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To mimic human behavior is an increasing trend for advanced robot control. In this paper, a novel
biomimetic object impedance control strategy (BOI) is presented for dual-arm cooperative 7-DOF
humanoid manipulators. A general impedance architecture comprising internal impedance control and
object impedance control is adopted, which aims at conferring impedance behavior both in end-effector
level and object level. Asymptotic stability and convergence of this controller are strictly derived from
Lyapunov stability theory. Compared with conventional object impedance, the proposed controller can
show different object impedance characteristics according to the external force applied on the object. It
also can simultaneously minimize the energy cost of the adaptation process. Simulation and experimental
results indicate that this controller exhibits explicit compliance behavior when the interaction with
environment is weak and presents accumulation property of the stiffness and damping accordingly when
the interaction is strong. This human-like characteristic enables the object/dual-arm system to deal with

complex and unknown environmental disturbances.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dual-arm cooperative humanoid manipulators have signifi-
cant advantages over other single manipulator for heavy load
manipulation/transportation or dexterous assembly task as they
can perform tasks in a human-like manner [1]. Although various
controllers for cooperative manipulators have been proposed in re-
cent years, stable execution of contact tasks with unknown envi-
ronment using mechanical manipulators is still identified as one of
the major challenges.

Pure position control may lead to many problems (such as
the saturation of the actuators). The impedance control first pro-
posed by Hogan [2,3] provided a new way to solve the problem in-
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duced by contact force while simultaneously preserve motion sta-
bility during the contact between the object and the environment
[4,5]. Even then, the adoption of impedance control in manip-
ulators is much different. When dual-arm manipulators are em-
ployed to manipulate a common object, it needs to control both
the relative motion of the manipulators and the internal stresses
on the grasped object, thus the mappings between forces/velocities
of each manipulator’s end-effector and those of manipulated ob-
ject need to be considered [6]. Lee et al. [7] proposed a relative
impedance control strategy for dual-arm robots to perform asym-
metric bimanual tasks based on relative Jacobian with time delay
estimation (TDE) and ideal velocity feedback (IVF) techniques, this
control strategy simplified the implementation compared to other
traditional schemes. Zhu and Schutter [8] designed a novel con-
troller for dual-arm system based on adaptive force/motion con-
trol.

Moreover, for cooperative manipulators interacting with the
environment, many high performance results are available.
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Nomenclature

Xworld> o World and object framework

Xr, X Base framework of the two manipulators

X1, ¥, Framework of the two end-effectors

Pr,pr Translational vectors

Rg, R, R, Orientation matrix of the right/left manipulator
and the object

F Contact force exerted by the two manipulators

M,, G, Objectinertial matrix and gravity vector

V,(y,y)y Coriolis and centrifugal forces vector of the object

y, X Velocity vector of the object and the end-effectors

Y4,Xs  Desired object and end-effector trajectories

Vi, X: Reference trajectories of the object and end-
effectors

F, Force/moment vector acting on object by the two
manipulators

Feny Wrench exerted by the environment on the object

T Grasp matrix

1\31 (q), G(q@) Manipulator inertial matrix and gravity vector

V(q, q)q Coriolis and centrifugal forces vector of the manip-
ulators

q Manipulator joint position vector

T, T, Applied and mapping equivalent joint torques

J(@).J'(q@) Analytical Jacobian of the redundant manipula-
tors and its pseudo inverse

Fe, F Motion-inducing force and internal force

M,;, D,;, K,; Inertial, damping and stiffness matrix of the
object impedance

M., D,, K, Inertial, damping and stiffness matrix of the
internal impedance

s The combined error measure of the object

Qp, Q¢ Symmetric positive-definite gain matrix

e,, e, Task-space velocity and position error

Bonitz [9] successfully achieved the bounded internal forces by
proposing an impedance control strategy, which controls the mo-
tion of the manipulated object and the internal forces. Based on
previous work, Koga and Wimbdck [10,11] proposed two differ-
ent impedance laws for cooperative manipulators; both of them
further put the interaction between the object and the environ-
ment into consideration. Schneider et al. [12] then extended the
architecture of the impedance control for dual-arm cooperation
creatively. They achieved the governing of the object impedance
rather than just the impedance of manipulators’ end-effectors.
Since the estimation of the object’s dynamics is inevitably noisy
and inaccurate, the requirement of the object’s dynamics limits
extensive application of object impedance control. To avoid this
limitation, Lian and Gueaieb [13-15] presented some enlighten-
ing algorithms based on intelligent control. Furthermore, Caccav-
ale [16,17] successfully combined the internal and external object
impedance. His work simultaneously eliminated the dependence
of object’s dynamics by proper specification of some parameters.
Some other researchers like Abdallah [ 18] and Moosavian [ 19] also
presented various impedance laws (i.e. Multiple-impedance con-
trol) for cooperative manipulators to achieve both object and in-
ternal impedance.

However, to the authors’ knowledge, in most of the previous
works, the stiffness and damping of the object impedance are all
fixed and cannot be adaptively modified according to the different
interactions between the environment and the object. Few
works integrated the adaptation law into the object impedance.
Manipulators lacking adaptation capabilities are generally not able
to deal with unknown interactions agilely. Besides, conventional

method with large stiffness and damping will consume large
amount of energy, which is not necessary especially when no
environmental disturbance exists. Inspired by the works in [20,21]
and then following the guidelines in [22-24], we proposed a whole
control strategy with biomimetic object impedance for dual-arm
system. This controller is expected to achieve the goal that the
grasped object exhibits explicit compliance behavior when the
interaction with environment is small and shows accumulation
property of the stiffness and damping when it is large.

In addition, it needs to be mentioned that dual-arm system
is different from multi-fingered system in some aspects. Unlike
the object-level grasp controllers for robotic hands, multi-fingered
hands are only capable of applying forces to the object while
arms are capable of applying forces and moments. The serial of
kinematic chain for dual-arm system is totally determined and
the grasp allows bilateral force transmission [25,26], therefore the
friction constrains existing in multi-fingered hands are negligible
here.

This paper is organized as follows. The first part outlines
an overall architecture for the control of dual-arm coopera-
tive humanoid manipulators, which permits biomimetic object
impedance control and simultaneously achieves the control of the
internal force. This unified framework allows individual activation
or deactivation of object and internal impedance, which may con-
tribute to the simplification of the derivation of the adaptation
law and stability analysis. This framework consists of two parts:
the first part generates the Cartesian reference trajectory for the
end-effectors, which is aiming at achieving impedance behavior
both in object level and end-effector level. In addition, to deal with
unknown interactions between the object and the environment,
biomimetic object impedance strategy is designed. The resulting
compliant motion is used to generate the reference trajectories for
the object. Furthermore, to avoid large internal force and possible
grasp failure, internal impedance between the end-effector’s posi-
tion/orientation displacements and the internal forces is designed
to track the commanded internal forces, this is used to generate
the reference motions for each end-effector [27]; The other part is
a hierarchical position control with Cartesian position control as
the primary loop and joint position control as the secondary loop
respectively, which can ensure the two manipulators to achieve
perfect tracking of the reference trajectory. Then the strict the-
oretical derivation of the proposed adaptive object impedance
control is given. Finally, simulation of the proposed impedance
control scheme is enforced. The results verify the effectiveness of
the biomimetic object impedance control while building of large
values of internal forces and grasp failure is avoided.

2. Biomimetic adaption of object impedance control

2.1. Human behavior analysis of grasping an object

When human arms grasp and manipulate an object, the
operator sometimes needs to compensate for the forces applied
on the object to avoid instability induced by the environmental
interference. The intrinsic properties of muscles and reflex arcs,
which refer to the muscle viscoelasticity and the stretch reflex,
can collaboratively ensure a smooth and stabilized motion even
with a reflection time delay of over 200 ms [28]. This mechanism,
in essence, enables the human to adapt the damping and
stiffness both in the arm impedance and the object impedance to
compensate for the unknown dynamic environments.

Consider human using two arms to grasp an object coopera-
tively. When the object is free of interactions, human usually main-
tains a minimum stiffness and damping. This is significant to avoid
unnecessary energy consumption. When the object is interfered
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by disturbance from the environment, two arms will move fol-
lowing the direction of external forces and simultaneously force
the grasped object deviate along the same direction. Meanwhile, a
restoring force in the opposite direction is generated. It is approx-
imately proportional to the position error in this case [29]. When
the external force and the restoring force achieve balance, the ob-
ject reaches the equilibrium position. If the external force contin-
ues to increase, the increment of offset will decrease although the
object will further deviate from the desired position. This means
that the object grasped by human arms gets more and more dif-
ficult to be pushed forward, namely, the stiffness of the object
responding to the external disturbance gradually increases. How-
ever, if the external force constantly changes, especially in its di-
rection, such as swaying back and forth, the two arms will not
completely follow the action of external force applied on the ob-
ject, but become more viscous, this makes the restoring force re-
spond to the variation of the external interference much faster and
keeps the object around the desired position as close as possible,
that is, the external damping of the object increases.

As is shown in the above analysis, when human grasps an
object with his two arms, the object will exhibit a characteristic of
impedance due to the action of the arms. The stiffness and damping
of this impedance, which is known as object impedance, will
adapt according to the environmental interference. The adaption
of stiffness plays a major role when the disturbance is relatively
stable, whereas the adaption of damping predominates when the
disturbance changes dramatically.

Here we try to mimic this mechanism and propose a novel con-
trol strategy to endow the dual-arm cooperative 7-DOF humanoid
manipulators an analogous ability.

2.2. Dynamics and kinematics

First of all, a basic assumption made here is that each arm
is capable of imparting arbitrary force/moment to the object. In
addition, it is also assumed that each end-effector of the dual-arm
manipulator system grasps the object rigidly, their positions and
orientations do not change relatively to the local coordinate of the
object [30].

To simplify the derivation presented below, all the quantities
written in bold in this paper means that they are vectors or
matrixes.

Two 7-DOF manipulators tightly grasping a common object are
shown in Fig. 1. For ease of analysis, a set of reference frames
are defined as follows: Xwera denotes the world frame. Xg and
X are the base frames of right and left manipulator. ¥ and X,
are the coordinate frames attached to the two end-effectors, pr
and p; denote their (3 x 1) position vectors, Rg and R; are the
(3 x 3) matrixes characterizing their orientations, with respect to
the world frame Xwora. Let X, be the coordinate frame attached to
the object with its origin in the object’s center of mass, p, denotes
its (3 x 1) origin’s position vector and R, is the (3 x 3) orientation
matrix, both with respect to the world frame. For simplicity, Rg, Ry
and R, are chosen to coincide with each other.

Dynamics

Since each manipulator contacts with the object rigidly, thus
may both exert a force/moment respectively. For each manipulator
(i =1,2),let (6 x 1) vector f; = (f,; n;)"denotes the wrench
exerted by the manipulators on the object at the equivalent contact
points, where f,; is the (3 x 1) vector that expresses the force and
n;; is the (3 x 1) vector that denotes the moment. A fixed point
in each of the two contact zones on the object is chosen as the
corresponding equivalent contact point for simplifying mechanical
analysis. Only by multiplying the measured force by a certain
transformation matrix can we get the force vector f;. Here we use

(12 x 1) vector F = [f] fZT]Tto express the contact force.

Lworld Xywofia

>
I

Fig. 1. The dual-arm system named HIT-Robonaut and the coordinate system when
grasping an object.

The dynamics of the object can be described with respect to the
world frame by the following equation in compact form:

Moy +V,(y,¥)y + G, = F, + Fopy (1)

where M, consists of the object’s mass matrix and inertia tensor,
it depends not only on the relative position between the object’s
center of mass and the origin of the world frame X4, but also
on the orientation of the frame X,, the term V,(y,y)y denotes
the vector of centrifugal and Coriolis force and y is the (6 x 1)
object velocity vector referred to Xwemd. G, represents the (6 x 1)
vector of gravitational forces, Fp, is the (6 x 1) vector expressing
the wrench exerted by the environment on the object. F, is the
(6 x 1) vector of force and moment acting on object by the two
manipulators.

Fo=JoF =I5 Jp]F 2)
where ]OT is the (6 x 12) matrix known as grasp matrix.
I O
Joi = [,;. ,j] (3)
0 Diz —DPiy
Pi = | —Pi; 0 Dix . (4)
Diy —Dix 0

The (3 x 1) vector r; = [p,-x Diy piz] (i = 1, 2)expresses
the position vector from the object’s center of mass to the contact
point between the end-effector and object, which is relative to the
object’s local framework.

The dynamic model of the two manipulators can be depicted as:

M@)§+V(@q. 9q+G(q =1+ (3)
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Fig. 2. Block diagram of the impedance control architecture.

where M(q) = diag(M:(q1), Ma(q2)) € R'**'™ Mi(q) € R™
denotes the symmetric positive definite inertial matrix of the ith
manipulator. ¢ = (g, q})" € R'**1, q; € R”*! denotes the vector
of joint angles of each manipulator. V(q, q)q = diag(V1q;, V>q>)
is the (14 x 1) vector of Coriolis and centrifugal forces, T =
(=], )" € R™ 1 is the vector of applied joint torques and 7, =
(zf,, 71T € R™ 1 is the mapping equivalent joint torques from
Cartesian space. G(q) = diag(G;(q1), G2(q2)) € R™*! represents
the gravity term. Viq; € R”*', Gi(q;) € R”*!, 7; ¢ R”*1 and 7 €
R”*1 denote their counterparts of each manipulator respectively.
Kinematics:

According to the definition of the grasp matrix, the following
mapping equation can be obtained:

I pr

E? . 0, I|.

X [xz} Jy=1p p |?Y (6)
0; I

where ¥; denotes the linear and angular velocity of the ith end-
effector referred to the base frame, it is a (6 x 1) vector.

The mapping from Cartesian space to joint space is described
by:

x=J(@q (7)
_ i@ Osx7
J@= |:06><7 ]2(‘12)] 8)

where Ji(q;) is a (6 x 7) matrix expressing the analytical Jacobian
matrix of the manipulator for i = 1, 2. It should be noted that the
vector of equivalent joint torques satisfies the equation:

Te = _.’T(q)F- (9)

2.3. Decomposition of external force and internal force

To achieve impedance behavior when the object interacts
with the environment and the bounded internal forces, we need
to simultaneously implement the object impedance control and
internal impedance control. For this purpose, similar impedance
control architecture [16] with some proper modifications can be
adopted.

Since we put our emphasis on the implementation of biomi-
metic adaption of object impedance, the object and internal force
should be decoupled first.

As depicted in [31], the force F applied by the manipulators can
be decomposed into motion-inducing and internal force. Motion-
inducing force, expressed by a (6 x 1) vector Fg, represents the force

exerted by the end-effector that may balance the object’s dynamics
and the wrench exerted by the environment on the object. As well
we use the (6 x 1) vector F; to denote the internal force. The
internal force that consists of compressive or tensile force and
torque do not contribute to the motion of the object. Then we can
get:

F=F:+F. (10)

According to its definition, the internal force do not contribute
to the actual force on the object, thus spanning the null space of J7,
then the internal force and the motion-inducing force can be given
by the following two equations:

F; = [fie fZE]T =J, ', F
F = [fu le]T = (Iu —J,'J;)F

where ]OT Tisa generalized inverse of the grasp matrix ]OT .

Since J,' = AJ,(JTAJ,)"" and A € R®*S are positive definite
matrixes, then different A may induce different solutions to the
above equation. According to [30], by choosing]oTT as Eq. (12), we
can avoid inherent squeezing effect in motion-inducing force:

(11)

I 03
1|1 —-pP; I
T+ _ 1 1 I
L= 2| B 05 (12)
-P, L
0 —I; 05
1 6 P,—P, —I
_qTyT L 1 p) 3
112 0 .’0 - 2 —I3 03 o (13)
P, —P, —I; 6

As presented above, since the force F can be decomposed into
two parts, the internal force lies in the null space of ]OT , then

external and internal forces can be decoupled.

2.4. Impedance control architecture

In this part, the impedance control scheme can be pursued, as
in paper [16], and would be extended with proper modification
according to the requirement of object impedance adaptation. The
whole control strategy is depicted in Fig. 2.

Definitely, to implement the impedance task, we should assume
that the inner position tracking control is accurate enough. Here we
use hierarchical closed-loop control framework, Cartesian position
control as the primary loop policy and joint position control
as the secondary loop policy respectively. This framework can
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ensure high coincidence of the reference and the actual trajectory
if the concerned parameters meet the corresponding stability
requirements.

To achieve geometrically consistent stiffness, here we adopt
Six-DOF Impedance, a generalized mechanical impedance encom-
passing both translational and rotational displacements first pro-
posed in [32] and further extended in [27].

Then the object impedance equation and the internal imped-
ance equation are given as follows:

MolAy +D01AJ" +K01Ay = _Fenv (14)
M.AX + D, Ax + K,Ax = AF, (15)
AF, = Fy —F (16)
Ay =Yya—¥r (17)
AX = X4 — X, (18)

wherey, and X, are vectors denoting the desired object trajectories
and desired end-effector trajectories for each manipulators, y,
and x, are corresponding reference trajectories. M., D, and K,
are (12 x 12) symmetric positive-definite matrixes that denote
the mass, damping and stiffness matrixes for internal impedance,
respectively. My, D,; and K,; are (6 x 6) symmetric positive-
definite matrixes for object impedance, their adaptation law will
be described in the next part. F;; denotes the desired internal
force which can avoid both the damage of the object and possible
grasp failure. Different from the internal impedance as in [16], a
commanded internal contact force can be specified here.

As to the object impedance described by (14), the direct mea-
surement of F,,,, namely, the force exerted by the environment on
the object, is not available, so (14) needs to be transformed. Only
by folding the object dynamics (1) into Eq. (14) can we get:

MolAj;'i'DolAj"f'KolAy:_ oj;_vo(j's.V)y_Go'f'Fw (19)

In the above expression, it is not easy to get the accurate value
of the object acceleration y. For the high tracking accuracy of the
inner position controller and the small error Ax, a reasonable
assumption can be made that frame X, coincides with the
reference object frame X, (a virtual frame which depicts the
reference trajectory of the object). Accordingly, the object’s actual
acceleration equals the object reference acceleration. Since F, can
be readily computed by (2), then y, can be obtained by solving (19).
Via using (15), the corresponding Cartesian reference trajectories
X, can be readily computed.

To gain perfect tracking of the Cartesian reference position, here
we adopt a Cartesian closed-loop algorithm [33] and resolve the
redundancy of the 7-DOF manipulators at acceleration level [34].
The desired joint trajectories can be described as:

o =J1(@) G + Koxe, + Koxey —J (@da) + i
e, = (X —X;)

e, = (X — X,) (20)
&a :.’(Q)‘.Id
J@=J" @U@ @) (21)

where g = [g}, §l,]" is the (14 x 1) vector of joint desired
accelerations for each manipulator. Kinematic singularity will be
not considered here. K,x and K,; are (12 x 12) symmetric positive-
definite matrixes, which can ensure asymptotic stability of (20).
Ji(q) is the pseudo inverse of J(q); gy is a (14 x 1) vector
denoting the null-space joint accelerations, which can be used and
controlled for null-space optimization task. By solving (19), (15),
(20), the joint desired trajectories g4 can be obtained.

Then using a PD with Gravity and Friction compensation control
law, the commanded torques of the motor can be given as Eq. (22).

T = Ky.eq + Kyqe, + G(q) + F(q, ) (22)
e =4qi—q (23)

where K,; and K, are (14 x 14) symmetric positive-definite
gain matrixes, G(q) and F(q, q) are (14 x 1) vectors expressing
the gravitational forces and friction forces, they are given by
model-based computation and calibration experiment with proper
modeling respectively. Then the closed-loop control in joint space
can be achieved.

Remarkably, the adoption of PD with Gravity and Friction
compensation controllers here is much more appropriate than
some other dynamical model based or intelligent controllers due
to unknown uncertainties and model parameter errors. To enhance
the performance of the joint controller, gravity compensation are
needed and the essential parameters of the two manipulators are
obtained by their Pro/Engineer models respectively. The Stribeck
static friction model used here is a tradeoff between computation
cost and locating/tracking accuracy. Compared with the usual
Coulomb-viscous friction model, it can reflect the nature of friction
better. Also, this model has fewer parameters needed to be
identified than other dynamic friction models. Since this model
can compensate more than 90% of the actual friction, therefore
sufficiently meets the requirements of locating/tracking accuracy
in joint space.

Notation:

To implement the proposed control scheme, a set of signals
that we cannot directly obtain by existing sensors is needed. The
algorithms to obtain these signals are as follows:

Object position: The position of each modular joint can be
measured by the integrated joint position sensor. With forward
kinematics of the manipulators (defined as x = ¢,,,(q)) and closed-
chain constrains (defined asy = ¢¢(x)) between the manipulators
and the object [35], the following relation can be obtained:

¥ = b6 (Pn(q)). (24)

Velocity: Since the high-gain observer can estimate the deriva-
tive of the output signals and effectively suppress the disturbance
brought by white noise simultaneously, and the whole process is
independent of the mathematical model, here we use this method
to observe the joint velocity. To eliminate the peak phenomenon
existed in high-gain observer, original mathematical description
should be modified. The transfer function defining the high-gain
observer is given by

qu ES

— = G(s) = R (25)
dij ey + Tay +é&

where g;; denotes the joint angle of the joints forj = 1,2...7in
manipulators for i = 1, 2, which is measured by the encoder inte-
grated in each joint, &u is the estimated value of the corresponding
joint velocity. € is a small positive parameter to be specified, the
positive constants &7 and «; are chosen to satisfy the Hurwitz rules.
These constrains can ensure the convergence of the estimated joint
velocity [36].

Force: the terms of F, and F; in Eqs. (19) and (16) can be readily
computed by Egs. (2) and (11) respectively, only end-effector
forces and moments need to be measured.

Also, current loop is introduced into motor control to achieve
the approximately linear relationship between motor torque and
control current, thus, relatively accurate output torque can be
controlled independently.

2.5. Biomimetic object impedance

As to function (14) and (19), we need to avoid arbitrary
assignment of the mass and inertia matrix since the accurate object
acceleration is not available.

M, = KM, (26)
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where K is a diagonal gain matrix whose eigenvalues are all
greater than or equal to 1. This assignment can contribute to
the compensation of the object dynamics in (19). Furthermore,

choosing K = I will avoid large modification of the system
characteristics.
M, = M,. (27)

The stiffness and damping matrixes are respectively adapted
according to:

ADy = Dol(t) — Dy (t - T)
= —Q - (yDo —s- AY")

28

AKy = Ky (t) — Ky (t —T) (28)
= —Q¢ - (yKu —s-Ay")

s= Ay + AAy (29)

where Qp and Qk are symmetric positive-definite gain matrixes
corresponding to the adaptation law of K,; and D,; respectively.
T is the sampling time. A is the positive-definite diagonal matrix, s
denotes the combined error measure. With Barbalat’s lemma, one
can easily know the convergence of s to zero implies that of the
error Ay and its time derivative Ay.

Eq.(28) canbe divided into two terms. The first term, —Qp-y -Dy;
(or —Qx - ¥ - Ky), plays the role to limit the relative maximums
of the damping (or stiffness), the second term, Qp - s - Ay’ (or
Q« - s - Ay"), ensures the damping (or stiffness) adapting with
the velocity error (or position error) and changing toward the
direction in which deviation of the object decreases. This design
enables the object/dual-arm system behaves like human beings as
aforementioned.

To simplify the derivation below, two following error equations

are defined:
bol = ﬁol - DoI (30)
IN(OI = kol - Kol

where f)ol and IA(o, are the minimal desired damping and stiffness
that can maintain stability and reduce the deviation between the
desired trajectory and reference trajectory.

3. Stability and convergence analysis

Stability and convergence of the whole control system, de-
scribed by three closed-loop Eqs. (14),(15) and (20) with two adap-
tion laws (28), is investigated below.

Cartesian position error is defined as AX = x, — x,, then a
candidate Lyapunov function for the inner-loop position control is
given by:

1 2T - 1 ~T ~
Vi = EAX AX + EAX Ky Ax. (31)
Considering (20) and differentiating (31) yields:
Vi = A¥ AR+ AR K AR

= —(Kux AR + K AR AR + AR Koy AR

— AR K, AR (32)
Define the second candidate Lyapunov function:

1T ., .1
Vo =Vi+ EAX M,AX + EAX K. Ax. (33)
The time derivative of (33) can be given as follows:

Vo = Vi + AR"M, A% + AXTK, A%. (34)

Combining (34) with (15) results in:
Vo = V; + AX'(AF, — DA% — K. AX) + AXK,Ax

= V; + AX"(AF, — D.AX). (35)
From [37], we can know that:
Ax = J,Ay. (36)
Since AF; lying in the null space of J7, it follows that:

JIAF =o. (37)
Incorporating (36) and (37) into (35) yields:
Vy = Vi + AYTJTAF, — AX"D, A%

= Vi — AX'D,Ax. (38)
Combining (38) with (32) results in:

. T 2 . .
V, = —AX K,xAX — AX'D,AX. (39)

As K,x and D, are specified as symmetric positive-definite
matrixes, V, is negative semi-definite. With Lyapunov’s second
method and LaSalle invariance principle, the asymptotic stability
of Egs. (15) and (20) is ensured, namely, V; < 0, F; — Fy, X — X4
and x, — x; fort — oo.

Define the third candidate Lyapunov function:

1
Vs =V, 4+ ESTMOIS' (40)

Differentiating (40) yields:
. . T
V3=V, +s Mys + ES M,;s. (41)

Consider M,, = 2V, + S where S is a skew-symmetric matrix, then
combining the above equation with (27), (29) and (14), one has:

Vs = Vy +s'M,$ + %STMMS
=V, + 8 (Mo AY + My AAY) + s V,s
= Vo + 'Ky Ay + S DoAY + 5" Fopy
— 'Ky Ay — s"Dy Ay + sSTM,AAY +s"V,s
< Vo + 5Ky Ay + s"Dy AY + sSTMy,AAY + 5" V,s. (42)

Out of consistency of the above expressions and the following
equations, discrete form of V3 is given as:

t
AVs < AV, + (s"K, Ay + s"Dy Ay
t—T

+s"M,AAY + 5"V, s)dr. (43)

To guarantee the asymptotical stability of the whole control

system and minimize the energy cost of biomimetic adaption
procedure, the overall Lyapunov function can be described by:

V=V34+V, (44)

Vo = Vak + Vg (45)

Vg = / vec(o () - (1 ® Qo) - vec(or())de
e (46)

Vad = % f vec(Dy (7)) - (1 ® Qp) ™" - vec(Dy (7))dt
t—T

where ® denotes Kronecker product, vec(M) is the column
vectorization operator that transforms the matrix M into column
vector. This definition actually describes the tendency to stability
and the ultimate convergence of the impedance parameter.
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B =1
Fig. 3. Virtual model of the dual-arm system.
Then the difference of V can be given as follows:
AV = AV + AVg + AVyq (47)

t
AVge = % / {[vec(Ko ()" - (I ® Q¢) ™" - vec(Ky (7))
t

-T

—vec(Ky(t —THT - T Q@ Q)"

-vec(Ky (r — T))]}dt (48)
t
AVy = % {[vec(Doi (7)) - (I ® Qo) ™" - vec(Doi(7))
t—T
—vecDo (1 —T))" - I @ Q)"
-vec(Dy (t — T))]}dx. (49)

When the gain parameters are chosen to satisfy the formula
ytr(KyKor) + ytr(D} Do) + S"MyAAY +5"V,s < 0. (50)

Then the asymptotic stability of this adaptive controller and the
convergence of the parameters are ensured. Detailed derivation is
given in Appendix A.

4. Simulations

Here we use the toolbox SimMechanics in Simulink with ode45
solver to implement the modeling of the physical system with
the proposed controller. This virtual model (as shown in Fig. 3)
consists of three parts: the dual-arm cooperative 7-DOF humanoid
manipulators, the dynamics of an object with specified parameters
and the contact-force model between the two end-effectors and
the object.

The model parameters of these two manipulators, which are
listed in Table 1, are given to coincide with the physical system
named Robonaut in HIT. Two manipulators share the same set of
parameters.

The object manipulated by this virtual dual-arm system is a
cube whose parameters are 1 kg, diag[0.4, 0.4, 0.4] kg m?, 0.1 m
for mass, inertia matrix and edge length respectively.

To depict the contact forces between the two end-effectors
(disks) and the object in virtual simulation, penalty function
method is adopted as the mathematic model. This approach is one
of the most commonly used algorithms to calculate and model
the contact force. It is assumed that the contact plane which
is perpendicular to the axial direction of the end-effector can
penetrate the object. The contact force is zero when the object
is not penetrated, while non-zero contact force acting at the

Table 1
Model parameters of the two manipulators.

Identifier Length(m) Mass/Inertia matrix
1 01 3.47 kg

' diag[0.012, 0.010, 0.009] kg m?
2 02 2.37kg

’ diag[0.020, 0.025, 0.023] kg m?
3 02 2.25kg

’ diag[0.03, 0.008, 0.009] kg m?
4 014 1.79 kg

) diag[0.002, 0.044, 0.044] kg m?
5 014 1.72 kg

’ diag[0.003, 0.003, 0.003] kg m?
6 014 1.80 kg

' diag[0.002, 0.005, 0.005] kg m?
7 01 1.0 kg

diag[0.003, 0.002, 0.002] kg m?

two arms and object are generated when it is done. The penalty
function is described as:

f) = kfi(x) + df2 (x, %)
fi(%) = max(0, x)

0 x<O0
x x>0

(51)
fZ(xs X) = {

where k and d are positive constants that represent the stiffness
and damping of the contact surface respectively. f denotes the
contact force acted on the object exerted by the manipulators.
x expresses the relative distance between the ends of the
manipulators and the object, x is positive when the contact surface
is penetrated and vice versa.

The stiffness and damping of this linear spring model are chosen
as 10000 N/m and 25 kg s .

This object has 6 DOFs. To simplify the whole simulation, we set
position constrains in all DOFs but one horizontal direction which
coincides with that of the contact force.

To verify the effectiveness of the proposed method, simulations
with fixed and adaptive impedance parameters are implemented
respectively. For the general object impedance scheme, the set of
fixed parameters are chosen as follows:

K=1, Koy =50N/m, Doy = 5kg/s, M, = 0.2 kg,
Fq =20N, D. =500kgs !, K. =200 N/m.

For the biomimetic object impedance controller proposed here,
the parameters are set by:

K} = 10N/m, D;, = 8kg/s,
Qr = 60 x 103, 0p =3 x 103,

It should be noted that K}, and D7, are initial values of the
stiffness and damping of the object impedance, they are both
critical to the initial stability when this novel control scheme is
applied to simulation or physical experiment.

Both of the two schemes share the same parameters of the
internal impedance and the inner controller for the dual-arm
system. The parameters of Cartesian closed-loop control and joint-
space closed control are given as:

K,y =205, K, =5l
K,, = diag[200, 150, 150, 150, 80, 100, 50]
K,, = diag[30, 25, 25, 10, 15, 15, 10].

A=5
y =0.5x 107,

Then an environmental force is commanded, as is shown in
Fig. 4. Step forces of 5 N and 10 N (static force simulation) are
applied on the object’s center of mass of the object at 0 s and
10 s respectively, and then last for 5 s. Another sine-wave force
(high-frequency force simulation) is applied between 20 s and
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Fig. 4. Simulation results of Biomimetic object impedance (BOI) and General impedance with fixed parameters (GIFP) schemes.

25 s. Internal forces exerted by manipulators are also exhibited
in this figure when BOI (biomimetic object impedance scheme)
and GIFP (general impedance scheme with fixed parameters) are
adopted respectively. Compared with GIFP, BOI can ensure a much
smoother variation of the internal force tracking when external
disturbance changes.

The object deviations with these two schemes are also pre-
sented in Fig. 4. It should be mentioned that the object impedance
parameters of the GIFP are tuned and chosen to achieve relatively
the same performance compared to BOI in phase 1. GIFP may be
able to obtain similar performance like BOI (in phase 1) but would
generally underperform the BOI (in phases 2 and 3) when the
external disturbance changes due to the lack of adaption and flex-
ibility. Simulation results show superiority of BOI scheme. The
magnitude of the deviation of the object’s position is much more
reduced. Moreover, due to the adaption of the parameters of the
object impedance, the linear relationship between displacement
and static force is no longer applicable.

The adaption of stiffness and damping of the BOI are exhibited
in subpanel c of Fig. 4. When the disturbance is relatively stable
(phase 1 and phase 2), the adaption of stiffness plays a major
role, different magnitude of static force would build different
stiffness. When the disturbance changes dramatically (phase 3),
the adaption of damping predominates. This property confirms the
expectation of the proposed BOI in this paper.

To further study the influence brought in by the parameters on
the objectimpedance, three different sets of parameters are chosen
as: (@) Qe = 60 x 103, Qp = 3 x 10°, y = 0.5 x 1073;
(b) Qx = 120 x 10%, @y = 6 x 10°, y = 0.5 x 1073;
(€)Qr=60x 103 Qp=3x10% y =2x 1073,

Simulation results are presented in Fig. 5, from which the
following conclusions can be drawn: Q, and Qp influence the
convergence rate of object stiffness and damping respectively,
parameter y not only affects the steady-state value of stiffness and
damping but also influences their convergence rate.

Throughout the simulation, the effectiveness of the novel
biomimetic controller is demonstrated.

5. Implementation and experiments

The proposed algorithm was tested on a dual-arm robot named
HIT-Robonaut, which is equipped with two 7-DOF humanoid
manipulators (as shown in Fig. 6). The hardware architecture of
this dual-arm cooperative system is shown in Fig. 7. A series of
experiments are carried out to demonstrate the advantages of
the adaptive object impedance strategy over other conventional
object impedance scheme, such as the characteristics dealing with
unstable interactions. The two manipulators are both mounted on
the fixed base and grasping a box whose size is 0.40 m x 0.25 m x
0.25 m. A brief description of this dual-arm system is given in
Appendix B.
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It is worth mentioning that to reduce the amount of the
quantities indirectly measured and increase the credibility of
the experimental results, here we use the API Laser Tracker III
to observe and record the pose and motion of the object. The
static/dynamic absolute accuracy are +5 ppm and £10 ppm,
respectively.

Since the proposed algorithm enables a consistency in all direc-
tions, then to simplify the procedure, the motion characteristics of
the object along one certain direction is mainly studied for each
following experiment.

5.1. Static interaction experiments

To obtain the static response characteristic, we apply artificial
static interference on the object held by the dual-arm system. First
of all, two 7-DOF humanoid manipulators grasp the box tightly
and keep it still. Then two weights are gently stacked on the
object respectively, this process is equivalent to applying a static
interference to the box and minimizing the dynamic disturbance
term simultaneously. The process of stacking weighs is carried out
with two parts. At the first step, we put the weight with the mass
of 0.5 kg on the box, then stack another weight above the former
one. To highlight the trend that the object impedance characteristic
demonstrates along one typical axis, the two weights should be put
at the object’s center of mass as accurately as possible, this can
ensure the minimization of the introduced disturbance acting on
the box along other axes. We do not need to mix them up because
the consistence of the impedance characteristics along the three
axes is guaranteed by Eq. (12).

. Impedance
Relationship

Fig. 6. Experimental setup for HIT-Robonaut grasping a box.

To intuitively show the relationship between the environmen-
tal disturbance and the adaptive stiffness & damping, the exter-
nal forces should be displayed. Since the applied force exerted by
the end-effector of each manipulator can be obtained by real-time
measuring of the two JR3s, the external forces (the object’s dynam-
ics is properly ignored because it is much smaller than the external
forces) exhibited in the following figures can be obtained by map-
ping transformations and some proper computations.

According to Eqgs. (3) and (4), also considering the aforemen-
tioned size parameters and the centroid position of the box, the
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Fig. 7. Hardware Architecture of the dual-arm cooperative system.

grasp matrix here is then given by the following equation:

I 05 I 05

R 0o 0 o0

lo=10 0 —02 b 0 0 02 &K (52)
0 02 0 0 —02 0

First of all, general object impedance strategy with fixed param-
eters is adopted. The parameters of the object impedance are set
to: Koy = 100Ig N/m; Doy = 1515 kg/s; Fig = 20 N. Experimental
results are shown in Fig. 8. According to the forces/torques mea-
sured by the two JR3 sensors and through proper grasp mapping,
we can know that the introduced weight at the first step brings
the object a (—0.5, 4.8, 0.6) N static interference force and at the
second step exertsa (—1.4, 9, 1.0) N equivalent force respectively.
Obviously the non-y-axial components of the external force apply-
ing on the box are neither zero. This is due to the non-coincidence
between the centers of the weights and the box. With the above
static forces, the object’s position derivations from its initial po-
sition are (—5, 48, 4.1) mm and (—9.1, 90.3, 9.5) mm (as shown
in subpanel (¢) of Fig. 8). It should be noted that the approximate
linear relationship exists between the external static force and the
deviation. After the removal of the weights, the box returns to its
initial position at 0.

Secondly, parameters adopted in the proposed adaptive object
impedance are Qx = 6 x 10*lg, Qp = 3 x 10°lg, A = 5lg, y =
0.25x 1073, K, = 30l N/m, D;, = 10Ig kg/s. The experimental
results are also given in Fig. 8. The two weights stacked on the
box are equivalent to applying to the object a (0.37, 4.75,0.38) N
and a (0.8, 9.4, 1.18) N static interference force respectively (as
illustrated in subpanel (b) of Fig. 8). With these two equivalent
static interference forces, the position of the box is deviated to
(7,49,9) mm and (12, 61, 17) mm from its initial position, the
external force along the y-axis exhibits a nonlinear relationship
with the corresponding displacement along the same axis. This
phenomenon is caused by the accumulation of the stiffness of
the object impedance which is tuned by the adaptive law. During
the whole process, the stiffness increases to (5,72,5) N/m and
(10, 116, 15) N/m respectively (as illustrated in subpanel (e) of
Fig. 8). So the increment of displacement corresponding to the
weights added on at the second step is smaller than the previous
one. Meanwhile, from the results shown in subpanel (f) of Fig. 8,
we can see that the damping of the object impedance varies only
at the moment we drop the weights on the box and it returns
to 0 when the system achieves stability. Also it is noted that the
damping increases to a positive value at the instant of placing the

weights on and decreases to a negative value when removing the
weights out. How the damping varied depends on whether the
current speed of the object benefits the return of the object to its
initial position. Furthermore, internal force tracking results with
these two schemes are shown in subpanel (g), which illustrates the
fact that both of them have similar force tracking performance and
can ensure bounded internal force when static disturbance exists.

To further verify the influence on the stiffness and damping of
the object adaptive impedance brought by the parameter y, two
different values are assigned to it: (a) y = 0.25 x 10~% and
(b) ¥ = 0.50 x 1073, The experimental results are both shown
in Fig. 9. Comparing the results of the two experiments, it is noted
that the steady-state value of the stiffness along the direction of
the interaction force at the time when the first weight is placed on
are 69 N/m and 39 N/m respectively, the maximum damping are
25 kg/s and 14 kg/s. After the second weight is stacked, the stable
stiffness increases to 113 N/m and 65 N/m, the maximum damping
are 12 kgfs and 7 kg/s. Actually, consistent with the simulation
results in Section 4, the parameter y has a significant influence
on the build-up speed of the stiffness and damping of the object
impedance. Larger y may lead to a faster forgetting speed, thus
establishing a smaller rate of convergence and stable value of the
two key object impedance parameters.

In summary, with the presence of the static environmental
interference, the adaptive object impedance control strategy
mainly builds up the stiffness to suppress the displacement of the
object when interacting with the static environment. Definitely,
with the tunable parameters, we can get much faster rate of
convergence and smaller steady-state deviation. This depends on
the practical requirements.

5.2. Dynamic interaction experiments

Furthermore, this part will demonstrate the dynamic interac-
tion experiments. Artificial dynamic interference is applied to the
object to help obtain the dynamic response characteristic of the
system with GIFP and BOI schemes. The two manipulators hold the
box and keep it stationary beforehand, then we push and pull the
clamped box along the x-axis several times to simulate the hor-
izontal dynamic interference force. The variations of the object’s
position and internal forces with these two schemes are recorded
and shown in subpanels (a)-(d) of Fig. 10. With the push-pull, the
clamped box interacts with human along x-axis. The amplitude of
this force is approximately 10 N. As this interaction varies, the
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Fig. 8. Experimental results of BOI and GIFP schemes with static interactions.
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box moves back and forth relative to the initial position in the range
between —0.03 and 0.02 m when using BOI (as shown in subpanel
(c) of Fig. 10), while the motion range with GIFP is from —0.1 to
0.1 m. During the shaking, the stiffness of the BOI approximately
increases to 10 N/m. This slight inconsistence between the results
of simulation and that of this experiment is due to the asymmetry
of the reciprocating force. In this case, the adaption of damping out-
stands. It increases to nearly 40 kg/s. This is because the adaptive
object impedance strategy would build up the damping to suppress
the variation of the object’s speed. The internal force tracking re-
sults are shown in subpanel (b), from which we can know that the
fluctuation of internal force with BOI is much smoother than that
with GIFP when dynamic interaction exists.

6. Discussion

In this paper, a novel control scheme with biomimetic adaption
of object impedance for dual-arm cooperative 7-DOF manipulators
is proposed. The current study is based on the impedance
architecture first proposed in [16]. We further introduce force
tracking into the internal impedance level and biomimetic
adaption mechanism into the object impedance level, which makes
the scheme advantage over other related approaches in some
aspects. Compared with [16], this controller exhibits explicit
impedance behavior when the interaction with environment is
weak, and shows accumulation property of the stiffness and
damping accordingly. The adaption of stiffness plays a major role
when the disturbance is relatively stable, whereas the adaption of
damping predominates when disturbance changes dramatically.
Furthermore, it can simultaneously minimize the energy cost of

the adaptation process. Through tuning the adaptive parameters
in the controller, we can readily achieve the desired performance.
This human-like characteristic enables the object/dual-arm system
to biomimetically deal with complex and unknown environmental
disturbances. Also, it can avoid unnecessary energy cost to
maintain high stiffness and damping when no interaction exists.
Being different from [21], the adaptive mechanism used in our
paper is to mainly achieve the adaption of the stiffness and
damping of the object impedance rather than to generate new
trajectories by the way of trials and learning rules, this helps the
dual-arm system respond to the unknown interaction timely.

Although our method advances the object impedance control
for dual-arm system, there still remain limitations and room
for improvement as future works which can be focused on the
following three aspects:

First, proper choice of the generalized inverse of the grasp ma-
trix can totally decouple the external force and internal force and
avoid inherent squeezing effect in motion-inducing force, but their
corresponding object impedance and internal impedance cannot
be dynamically decoupled since the response rate of a second-
order system is finite essentially. Whether dealing with the prob-
lem to the extent that the main goal can be achieved substantially
from an engineering point of view or completely solving it theoret-
ically by proposing an improved control architecture needs further
discussion and experimental validation.

The second work direction is to transplant this algorithm to a
more general case, the grasp of objects of different weights or with
arbitrary flexibility.

When choosing the same grasp type, the only difference
between heavy and light objects is the force magnitude (or
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Fig. 10. Experimental results of BOI and GIFP schemes with dynamic interactions.

grasp stiffness) required if they are made of the same material,
or put another way, share the same mechanical property. So
the biomimetic object impedance control strategy can be easily
transplanted to the grasp of objects of different weights under the
premise of enough driving ability.

While this simple conclusion does not fit the case that soft or
rigid object is grasped, the flexibility of the object would make
the modeling more difficult. This problem should be divided into
two cases according to the degree of flexibility and discussed
respectively. The first case is that the stiffness of the object is
relatively high. Then it is assumed that deformation of the object
is very small, so the motion of the object can be approximately
regarded as a rigid body. This assumption is reasonable when a

rigid load is surrounded with bumpers or elastic materials. Another
illustration of this assumption is multiple grippers grasping a rigid
load, where the grippers possess compliance from installed flexible
mechanisms [38]. The contact forces between the manipulators
and the flexible object are modeled as gradients of nonlinear
potentials which describe the deformations of the object. Namely,
the kinematics of the object/dual-arm system needs no revision
and only the modeling of the contact forces should be replaced
compared with the analysis in our manuscript. The second case is a
more general case in which the object has arbitrary flexibility. The
flexible object can be decomposed into a rigid component, which
represents the original shape, and a flexible component which
represents the change in shape due to the deformation. This allows
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us to treat the motion of the object separately. Accordingly, the
motion of the object comprises of rigid motion (its gross motion)
and elastic motion. To simulate the flexible model numerically, the
finite-element method can be used to discretize the flexible body
as a regular discrete mesh of nodes. Then the deformation of all
nodes can be defined separately [39]. In a word, both kinematics
and dynamics need thorough reanalysis if we want to transplant
the biomimetic controller to this case.

Finally, it is worth mentioning that friction between the end-
effector and object brings no effect to the stable grasp according
to the mechanical analysis. In physical experiment, however, it
indeed contributes to the grasp success rate due to the non-
ideal grasp condition. This means that the internal impedance
which determines the clamping force and further determines the
friction does play a positive role. So the parameters of the internal
impedance should be properly adjusted according to the object’s
weight. Further work is needed.
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Appendix A. Derivation

Considering that the gain matrix Qg and Q4 are symmetric, then
with simple formula deformation, (48) and (49) can be rewritten
as:

[ ~ ~
{[vec(Koi (1))" — vec(Ko (T —T))']
T
I ® Q)" - [vec(Ky (7)) + vec(Ky (t — T))1}dr (A1)

1
AV = 5

t
{[vec(Dyi (v))" — vec(Dyi(t — T))']
t—T
(I ® Q)" - [vec(Dyi (7)) + vec(Dy (r — T))1}dr. (A2)

By combining (28) and (30), one has:

1
AV = 5

AK, = —AK,
Ny (A3)
AD, = —AD,;.
With simple formula deformation, we can get:
[vec(Io (1))" — vec(Ko (t — T))']- I ® Q)"
- [vec(Ko (7)) + vec(Ko (T — T))]
= vec(Ko (1) — Ko (t = T)" - (1 ® Q)™
-vec(2Ky (1) — Ko (7) + Koy (x — T))
= —vec(Af(o,)T (I ® QK)_] ~vec(AI~(0,)
+ 2vec(AK,) - (I ® Q)" - vec(Ky (7). (A4)

By folding (A.3) into (A.1) we can further simplify this equation
[vec(Koi ()" — vec(Ko(x = T)']- 1 ® Q)™
- [vec(Koi (7)) + vec(Ko (v — T))]
= —vec(AK,)" - I @ Qx) ™" - vec(AK,)
—2vec(AKy) - (I ® Q)" - vec(Ky (7))
= —vec(AK,)" - I ® Q)" - vec(AK,)
— 2tr(AKy Qg 'Kop)
= —vec(AK,)" - I ® Q)" - vec(AK,)
— 25TKy Ay + 2y tr (KD Ky). (A5)

Only need to perform a similar derivation for (A.2) can we
obtain:

[vec(Doi(1))" — vecDy(t — )1 I ® Q)™
- [vec(Dei (1)) + vec(Dy (t — T))]
= —vec(ADy)" - I @ Qx) ™" - vec(AD,)
— 25" Dy Ay + 2y tr(D],Dy)). (A6)

Considering the truth that Q¢ and Qp are positive-definite
matrixes yields:

vec(AKy)" - (I ® Q)™ - vec(AKy (7))
=tr[AK] - Q¢! - AK,(T)] > 0
vec(ADo)" - (1 ® Qo) ™" - vec(Doi (7))
=tr[AD], - Q' - ADy ()] > 0.
Folding (A.5) and (A.7) into (A.1) and (A.2) respectively, one has:

(A7)

t
AV < / [—s"Ky Ay + ytr(K K,p)]dt (A.8)
t—T

t
AVad =< [_sTDoIAy + )/tr(DngoI)]dT-
t—T

Incorporating (A.8), (A.9), (39) and (43) into (47) we can obtain:

AV = AV + AVgy + AVgyq
t
(s"Ko Ay + s"Dy Ay + s"V,s + sTM, AAY)dT
t—T
+ AV, + AV + AVyq

t
< / [ytr(K;Kor) + ytr(D},Dor)
=T

(A9)

IA

+s'TM,AAy + sTV,s]dr. (A.10)

When the gain parameters are chosen to satisfy the formula:

yte(KLKyp) + ytr(DDyp) + sTM,AAY +5"V,s < 0 (A.11)

AV in (A.10) can be made non-positive. Then the asymptotic
stability of this adaptive controller and the convergence of the
parameters are ensured.

Appendix B. Introduction to the dual-arm system

The whole system includes a standard PC for development and
debugging, a central controller and a dual-arm system. The PC
is installed with Matlab/Simulink, which offers an interface for
researchers to operate the robotic system and develop control
algorithm. Workbench is also installed to develop projects for
Vxworks. The PC communicates with the central controller via
Gigabit Ethernet. The central controller and the dual-arm robotic
system are interconnected by ppseco which can provide a
maximum data transfer rate of 25 Mb/200 us, it is a communication
protocol developed by our laboratory. The EPIC-based central
controller is equipped with Intel Core Duo processor, which
can provide 12575 MFLOPS floating-point arithmetic capability.
An 8 GB memory card is inserted in the type-2 CompactFlash
interface provided by the central controller, it is used to install the
Vxworks operating system and store experimental data. Vxworks
is a real-time embedded operating system running at 1 kHz. The
sampling period of the position sensors integrated in the modular
joint are 200 ws. Paul plan is adopted as the joint-space plan,
which generates joint trajectory per 100 ms. This algorithm can
prevent vibration and jerk and ensure a smooth motion of the
manipulators [40]. The central controller receives the real-time
position/joint-torque signals sampled by each sensor and then
generates motor drive signals via trajectory planning and control
algorithm.
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The speed of response of the inner loop is much higher than that
of outer loop, namely, the inner loop possesses higher bandwidth
or tracking frequency compared with the outer loop. This con-
tributes to the successful implementation of the following experi-
ments and a much faster stabilization of the whole physical system.

Two 6-DOF force-torque sensors (JR3) are mounted at the end
of the two manipulators respectively with separate data processing
and high-speed communication. Two end-effectors are mounted
on the output side of the JR3s respectively, both of them are in
cylindrical shape with small diameter and made of aluminum alloy.
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