
Prioritized Motion-Force Control of

Constrained Fully-Actuated Robots:

“Task Space Inverse Dynamics”

Andrea Del Prete1,2, Francesco Nori2, Giorgio Metta2 and Lorenzo Natale2

1 — CNRS, LAAS, 7 avenue du colonel Roche, Univ de Toulouse,
F-31400 Toulouse, France

2 — Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy

Abstract

We present a new framework for prioritized multi-task motion/force control
of fully-actuated robots. This work is established on a careful review and
comparison of the state of the art. Some control frameworks are not opti-
mal, that is they do not find the optimal solution for the secondary tasks.
Other frameworks are optimal, but they tackle the control problem at kine-
matic level, hence they neglect the robot dynamics and they do not allow for
force control. Still other frameworks are optimal and consider force control,
but they are computationally less efficient than ours. Our final claim is that,
for fully-actuated robots, computing the operational-space inverse dynam-
ics is equivalent to computing the inverse kinematics (at acceleration level)
and then the joint-space inverse dynamics. Thanks to this fact, our control
framework can efficiently compute the optimal solution by decoupling kine-
matics and dynamics of the robot. We take into account: motion and force
control, soft and rigid contacts, free and constrained robots. Tests in simula-
tion validate our control framework, comparing it with other state-of-the-art
equivalent frameworks and showing remarkable improvements in optimality
and efficiency.

Keywords: prioritized control, hierarchical control, inverse dynamics, force
control, operational space, task space

Preprint submitted to Robotics and Autonomous Systems June 22, 2021

ar
X

iv
:1

41
0.

38
63

v1
 [

cs
.R

O
]

 1
4

O
ct

 2
01

4

1. Introduction

Several frameworks for multi-task control of rigid robots exist in the lit-
erature. Most frameworks presented in the ’80s and ’90s [1, 2, 3, 4] work
at kinematic level, computing the desired joint velocities or accelerations.
These approaches are not suited to robots that interact with the environ-
ment, because they do not allow for force control or impedance control. This
motivated a more recent trend of torque control strategies [5, 6, 7, 8], which
consider the dynamics of the robot, computing the desired joint torques. This
approach can also improve tracking, because it compensates for the dynamic
coupling between the joints of the multi-body system.

Peters et al. [9] showed that we can derive several of these well-known
torque control laws under a Unifying Framework (UF), as solutions of con-
strained minimization problems. However, it is still unclear how these frame-
works differ from each other and what their pros and cons are. This paper
has a twofold aim: first, to provide a fair comparison of the state-of-the-art
torque control frameworks; second, to present a new framework which out-
performs the current state of the art. Our evaluation is based on four criteria:
soundness, optimality, capabilities and efficiency. We carry out an analytical
analysis of the frameworks and we test them in simulation to confirm the
theoretical results.

Section 2 defines the basic tracking control problem and presents the main
contribution of the paper through a simple example. Section 3 summarizes
the related works and defines the notion of soundness, optimality, capabilities
and efficiency. Section 4 and 5 describe the Unifying Framework (UF) [9] and
the Whole-Body Control Framework (WBCF) [5], which are the frameworks
that we chose for comparison, because they well represent the state of the
art. Section 6 motivates the need for our new control framework Task Space
Inverse Dynamics (TSID), which we then present in Section 7. For each
framework we first discuss the solution for a single motion-control task, then
we extend it to the multi-task case, and finally we introduce force control.
Section 8 tests the three frameworks (TSID, UF, WBCF) in simulation on
the same multi-task scenario, comparing their performances in terms of opti-
mality and efficiency. The results prove that our control framework is sound,
optimal and computationally more efficient than the other frameworks.

2

2. Key Idea

2.1. Notation and Problem Definition

We indicate with Sn+ the set of symmetric positive-definite n×n matrices.
We want to design position tracking control laws for a rigid manipulator with
n Degrees of Freedom (DoFs). The equation of motion of a manipulator in
free space may be written as [10]:

M(q)q̈ + h(q, q̇) = τ, (1)

where q ∈ Rn are the generalized coordinates (e.g. joint angles), τ ∈ Rn are
the generalized forces (e.g. joint torques), M(q) ∈ Sn+ is the joint-space mass
matrix, and h(q, q̇) ∈ Rn contains all the nonlinear terms such as Coriolis,
centrifugal and gravity forces. A position tracking task for the robot is
described as a time-varying constraint f(q) = xr(t), where xr(t) ∈ Rm is
the reference task trajectory and f : Rn → Rm is a generic function of the
generalized coordinates (e.g. the forward kinematics). Since we assume that
the control inputs are the generalized forces τ , instantaneously we can only
affect the generalized accelerations q̈. To express the task in terms of q̈ we
differentiate the constraint twice with respect to time:

J(q)q̇ = ẋr(t), J(q)q̈ + J̇(q)q̇ = ẍr(t),

where J(q) = ∂
∂q
f(q) ∈ Rm×n is the task Jacobian. In the following, depen-

dency upon t, q and q̇ is no longer denoted to simplify notation. Since we
use the second derivative of the constraint, in real situations a drift is likely
to occur. To prevent deviations from the desired trajectory and to ensure
disturbance rejection, we design a proportional-derivative feedback control
law:

ẍ∗ = ẍr +Kd(ẋr − ẋ) +Kp(xr − x),

where ẍ∗ ∈ Rm is the desired task acceleration, whereas Kd ∈ Sm+ and
Kp ∈ Sm+ are the derivative and proportional gain matrices, respectively.

2.2. A Simple Example

Following the approach taken in Peters et al. [9], we can derive task-space
control laws as solutions of a constrained Quadratic Program (QP). To better
convey the idea, in this example we take a simplified form of the dynamics
and kinematics:

τ ∗ = argmin
τ∈Rn

||ẍ− ẍ∗||2 s. t. Mq̈ = τ, Jq̈ = ẍ

3

By resolving the constraints we can transform this QP into:

τ ∗ = argmin
τ∈Rn

||JM−1τ − ẍ∗||2

To solve this QP we can use the pseudoinverse [1] (for the sake of simplicity
here we neglect null-space terms):

τ ∗ = (JM−1)†ẍ∗ (2)

Alternatively we can use a weighted pseudoinverse [11]:

τ ∗ = (JM−1)†W ẍ∗ = WM−1JT (JM−1WM−1JT)†ẍ∗,

where W ∈ Sn+ is an arbitrary weight matrix. The key idea that we are going
to exploit is that a careful choice of W can lead to a more efficient solution.
In particular, if we set W = M2 we get:

τ ∗ = MJT (JJT)†ẍ∗ = MJ†ẍ∗

This expression has a lower computational cost than (2), mainly because it
does not contain the inverse of the mass matrix M . In general the choice
of W affects which value we select among the infinite solutions [11], so one
could argue that a particular W leads to a solution that is somehow better
than others [12]. However, in case of multi-task control we do not solve only
one QP, but a sequence of QPs, which must have a unique solution (see
Section 6.1 for details). In this case W does not affect which solution we
select (because there is only one), so we claim that the choice of W should
be aimed only at simplifying the computational cost of the solution.

3. Related Works

This section provides an overview of the related works. Table 1 lists the
main features of the control frameworks that we considered in our analysis.
We assess a control framework in terms of soundness, optimality, capabilities
and efficiency. Table 1 also specifies the motor commands computed by
each framework (column “Output”), which can be either joint torques τ ,
velocities q̇ or accelerations q̈. A framework is sound if the control action
of any task does not affect the performance of any higher priority tasks.
A framework is optimal if its control action minimizes the error of each

4

Table 1: Control frameworks.

Framework Optimal Efficient
Force

Control
Under

actuated
Inequality Output

Task Space Inverse
Dynamics (TSID)

× × × τ

Peters et al. [9] (UF) × × τ

Sentis and Khatib [5]
(WBCF)

× × (×) τ

Mistry and Righetti [8] × × τ

Saab et al. [7](SoT) × × × × τ

De Lasa and Hertzmann [6] × × × τ

Jeong [13] × × τ/q̈

Smits et al. [14] (iTaSC) × × × q̇

Chiaverini [3] × q̇

Siciliano and Slotine [2] × × q̇

Baerlocher and Boulic [4] × × q̇

Nakamura et al. [1] × q̇/q̈

task, under the constraint of being sound. The capabilities of a framework
concern the types of tasks and systems that it allows to control. Finally, a
framework is efficient if its computational complexity is minimal, considered
its capabilities (typically, the more capabilities, the higher the computational
complexity). In this context, efficiency is strictly related to the number of
computed (pseudo)inverses, matrix multiplications and the computation of
the mass matrix M .

All the control frameworks that we analyzed are sound. In terms of capa-
bilities, Table 1 reports whether a framework allows for force control, whether
it can control underactuated systems and whether it handles inequality con-
straints. Since we are interested in controlling robots that interact with the
environment we focus on frameworks that allow for force control. Inequalities
allow the user to define a task in terms of upper/lower bounds (e.g. joint
limit avoidance, balance, visibility, and collision avoidance). However, this
feature comes at a price: the algorithm can no longer compute the solution
using pseudoinverses, but it requires a QP solver. Escande et al. [15] reached
a computation time of 1 ms on an inverse-kinematics problem — at the price

5

of seldom suboptimal solutions. However, they did not consider the inverse-
dynamics problem (as we do in this work), which has more than twice the
number of variables and, consequently, is more computationally demanding.
In another recent work Herzog et al. [16] succeeded in controlling their robot
at 1 KHz using an inverse-dynamics formulation. Nonetheless they used a
fast CPU (3.4 GHz) and the robot had only 14 DoFs; in case of more DoFs
or slower CPU their method may still be too slow. For these reasons our
control framework does not include inequality constraints, even if we believe
that our results could be easily generalized to handle inequalities.

The possibility to control systems that are underactuated is crucial for
real-world applications, however, for the sake of conciseness, this work deals
only with fully-actuated systems. Another paper will present our results for
underactuated robots. Besides the works cited in Table 1, another interesting
approach for underactuated robots is presented in [17]. The authors select the
contact forces based on the desired rate of change of the centroidal momen-
tum, then they find desired joint accelerations that are consistent with these
contact forces and finally they compute the joint torques using a hybrid-
dynamics algorithm. Stephens and Atkeson [18] took a similar approach,
with the main difference that they found joint accelerations and torques at
the same time, resulting in a less efficient computation.

This work is motivated by the fact that no control framework that allows
for force control is both optimal and efficient. Between the five frameworks
that allow for force control, we select two as representative of the state of
the art and we describe them in the next sections. Our first choice is the
Unifying Framework (UF) [9], because it is the only one that allows for force
control while being efficient. Our second choice is the Whole-Body Control
Framework (WBCF) [5], because it represents the category of “optimal but
not efficient” frameworks (i.e. the frameworks [7] and [6]). Even though the
WBCF was extended to floating-base systems, here we consider the formu-
lation for fully-actuated robots presented in [5] and implemented in [19].

4. Unifying Framework (UF)

The Unifying Framework (UF) [9] formulates the control problem as a
constrained minimization:

τ ∗ = argmin
τ∈Rn

||ẍ− ẍ∗||2 s. t. Mq̈ + h = τ

Jq̈ + J̇ q̇ = ẍ
(3)

6

For the typical case m < n, this problem has infinite solutions [11]:

τ ∗ = (JM−1)†V (ẍ∗ − J̇ q̇ + JM−1h) + (I − (JM−1)†V JM−1)τ0, (4)

where τ0 ∈ Rn is an arbitrary vector, V ∈ Sn+ is an arbitrary matrix and

A†V = V
1
2 (AV

1
2)† = V AT (AV AT)† is the pseudoinverse of the matrixA, weighted

by V . If A is full rank, then we can also write A†V = V AT (AV AT)−1. Choos-

ing a particular pair (V, τ0) we get the solution that minimizes ||V − 1
2 (τ−τ0)||2

[20]. Setting τ0 = 0 and varying V , we get different well-known control laws,
reported in Table 2; the second row reports the Operational Space control

Table 2: Control laws for different values of weight matrix V

V minimize Control law, τ ∗

I ||τ ||2 M−1JT (JM−2JT)†(ẍ∗ − J̇ q̇ + JM−1h)

M τTM−1τ JT (JM−1JT)†(ẍ∗ − J̇ q̇ + JM−1h)

M2 ||M−1τ ||2 MJT (JJT)†(ẍ∗ − J̇ q̇ + JM−1h)

law of Khatib [21], which selects the torques that could be generated by a
hypothetical force applied at the control point. Without loss of generality,
given that M ∈ Sn+, we can set V = M2W , where W ∈ Sn+ is another
arbitrary matrix, so that (4) simplifies to:

τ ∗ = MJ†W (ẍ∗ − J̇ q̇ + JM−1h) +MNWM−1τ0, (5)

where NW = I − J†W J is a weighted (nonorthogonal) null-space projector.

4.1. Hierarchical Extension

The Unifying Framework can manage an arbitrary number of tasks N ,
each characterized by a desired acceleration ẍ∗i and a Jacobian Ji. To ensure
the correct management of task conflicts, the tasks need prioritization: the
higher the number i of the task, the higher its priority.

τ ∗ = Mq̈1

q̈i = q̈i+1 +NW
p(i)J

†W
i (ẍ∗i − J̇iq̇ + JiM

−1h) i ∈ [1, N]

NW
p(i) = NW

p(i+1) − (Ji+1N
W
p(i+1))

†W Ji+1N
W
p(i+1),

7

where NW
p(i) is a projector into the null space of all the tasks {j | j > i},

computed with the recursive formula proposed in [4]. The algorithm starts
by computing q̈N (using q̈N+1 = 0 and NW

p(N) = I) and it proceeds backwards
up to q̈1. If the state of the robot is completely controlled, which is usually
the case (see Section 6.1), then this formulation simplifies to:

τ ∗ = Mq̈1 + h

q̈i = q̈i+1 +NW
p(i)J

†W
i (ẍ∗i − J̇iq̇) i ∈ [1, N]

(6)

The accelerations of each task q̈i are projected into the null space of the
higher priority tasks; this guarantees that the framework is sound. However,
this approach is not optimal, because each task is solved independently, and
then projected into the null space of the higher priority tasks. This does not
ensure the minimization of the error of each task (see [4, 3] for a thorough
explanation).

4.2. Hybrid Control

The Unifying Framework allows for hybrid position/force control by set-
ting the joint space control torques to:

τ0 = h− JTc f ∗,

where Jc(q) ∈ Rk×n is the contact Jacobian, f ∗ ∈ Rk are the desired contact
forces and k ∈ R is the number of independent directions in which the robot
applies force. Substituting τ0 into the desired control torques (5) we get:

τ ∗ = MJ†W (ẍ∗ − J̇ q̇) + h−MNWM−1JTc f
∗,

where the applied forces act in the null space of the tracking task.

5. Whole-Body Control Framework (WBCF)

In this section we describe the WBCF presented by Sentis and Khatib [5].
This framework is based on the Operational Space Formulation [21], which
we can derive by setting W = M−1 in (5):

τ ∗ = JT (JM−1JT)†︸ ︷︷ ︸
Λ

(ẍ∗ − J̇ q̇ + JM−1h) + (I − JTJT †M−1
)τ0,

where J†M−1 = M−1JTΛ is the dynamically-consistent Jacobian pseudoin-
verse and Λ is the task-space mass matrix.

8

5.1. Hierarchical Extension

While in case of a single task the WBCF and the UF are equivalent, their
hierarchical extensions differ substantially:

τ ∗ =
N∑
i=1

JTp(i)Fp(i)

Fp(i) = Λp(i)(ẍ
∗
i − J̇iq̇ + JiM

−1(h−
i−1∑
j=1

JTp(j)Fp(j)))

Jp(i) = Ji(I −
i−1∑
j=1

J
†M−1

p(j) Jp(j))

(7)

This prioritization strategy is different with respect to (6): the WBCF min-
imizes the error of each task under the constraint of not conflicting with any
higher priority tasks, namely it is optimal. However, this formulation is com-
putationally less efficient than (6) because i) it contains the term M−1 and
ii) it requires more matrix multiplications.

5.2. Hybrid Control

The WBCF allows for hybrid position/force control by setting:

Fp(i) = Ωff
∗
i + Λp(i)(Ωmẍ

∗
i − J̇iq̇ + JiM

−1(h−
i−1∑
j=1

JTp(j)Fp(j))),

where the selection matrices Ωf and Ωm split the control space into force and
motion components, respectively.

6. The Need for a New Control Framework

The WBCF is sound and optimal, but it is not efficient because it requires
the computation of the operational space inertia matrices Λ’s. The simplest
way to compute them is using the formula Λ = (JM−1JT)†, which has a
complexity of O(n3): the computation of M — with Recursive Newton-
Euler Algorithm (RNEA) or Composite-Rigid-Body algorithm [10] — has
a complexity of O(n2) for serial robots and O(nd) for multi-branch robots
(where d is the tree depth). More efficient algorithms [22] can compute Λ
with a complexity of O(nm2 +m3), where m is the dimension of the task.

9

On the other hand the UF is sound and efficient (if we choose V = M2,
i.e. W = I): the solution takes the form τ ∗ = Mq̈1+h, which we can calculate
without explicitly computing M , through the O(n) RNEA. Nonetheless, the
UF is not optimal : even if a task does not conflict with any higher priority
tasks, it may not be performed correctly.

The derivation of our framework, TSID, follows the same principles un-
derlying the UF, but with a different hierarchical extension. We minimize
the error of each task under the constraint of not affecting any higher prior-
ity task. At each minimization step, we carefully select the weight matrices
used in the pseudoinverses, so as to simplify the resulting control laws. This
leads to an efficient formulation, while preserving the optimality property.
We start considering position tracking control only, then we introduce force
control tasks.

6.1. Weight Matrix and Joint Space Stabilization

The weight matrix V (or equivalently W) introduced in the resolution
of (3) can play two different roles. In case there is no secondary task (i.e.
τ0 = 0), V determines the quantity that we minimize (e.g. ||τ ||2, ||q̈||2,

||M− 1
2 τ ||2). In case there is a secondary task, V specifies the metric that is

used to measure the distance between τ and τ0.
Using the null space of a task to minimize some measure of effort is ap-

pealing, mainly because it is rooted in the study of human motion [23]. This
approach may be feasible in simulation, but unfortunately in reality it leads
to singular configurations and hitting of joint limits [9]. The subspace of joint
accelerations that does not affect the task is not controlled, so its behavior is
determined by disturbances and errors in the model of the manipulator. Even
in simulation, if the robot has nonzero joint velocities when the controller
starts, failing to use a secondary task may result in joint space instability.
The reason for this behavior is obvious: the effort of stabilizing in joint space
is not task relevant and it would increase the cost [9].

Peters et al. [9] suggest to add a joint space motor command for stabiliza-
tion. A common approach is to design the postural task to attract the robot
towards a desired posture qp. We compute the desired joint accelerations as
q̈∗p = Kp(qp − q) − Kdq̇, where Kp ∈ Sn+ and Kd ∈ Sn+ are the proportional
and damping gain matrices. In the following we always include the postural
task to minimize ||q̈ − q̈∗p||2, under the constraint of not affecting any other
task. This ensures stabilization of the manipulator in joint space.

10

7. Original Contribution - Task Space Inverse Dynamics (TSID)

In this section we derive the TSID control framework, which is the main
contribution of the paper. The TSID is sound, optimal, efficient — as con-
firmed by the simulation tests — and allows for both motion and force control.

7.1. Framework Derivation

Consider a general scenario in which the robot has to perform N position
tracking tasks T1. . .TN and a postural task T0 (with desired joint accelera-
tions q̈∗p) to stabilize any left redundancy. Taking inspiration from the UF
and from [6] we formulate the control problem as a sequence of constrained
minimization, starting from the highest-priority task N and moving down to
the lowest-priority task 0 (i.e. the postural task):

(TN) g∗N = min
τ∈Rn

gN(τ) s. t. Mq̈ + h = τ

(Ti) g∗i = min
τ∈Rn

gi(τ) s. t. Mq̈ + h = τ, gj(τ) = g∗j ∀j > i

(T0) τ ∗ = argmin
τ∈Rn

||q̈ − q̈∗p|| s. t. Mq̈ + h = τ, gj(τ) = g∗j ∀j > 0,

(8)
where gi(τ) = ||Jiq̈ + J̇iq̇ − ẍ∗i ||2 is the cost associated to the task Ti. The
solution of (8) is given by:

τ ∗ =Mq̈0 + h

q̈i =q̈i+1 +NW
p(i)(JiN

W
p(i))

†W (ẍ∗i − J̇iq̇ − Jiq̈i+1) i ∈ [0, N],
(9)

where J0 = I and ẍ∗0 = q̈∗p. The computation is initialized setting q̈N+1 = 0
and Np(N) = I. Once again, selecting the weight matrix W we can vary
the form of the control law. Interestingly enough though, the solution τ ∗

is independent of W . This is because the only role of W is to weight the
quantity that is minimized in the null space of all the tasks, but here the
postural task ensures that there is no null space left (because any control
action affects the postural task). It is then reasonable to choose W so as to
simplify the computation. If we set W = I then all the null-space projec-
tors Np(i) become orthogonal, so they are equal to their pseudoinverses (i.e.

N †p(i) = Np(i)). This simplifies the formulation (9) to:

τ ∗ =M(q̈1 +Np(0)q̈
∗
p) + h

q̈i =q̈i+1 + (JiNp(i))
†(ẍ∗i − J̇iq̇ − Jiq̈i+1) i ∈ [1, N]

(10)

11

In this form, kinematics and dynamics are completely decoupled: first we
solve the multi-task prioritization at kinematic level computing q̈1, then we
compute the torques to get the desired joint accelerations. This formula-
tion does not require the computation of a pseudoinverse for the postural
task, because it exploits the property of orthogonal projectors of being equal
to their pseudoinverses. Moreover, it can be efficiently computed with the
RNEA, without explicitly calculating M .

7.2. Force Control

This subsection extends TSID to force control. If the manipulator is in
contact with the environment, its equations of motion become:

M(q)q̈ + h(q, q̇)− Jc(q)Tf = τ, (11)

where Jc(q) = ∂xc
∂q
∈ Rk×n is the contact Jacobian (or constraint Jacobian),

xc ∈ Rk is the robot contact point and f ∈ Rk are the contact forces (or con-
straint forces). To control the contact forces we need a model of the contact
dynamics. The most common choices are the linear-spring contact model [24]
and the rigid contact model. The first model assumes that the environment
at the contact point behaves like a linear spring, i.e. ks(xc − xe) = f , where
ks is the contact stiffness and xe ∈ Rk is the environment contact point.
Assuming ks is known, force is a known function of position, so we can easily
translate this kind of force control problems into position control problems.

More interesting is instead the rigid contact model, mainly because it
introduces constraints into the problem formulation. When the manipulator
is in rigid contact with the environment, its motion is subject to k nonlinear
constraints. In general we can consider these constraints as nonlinear func-
tion of the generalized coordinates, their derivatives and time: c(q, q̇, t) = 0
1. To include these constraints into the control problem we express them at
acceleration level2 as: Jc(q)q̈ = b(q, q̇, t). We write then the problem as:

τ ∗ = argmin
τ∈Rn

||f − f ∗||2 s. t. Mq̈ + h− JTc f = τ

Jcq̈ = b,
(12)

1The constraints may be time-varying, hence we can model contacts with curved sur-
faces, as long as c is sufficiently smooth.

2In case of nonholonomic constraints we differentiate them once, whereas in case of
holonomic constraints we differentiate them twice. For instance, in case of time-invariant
rigid contacts we have: b(q, q̇) = −J̇c(q, q̇)q̇.

12

where f ∗ ∈ Rk are the desired contact forces. We can express the infinite
solutions of the problem (12) as:

τ ∗ = M(J†c b+Ncq̈0) + h− JTc f ∗, (13)

where q̈0 ∈ Rn is an arbitrary vector. It is trivial to show that (13) is
a solution of (12) because it respects the constraints and it results in the
minimum cost (i.e. 0). This control law is one of our main contributions,
because it allows to implement force control without computing M , while
characterizing the redundancy of the task through q̈0.

7.3. Integration of Force Control in Hierarchical Framework

We extend the multi-task formulation (10) to include force control tasks.
The rigid force control task, if any, has to take the highest priority because it
is a physical constraint that cannot be violated by definition. We assume that
the robot has to perform N − 1 position control tasks. On top of that there
is a rigid force control task N (for the sake of simplicity, here we assume
holonomic constraints, i.e. b(q, q̇, t) = −J̇cq̇), with reference force f ∗ and
Jacobian JN = Jc:

τ ∗ =M(q̈1 +Np(0)q̈
∗
p) + h− JTc f ∗

q̈i =q̈i+1 + (JiNp(i))
†(ẍ∗i − J̇iq̇ − Jiq̈i+1) i ∈ [1, N],

(14)

where ẍ∗N = ẍc = 0, q̈N+1 = 0, and Np(N) = I. Even after the extension to
force control, kinematics and dynamics are still decoupled, so the computa-
tional complexity has not increased and τ ∗ can be efficiently computed with
the RNEA.

8. Tests

8.1. Simulation Environment

We tested our control framework — Task Space Inverse Dynamics —
against the Unifying Framework (UF) [9] and the Whole-Body Control Frame-
work (WBCF) [5], on a customized version of the Compliant huManoid (Co-
Man) simulator [25]. The robot has 23 DoFs: 4 in each arm, 3 in the torso
and 6 in each leg. We adapted the simulator to make the robot rigid and
fully-actuated (we fixed the robot base and we removed the joint passive
compliance). Direct and inverse dynamics, both in simulation and control,

13

were efficiently computed using C language functions, generated with the
Robotran [26] symbolic engine. Contact forces were simulated using linear
spring-damper models (stiffness 2 · 105N/m and damping 103Ns/m, as pro-
posed in [25]) with realistic friction. To integrate the equations of motion
we used the Simulink variable step integrator ode23t, with relative and ab-
solute tolerance of 10−3 and 10−6, respectively. The tests were executed on
a computer with a 2.83 GHz CPU and 4 GB of RAM. The computation
times are computed as averages over the whole test (i.e. some thousands of
executions).

8.2. Trajectory Generation

To generate reference position-velocity-acceleration trajectories we used
the approach presented in [27], which provides approximately minimum-jerk
trajectories. The trajectory generator is a 3rd order dynamical system that
takes as input the desired trajectory xd(t) and outputs the three position-
velocity-acceleration reference trajectories xr(t), ẋr(t), ẍr(t). The reference
position trajectory follows the desired position trajectory with a velocity
that depends on the parameter “trajectory time” (always set to 1.0s in our
tests). We set all proportional gains Kp = 10s−2, and all derivative gains
Kd = 5s−1.

8.3. Damped Pseudoinverses

The controllers used damped pseudoinverses [3] to ensure stability near
singularities. Based on our experience on a real robot, we set the damping
factor λ = 0.02, which ensures a maximum gain of the pseudoinverses of
(2λ)−1 = 25. To avoid interferences between tasks, null-space projection
matrices were computed without any damping, but setting to zero all singular
values below the threshold σmin = 2.5 · 10−8. The values λ and σmin must be
chosen so that: σmin(σ2

min + λ2)−1 < z, where z is a small positive value (e.g.
we chose z ' 10−4). This ensures coherence between damped pseudoinverses
and null-space projectors, so that any direction of the control space is not
used by more tasks at the same time. The use of damped pseudoinverses
modifies the minimization problem (8), adding a regularization term λ||τ ||2W
to the cost functions. Away from singularities this term has negligible effects,
but close to singularities it keeps ||τ ∗|| bounded, at the expenses of the task
errors. If λ = 0, we know that WBCF and TSID give the same results.
However, with λ 6= 0, since the regularization term is affected by the weight

14

matrix W , we expect to see some differences between WBCF and TSID when
close to singularities.

8.4. Test 1 - Feasible Task Hierarchy

x

z

y
(a)

Wall

Contact

Reference
Trajectory

T2T1

F

(b)

Figure 1: CoMan [25] executing Test 1. Task F controls the force exerted by
the right hand against the wall. Task T2 moves the left hand along the circular
reference trajectory depicted as a red circumference. Task T1 moves the neck base
back and forth along the x axis.

In this test the robot performs four tasks:

F : 3 DoFs, apply a normal force of 20 N on the wall with the right hand

T2: 3 DoFs, track a circular trajectory with the left hand

T1: 1 DoF (x coordinate), track a sinusoidal reference with the neck base

T0: 23 DoFs, maintain the initial joint posture

The first three tasks are always compatible, so the robot should be able to
perform them with negligible errors. Table 3 reports the root-mean-square
error (RMSE) for each task and the mean computation time of the control

loop. We compute the RMSE as
√

1
Nt

∑T
t=0 ||x(t)− xr(t)||2, where Nt is the

number of samples used in the summation. The criteria proposed in Section
3 (in particular see Table 1) are strictly connected to the data of Table 3:

15

the error of the primary task F concerns the soundness, the errors of the
nonprimary tasks (T2, T1, T0) concern the optimality, and the computation
time concerns the efficiency. As expected, the UF performs poorly on the

Table 3: Test 1. Root-mean-square error of the four tasks and average computa-
tion time of the controller.

Related to Soundness Optimality Efficiency

Controller F-RMSE T2-RMSE T1-RMSE T0-RMSE Computation

(N) (mm) (mm) (◦) Time (ms)

TSID 0.1 0.4 0.1 7.1 0.24

WBCF 0.1 0.4 0.1 7.1 0.64

UF 0.1 36.8 30.1 6.6 0.25

nonprimary tasks, because it is not optimal. Both WBCF and TSID achieve
good tracking on all tasks, but the computation time of WBCF is ∼ 2.6×
the computation time of our framework.

8.5. Test 2 - Unfeasible Task Hierarchy

In this test the robot performs the same four tasks of the previous test,
with the only difference that task T1 controls the 3D Cartesian position of
the neck base (rather than the x coordinate only). This makes impossible

Table 4: Test 2. Root-mean-square error of the four tasks and average computa-
tion time of the controller.

Related Soundness Optimality Efficiency

Controller F-RMSE T2-RMSE T1-RMSE T0-RMSE Computation

(N) (mm) (mm) (◦) Time (ms)

TSID 0.0 0.1 21.5 5.5 0.25

WBCF 0.0 0.3 21.5 5.5 0.67

UF 0.0 23.8 62.4 5.1 0.26

to achieve all tasks at the same time (the desired neck trajectory is not
reachable), so we expect a significant error for task T1, while the tasks F and
T2 should have negligible errors. Table 4 shows that, as before, UF performs

16

poorly on the nonprimary tasks, whereas WBCF has higher computation
time than the other two frameworks. The small difference between TSID
and WBCF in the RMSE of task T2 is due to the behavior of the damped
pseudoinverses when close to the singularity due to the conflict between task
T1 and the tasks F and T2. While this effect is clear from a numerical
standpoint (see Section 8.3), there seems not to be a best choice for the weight
to use for damping; indeed we observed that, when close to singularities,
sometimes WBCF performs slightly worse than TSID, but other times it
performs slightly better.

9. Conclusions

We presented and validated a new theoretical control framework, called
Task Space Inverse Dynamics, for prioritized motion and force control of
fully-actuated robots. To the best of our knowledge, this framework out-
performs every other control framework with equal capabilities. Its main
features are:

1. optimality : it minimizes the error of each task under the constraint of
not affecting any higher priority task

2. capabilities : it allows for position/velocity/acceleration control and
soft/rigid contact force control

3. efficiency : it computes the desired joint torques in O(n) using the
Recursive Newton-Euler Algorithm because it needs neither the joint-
space mass matrix M , nor the task-space mass matrices Λ’s

We compared the presented control framework with other two state-of-the-art
control frameworks (UF and WBCF), both analytically and through simu-
lation tests. We decided to carry out this comparison in simulation to avoid
that model inaccuracies could interfere with the controllers in unpredictable
ways. The results confirm that our framework outperforms the other two
frameworks, either in terms of optimality or efficiency.

Moreover this work proves that, for fully-actuated robots, it is not nec-
essary to take into account the dynamics when resolving the multi-task mo-
tion/force control problem. In other words, the WBCF is equivalent to a
second-order inverse kinematics — which computes the desired joint accel-
erations — followed by an inverse dynamics — which computes the desired
joint torques.

17

9.1. Discussion and Future Work

The presented framework suffers from three main limitations, which we
should address in practical applications.

1. It does not allow for inequality constraints [7, 14], which are particularly
important for modeling joint limits and motor torque bounds.

2. It does not deal with planning and it guarantees only instantaneous
(local) optimality, so a task may lead the robot into a configuration
in which a higher priority task becomes singular, hence unfeasible. To
tackle this issue the cost function should include not only instantaneous
errors, but the summation of errors over a certain time horizon (i.e.
model predictive control, MPC [28, 29]).

3. We only considered fully-actuated robots, while many mechanical sys-
tems are underactuated (e.g. floating-base, underwater, elastic robots).

While these limitations could make this contribution seem negligible, we ar-
gue the opposite. The frameworks that tackle the limitations 1 and 2 typically
work by iteratively solving simplified control problems such as the ones we
discussed (i.e. nonlinear functions are linearized around the current solution,
whereas inequality constraints are converted into equality constraints using
active-set methods). This implies that more advanced frameworks could ex-
ploit the presented results to improve their efficiency — which often is the
bottleneck preventing their applications on real robots [29]. Regarding the
limitation 3, for the sake of conciseness this work has dealt only with fully-
actuated mechanical systems. A future paper will present an extension of
this framework for floating-base robots, which relies on the same principles
and techniques that we used here. Finally, we are now in the process of
testing TSID on a real humanoid robot.

Acknowledgement

This paper was supported by the FP7 EU projects CoDyCo (No. 600716
ICT 2011.2.1 Cognitive Systems and Robotics), and Koroibot (No. 611909
ICT-2013.2.1 Cognitive Systems and Robotics).

References

[1] Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task-Priority Based Redun-
dancy Control of Robot Manipulators, The International Journal of
Robotics Research 6 (1987) 3–15.

18

[2] B. Siciliano, J. J. E. Slotine, A general framework for managing multiple
tasks in highly redundant robotic systems, in: Advanced Robotics,
’Robots in Unstructured Environments’, 91 ICAR, Fifth International
Conference on, IEEE, 1991, pp. 1211–1216.

[3] S. Chiaverini, Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators, IEEE Transactions
on Robotics and Automation 13 (1997) 398–410.

[4] P. Baerlocher, R. Boulic, Task-priority formulations for the kinematic
control of highly redundant articulated structures, Intelligent Robots
and Systems (1998).

[5] L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hier-
archical control of behavioral primitives, International Journal of Hu-
manoid Robotics 2 (2005) 505–518.

[6] M. De Lasa, A. Hertzmann, Prioritized optimization for task-space
control, in: Intelligent Robots and Systems, IEEE/RSJ International
Conference on, volume 3, Ieee, 2009, pp. 5755–5762.

[7] L. Saab, N. Mansard, F. Keith, J.-Y. Fourquet, P. Soueres, Genera-
tion of dynamic motion for anthropomorphic systems under prioritized
equality and inequality constraints, Robotics and Automation, IEEE
International Conference on (2011) 1091–1096.

[8] M. Mistry, L. Righetti, Operational Space Control of Constrained and
Underactuated Systems, in: Proceedings of robotics: science and sys-
tems, 2011.

[9] J. Peters, M. Mistry, F. E. Udwadia, J. Nakanishi, S. Schaal, A unifying
framework for robot control with redundant DOFs, Autonomous Robots
24 (2007) 1–12.

[10] B. Siciliano, O. Khatib, Springer Handbook of Robotics, volume 15,
Springer, 2008.

[11] Y. Nakamura, Advanced robotics: redundancy and optimization, 1990.

[12] H. Bruyninckx, O. Khatib, Gauss’ principle and the dynamics of redun-
dant and constrained manipulators, Robotics and Automation (2000)
2563–2568.

19

[13] J. Jeong, A Task-priority Based Framework for Multiple Tasks in Highly
Redundant Robots, Intelligent Robots and Systems, IEEE/RSJ Inter-
national Conference on. (2009) 5886–5891.

[14] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, J. De Schutter, iTASC:
a tool for multi-sensor integration in robot manipulation, IEEE Interna-
tional Conference on Multisensor Fusion and Integration for Intelligent
Systems 2 (2008) 426–433.

[15] A. Escande, N. Mansard, P.-B. Wieber, HQP, International Journal of
Robotics Research (in press) (2014).

[16] A. Herzog, L. Righetti, F. Grimminger, Experiments with a hierarchical
inverse dynamics controller on a torque-controlled humanoid, arXiv
preprint arXiv:1305.2042 (2013).

[17] S.-H. Lee, A. Goswami, A momentum-based balance controller for hu-
manoid robots on non-level and non-stationary ground, Autonomous
Robots 33 (2012) 399–414.

[18] B. J. Stephens, C. G. Atkeson, Dynamic Balance Force Control for com-
pliant humanoid robots, 2010.

[19] R. Philippsen, L. Sentis, O. Khatib, An open source extensible soft-
ware package to create whole-body compliant skills in personal mobile
manipulators, in: Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, IEEE, 2011, pp. 1036–1041.

[20] A. Bjorck, Numerical methods for least squares problems, Society for
Industrial Mathematics, 1996.

[21] O. Khatib, A unified approach for motion and force control of robot
manipulators: The operational space formulation, IEEE Journal on
Robotics and Automation 3 (1987) 43–53.

[22] K. Chang, O. Khatib, Operational space dynamics: efficient algorithms
for modeling and control of branching mechanisms, in: Robotics and
Automation. Proceedings. ICRA’00. IEEE International Conference on,
volume 1, 2000, pp. 850–856.

20

[23] T. Flash, N. Hogan, The coordination of arm movements: an experi-
mentally confirmed mathematical model, The journal of Neuroscience 5
(1985) 1688–1703.

[24] J. Park, O. Khatib, Robot multiple contact control, Robotica 26 (2008)
667–677.

[25] H. Dallali, M. Mosadeghzad, G. A. Medrano-Cerda, N. Docquier, P. Ko-
rmushev, N. Tsagarakis, Z. Li, D. Caldwell, Development of a Dynamic
Simulator for a Compliant Humanoid Robot Based on a Symbolic Multi-
body Approach, in: International Conference on Mechatronics, Vicenza,
Italy, 2013.

[26] http://www.robotran.be (Robotran webpage), 2012.

[27] U. Pattacini, F. Nori, L. Natale, G. Metta, G. Sandini, An experimen-
tal evaluation of a novel minimum-jerk cartesian controller for humanoid
robots, in: Intelligent Robots and Systems (IROS), IEEE/RSJ Interna-
tional Conference on, IEEE, 2010, pp. 1668–1674.

[28] I. R. Manchester, U. Mettin, F. Iida, R. Tedrake, Stable dynamic walk-
ing over uneven terrain, The International Journal of Robotics Research
30 (2011) 265–279.

[29] Y. Tassa, T. Erez, E. Todorov, Synthesis and stabilization of complex
behaviors through online trajectory optimization, in: Intelligent Robots
and Systems (IROS), IEEE/RSJ International Conference on, 2012, pp.
4906–4913.

21

	1 Introduction
	2 Key Idea
	2.1 Notation and Problem Definition
	2.2 A Simple Example

	3 Related Works
	4 Unifying Framework (UF)
	4.1 Hierarchical Extension
	4.2 Hybrid Control

	5 Whole-Body Control Framework (WBCF)
	5.1 Hierarchical Extension
	5.2 Hybrid Control

	6 The Need for a New Control Framework
	6.1 Weight Matrix and Joint Space Stabilization

	7 Original Contribution - Task Space Inverse Dynamics (TSID)
	7.1 Framework Derivation
	7.2 Force Control
	7.3 Integration of Force Control in Hierarchical Framework

	8 Tests
	8.1 Simulation Environment
	8.2 Trajectory Generation
	8.3 Damped Pseudoinverses
	8.4 Test 1 - Feasible Task Hierarchy
	8.5 Test 2 - Unfeasible Task Hierarchy

	9 Conclusions
	9.1 Discussion and Future Work

