 

30000 independent experimental runs have been conducted, 

where *d  is set to be a random variable with a uniform 

distribution between d _ min  and d _ max . In this case study, 

the maximum number n required for updates can be estimated 

by Eqn. (21) as: 

8
min_max_

log2 














 




dd
n . 

Fig. 3 shows the distribution of the number of updates 

needed. From Fig. 3, we can see that after 5 or 6 iterations of 

adjustments of 0d , the robots will reach the expected optimal 

neighborhood size. In other words, the communication load 

for this procedure is acceptable.  Furthermore, from Eqns. 

(22) to (25), we can see that each robot’s communication load 

is independent of the number of robots in the system. The 

overall communication load of the system will be increased 

proportionally to the number of robots in the system. In other 

words, the communication load is scalable to large-scale 

systems.  
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Fig.3. The histogram of the number of iterations needed to achieve 

the optimal neighborhood size with the mean value of 5.7576 and 

the standard deviation of 1.3903. 

 

Please be noted that as a robot moves around, the number 

of neighbors of the robot is changing. If there are n robots in 

the system, for any robot, it can have up to (n-1) neighbors. 

The probability of any two robots being neighbors can be 

defined as 
2

0d
p

S


 , where d0 is the robot’s neighbor range 

and S is the area size of the environment. Therefore, the 

expected number of neighbors of a robot can be estimated by 

S

d
nE

2
0)1(


 . 

3.8. Computational Complexity  

Since each robot needs to calculate two differential 

equations (i.e., Eqns. (3) and (4)) independently, the 

computational complexity of the proposed model does not 

change as the number of robots increases. Therefore, the 

general computational complexity of the GRN-based 

controller is O(1).  

However, there are two other factors that will affect the 

computational complexity of the proposed algorithm. As the 

number of neighbors of a robot increases, the computation 

complexity will increase accordingly because it needs to sum 

up the diffused protein values from those neighbors. The 

complexity can be represented as O(q), where q is the number 

of neighbors of a robot.  As we mentioned in the last 

sub-section, q is changing as the robot moves around. 

Another term that will affect the complexity of the 

framework is the number of iterations needed for the 

neighborhood adaptation mechanism. As we have explained 

in Section 3, we used an efficient searching algorithm to 

reduce the number of communication iterations. The largest 

iterations needed for the adaptation mechanism is 

 minmax2(log dd  , where  x represents the ceiling of x 

(i.e., the largest integer less than or equal to x).  mind and 

maxd are the bumper range and sensor detection range of the 

robot, respectively. The complexity of this term can be 

represented as   2(log1 minmax2 ddO  . Thus, the 

overall complexity of the presented algorithm for each robot 

is  2 max min(1) ( ) 1 log ( 2O O q O d d      .   

 

4. Simulation Results and Analysis 

4.1. Parameters Setup using NSGA-II 

To evaluate the effectiveness and robustness of the 

proposed method, we conducted a sequence of case studies 

using MATLAB.  Five parameters, a, m, c, k, and b in Eqns. 

(3) and (4), are optimized using NSGA-II. The goal of the 

optimization is to minimize the travel distance of robots and 

the convergence time while ensuring the system convergence, 

as discussed in the previous section. 

In our simulation, the number of robots is 20 and the target 

pattern is the capital letter “R”. The population size of 

NSGA-II is 100. The crossover probability is 0.9 and the 

distribution index for SBX is 20.  Mutation probability is 

defined to be inversely proportional to the number of the 

decision variables, which is 5 in our case, therefore, the 

mutation probability is 0.2 and the distribution index for 

mutation is 20. The above parameter setup is chosen as 

recommended in [44]. The evolution runs for 50 generations. 



 

 

 

Parameters k, c, a, and m are randomly initialized between 1 

and 100 and b is randomly initialized between 200 and 1000, 

Here, we predefine a large value for the diffusion constant b 

to allow the robots to move far away from each other so that 

they can select  different target positions when robots are 

close to each other.  

Since the final goal of the swarm robotic system is to 

distribute the robots onto the target pattern, the position error 

to the target pattern should be as small as possible after 

convergence. Therefore, we define a threshold for the 

average position error between the robots’ final position and 

the target pattern as a constraint of this optimization problem 

when using NSGA-II.  In the following experiments, we set 

this threshold to be T, and T is defined as 0.05 for the 

following case studies.     

     The Pareto-optimal solutions achieved by NSGA-II are 

plotted in Fig. 4, where there are largely three groups of 

Pareto-optimal solutions. The optimized parameters of a 

typical solution in each of the three groups (i.e., those 

solutions indicated by the arrows) are listed in Table I.  The 

unit for convergence time is second and the unit for travel 

distance is meter.  This unit definition is applicable to all the 

following simulation results.  
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Fig. 4. The Pareto-optimal solutions achieved by NSGA-II. The 

unit for travel distance is meter and the unit for convergence time is 

second. (Note: each arrow indicates a single solution it is pointing 

to.)  

 

From Fig. 4, we can see that if we want to minimize the 

total travel distance, we have to sacrifice the system 

convergence time, and vice versa.  This is always true from 

the control point of view, where the system’s response time 

and convergence time always conflict with each other. The 

Pareto-optimal solutions depicted in Fig. 4 are helpful for 

users to design the system parameters based on their specific 

requirements.  For example, if the user concerns more about 

the convergence time, the Pareto-optimal solutions close to 

solution (a) is preferred. If the user wants to have a shorter 

travel distance to save energy, it is better to pick the 

Pareto-optimal solutions close to solution (c).  Without loss 

of generality, we pick solution (b) for the following case 

studies, which has a good balance between the total travel 

distance and convergence time. The parameters of solution (b) 

are used in the following simulations unless otherwise 

specified.  
 

TABLE I 

THE PARETO-OPTIMAL SOLUTIONS 

 
k c B a m 

td 

(m) 

ct 

(s) 

(a) 45.88 69.13 387.5 69.28 63.77 198.76 0.15 

(b) 79.46 70.06 420.8 44.39 6.85 189.49 0.22 

(c) 91.81 57.65 599.9 16.04 1.00 185.67 0.48 

Note: td refers to travel distance and ct refers to the convergence time.  

 

4.2. Formation of 2D/3D Shapes 

First, we conduct a set of experiments in a 2D 

environment, as shown in Fig. 5. The simulation environment 

is a 44m x 44m square. The target pattern consists of five 

capital letters ‘NURBS’. This shape information defined by 

NURBS is embedded in the GRN-based controller for each 

robot. A set of snapshots of the self-organization procedure 

using 56 robots for forming the five letters are shown Fig. 5. 

Additionally, we conduct a set of experiments in a 3D 

environment of 10m x 10m x 10m, as shown in Fig. 6 and Fig. 

7, to form 3D curves with 12 robots and 3D surfaces with 24 

robots, respectively. For the 3D simulations, we add ,i zg  and 

,i zp  to the GRN-based model, which are governed by the 

same update law as ,i xg and ,i xp .  

In the case that the target pattern is a 3D curve, the robots 

form a linear curve in a 3D space starting from their random 

initial positions. Then, an ellipse is formed by the robots 

starting from the linear curve.  Both 3D curves are defined 

using NURBS.  In the case where the target pattern is a 3D 

surface, the robots first construct three parallel circles, and 

then two parallel squares, as shown in Fig. 7. 

35 independent runs have been performed for each case. 

The mean and standard deviation of the convergence time, 

the average travel distance, and the average position error are 

listed in Table II.  The average position error is defined as the 

average shortest distance between the final positions of the 

robots to the desired shape. The average travel distance is 

defined as the average travel distance of robots from the 

initial position to the final position.   

It can be observed from Table II that the convergence time 

and the average travel distance for the “NURBS” target 

pattern are much larger than that for the other two target 

patterns.  The main reason for this is that the number of 

robots for forming “NURBS” is much larger than the other 

two cases, where a larger number of robots may compete for 

the same location on the target pattern, and therefore leading 

to a longer travel distance and a larger convergence time. 

However, this observation does not affect the scalability of 

the proposed GRN-based model since the computational cost 

for each individual robot does not increase exponentially 

with the number of robots.  Even in the cases with robot 

failures, although an increase in the number of robots will 

increase the communication load proportionally in each robot, 



 

 

 

and therefore a longer system convergence time, it won’t 

affect the system scalability.  

It can be seen from Fig. 5, Fig. 6, Fig. 7 and Table II that a 

swarm of robots can form a variety of 2D/3D complex shapes 

without a centralized. These results demonstrate the 

effectiveness of the proposed GRN-based model for 

multi-robot shape formation. 
  

4.3. Robustness to Sensor Noise and Localization Error 

In this case study, we will evaluate the robustness 

performance of the proposed method to the sensory noise and 

localization errors.  First, we perform 35 independent runs 

with 10 robots randomly initialized in a 10x10 environment. 

The target pattern is a unit circle being placed in the center of 

the environment. The final position errors with the robot 

sensory noise and localization errors are listed in Tables III 

and IV, respectively.  Here, if a sensory data is x, 5% noise 

means that we will randomly pick a number from [(1-5%)x, 

(1+5%)x] as the current sensory data for the system.   

 
TABLE III 

 MEAN AND STANDARD DEVIATION OF THE CONVERGENCE TIME AND 

POSITION ERRORS WHEN THE DISTANCE MEASUREMENT ARE SUBJECT TO 

SENSORY NOISE 

 

Without noise 5% noise 10% noise 

Mean: 0.0421 

STD: 0.024 

Mean: 0.0459 

STD:  0.0104 

Mean: 0.0464 

STD: 0.0109 

 
TABLE IV 

MEAN AND STANDARD DEVIATION OF THE CONVERGENCE TIME AND 

POSITION ERRORS WHEN THE ROBOT LOCALIZATION IS SUBJECT TO SENSORY 

NOISE 

 

Without noise 5% noise 10% noise 

Mean: 0.0421 

STD: 0.024 

Mean: 0.0455 

STD:  0.0082 

Mean: 0.0482 

STD: 0.0097 

 

It is well known that the localization errors will be 

accumulated over time using the odometry method. This 

accumulated localization error can be reduced by using the 

Kalman filter method we proposed in our previous work [35].   

From Table III and Table VI, we can see that the position 

errors of the system using the proposed method only increase 

slightly in the presence of various noise terms. Thus, we can 

draw the conclusion that the system is robust to the sensory 

noise and localization errors. 

4.4. Robustness to Environmental Perturbations 

To evaluate the system’s robustness to external 

environmental perturbations, we implement the following 

experiment. A mobile obstacle approaches a swarm of robots 

that have formed the target pattern, for example, a letter “R”, 

and then moves away from the robots.  Fig. 8 shows a set of 

snapshots of this scenario. It can be seen that the robots can 

autonomously avoid the mobile obstacle, and re-organize 

themselves after the obstacle moves away. No explicit 

obstacle avoidance strategy is needed here since robots can 

detect the obstacle using their onboard sensors and avoid the 

obstacle through the diffusion term in Eqn. (4). Note, 

however, that the behavior of the obstacles cannot be 

influenced by the robots.  

4.5. Robustness to Robot Failures 

In this case study, we will show that robots can 

autonomously re-organize themselves to deploy on the 

boundary of the target pattern in case several robots fail.  In 

the simulation, when some robots fail, they will be eliminated 

and only the functioning robots will be shown. Here, we only 

consider the case in which robots have formed the target 

shape and some robots fail. In this sense, the neighbors of 

each robot are fixed rather than dynamic. If the robots fail 

during the pattern formation process, we do not need the 

neighbor robots to report a missing neighbor. All the 

remaining robots will just continue to form the shape until 

they have formed the shape. After all of the remaining robots 

have formed the shape, some of the robots either report a 

missing neighbor (d0  needs to be increased) or report a large 

position error (d0  needs to be increased), then the 

neighborhood adaptation mechanism is started. 

When a robot fails, its neighbor(s) will not be able to 

communicate with the failed robot and consequently find out 

that the neighbor robot fails. These neighboring robots will 

pass this message to their neighbors and initiate the 

neighborhood size adaptation mechanism. The 

self-reorganization process after four robots fail is illustrated 

in Fig. 9.  

 

TABLE II 

THE STATISTICS DATA FOR CONVERGENCE TIME, AVERAGE TRAVEL DISTANCE, AND AVERAGE POSITION ERROR 

 

 “NURBS” 

(mean  std) 

3D curves 

(mean  std) 

3D surfaces 

(mean  std ) 

Convergence time   1823.50  305.64 252.77  74.05 197.48  35.42 

Average travel distance   9.8096  1.2232 0.7726  0.0955 1.3478  0.1202 

Average position error  0.0160  0.0033 0.0214  0.0059 0.0209  0.0019 

Note: In the 3D curves column, the data is only for the period from the initial state to the formation of the 3D line in Fig. 4.  In 3D surfaces, the data is only for 

the period from the initial state to the formation of the three parallel circles in Fig. 5.  (Units: distance in meters and time in seconds) 
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                          (a) t = 0                                                         (b) t = 60                                                              (c) t = 200 

 

Fig. 5. A set of snapshots of 56 robots to self-organize different 2D letters “N” “U” “R” “B” “S”, where t represents the time step running in 

the Matlab, not in the unit of second.  The video of this experiment can be downloaded from 

http://www.ece.stevens-tech.edu/~ymeng/Projects.htm. 
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                      (a) t = 0;                                                                  (b) t = 45;                                                     (c)  t = 100 ; 
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                         (d) t = 125;                                                               (e) t = 150;                                                 (f)  t = 200. 

 

Fig.6.  A set of snapshots of 12 robots self-constructing different 3D curves. The video of this experiment can be downloaded from 
http://www.ece.stevens-tech.edu/~ymeng/projects.htm. 
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                      (a) t = 0;                                                               (b) t = 60                                                           (c) t = 100 
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                     (d) t = 120                                                             (e) t =160                                                           (f) t = 200 

 

Fig.7.  A set of snapshots of 24 robots self-constructing different 3D surfaces.             
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           (a) Original R shape;                     (b) Avoiding collision;                (c) The obstacle moves away;     (d) Robots re-form ‘R’ shape. 

 

Fig. 8:  Adaptation test with a mobile obstacle using 20 robots.  Robots avoid a mobile obstacle and reorganize themselves to the original 

shape. Please be noted that only the procedure of mobile obstacle moving forward is shown in Fig.7 due to paper limitation.  The video of this 

experiment can be downloaded from http://www.ece.stevens-tech.edu/~ymeng/Projects.htm.   
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(a)                                                    (b)                                                   (c)                                                   (d)  

Fig.9. Re-organization process in the presence of robot failures. (a) 20 robots were distributed evenly on “U” curve. (b) Four robots failed, 

resulting in some gaps uncovered by robots. (c) The adaptation mechanism started to work, which first tried to increase the neighbor size. 

However, the neighborhood size is too large and therefore, three clusters of robots were formed (pointed by arrows). (d) The second iteration 

of adaptation was performed and no robot reported failed neighbors. After the re-organization, the remaining 16 robots were distributed again 

relatively evenly on the target curve. 

 

 

5. Experimental Results using Physical Robots 

 

To evaluate the proposed GRN-based model in real 

robotic systems, experiments have been performed for a 

swarm robotic system consisting of eight e-puck education 

robots (http://www.e-puck.org/).  As shown in Fig. 10,  each 

e-puck robot is approximately six centimeters in diameter 

with a circumferential ring of eight infrared proximity 

sensors, a pair of step motors in a differential-drive 

configuration, three microphones, and a ZigBee wireless 

communication card.   Infrared proximity sensors are used for 

distance detection. Microphones are used to trigger the start 

of the experiments, and wireless card is used for debugging 

and uploading the software on the e-puck robots. Robots do 

not explicitly communicate with each other. In the 

experiments, each robot is provided with a starting position 

in a global coordinate system and the description of the target 

pattern represented by NURBS model. Each robot has to 

decide autonomously to which point on the target pattern it 

http://www.ece.stevens-tech.edu/~ymeng/Projects.htm
http://www.e-puck.org/


 

 

 

should approach using the GRN model based on its local 

interactions with the environment and other robots.  

To implement the GRN-based model on the physical 

robots, we have to consider a few real-world constraints.  

First, it is assumed that robots are holonomic in the 

simulations. However, e-puck robots are differential-drive 

robots and non-holonomic. Second, self-localization of the 

robots in an indoor environment may become an issue.    

 

  
Fig. 10: The e-puck educational robot.  

 

    The GRN-based model does not consider nonholonomic 

constraints imposed by the differential-drive robot.  

Therefore, there must be a translation between the desired 

motion of the GRN dynamics and the robot’s actual motion. 

For this proof-of-concept implementation, self-localization is 

performed by an open-loop estimation using an odometry 

method with the onboard encoders.  As we know, the 

localization measurement errors using the odometry method 

may get accumulated over time.  To mitigate errors in 

measurement of the e-puck’s geometry, a scaled version of 

the UMBMark [47] calibration procedure was performed on 

each e-puck robot. 

Fig. 11 shows snapshots of the experimental results using 8 

e-puck robots to form a letter “R” from random initial 

positions in an indoor environment.  The parameters for the 

GRN-based model for this experiment are set as follows:  a = 

k = 0.1, c = 1.0, b = 20 and m = 1.0.   We did not measure the 

final position errors of robots to the patter “R” manually, but 

from Fig. 11, we can see that the robots move to the pattern as 

we expected. The major constraints on this experiment are a 

lack of a robust localization system and the use of 

short-range, non-uniform, and noisy proximity sensors. 

Given these constraints, the experiment was able to 

demonstrate a successful example of the shape formation 

using a swarm robotic system. While the localization system 

used was effective enough for a simple experiment with a 

limited duration, the lack of a robust localization scheme 

severely hampered the ability of the robots to perform more 

complex tasks.  

The previous experiment demonstrates that robots can be 

deployed to the target pattern with physical constraints. 

However, in that case, we are focusing on the deployment 

process with the assumption that the initial neighborhood size 

0d  is near the actual optimal neighborhood size *d , thus the 

neighborhood adaptation mechanism does not function 

during the deployment process.  

 

        

  
                    (a) t = 1sec                                (b) t = 3 sec 

   
               (c) t = 5 sec                           (d) t = 6 sec 

   
               (e) t = 7 sec                           (f) t = 11 sec 
Fig. 11. Snapshots of the experiments showing 8 e-puck robots 

forming a letter “R” from random initial positions.  The video of 

this experiment can be downloaded from 

http://www.ece.stevens-tech.edu/~ymeng/Projects.htm. 

 

To verify the effectiveness of the neighborhood adaptation 

mechanism, another experiment is conducted. In this 

experiment, 6 e-puck robots have been used to form a circle. 

However, the initial neighborhood size 0d  is much smaller 

than the optimal neighborhood size *d . Thus, robots need to 

adapt the neighborhood size several times to ensure an even 

distribution. Since this experiment focuses on the 

neighborhood adaptation mechanism, we select a relatively 

simple shape (a circle). Snapshots of this proof-of-concept 

experiment are shown in Fig. 12.  From Fig. 12, it can be seen 

that the proposed extended GRN-based model can work 

efficiently with the neighborhood adaptation mechanism in a 

distributed manner. 

 

  
                     (a)                                                 (b) 

http://www.ece.stevens-tech.edu/~ymeng/Projects.htm


 

 

 

  
                (c)                                                 (d) 

  
                    (e)                                            (f) 

Fig. 12. Snapshots of the experiment. (a) The initial distribution of 

robots, (b) (c) The pattern (a circle) formation process. (d) After the 

formation, there is a vacant place, indicating that the neighborhood 

is shorter than expected. (e) The pattern formation after 

neighborhood adjustment, this time two robots are stuck together, 

which means that the neighborhood is larger than expected. (f) The 

pattern formation after another phase of neighborhood adjustment. 

Robots are distributed uniformly on the circle. The video of this 

experiment can be downloaded from 

http://www.ece.stevens-tech.edu/~ymeng/Projects.htm. 

 

6. Conclusion and Future Work 

 

In this paper, we have presented a novel GRN-based 

framework for a distributed swarm robotic system to 

construct complex shapes in a 2D or 3D environment. 

Simulation results show the effectiveness and robustness of 

the proposed model. Two proof-of-concept experiments 

using e-puck mobile robots demonstrated the feasibility and 

effectiveness of the proposed model with physical robotics 

constraints. 

In the current model, one major limitation is that the 

system is working under a global coordinate system where 

the robots need to localize within this global coordinate 

system.  As we mentioned in the robot experiment, the lack of 

a robust localization scheme may degrade the system 

performance. To address this issue, currently we are working 

on the system where only relative position is needed without 

a global coordinate system, Although the current model is 

adaptive to certain system or environmental changes, e.g., 

avoiding a mobile obstacle, the target pattern (relevant to the 

mission the swarm robotic system should accomplish) has to 

be defined in advance by the user. In real-world applications, 

the multi-robot system needs to adapt its mission 

autonomously if the environment changes drastically. In the 

future, we will work on designing a gene regulatory model 

that is able to generate a target pattern online and then drive 

the robots to the target pattern.  
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