
1

Planning for robotic exploration based on forward simulation
Mikko Lauri, Risto Ritala

Abstract—We address the problem of controlling a mobile
robot to explore a partially known environment. The robot’s
objective is the maximization of the amount of information
collected about the environment. We formulate the problem
as a partially observable Markov decision process (POMDP)
with an information-theoretic objective function, and solve it
applying forward simulation algorithms with an open-loop ap-
proximation. We present a new sample-based approximation for
mutual information useful in mobile robotics. The approximation
can be seamlessly integrated with forward simulation planning
algorithms. We investigate the usefulness of POMDP based
planning for exploration, and to alleviate some of its weak-
nesses propose a combination with frontier based exploration.
Experimental results in simulated and real environments show
that, depending on the environment, applying POMDP based
planning for exploration can improve performance over frontier
exploration.

I. INTRODUCTION

Autonomous robotic agents performing tasks such as mon-
itoring, surveillance or exploration must be able to plan their
future information-gathering actions. Real-world environments
are typically partially observable and stochastic, and planning
in them requires reasoning over uncertain outcomes in the
presence of sensor noise. The true state of the system is
hidden, and knowledge about the state is represented by a
belief state, a probability density function (pdf) over the true
state. The utility of actions is measured by an appropriate
reward function, and the agent’s objective is to maximize the
sum of expected rewards over a specified horizon of time.
Such planning problems are instances of partially observable
Markov decision processes [1], or POMDPs.

The solution of a POMDP is a control policy, i.e. a mapping
from belief states to actions. To find policies for information-
gathering and exploration tasks, several authors have proposed
applying quantities such as entropy or mutual information as
reward functions of the POMDP [2, 3, 4, 5, 6]. Although
finding optimal policies for POMDPs is computationally hard
(PSPACE-complete; [7]), they remain an attractive modelling
choice due to the ability to simultaneously handle uncertainties
in the robot’s action and sensing outcomes.

In this article, we address the problem of finding con-
trol policies for robotic exploration problems formulated as
POMDPs. We apply forward simulation algorithms for finding
a solution to an open loop approximation of a POMDP. This
approach allows general belief-dependent reward functions
and with suitable choice of algorithm can avoid discretization
of the continuous planning space. We derive a sampling-based
approximation for mutual information that can be applied
in conjunction with forward simulation based planning, and

M. Lauri and R. Ritala are with Department of Automation Science and
Engineering, Tampere University of Technology, P.O. Box 692, FI-33101,
Tampere, Finland, {mikko.lauri, risto.ritala}@tut.fi.

describe a method for efficiently drawing the required samples.
We provide an empirical evaluation of our proposed approach
in simulated and real-world exploration experiments1.

This article is organized as follows. Section II provides a
survey of related work and discusses the relation of our contri-
bution to the state-of-the-art. In Section III, we formulate ex-
ploration as a POMDP, and discuss possible solution methods.
Section IV reviews two forward simulation based methods for
non-myopic planning in POMDPs. Section V introduces the
sample-based approximation of mutual information suitable
for robotic exploration problems, and describes a method for
efficiently drawing the required samples. Section VI describes
the results of simulation experiments, and Section VII presents
the software architecture for implementation of our approach
and reports the results of real-world exploration trials. Finally,
Section VIII provides concluding remarks.

II. RELATED WORK

Mobile robots typically collect information on both their in-
ternal state and the state of the environment they are interacting
with. In simultaneous localization and mapping (SLAM) (see
Durrant-Whyte and Bailey [8] for a review) the robot must
jointly estimate both its pose (internal state) and the map of
the environment based on its actions and observations. Robots’
information-gathering actions consist of actions that affect
their pose, and hence the area covered by their sensors, and
actions explicitly selecting between sensors or their operating
modes. In the active SLAM problem [9], the robot’s actions
are selected to obtain best estimates on the pose and the map.
Thus, the active SLAM problem is an exploration or sensor
selection problem. The goal is to maximize information on
both the robot pose and the map.

Techniques to control mobile robot exploration may be
categorized e.g. by whether they apply heuristic rules or
formal decision theory for selection of exploration targets.
Applying heuristic rules for guiding exploration spans frontier-
based approaches [10], or some next-best-view approaches
such as [11]. Juliá et al. [12] classify exploration methods
according to the levels of multi-robot coordination and inte-
gration with SLAM algorithms. They conclude that SLAM-
integrated exploration performs best with regard to quality
of map information. Their results also agree with Amigoni
[13], Amigoni and Caglioti [14], who found decision theoretic
criteria combining both utility of exploration and its cost (e.g.
time or distance) to be preferable if both extent of the explored
area and exploration time were optimized. In the following, we
review in more detail some single-robot exploration techniques
that employ decision theoretic criteria to guide the exploration
process.

1Our software is available at: https://goo.gl/ENGkIf

ar
X

iv
:1

50
2.

02
47

4v
2

 [
cs

.R
O

]
 2

9
Ju

n
20

16

https://goo.gl/ENGkIf

2

Information on the location of the robot and environment
features, or landmarks, may be modelled by a multivari-
ate Gaussian distribution. The SLAM problem can then be
solved for example by applying the Extended Kalman Filter.
Exploration with such feature-based maps was studied by
Sim and Roy [15] who describe an A-optimal exploration
method, i.e. they minimize the trace of the state covariance
matrix. They discretize the location of the robot to a grid and
plan an informative trajectory in open loop as a sequence of
discrete positions via a breadth-first search. A similar objective
function was used by [16], adopting a model predictive control
(MPC) approach for optimization over multiple time steps.
Discretization of the action space was also applied by [17],
who applied reinforcement learning to learn parameterized
robot trajectories for exploration. A somewhat complementary
approach was adopted in [18], where a set of candidate
exploration targets were evaluated based on an utility function
designed to balance exploration of unknown areas and seeing
known landmarks to help maintain good localization informa-
tion. However, an explicit information-theoretic quantification
of the information gain was avoided.

Martinez-Cantin et al. [19] relaxed assumptions made in
earlier work, such as discretization of the action space and
the myopic optimization horizon. They applied a Monte Carlo
search algorithm in policy space with a Gaussian process ap-
proximation of the objective function. The policies to evaluate
were selected by minimizing the average mean square error of
the state estimate consisting of robot and landmark locations.

A belief space planning approach investigated by [20, 21]
addressed many of the limitations of earlier studies. A planner
architecture consisting of an estimation layer and a decision
layer combined with a model predictive control strategy for
non-myopic planning was applied, assuming a Gaussian belief
over robot and landmark poses. Discretization was avoided by
applying a gradient descent method for computing optimal
actions. Possible future measurements were treated as random
variables, relaxing the assumption of maximum likelihood
measurements. Exploration was considered in the sense that
the objective function included an A-optimality criterion for
state covariance.

Another body of work in exploration employs metric map
representations such as occupancy grids [22]. Bourgault et al.
[23] combined occupancy grid mapping with feature-based
SLAM and used mutual information as the reward function. A
discretized action space was applied with myopic optimization.

Rao-Blackwellized particle filtering (RBPF) is often applied
in state-of-the-art SLAM filters for occupancy grid maps [24].
Each particle represents a map and a robot trajectory hy-
pothesis. Stachniss et al. [2] studied myopic exploration in
RBPF SLAM by discretizing the action space to a set of
possible waypoints and then evaluating the approximate ex-
pected information gain when traveling to the waypoints by
sampling. This work was later expanded upon [25, 9] by
considering alternative measures of uncertainty of the SLAM
solution. These approaches consider both exploration of new
areas and maintaining the consistency of the particle filter
approximation.

a) Contribution: We present a new approximation for
mutual information that is useful in mobile robotics explo-
ration problems. The approximation can be easily integrated
with forward simulation planning methods, and avoids com-
puting full SLAM filter updates during the planning phase. In
contrast to e.g. [19, 20, 21], we do not assume a Gaussian
belief state. We propose and empirically evaluate in simu-
lated and real-world domains a exploration method combining
strengths of decision-theoretic POMDP based exploration and
classical frontier based exploration. In all cases, we concen-
trate on non-myopic planning instead of the greedy one-step
maximization of utility.

III. EXPLORATION AS A POMDP

Consider a robot exploring a partially observable environ-
ment. Let s ∈ S denote the hidden state of the system, com-
prising the state of the robot and the state of the environment.
At each decision epoch in the set T = {0, 1, . . . ,H − 1},
H ∈ N ∪ {∞}, where H is the horizon of the problem,
the robot selects a control action u ∈ U . Consequently, the
state at the next decision epoch is determined by a transition
according to a Markovian state transition model T(s′, s, u),
giving the conditional probability of transitioning to s′ ∈ S
from s ∈ S when action u ∈ U is executed. After the state
transition, the robot obtains information regarding the state
in the form of an observation. The observation is modelled
by a probabilistic model O(z′, s′, u) giving the conditional
probability of perceiving observation z′ ∈ Z in state s′ ∈ S
after action u ∈ U was executed. As the robot’s knowledge
of the true system state is incomplete, it is represented by a
belief state b ∈ B, a probability density function (pdf) over
the state space S. The set B, containing all pdfs over S, is
called the belief space.

As the robot executes control actions and perceives obser-
vations, its belief state is tracked by Bayesian filtering. Given
a belief state b ∈ B and an action u ∈ U , the predicted belief
state bu is computed by

bu(s′) =
∫
s∈S

T(s′, s, u)b(s)ds. (1)

Given an observation z′, the posterior belief b′ is obtained in
the update step by applying Bayes’ rule:

b′(s′) := τ(b, u, z′)(s′) =
O(z′, s′, u)bu(s′)

η(z′ | b, u)
, (2)

where the function τ : B × U × Z → B is referred to
as the belief update function. The normalization term in
the denominator is the prior probability of observing z′:
η(z′ | b, u) =

∫
s′∈S

O(z′, s′, u)bu(s′)ds′.

For each action, the robot receives an instantaneous reward
given by the reward function ρ : B × U → R. Throughout
the remainder of the paper, we will assume that the reward
function is bounded, i.e., there exist ρmin, ρmax ∈ R such that
∀b, u : ρmin ≤ ρ(b, u) ≤ ρmax. The reward at decision epoch
t ∈ T is discounted by a factor γt, typically γ ∈ [0, 1) [26].
The robot is said to act optimally when the expected sum
of discounted instantaneous rewards over all decision epochs

3

in T is maximized. The elements thus defined constitute
a discounted reward partially observable Markov decision
process (POMDP).

A. Reward functions for exploration

Suitable reward functions for exploration encourage reduc-
ing uncertainty in the belief states. Such reward functions
should yield a high reward for beliefs that have the majority
of their probability mass concentrated on a small subset of
states. Vice versa, beliefs that correspond to uncertain state
information should yield a low reward. Uncertainty functions
and information gain provide useful characterizations that can
be applied to define such reward functions.

Definition 1 (Uncertainty function and information gain [27]).
An uncertainty function is a concave function f : B → R+.
The information gain If related to an uncertainty function f
is the expected reduction in the uncertainty function:

If (b, u) = f(bu)− E[f(τ(b, u, z′))], (3)

taking the expectation under η(z′ | b, u).

For example, If (b, u) or −f(bu) may then be applied as
a reward function. A common choice for the uncertainty
function f is the Shannon entropy, for which the correspond-
ing information gain is the mutual information [28]. Mutual
information has been applied as a reward function in several
works on robotic information gathering, see e.g. [2, 3, 4, 5, 6].

B. Optimal policies

An optimal solution to a finite-horizon POMDP is a se-
quence of policies (π∗1 , π

∗
2 , . . . , π

∗
H), where π∗t : B → U maps

belief states to control actions, such that acting according to
π∗t at every decision epoch t maximizes the expected sum
of discounted rewards over the remaining decision epochs2.
An optimal solution is characterized by the value iteration
procedure for t = 1, 2, . . . ,H indicating the number of
decision epochs remaining, starting with Q1(b, u) ≡ ρ(b, u):

Qt(b, u) = ρ(b, u) + γ

∫
z′∈Z

η(z′ | b, u)V ∗t−1(τ(b, u, z′))dz′,

(4)
V ∗t (b) = sup

u∈U
Qt(b, u), (5)

π∗t (b) = argsup
u∈U

Qt(b, u). (6)

The value function V ∗t (b) gives the expected sum of dis-
counted rewards attainable by acting optimally for t deci-
sion epochs starting at belief state b, and Qt(b, u) gives the
expected sum of discounted rewards when action u is first
executed and then for the remaining (t − 1) decision epochs
an optimal policy is followed. For an infinite horizon problem,
value iteration converges to a unique fixed point V ∗, and the
corresponding optimal policy is stationary [29].

2Note that by this formulation, at decision epoch 0, π∗H is followed, at
decision epoch 1, π∗H−1, and so on.

Traditionally, reward functions in POMDPs are state and
action dependent, and thus linear in the belief state [1]. For
ρ(b, u) linear in the belief state, the optimal finite-horizon
value function can be represented by a piece-wise linear and
convex (PWLC) function [30]. Several of the most efficient
currently known approximate algorithms for POMDPs lever-
age the PWLC representation to find solutions [31, 32, 33, 34].

However, a reward function defined as an uncertainty func-
tion or information gain (Definition 1) is nonlinear in the be-
lief. Araya et al. [35] approximated a reward function convex
in the belief state by a piece-wise linear function and were
able to apply standard POMDP algorithms to approximate the
optimal policy. Online POMDP algorithms [36] that repeatedly
find an optimal action only for the current belief state during
task execution and do not rely on an explicit closed form
representation of the value function are also applicable to
POMDPs with nonlinear rewards. Several online algorithms
are based on a finite depth tree search over reachable belief
states. The number of reachable belief states after k decisions
is (|U||Z|)k, which quickly makes the search intractable for
problems with large action and observation spaces. If either
U or Z are uncountable, the basic tree search method is not
applicable.

In mixed-observability problems, a part of the state is
fully observable and evolves deterministically. In such mixed-
observability domains with a mutual information reward func-
tion, Atanasov et al. [5] showed that if the observation model
is linear-Gaussian w.r.t. the target state, the optimal policy for
maximizing mutual information is open-loop, and if possible
actions are constrained by the fully observable part of the state,
Lauri and Ritala [6] showed that under certain conditions the
problem can be relaxed into a multi-armed bandit problem.

C. Open-loop solution to a POMDP

Instead of resorting to the aforementioned approaches for
POMDPs with nonlinear rewards, we consider an open loop
approximation that ignores the effect of information provided
by future observations, instead choosing actions only on the
basis of currently available information. By this approach, we
are able to handle continuous action and observation spaces,
although at a loss in optimality of the solution.

Denote the current belief state by b0. Given an action
sequence u0:H−1, the predicted pdf of the measurements z1:H
given the information in the current belief state is

p(z1:H | b0, u0:H−1) =
∫

S|H+1|

b0(s0)·

H−1∏
k=0

O(zk+1, sk+1, uk)T(sk+1, sk, uk)ds0:H .

(7)

The open loop objective function over the corresponding
decision epochs is

JH(b0, u0:H−1) =

ρ(b0, u0) + E

[
H−1∑
k=1

γkρ(τ(bk−1, uk−1, zk), uk)

]
,

(8)

4

where the expectation is taken w.r.t. p(z1:H | b0, u0:H−1),
and belief states follow the recursion bk = τ(bk−1, uk−1, zk).
The crucial difference compared to the value iteration and
policies in Eqns. (4)-(6) is that the sequence of actions is
fixed beforehand. Thus, an optimal open loop solution u∗0:H−1
is a sequence of H actions that maximizes the expected
sum of discounted rewards when information provided by
observations during the subsequent decision epochs is not
exploited to select any of the subsequent actions:

u∗0:H−1 = argsup
u0:H−1∈U |H|

JH(b0, u0:H−1). (9)

We denote the optimal open loop value as J∗H(b0) ≡
JH(b0, u

∗
0:H−1).

A receding horizon control strategy is adopted as follows.
First, Eq. (9) is solved, u∗0 is executed and an observation z1
is perceived. The belief state is revised to τ(b0, u

∗
0, z1), and

the process is repeated. In a sense, feedback is reintroduced
by computing the optimal open loop action sequence again at
every decision epoch, applying updated information. This con-
trol strategy is also referred to as open-loop feedback control
(OLFC), and we denote the expected value of following this
OLFC policy for H decision epochs as ĴH(b0).

It is interesting to consider how much worse is the value
ĴH(b0) of the OLFC policy compared to the value V ∗H(b0)
of an optimal closed loop policy. If the reward function is
bounded, then the loss of OLFC compared to an optimal
policy is bounded. To see this, consider that the worst and
best possible policies attain a reward of ρmin and ρmax,
respectively, on every decision epoch. Taking into account
the discounting of rewards, we have that the difference in
value of any two policies over H decision epochs is at

most
H−1∑
k=0

γk(ρmax − ρmin). It should be noted that in practice

an optimal policy rarely obtains the maximum reward on
every decision epoch, nor does an open loop policy obtain
the minimum reward on every decision epoch, such that the
suboptimality is often less in practice than as indicated by the
bound.

The OLFC policy always performs at least as well as
executing an optimal pure open-loop action sequence u∗0:H−1,
as shown by the following theorem.

Theorem 1 (Performance of open-loop feedback control [37]).
For any b ∈ B,

ĴH(b) ≥ J∗H(b). (10)

The suboptimality of following the OLFC policy may be
further analyzed by noting that in certain special cases an
optimal policy is effectively an open loop policy, see [38] for a
discussion of such cases. Furthermore, an approximation of an
upper bound for the optimal closed loop value may be found
e.g. applying hindsight optimization, see [39].

IV. FORWARD SIMULATION FOR OPEN LOOP CONTROL

Solving the open loop control problem of Eq. (9) corre-
sponds to finding an optimal policy to a POMDP with no
observations, which itself is an NP-complete problem [7].
Since the optimal solution is a sequence of actions u∗0:H−1, it

Rollout

Selection Expansion Simulation Backpropagation

Tree policy

Figure 1: Overview of POMCP simulation episodes. The tree
policy stage consists of a selection and expansion phase, and
the rollout stage consists of a simulation and backpropagation
phase. (Figure adapted from [41])

is possible to apply search algorithms to find the solution. The
search space is U |H|, the space of action sequences with H
actions. As the objective function JH may not be differentiable
with respect to the action sequence, gradient methods are
not generally applicable. We review an algorithm for both a
finite (Subsection IV-A) and an uncountable (Subsection IV-B)
action space, leading to finite or uncountable search spaces,
respectively.

A. Partially observable Monte Carlo planning

The partially observable Monte Carlo planning algorithm
(POMCP) of [40] is a variant of Monte Carlo Tree Search
(MCTS) [41] to solve POMDPs with finite action and obser-
vation spaces. POMCP runs a sequence of forward simulations
called episodes on the problem, and collects the rewards
obtained in the simulation and uses them to evaluate alternative
strategies by constructing a search tree over the possible
policies. An exploration parameter e determines the balance
between exploitation and exploration behaviour during the
search.

We have adapted POMCP for solving the open loop control
problem of Eq. (9). A search tree over action sequences is
iteratively constructed, starting from a tree containing just the
root node corresponding to the current belief state b. The
overall objective is to estimate the values of possible open
loop action sequences, in order to be able to select an action
to execute in the current belief state that leads to the most
favourable outcome over the next H decisions.

Each node in the search tree corresponds to a particular
action sequence, and we will refer to a node by an action
sequence u0:k. The root node corresponds to the current belief
state b when no actions have yet been taken, and is referred to
by an empty set. For each node u0:k, a value estimate and a
count are maintained. The value estimate V (u0:k) is the mean
sum of discounted rewards recorded over all simulations that
continue from u0:k until the final decision epoch H . The count
N(u0:k) is the number of times a node has been visited during
the search.

Figure 1 gives an overview of a simulation episode, and
shows how the search tree is iteratively constructed. Every

5

episode consists of a tree policy stage and a rollout stage. In
the next two paragraphs, we give an informal overview of both
phases. After that, we describe the algorithm in more detail,
filling in the missing details.

During the tree policy stage, the current belief state b
is propagated applying the belief update equation τ with
each action u determined by the search tree nodes visited
and each observation z′ determined by sampling from the
prior distribution η(z′ | b, u). For example, at the root node
corresponding to b, the value estimates and counts of the child
nodes are applied to choose one child node corresponding to
an action u. An observation is sampled from η(z′ | b, u), the
belief state is updated to b = τ(b, u, z′), and the tree policy
continues to a new node u. Similarly, at any node u0:k a child
node u0:k+1 = {u0:k, u} is chosen according to the values
and counts of the child nodes, the belief state is updated, and
the tree policy stage continues at node u0:k+1. An example of
a trajectory of nodes traversed during the tree policy stage is
indicated by the arrows in the leftmost part of Figure 1.

Once a leaf node that does not have any children is encoun-
tered, the tree policy cannot be continued. The tree is expanded
by adding new child nodes as appropriate, an example of
expanding the tree with a single node is shown in the second
from left part of Figure 1, under the “Expansion” indicator.
The search then moves to the rollout stage. In the rollout stage,
a simulation until decision epoch H is performed, updating
belief and recording rewards along the way, see the third from
left part of Figure 1. In the final backpropagation phase of
the rollout stage, shown on the rightmost part of Figure 1, the
total reward recorded is applied to update the values of each
node visited during the simulation episode. Once a simulation
episode is completed, a new one is again started at the root of
the search tree, now expanded with new nodes.

Algorithm 1 presents the version of POMCP that we have
adapted to solve the open loop control problem of Eq. (9).
The algorithm takes as parameters the POMDP model, an
exploration parameter e, an optimization horizon H , and the
current belief state b. The while loop (Line 2) is executed
until a specified stopping criterion, e.g. the maximum number
of simulation episodes Ns, has been reached. Each iteration
of the while loop corresponds to one simulation episode.

If the condition on Line 10 is false, the current search
tree is applied to guide the action selection in the tree policy
stage. The action to execute is determined by a selection rule
maximizing an upper confidence bound [42, 43] as shown
on Line 143. The first term in the bound is the current
estimate of the expected value of the action, and the second
term is an exploration bonus dependent on the exploration
parameter e. The parameter e is typically selected such that it
is on a similar scale as typical rewards in the problem. The
exploration bonus encourages trying actions that have rarely
been tried, prompting exploratory behavior. After sampling an
observation z′, the tree policy stage is continued by a recursive
call to the function SIMULATE (Line 16). Finally, the counts
and values of all action sequences visited during the episode

3If N({u0:d, u′}) = 0 for any u′ ∈ U , the action is instead sampled
uniformly at random from {u′ ∈ U | N({u0:d, u′}) = 0}.

Algorithm 1 POMCP [40] for open-loop control

Input: The POMDP model, exploration parameter e, opti-
mization horizon H , current belief state b0

1: function POMCP(b0)
2: while stopping conditions not fulfilled do
3: SIMULATE(b0, ∅, 0)
4: N(∅)← N(∅) + 1
5: end while
6: return argmaxu V (u)
7: end function

8: function SIMULATE(b, u0:d, d)
9: if d = H − 1 then return 0

10: else if ISLEAF(u0:d) then
11: Add {u0:d, u} to tree ∀u ∈ U
12: return ROLLOUT(b, d)
13: end if
14: u ← argmax

u′
V ({u1:d, u′}) +

e
√

logN(u0:d)/N({u0:d, u′})
15: Sample z′ ∼ η(z′ | b, u)
16: r ← ρ(b, u) + γ· SIMULATE(τ(b, u, z′), {u0:d, u}, d+

1)
17: N({u0:d, u})← N({u0:d, u}) + 1

18: V ({u0:d, u})← V ({u0:d, u}) + r−V ({u0:d,u})
N({u0:d,u})

19: return r
20: end function

21: function ROLLOUT(b, d)
22: if d = H − 1 then return 0
23: else
24: Sample u ∼ πrollout(b)
25: Sample z′ ∼ η(z′ | b, u)
26: return ρ(b, u) + γ· ROLLOUT(τ(b, u, z′), d+ 1)
27: end if
28: end function

are updated with the reward information gained during the
episode in the backpropagation phase (Lines 17-18).

If an action sequence is encountered that is a leaf node of
the current search tree, a rollout stage is entered (Line 10). The
search tree is expanded to include possible successor actions
(Line 11). By calling the function ROLLOUT, a sample of the
reward until end of the optimization horizon is obtained. This
is achieved by simulating a given rollout policy (Line 24) until
the end of the optimization horizon. A typical choice of rollout
policy is to sample an action uniformly at random from U [40].

Once the while loop of the main function terminates, an
action recommendation û← argmaxu V (u) is returned (Line
6). The value estimates of POMCP converge asymptotically
to the optimal open loop value [40].

B. Sequential Monte Carlo planning

Kantas et al. [44] present a sequential Monte Carlo (SMC)

6

method to maximizing functions of the form

JH(φ) =

∫
Y

G(y, φ)p(y | φ)dy, (11)

which is seen to be equivalent to Eq. (8) by setting y = z1:H ,
φ = {b0, u0:H−1}, and choosing G as a function that encom-
passes the appropriate summations4.

The key idea of the SMC optimization method of [44] is
to construct a sequence of distributions λν ∝ p(φ)JH(φ)ν

where p(φ) is an arbitrary prior that is nonzero at the maxi-
mizers of Eq. (11). This approach is related to the Bayesian
interpretation of simulated annealing and maximum likelihood
estimation, see [45]. As ν →∞, λν(φ) becomes concentrated
on the set of maximizers of JH . In practice, a set of particles
is evaluated via the objective function and, based on the
evaluation result, particles are either discarded or carried
forward to the next evaluation round. Eventually the particle
set converges to represent an action sequence maximizing
Eq. (11).

The SMC method is presented in Algorithm 2. The al-
gorithm iterates over l = 1, . . . , lmax, where the number
of iterations lmax is chosen according to the accuracy and
run-time requirements. The algorithm maintains a set of M
particles. At iteration l, each particle indexed by i with
an associated weight w(i)

l represents a sequence of actions
u
(i)
0:H−1,l and a set of νl observation sequences conditional

on the action sequence, denoted z
(i)
1:H,j , j = 1, . . . , νl. The

integers {νl}l≥1 must form a strictly increasing sequence.
The algorithm has been shown to converge to the optimal
solution for logarithmic sequences, although in practice faster
increasing linear or geometric sequences are used [45, 44].
The sequence {νl}l≥1 is analogous to the temperature cooling
schedule in simulated annealing.

A control sequence is sampled for each particle from a
kernel ql (Line 4). For l = 1, the initial control sequences
are sampled from a prior distribution that is nonzero at the
maximizers of (11). In general, the choice of ql depends on the
problem specifics. The selection of the kernel determines how
new control sequence samples depend on the earlier ones, and
it has a central role in determining how efficient the algorithm
is. For further discussion on kernel selection, we direct the
reader to [46].

After control sequences have been sampled, they are applied
to generate νl replicas of possible state-observation sequences
when executing the control sequence (Lines 5-7). The weights
of the particles are updated by approximating the objective
function applying the state and observation samples contained
in each particle (Line 8). In this step, the belief states for given
j, l, i follow the recursion b(i)k = τ(bk−1, u

(i)
k−1,l, z

(i)
k,j).

At the end of each iteration, resampling is performed if
the effective sample size [47] falls below the threshold value
Mt (Line 14). After step l = lmax, the maximizer estimate
is extracted as u(im)

1:H−1,lmax
, where im = argmax

i
w

(i)
l . Algo-

4For this method, G must be finite and strictly positive, which can be
achieved by adding a finite positive constant without affecting the argument
maximizing the objective function.

Algorithm 2 Sequential Monte Carlo optimization, adapted
from [44].
Input: The POMDP model, number of iterations lmax, in-

creasing integer sequence {νl}lmax

l=1 , sampling kernels ql,
optimization horizon H , resampling threshold Mt.

1: function SMC(b0)
2: for l = 1, . . . , lmax do
3: for i = 1, . . . ,M do
4: u

(i)
0:H−1,l ∼ ql(· | u0:H−1,l−1)

5: for j = 1, . . . , νl do
6: z

(i)
1:H,j ∼ p(z1:H | b0, u

(i)
0:H−1,l)

7: end for
8: w

(i)
l ←
w

(i)
l−1

νl∏
j=1

(
ρ(b0, u

(i)
0,l) ,

+
H−1∑
k=1

γkρ(τ(b
(i)
k−1, u

(i)
k−1,l, z

(i)
k,j), u

(i)
k,l)

)
9: end for

10: for i = 1, . . . ,M do

11: w
(i)
l ← w

(i)
l /

M∑
j=1

w
(j)
l

12: end for
13: if 1/

M∑
i=1

(w
(i)
l)2 < Mt then

14: Resample; w(i)
l ← 1/M ∀i

15: end if
16: end for
17: end function

(a) (b) (c)

Figure 2: Convergence of the SMC algorithm in a robotic
exploration task. Subfigures 2a through 2c indicate increasing
iterations l of the algorithm. The robot location and outline are
indicated by a thin black circle. Local trajectories shown by the
blue lines are superimposed on a greyscale image indicating
current map information. The map shows occupied cells in
black, free cells in white, and unknown cells in grey. The
local trajectories are sequentially evaluated based on their
informativeness, and eventually converge towards the most
informative local trajectory.

rithm 2 is easily parallelized, as each particle can be processed
independently.

Figure 2 shows an example of applying Algorithm 2 to
a robotic exploration problem. The figure shows for three
iterations of the algorithms how possible trajectories for the
robot corresponding to the particles are evaluated, weighted
and resampled, converging towards the most informative local
trajectory.

7

V. MUTUAL INFORMATION IN MOBILE ROBOTICS

In this section, we present a new approximation for mutual
information (MI) that is especially useful in mobile robotics
domains. As the approximation is sample-based, it is straight-
forward to apply it together with forward simulation based
planning. The approximation is derived in Subsection V-A,
and in Subsection V-B we present a method for efficiently
drawing observation samples in the case occupancy grids are
used as a map representation.

A. Approximation of mutual information

The state s ∈ S in a robotic exploration problem is
decomposed into the robot’s internal state x ∈ X and the
environment state or map m ∈ M, i.e. S = X × M.
The internal state represents the pose of the robot, and the
environment state represents all relevant features of the world.
We make the following assumption asserting that the robot is
unable to affect the environment state through its actions.

Assumption 1. The robot’s internal state and environment
state evolve independently, i.e.

T(s′, s, u) = Tx(x′, x, u)Tm(m′,m), (12)

where Tx : X×X×U → R+ and Tm :M×M→ R+ are the
robot and environment state transition models, respectively.

We remark that this assumption does not imply that the
internal and environment state are independent.

Suppose information gain (Definition 1) with Shannon en-
tropy as the uncertainty function is applied as the reward in
an exploration POMDP. This leads to If (b, u) equal to the
mutual information, which can be approximated as follows.

Theorem 2. Denote by b ∈ B the current belief state, by
u ∈ U the current action, and let X , M , and Z denote
the random variables depicting the robot state, environment
state, and observation at the next decision epoch. Consider
the mutual information of the state (X,M) and observation
Z, defined

I(X,M ;Z | b, u) =∫
M

∫
X

p(x′,m′ | b, u) log p(x′,m′ | b, u)
p(x′ | b, u)p(m′ | b, u)

dx′dm′.

(13)

If Assumption 1 holds and if {x′(i), z′(i)}Ni=1 ∼ p(x′, z′ | b, u),
where N is the number of samples, then the approximation

IN =
1

N

N∑
i=1

[
log

p(x′(i) | b, u, z′)
p(x′(i) | b, u)

+

∫
M

p(m′ | b, u, z′(i), x′(i)) log p(m
′ | b, u, z′(i), x′(i))
p(m′ | b, u)

dm′
]

(14)

converges almost surely to I(X,M ;Z | b, u) as N →∞.

Proof. By the chain rule for MI [28],

I(X,M ;Z | b, u) = I(X;Z | b, u)+I(M ;Z | X, b, u). (15)

The first term of Eq. (15) is the MI of X and Z:

I(X;Z | b, u) =
∫
Z

∫
X

p(x′, z′ | b, u) log p(x
′ | b, u, z′)

p(x′ | b, u)
dx′dz′.

(16)
The second term of Eq. (15) is the conditional MI of M and
Z, given X . By the definition of conditional MI [28],

I(M ;Z | X, b, u) = EZ,X,M
[
log

p(m′, z′ | x′, b, u)
p(m′ | x′, b, u)p(z′ | x′, b, u)

]
,

(17)
where the expectation is taken w.r.t. p(z′, x′,m′ | b, u). By
Assumption 1, p(m′ | x′, b, u) = p(m′ | b, u), and by the law
of conditional probability we have

I(M ;Z | X, b, u) =
∫
Z

∫
X

p(x′, z′ | b, u)

∫
M

p(m′ | x′, z′, b, u) log p(m
′ | x′, z′, b, u)
p(m′ | b, u)

dm′

dx′dz′

(18)

We have thus shown that both terms on the right hand side of
Eq. (15), namely, Eqns. (16) and (18), are expectations under
the same joint pdf p(x′, z′ | b, u). Drawing N samples from
this pdf and defining IN as above, by the lemma of Monte
Carlo integration [48, Ch. 3.2] IN converges to I(X,M ;Z |
b, u) almost surely.

To apply the approximation presented in Theorem 2, we
draw samples from p(x′, z′ | b, u) by the following three-step
method for i = 1, 2, . . . , N :

1) Sample from the current belief state s(i) =
(x(i),m(i)) ∼ b,

2) Propagate the sample through the factored state tran-
sition model of Assumption 1, yielding new samples
x′(i) ∼ Tx(x′, x(i), u) and m′(i) ∼ Tm(m′,m(i)).

3) The sample from the previous step is distributed accord-
ing to the predictive pdf bu = p(x′,m′ | b, u). Recalling
s′ = (x′,m′), we have by marginalizing over M

p(x′, z′ | b, u) =
∫
M

O(z′, s′, u)bu(s′)dm′, (19)

and we may thus sample z′(i) ∼ O(z′, s′(i), u) to obtain
the desired samples.

Theorem 2 is applicable with three restrictions. First, we
must be able to draw samples from the state transition and
observation models either directly or e.g. applying importance
sampling. Secondly, evaluating the first sum term in Eq. (14)
requires us to be able to evaluate the predictive probability and
the posterior probability of a robot state x′(i) given an action u
and a measurement z′(i). The predictive pdf can be evaluated
applying the state transition model. It is not generally easy
to find the posterior p(x′(i) | b, u, z′(i)), but in some cases it
can be approximated by a unimodal distribution. As argued
by [24], such a case arises e.g. for robots equipped with
accurate range sensors such as laser range finders (LRFs). LRF
data can be leveraged via scan matching to obtain localization
estimates that are significantly more precise than estimates

8

based only on robot’s state transition models. Consequently,
the measurement likelihood is strongly peaked and the pos-
terior pdf of the robot state given the observation may be
approximated by a unimodal distribution, e.g. a Gaussian with
a small covariance. Third and finally, evaluating the integral
term in the sum of Eq. (14) requires us to be able to compute
posterior map pdfs given a pose and an observation. This
corresponds to the problem of mapping with known poses [22].
We must also be able to evaluate the integral expression over
the map state. The difficulty of this depends on the map
representation, but is simple e.g. for occupancy grid maps due
to the independence assumption of the grid cells: the integral
term reduces to a sum over cells.

The overall effect of the approximation is that we avoid
computing the full state posterior pdf and solving the implied
SLAM problem when evaluating the expected information
gain of a control action. Note that this does not preclude
executing a SLAM algorithm for the real process indepen-
dently of the task of finding an optimal open loop action
sequence. The current belief state b = p(x,m) provided by
the SLAM algorithm is applied as initial information for
finding the optimal open loop solution. Sometimes the real
process SLAM particle filter may be susceptible to losing
consistency [25, 9], and applying the proposed approximation
may lead to a failure state as this possibility is not considered
while planning trajectories. In such cases, either the SLAM
algorithm must be improved or an alternative approximation
for MI applied.

B. Observation sampling in occupancy grid maps

To apply the forward simulation based planning algorithms
presented in Section IV together with the approximation of
MI presented above, efficient methods for drawing observation
samples given a sequence of control actions are required. In
this section, we introduce such a sampling method for occu-
pancy grid maps [22], a map representation widely applied in
mobile robotics.

An occupancy grid map defines a partition of a space into
equally-sized cells c. We assume that the mapM is composed
of a finite number of such cells. Each cell is in one of two
hidden states, either free (0) or occupied (1). As cell occupancy
is often not known exactly, an occupancy probability P (c =
1) := pc ∈ [0, 1] models the information regarding the state
of the cell.

The occupancy information is revised through sensor ob-
servations. Depending on the robot’s sensors and its pose x,
it is possible that only a subset M̃(x) ⊂ M of the map is
sensed by a robot at x. Figure 3 shows an example of such
a scenario. We note that even several measurements over a
trajectory traversed by the robot may only provide information
regarding a subset of the whole map area. As the cells of
an occupancy grid map are independent, this suggests that an
efficient method for sampling observations may be constructed
by considering only the subset of potentially sensed map cells.

We represent observations z as collections of pairs of the
form (c, j), where c denotes the cell and j ∈ {0, 1} is the ob-
served occupancy for the cell: free (0) or occupied (1). Given

Figure 3: Occupancy grids and observed areas. The robot’s
pose is marked by a black circle, and the dashed sector depicts
sensor range. The cells with a grey background denote the
subset of the occupancy grid that is potentially sensed either
at a single pose (left side) or a trajectory depicted by dashed
lines between robot poses (right side).

an optimization horizon H and the control actions u0:H−1, a
sequence z(i)1:H of observation samples is constructed. In the
case of a laser range finder, raytracing may be applied to
draw observation samples. Raytracing simulates a laser beam
originating from the robot’s pose x, tracking which cells the
beam travels through. When the ray intersects a cell c, the
occupancy information pc is applied to determine whether the
cell is free and the beam passes through, or the cell is occupied
and the beam hits an obstacle in the cell. In the former case,
(c, 0) is inserted to z(i)t , and in the latter case (c, 1) is inserted
to z(i)t and the raytracing is terminated.

As the same cell may be observed at multiple decision
epochs and the observations should be consistent, i.e. they
are generated from the same true underlying map, a persistent
map sample mp keeping track of the occupancy states of cells
intersected by the simulated laser beams is maintained. The
persistent map sample is also a collection of pairs (c, o) of
a cell c and its sampled occupancy o ∈ {0, 1} in the map.
Whenever a cell c is encountered during ray tracing, it is first
checked whether mp contains it already.

An observation sampling algorithm implementing these
features is presented in Algorithm 3. A sample of the current
pose x(i)0 is drawn from p(x0) obtained by marginalizing from
the current belief state b0 = p(x0,m0) (Line 3). For each
decision epoch 0 ≤ t ≤ H − 1, a pose sample x

(i)
t+1 is

drawn (Line 5) from the robot’s dynamic model. Raytracing
with the persistent map sample mp is applied to sample z(i)t+1

(Line 6) from the observation model. In this case, the sampling
is implemented in the function RAYTRACE.

For each laser beam incidence angle and each cell along the
beam, the occupancy state of the cell is first determined. If the
cell c has already been encountered during the sampling of any
z
(i)
k , k < t, its occupancy state is retained from the persistent

map sample, and otherwise its occupancy state is sampled
according to pc (Lines 13-18). Finally, the actual observed
occupancy j is sampled according to the sensor observation
model (Line 19), and the resulting observation is added to the
observation sample. The value j = 1 indicates that the beam
hit an obstacle, and the raytrace for this incidence angle is

9

terminated (Line 22).

Algorithm 3 Observation sampling for a laser range finder
(LRF).
Input: The POMDP model, optimization horizon H .

1: function SAMPLE(b0)
2: mp ← ∅
3: Sample x(i)0 ∼ p(x0)
4: for t = 0, . . . H − 1 do
5: Sample x(i)t+1 ∼ Tx(xt+1 | x(i)t , ut)

6: z
(i)
t+1 ← RAYTRACE(x(i)t+1)

7: end for
8: return z

(i)
1:t

9: end function

10: function RAYTRACE(x)
11: for all incidence angles α of the LRF do
12: for all cells c along a beam starting at x in

direction α do
13: if (c, ·) /∈ mp then
14: Sample o ∼ pc
15: mp ← mp ∪ {(c, o)}
16: else
17: o← {o | (c, o) ∈ mp}
18: end if
19: Sample j ∼ p(z′ | o, x)
20: z ← z ∪ {(c, j)}
21: if j = 1 then
22: break
23: end if
24: end for
25: end for
26: return z
27: end function

As map occupancies are sampled only as required (when a
simulated LRF ray enters a cell), computational savings are
accrued compared to the naive approach of always sampling
occupancy values for every cell before raytracing. After the
observation samples z(i)1:H have been obtained, the correspond-
ing values of MI can be computed applying the approximation
of Theorem 2. For integration with the SMC method (Algo-
rithm 2), the sampling algorithm (Algorithm 3) is executed
independently for the control action sequence of each particle.
For integration with the POMCP method (Algorithm 1), the
action ut on Line 5 of Algorithm 3 is obtained either from
the tree policy or from the rollout policy.

VI. SIMULATED EXPLORATION EXPERIMENTS

We studied the POMDP based planning in a set of explo-
ration experiments in three simulated domains. In particular,
the effect of prior information and the optimization horizon
H were examined. The proposed planning approaches were
compared to myopic (one-step greedy) planning, which is
the special case of the proposed approach with H = 1 (see
e.g. [2, 15, 17]), and frontier-based exploration [10].

We begin by considering an illustrative toy example in Sub-
section VI-A. In Subsection VI-B, we study the performance

a1

a2
a3

1 2 3 4 5 6 7 8 9 10
x [m]

2

4

6

8

10

12

14

y
[m

]

Figure 4: A test map for a single decision. The robot’s starting
location is indicated by the circle marker, and three trajectories
are labeled by the corresponding actions a1, a2 and a3.

of the proposed POMDP based planning approach in three
domains: a maze, an office, and an outdoor environment, each
having different scale and other properties. These simulations
were implemented in MATLAB. Based on the results, we
propose a further improvement of the POMDP approach, and
compare the improved method with frontier-based exploration
in Subsection VI-C.

A. An illustrative example

We first consider the effect of prior information and opti-
mization horizon for making a single decision in a small toy
domain as shown in Figure 4. The white and black cells in
the map are unoccupied and occupied cells, respectively. The
robot was equipped with a simulated laser range finder with
a maximum range of 2 metres for sensing the environment
state, and had three possible action choices to select between
as indicated by the trajectories overlaid in the figure. Each
action was designed specifically to have a varying effect on
the achievable mutual information over a horizon of several
decisions. Action a2, corresponding to moving straight ahead,
initially does not provide much information about the environ-
ment as the view of the range finder is partially blocked by
the corridor leading towards the top of the figure. Despite this,
executing a2 eventually leads the robot to the large open area
in the top part of the environment. In contrast, actions a1 and
a3 yield greater immediate information gain, but ultimately
lead to dead-ends at the left and right bottom parts of the
map. The boundary of the area was assumed to be known to
the robot, i.e., the robot can detect when an action would take
it outside the boundary of the environment.

We note that in a real application also intermediate choices
with a curvature between that of a1 and a2, or a2 and a3,
would be available for the robot. However, for the purpose
of this example, we did not consider them. In the subsequent
experiments on larger maps, the SMC method considers the
full uncountable action space.

As prior information, the robot recorded a single observation
with the laser range finder from the initial location, and

10

updated the map occupancy probabilities accordingly. The
robot’s initial location was selected so that this observation
did not reveal the presence of the occupied cells in the map.
Additionally, two cases were considered: one with no addi-
tional prior information, and another one with an informative
prior that indicated the occupied areas in the environment (the
white cells in Figure 4), but leaving occupancy probabilities
elsewhere as they were.

Table I: Values of actions in the small map as function of
the optimization horizon H and for a non-informative and
informative prior, shown with the true optimal action (bottom
row).

Prior Action H = 1 H = 2 H = 3 H = 4

Uniform
a1 102.4 173.6 235.7 212.4
a2 101.8 167.1 248.8 325.4
a3 106.5 177.3 235.0 223.0

Informative
a1 81.8 145.9 189.7 200.5
a2 78.9 157.0 231.0 298.5
a3 97.2 129.4 172.5 140.8

Opt. action a3 a2 a2 a2

We applied the POMCP algorithm (Algorithm 1) to plan
a single decision. Table I shows the value estimate of each
action for either case of prior information as a function of the
optimization horizon H . The action with the greatest value is
indicated by a bold font. Also the optimal action, as found
by an exhaustive search over all possible action sequences
while assuming perfect sensing, is shown for reference. As H
increases, action a2 is chosen in the case of no additional
prior for H ≥ 3 and in case of the informative prior for
H ≥ 2. In case of no additional prior information, a2 is
eventually preferred as the other actions eventually lead (after
two decision epochs in the planning phase) to a dead-end
where the robot cannot progress any further and thus cannot
collect more information. In the case of an informative prior,
however, a2 is preferred already for H = 2: as the occupied
cells are indicated, the robot is able to avoid the dead-ends
blocked by the occupied cells near the bottom corners of the
map. We also note that the difference in the values between
the recommended and second-best action tend to be greater
for the informative prior, indicating that the algorithm is able
to more confidently distinguish between the actions.

B. Performance of POMDP based planning

We next examine the effect of prior information and the
optimization horizon in domains larger than the toy example
presented above. Subsection VI-B1 outlines the experimental
setup, and Subsection VI-B2 presents the results.

1) Experimental setup: Three environments as illustrated
in Figure 5 were examined: a maze (Figure 5a), office-like
(Figure 5b), and an open outdoor environment (Figure 5c).
White and black cells are unoccupied and occupied, respec-
tively, and gray cells indicate undefined or unobserved cells.
The sizes of the environments varied from approximately 10-
by-10 meters (maze) to 250-by-250 meters (outdoor). The
office and outdoor maps were obtained from an online data

0 2 4 6 8 10
x [m]

0

1

2

3

4

5

6

7

8

y
[m

]

(a) Maze

0 10 20 30 40
x [m]

0

10

20

30

40

50

60
y

[m
]

(b) Office

0 50 100 150 200 250 300
x [m]

0

50

100

150

200

250

y
[m

]

(c) Outdoor

Figure 5: Environments examined in the simulation experi-
ments.

repository5. The x and y coordinates of the robot’s starting
location in each environment were as follows. In the maze
environment, (x, y) = (7.9, 8.6); in the office environment,
(38.5, 58.0); and in the outdoor environment, (90.0, 106.0).

The simulated robot is able to turn in place, and it is

5Robotics Data Set Repository Radish [49]. We acknowledge Cyrill Stach-
niss (and Giorgio Grisetti) for providing the office (outdoor) environment data.

11

controlled by applying a linear and angular velocity. For
the maze and office environments, the robot was assigned
a maximum linear velocity of 1 meter per second, and for
the outdoor environment 3 meters per second. The angular
velocity was constrained to be between -0.5 and 0.5 radians per
second. The robot was equipped with a laser range finder with
a maximum range of 4 meters (maze and office environments),
or 15 meters (outdoor environment). Time was discretized into
1 second intervals per decision epoch, and robot trajectories
were simulated applying the velocity motion model from [50,
Ch. 5.3].

For planning with POMCP (Algorithm 1), the control space
was discretized uniformly to 9 linear velocity and 7 angular
velocity values, resulting in a total of 63 control actions. The
exploration bonus e was set to 50 for the maze and office
environments and 100 for the outdoor environment. A total of
Ns = 3000 simulation episodes were executed when planning
each action.

For planning with SMC (Algorithm 2), the control space
does not need to be discretized, but the kernels for sampling
control signals must be specified. It is more likely that the
robot obtains more information the greater the amount of
unexplored cells covered by its sensors. Thus, to increase
the likelihood of observing more unexplored cells, the initial
control sequences for iteration l = 1 were sampled assigning
higher probability to linear velocities near the robot’s max-
imum velocity. Angular velocities were sampled uniformly
at random. The number of particles was M = 100, and a
threshold value of Mt = M/4 was set to trigger resampling.
For iterations l > 1, we applied a Gaussian kernel with
variance proportional to (1/l2) times the full range of possible
linear and angular velocity values. Control actions violating
the aforementioned maximum and minimum values for the
velocities were rejected. A cooling schedule νl = 2l + 5 was
applied, with lmax = 7.

During the simulations, control actions were checked by
examining their corresponding trajectories. If the trajectory
entered cells with occupancy probability greater than 0.2, the
control action was rejected. The robot was also not allowed
to move outside the map area or enter unknown areas (grey
cells in Figure 5).

For prior information, a non-informative and an informative
prior were considered. A non-informative prior corresponds
to the case where the map area is initially unknown to
the robot, with the exception of information provided by a
single observation recorded at the robot’s starting location.
The informative prior was designed such that in the maze
environment it corresponds to telling the robot the locations of
all the maze walls (as indicated by the black cells in Figure 5a)
by assigning them occupancy probability of 0.99, and in the
office and outdoor environments indicating the unknown area
(the gray cells in Figures 5b and 5c) by again assigning them
an occupancy probability of 0.99. For each type of prior and
each environment, the experiment was repeated five times.

2) Results: Figure 6 shows comparisons of the cumulative
mutual information reward collected as a function of the
decision epoch when the POMCP algorithm was applied, in
each of the environments studied and for optimization horizons

5 15 25 35 45 55 65 75
Decision epoch

0

100

200

300

400

500

600

700

800

C
u
m

u
la

ti
v
e

re
w
a
rd

Non-informative prior

5 15 25 35 45 55 65 75
Decision epoch

Informative prior

H = 1
H = 3
H = 5
H = 7

(a) Maze

5 15 25 35 45 55 65 75 85 95
Decision epoch

0

1000

2000

3000

4000

5000

6000

7000

C
u
m

u
la

ti
ve

re
w
ar

d

Non-informative prior

5 15 25 35 45 55 65 75 85 95
Decision epoch

Informative prior

H = 1
H = 3
H = 5
H = 7

(b) Office

5 15 25 35 45 55 65 75 85 95
Decision epoch

0

5000

10000

15000

20000

25000

30000

C
u
m

u
la

ti
ve

re
w
ar

d

Non-informative prior

5 15 25 35 45 55 65 75 85 95
Decision epoch

Informative prior

H = 1
H = 3
H = 5
H = 7

(c) Outdoor

Figure 6: Cumulative reward in the maze, office, and outdoor
environments as a function of optimization horizon H apply-
ing POMCP (Algorithm 1). The lines with the markers show
the means over 5 simulation runs, while the horizontal bars
indicate the 95% confidence intervals. In each subfigure, the
left panels show results for a non-informative prior and right
panels for an informative prior.

12

5 15 25 35 45 55 65 75 85 95
Decision epoch

0

1000

2000

3000

4000

5000

6000

C
u
m

u
la

ti
v
e

re
w
a
rd

Non-informative prior

5 15 25 35 45 55 65 75 85 95
Decision epoch

Informative prior

H = 1
H = 3
H = 5
H = 7

Figure 7: Cumulative reward in the office environment ap-
plying SMC (Algorithm 2). The lines with the markers show
the means over 5 simulation runs, while the horizontal bars
indicate the 95% confidence intervals. The left panel shows
results for a non-informative prior, and the left panel for an
informative prior.

H = 1, 3, 5, and 7. The lines indicate the mean values, while
the horizontal bars indicate the 95% confidence intervals of
the mean values. For the non-informative prior, increasing the
optimization horizon did not consistently result in an increased
cumulative reward in any of the environments. This is due
to the fact that in this case the map samples (and hence
the corresponding observation samples) are drawn assuming
a uniform prior on the map cells’ occupancy, which poorly
reflects the true configuration of the environment.

In contrast, for the informative prior, statistically signifi-
cantly greater cumulative rewards were obtained in the maze
and office environments when increasing H , as indicated by
Figures 6a and 6b. A similar effect was however not observed
in the outdoor environment (Figure 6c). In the maze and office
environments, there are dead-ends, i.e. locations where the
robot has to travel through already-explored areas to reach
new, unexplored areas. Choosing to traverse towards a dead-
end may seem informative in the short term, but yields poor
information gain later. Dead-ends may be avoided if sufficient
prior information is available and can be exploited, i.e. the
optimization horizon is great enough to indicate the presence
of a dead-end. Turning a corner in the maze may severely limit
the trajectory options available at subsequent decision epochs.
In contrast, the outdoor environment is primarily open, and
committing to a certain trajectory usually does not impose such
limitations. The experimental results suggest that the effect of
prior information on exploration performance is lesser in such
an open environment.

Similar results were observed for the SMC algorithm, as
shown for the office environment in Figure 7. Here, the lines
indicate the mean values, while the horizontal bars indicate
the 95% confidence intervals of the mean values. Comparing
the right panel of the figure to the right panel of Figure 6b, we
note that for the informative prior the effect of increasing the
horizon H for SMC does not seem to be as significant as for

POMCP. From the data we determined that for POMCP the
robot decided to move from its initial position at (38.5, 58.0)
towards the large open area around coordinates (25, 50) (see
Figure 5b for the map with coordinate axes) in 1 out of 5
cases for H = 5, and in all of the five cases for H = 7.
In contrast, for SMC, the robot instead moves towards the
corridor around coordinates (45, 50) in 4 out of 5 cases for
H = 5, and in 3 out of 5 cases for H = 7. Moving to the open
area results in a much greater information gain over a long
sequence of decisions, explaining the reason for the difference
in favour of POMCP for H = 7. We do not believe this to be
an indication of the superiority of the POMCP approach, but
rather a byproduct of a statistical evaluation of the algorithms
combined with the stochastic nature of the solution algorithms
themselves.

Overall, the results of the experiments indicate that non-
myopic planning (H > 1) is useful when the available prior
information can be leveraged to find more informative local
trajectories. This is the case in particular for the maze envi-
ronment with an informative prior (Figure 6a), and the office
environment with an informative prior (Figures 6b and 7).

The information the robot has about the map affects whether
increasing the optimization horizon is useful. In the maze
environment with a non-informative prior, the robot typically
has information about the map only in its immediate vicinity
as its view is blocked by nearby maze walls. Thus, most local
trajectories, short or long, lead the robot outside this area, and
increasing the optimization horizon is not useful if the prior
information about these areas is not accurate (Figure 6a). The
office environment is more open, allowing the robot to observe
the map in a larger area around it. The information gained in
this way leads to improvements in exploration performance
when increasing the optimization horizon, even in the case of
an otherwise non-informative prior. Once the local trajectories
considered are such that they bring the robot outside the area
about which it has accurate information, performance does not
improve anymore: for instance, in the left panel of Figure 6b,
this happens for H > 3. One further case where increasing
the optimization horizon is not useful if the environment is
such that all local trajectories are roughly equally informative.
This is the case in the outdoor environment, which consists
primarily of open areas (Figure 6c).

C. Combining POMDP based and frontier based exploration

The proposed POMDP approach is capable of handling
uncertainty in robot and environment states in a principled
manner, allowing quantifiable trade-offs between uncertainty
reduction and the cost of control actions. However, the opti-
mization horizon has to be bounded to maintain computational
feasibility. Thus only local reward information can be consid-
ered, leading to susceptibility to local minima.

A frontier-based exploration method, see e.g. [10], detects
frontiers between free and unknown areas in the current map.
One of the frontiers is selected as the exploration target,
based on, e.g. the distance from the robot’s current position
to the frontier, or the size of the frontier. The robot is then
commanded to move towards the selected target. Thus, frontier

13

exploration can exploit global knowledge of frontiers towards
unexplored areas over the whole map.

POMDP based exploration can fail when local information
available within the optimization horizon is not sufficient to
find an action with good exploration performance, for example
if no unexplored area is reachable within the optimization
horizon. To reduce the effect of these types of failures, we
implemented an exploration method that combines POMDP
based and frontier based exploration. The method applies
POMDP based planning and executes the actions thus found
until it reaches a situation where either 1) all local action
sequences are below a given informativeness threshold, as
measured by the expected total MI for them, or 2) all valid
local action sequences correspond to trajectories with a length
less than a given threshold value, indicating a possible dead-
end. When either of the conditions triggers, a frontier explo-
ration method is queried once for a frontier to be assigned as
the next target for the robot. When this frontier is reached, the
POMDP planning phase is again resumed.

We will argue that combining POMDP based and frontier
based exploration in this way presents a stronger alternative to
applying either approach alone. To support this argument, we
executed a series of experiments comparing such an approach
to only applying frontier exploration. The software used in
this subsection was implemented in C++, and is available at
https://goo.gl/ENGkIf.

1) Experimental setup: We chose to conduct the exper-
iments in the office environment (Figure 5b), as based on
Subsection VI-B2 increasing the optimization horizon H there
improves performance both in the case of non-informative
and informative prior. We implemented the method combining
POMDP based and frontier based exploration applying the
SMC algorithm and the basic frontier exploration algorithm as
presented e.g. in [10]. The SMC method was chosen since it
dynamically generates feasible control signals and trajectories,
without need to manually define a fixed set of primitive
control actions from which the trajectories are constructed.
This method was then compared to only applying the basic
frontier exploration method.

Each of the exploration experiments was repeated five times.
Each repetition was terminated either at a timeout of 400
seconds, or if a failure happened that either caused the robot
to get stuck, or the planner software to fail to produce a result.
As in Subsection VI-B1, the initial information provided to the
robot consisted of a single observation recorded at the starting
location, in addition to possible prior information.

For the SMC algorithm, we set the number of particles to
M = 20, and the resampling threshold to Mt = M/4. A
cooling schedule νl = 2l+ 5 was applied, with lmax = 4. The
simulated robot and the kernels applied for sampling control
actions were as described in Subsection VI-B1. We applied
maps with a resolution of 0.05 meters per cell, and set the
threshold for triggering frontier exploration at a total trajectory
length of 0.5 meters or expected MI of less than 50 bits. The
50 bit MI threshold corresponds to 50 completely unknown
cells (occupancy probability 0.5) becoming completely known
(occupancy probability 0 or 1), so, roughly speaking, if the
robot expected to explore less than 0.125 square meters of

SLAM

Environment

Planner

Controller

zt p(xt,mt)

ût:t+H−1

ut

Figure 8: A software implementation of the planner. The
cloud-shaped block depicts the environment the robot is
interacting with. The rectangular blocks indicate software
modules, and arrows indicate propagation of signals between
the modules, labelled by the mathematical symbol of the
signal.

new area, or move less than 0.5 meters, it would trigger the
frontier exploration method once instead of continuing with
POMDP based exploration.

A conceptual overview of our software implementation is
shown in Figure 8. The robot is interacting with the envi-
ronment, shown on the bottom left hand side of the figure.
The outputs from the environment, i.e., observations zt, are
processed by the SLAM algorithm to revise the belief state
bt = p(xt,mt). Based on the current belief state, the planner
module shown on the top right of the figure computes an
optimized sequence of control actions ût:t+H−1. A controller
module shown on the bottom right of the figure decides which
control action ut to finally apply.

The simulation was implemented in the Stage robot simu-
lator [51], integrated with the Robot Operating System (ROS)
framework [52] where the exploration algorithms were imple-
mented. The SLAM module we applied (see Figure 8) was
the RBPF SLAM algorithm based on [24]. As the frontier ex-
ploration method, we applied an open source implementation
provided at http://wiki.ros.org/frontier exploration.

We remark that there exist multi-robot frontier-exploration
techniques that make use of prior information, e.g., in the
form of semantic information about types of areas in the
map [53, 54]. Suitable applications for these methods include
for example search and rescue, where semantic information
about the types of rooms, e.g., office or lobby, can help
guide the robots to promising search areas. However, in the
experiments here, no such semantic information was available.

2) Results: Overall, in the 40 exploration runs applying
the proposed method (5 runs for each of the 4 horizons,
with 2 cases for prior information), we observed 10 failures
with the experiment terminating before the timeout of 400
seconds. There were 8 cases of planner failure, either due to
being unable to detect a frontier after trying POMDP based
exploration, or due to inability to find a feasible path towards
the requested exploration target. There were 2 cases in which
the robot got stuck in the simulator after a collision. Among
all failure cases, the earliest time of occurrence was at 195
seconds, while the average time of failure occurrence was at
273 seconds. In the 5 runs with the pure frontier exploration
method, there was 1 failure at 197 seconds due to inability to
find any frontiers.

Since frontier exploration does not consider mutual informa-

https://goo.gl/ENGkIf
http://wiki.ros.org/frontier_exploration

14

0 50 100 150 200 250 300 350 400
Time [s]

0

40

80

120

160

200

A
re

a
ex

p
lo

re
d

[m
2
]

Non-informative prior

H = 1
H = 3
H = 5
H = 7
Frontier

(a) Non-informative prior

0 50 100 150 200 250 300 350 400
Time [s]

0

40

80

120

160

200

A
re

a
ex

p
lo

re
d

[m
2
]

Informative prior

H = 1
H = 3
H = 5
H = 7
Frontier

(b) Informative prior

Figure 9: Comparison of POMDP based exploration (with
optimization horizon H) combined with frontier based explo-
ration with pure frontier exploration in the office environment.
The lines with the markers show the mean area explored over
5 simulation runs, while the horizontal bars indicate the 95%
confidence intervals. Figure 9a shows the results for a non-
informative prior, and Figure 9b for an informative prior.

tion in selecting exploration targets, we present the comparison
results in terms of the total area explored as a function of
the time spent exploring. Figure 9 shows the mean area
explored and its 95% confidence interval over each of the
five experiments, for each of the methods applied. The results
shown take into account that not every experiment ran until
the timeout of 400 seconds.

There seems not to be a significant difference in the area
explored between the cases of non-informative or informative
prior. However, we can see that the consistency of the results is
better in case of the informative prior: the mean area explored

increases monotonically as a function of H , and the confidence
intervals are smaller than for the non-informative prior.

We note that with the exception of the myopic case H = 1,
the proposed method does not perform significantly worse
than pure frontier exploration during any time interval. It
is interesting to note that although the area explored at the
end of the experiment is not significantly greater for the
proposed method than for pure frontier exploration, there are
time intervals where the difference is significant in favour of
the proposed method. Such intervals can be seen for example
from 75 seconds to about 200 seconds for the non-informative
prior, H = 5, and from 75 seconds to about 175 seconds for
the informative prior, H = 7.

When we examined the trajectories the robot chose in
each of these cases more closely, we discovered that this
difference is primarily due to a different choice of initial
exploration target. Recall that the robot started at coordinates
(38.5, 58.0) (see Figure 5b). The proposed method, especially
with an informative prior, favours moving towards the corridor
at coordinates (40, 50), as moving instead to the room at
coordinates (40, 60) is noted to quickly lead to a dead-end
providing no further information gain. This is however not
considered by frontier exploration, which favoured moving
first to the frontier in the room, and then returning to explore
other areas once the dead-end was discovered.

A further example of the usefulness of prior information can
be seen in Figure 2. The prior information indicates the outer
edges of the environment, shown in the figure by the black
lines bordering the unknown area. Initially, the trajectories
sampled are distributed evenly leading towards the corridor on
the left hand side of Figure 2a and the area on the right hand
side of the figure. Availability of prior information however
indicates that a smaller unknown area will be visible when the
robot moves to the left hand side corridor, compared to moving
to the potentially large open area on the right hand side. As
the total MI related to either trajectory choice is evaluated,
the SMC algorithm eventually discards trajectories towards
the corridor and converges on a trajectory bringing the robot
towards the open area instead, as seen in Figure 2c. In cases
with a non-informative prior, both trajectory options result in
roughly equal expected MI.

Since the proposed method combines POMDP based and
frontier based exploration, it is illustrative to consider how
often either of the exploration techniques is applied. Table II
indicates the average number of times the proposed method
applied either POMDP based or frontier based exploration to
select the next target where the robot should move to explore
the environment. In the majority of the cases, POMDP based
exploration is preferred. As expected, shorter optimization
horizons H lead the robot more frequently to situations
where no informative local trajectories can be found, and
subsequently frontier exploration is applied more frequently.
We also note that applying the informative prior seems to
result in less calls to frontier exploration, indicating further the
usefulness of prior information for POMDP based exploration.
Overall, there is a slightly decreasing trend in the total number
of calls to either method as a function of H , since the robot
tends to traverse a longer trajectory before considering the next

15

exploration target for longer optimization horizons.

Table II: The average number of function calls in the proposed
method over five experiments to either the POMDP based or
the frontier based exploration method. Results are shown as
a function of the optimization horizons H , and for both the
case of non-informative and informative prior information.

H POMDP Frontier

Non-informative prior

1 28.2 10.0
3 22.2 5.0
5 20.0 3.0
7 23.2 3.4

Informative prior

1 25.2 5.0
3 25.2 3.4
5 19.6 2.4
7 18.6 1.8

Based on the experimental results, our proposed method can
outperform frontier based exploration in terms of area explored
in the initial part of exploration when the environment is still
largely unknown. We note this is e.g., due to the ability of the
proposed method to avoid dead-ends. Complete exploration
of an environment is the goal in many applications, meaning
that also dead-ends should eventually be explored. We note
that although the proposed method combining POMDP based
and frontier based exploration will eventually achieve this,
the strategy it applies may not be optimal: considering the
objective of complete exploration, it might be worthwhile to
explore nearby dead-ends immediately rather than returning
to them later after exploring other parts of the environment.
When this strategy can be improved upon depends at least on
the availability of prior information, and remains to be studied
more carefully. In conclusion, we believe the proposed method
is preferable in applications where quickly exploring the local
environment for a high information gain is required, and
completeness of exploration in the short term is not crucial.

VII. REAL-WORLD EXPLORATION

To verify the feasibility of applying our proposed planning
approach in a real application, in this section we present results
on exploration tasks in a real environment. The experimental
setup is described in Subsection VII-A, and results are reported
in Subsection VII-B.

A. Experimental setup

The experiments were executed at a university campus
library. A partial map of the environment with the robot’s start-
ing location indicated is shown in Figure 10a. The environment
features open areas and narrow corridors between bookshelves.
In all experiments, the robot started at the location indicated
by the black circle marker in the figure. A view of the
environment showing the robot at its starting location is shown
in Figure 10b. The photograph was taken such that it shows
the environment towards the negative values of the x-axis in
the map of Figure 10a. The robot had no prior information
about the environment beyond a single observation recorded
at the starting location.

-20 -10 0 10 20
x [m]

-10

-5

0

5

10

15

20

y
[m

]

H=5
H=7
Frontier

(a)

(b)

Figure 10: (a): A partial map of the campus library envi-
ronment. Occupied, free, and unknown areas are indicated
by black, white, and gray cells, respectively. The robot’s
starting location is indicated by a filled black circle marker.
Overlaid on the map are examples of typical trajectories taken
applying the proposed exploration method or frontier based
exploration. The map shown corresponds to the data collected
while traversing the trajectory for H = 7. The unknown areas
through which the other trajectories travel were observed to be
free in the corresponding experiments, but not shown here. (b):
A view of the environment from the robot’s starting location.

16

Table III: The minimum, average and maximum planning
times for the SMC algorithm as a function of the optimization
horizon H .

H
Planning time [s]

Min Avg Max

5 2.60 4.24 6.14
7 2.03 5.21 7.61

The experiments were carried out with a robot such as
described in Subsection VI-B1. The robot’s velocities were
equal to those of the simulated robot of Section VI-B1. The
robot was equipped with a laser range finder with a maximum
range of 4 meters. The robot can also be seen in Figure 10b.
The software setup and algorithm parameters were as de-
scribed in Subsection VI-C1. The robot’s on-board computer,
equipped with an Intel i7-4500U multicore processor, 4GB
of RAM and running a Linux operating system, was applied
to run all of the required software. We applied the proposed
exploration method combining POMDP based and frontier
based exploration, with the software implementation described
in Subsection VI-C, and a frontier based exploration method.
Optimization horizons H = 5 and H = 7 were applied in
the POMDP based exploration method. With each method,
the experiment was repeated 5 times, and each experiment
ran until a timeout of 400 seconds or until a failure caused
termination of the experiment.

B. Results

For the proposed method, we observed 4 failures with
H = 5 occurring at 240, 255, 265, and 376 seconds, and
1 failure with H = 7 at 390 seconds. With frontier explo-
ration, we observed 2 failures at 355 and 380 seconds. The
failures were due to the robot colliding with an undetected
obstacle and getting stuck, or the planner failing to find an
exploration target. Failures to find an exploration target most
often happened at a narrow corridor, where the robot’s sensors
erroneously indicated that there was no possible path without
a collision to exit the corridor.

The minimum, average and maximum planning times re-
quired for the SMC algorithm are reported as a function of
the optimization horizon H in Table III. Longer trajectories
and larger open areas tend to increase the amount of map cells
for which an occupancy value must be sampled to obtain an
estimate of the MI, thus increasing the required planning time.
The shortest planning times were observed when the robot was
near a wall or in a narrow corridor. During the planning time,
the robot remained in place.

A summary of the experimental results is presented in
Figure 11, showing the mean area explored and its 95%
confidence interval as a function of time, for each of the
exploration methods considered. For the proposed method with
H = 5, results are only shown up to around 265 seconds, as
only two of the experiments ran for a longer time. In all cases,
the confidence intervals drawn take into account the number of
active experiments remaining. The results suggest that in this
environment, it is beneficial to apply the proposed exploration

approach instead of frontier exploration. We observed the
proposed approach with H = 7 to result in a significantly
greater total area explored than frontier exploration after 200
seconds.

To understand why this is the case, it is useful to study
the trajectories traversed by the robot applying each of the
exploration methods. Figure 10a shows typical examples of
trajectories for each of the methods. Frontier exploration,
indicated by the black dashed line, consistently chose to move
towards the negative x axis from the starting location. In this
direction, there was a row of bookshelves aligned as shown
in Figure 10b. As indicated by the curves in the initial part
of the trajectory, frontier exploration would find the nearest
frontier behind the corner of the closest bookshelf to the
robot. The robot would then move to it, and repeat in a
similar manner until reaching the end of the row of shelves.
Frontier exploration does not attempt to quantify the amount of
information that may be gained by such a strategy, but rather
deterministically moves the robot towards the closest frontier
found.

In contrast, we observed the proposed method to adopt a
different strategy. Since the narrow corridors between book-
shelves can often be observed before it is necessary to move
into them, this information may be applied to select more
informative trajectories. The robot would generally prefer to
avoid narrow corridors, as the proximity of the walls made it
unlikely that moving there would provide as much information
as moving towards a potentially open area. Corridors were
typically only preferred when there was no alternative, such
as shown in the trajectory for H = 7 indicated by the cyan line
in the top right part of Figure 10a. Trajectories with H = 5
were similar, as indicated by the blue line in Figure 10a and the
results in Figure 11. Based on similar results in the previous
experiments, we thus believe that increasing the optimization
horizon further would not result in better performance in this
environment.

We remark that the results could be different if the robot’s
starting position were to be changed, as the location to explore
first would be different. For the proposed method, this is due to
a different set of feasible local trajectories considered. For pure
frontier exploration, the first location to explore depends on the
map information obtained from sensor readings at the starting
position. If the starting position is changed such that the map
information remains roughly the same, the same exploration
location would likely be selected.

Overall, the experiments show that in the environment
studied, combining non-myopic POMDP based planning with
frontier exploration improves performance over pure frontier
exploration. Although frontier exploration can apply all global
information to select the next exploration target, it performs
the selection in a heuristic manner, ignoring the expected
information gain. POMDP based methods can evaluate the
information available locally within the optimization horizon
to select exploration targets that lead to quantifiably greater
expected information gain. The weakness of the method,
susceptibility to local minima due to the finite horizon, can be
alleviated by combining it with traditional frontier exploration.

17

0 50 100 150 200 250 300 350 400
Time [s]

0

40

80

120

160

200

240

280

320

A
re

a
ex

p
lo

re
d

[m
2
]

Campus library

H = 5

H = 7

Frontier

Figure 11: Area explored in the campus library environment as
a function of time. Results are shown for the proposed method
with optimization horizon H = 5 or H = 7, and for frontier
exploration. The lines with the markers show the mean area
explored over 5 runs, while the horizontal bars indicate the
95% confidence intervals.

VIII. CONCLUSION

We formulated a robotic exploration problem as a partially
observable Markov decision process (POMDP), applying mu-
tual information as reward function. We solved an open loop
approximation to the POMDP applying forward simulation
and the receding horizon control principle. We derived a
new sampling-based approximation for mutual information,
and presented an efficient method to draw samples for the
approximation when an occupancy grid map representation is
applied.

The usefulness of non-myopic decision-theoretic planning
for exploration was demonstrated in simulation and real world
experiments. Non-myopic planning can help avoid situations
where initial information gain related to a control action
seems high, but ultimately the action leads to a dead-end
where further exploration is not possible. However, basing
exploration decisions purely on a finite horizon look-ahead
was found to perform poorly in situations where a sequence of
control actions longer than the look-ahead horizon is required
to reach an unexplored area. To alleviate this susceptibility to
local minima, we suggested combining POMDP based and
frontier based exploration. Experimental results show that,
depending on the environment to be explored, this combination
can improve exploration performance when compared to only
applying frontier exploration.

There are two main weaknesses in our approach. First, an
open loop approximation was required to deal with the very
large and possibly continuous action and observation spaces,
resulting in a performance loss compared to the optimal
closed loop solution. Secondly, to increase computational
effectiveness we ignore the SLAM problem while solving the
open loop control problem. Thus if the possibility of losing

the consistency of the real process SLAM filter cannot be
ignored [25, 9], actions that lead to such a failure state may
be selected.

More prior information about the environment was noted to
improve exploration performance. In future work, a database
of typical map features for different types of environments,
for instance, office, outdoor, etc. could be maintained, and
map samples drawn from the database instead, see e.g. [55].
As forward simulation methods are applicable to very general
underlying models, more realistic environment models that lift
the assumption of spatial independence between occupancy
grid cells could be applied, for instance higher order Markov
random fields [56].

ACKNOWLEDGMENTS

We thank Mr. Joonas Melin and Mr. Eero Heinänen for
their support in executing the experimental work. This work
was partly supported by the TUT Graduate School and TUT
Strategic funding for robotics and intelligent machines.

REFERENCES

[1] L. Kaelbling, M. Littman, and A. Cassandra, “Planning
and acting in partially observable stochastic domains,”
Artificial Intelligence, vol. 101, no. 1-2, pp. 99–134,
1998.

[2] C. Stachniss, G. Grisetti, and W. Burgard, “Information
gain-based exploration using Rao-Blackwellized particle
filters,” in Proc. Robotics: Science and Systems Conf.
(RSS), Cambridge, MA, USA, 2005.

[3] G. Hitz, A. Gotovos, M. Eve, A. Krause, and R. Y.
Siegwart, “Fully Autonomous Focused Exploration for
Robotic Environmental Monitoring,” in Proc. IEEE Intl.
Conf. on Robotics and Automation (ICRA), Hong Kong,
China, Jun. 2014, pp. 2658–2664.

[4] B. Charrow, V. Kumar, and N. Michael, “Approximate
representations for multi-robot control policies that max-
imize mutual information,” Autonomous Robots, vol. 37,
no. 4, pp. 383–400, Aug. 2014.

[5] N. Atanasov, J. Le Ny, K. Daniilidis, and G. Pappas, “In-
formation Acquisition with Sensing Robots: Algorithms
and Error Bounds,” in Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), Hong Kong, China, Jun. 2014,
pp. 6447–6454.

[6] M. Lauri and R. Ritala, “Optimal Sensing via Multi-
armed Bandit Relaxations in Mixed Observability Do-
mains,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), Seattle, WA, May
2015, pp. 4807–4812.

[7] C. H. Papadimitriou and J. N. Tsitsiklis, “The Com-
plexity of Markov Decision Processes,” Mathematics of
Operations Research, vol. 12, pp. 441–450, 1987.

[8] H. Durrant-Whyte and T. Bailey, “Simultaneous Local-
isation and Mapping (SLAM): Part I: The Essential
Algorithms,” IEEE Robotics & Automation Magazine,
vol. 13, no. 2, pp. 99–110, 2006.

[9] L. Carlone, J. Du, M. Ng, B. Bona, and M. Indri, “An
application of Kullback-Leibler Divergence to Active

18

SLAM and Exploration with Particle Filters,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Taipei, Taiwan: IEEE, Oct. 2010,
pp. 287–293.

[10] B. Yamauchi, “A frontier-based approach for autonomous
exploration,” Proceedings 1997 IEEE International Sym-
posium on Computational Intelligence in Robotics and
Automation CIRA’97. ’Towards New Computational
Principles for Robotics and Automation’, pp. 146–151,
1997.

[11] H. H. Gonzalez-Banos and J.-C. Latombe, “Navigation
Strategies for Exploring Indoor Environments,” The In-
ternational Journal of Robotics Research, vol. 21, no.
10-11, pp. 829–848, oct 2002.

[12] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path
planning strategies for autonomous exploration and map-
ping of unknown environments,” Autonomous Robots,
vol. 33, pp. 427–444, 2012.

[13] F. Amigoni, “Experimental Evaluation of Some Explo-
ration Strategies for Mobile Robots,” in Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA). Pasadena,
CA: IEEE, May 2008, pp. 2818–2823.

[14] F. Amigoni and V. Caglioti, “An Information-based Ex-
ploration Strategy for Environment Mapping with Mobile
Robots,” Robotics and Autonomous Systems, vol. 58,
no. 5, pp. 684–699, May 2010.

[15] R. Sim and N. Roy, “Global A-Optimal Robot Explo-
ration in SLAM,” in Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA). Barcelona, Spain: IEEE, Apr.
2005, pp. 661–666.

[16] S. Huang, N. M. Kwok, G. Dissanayake, Q. P. Ha, and
G. Fang, “Multi-step look-ahead trajectory planning in
SLAM: Possibility and necessity,” in Proc. IEEE Intl.
Conf. on Robotics and Automation (ICRA). Barcelona,
Spain: IEEE, Apr. 2005, pp. 1091–1096.

[17] T. Kollar and N. Roy, “Trajectory Optimization using
Reinforcement Learning for Map Exploration,” The In-
ternational Journal of Robotics Research, vol. 27, no. 2,
pp. 175–196, Feb. 2008.

[18] B. Tovar, L. Muñoz-Gómez, R. Murrieta-Cid,
M. Alencastre-Miranda, R. Monroy, and S. Hutchinson,
“Planning exploration strategies for simultaneous
localization and mapping,” Robotics and Autonomous
Systems, vol. 54, no. 4, pp. 314–331, apr 2006.

[19] R. Martinez-Cantin, N. De Freitas, E. Brochu, J. Castel-
lanos, and A. Doucet, “A Bayesian exploration-
exploitation approach for optimal online sensing and
planning with a visually guided mobile robot,” Au-
tonomous Robots, vol. 27, no. 2, pp. 93–103, 2009.

[20] V. Indelman, L. Carlone, and F. Dellaert, “Planning
Under Uncertainty in the Continuous Domain : a Gener-
alized Belief Space Approach,” in Proc. IEEE Intl. Conf.
on Robotics and Automation (ICRA), Hong Kong, China,
Jun. 2014, pp. 6763–6770.

[21] ——, “Planning in the continuous domain: a generalized
belief space approach for autonomous navigation in un-
known environments,” International Journal of Robotics
Research, 2015.

[22] H. Moravec, “Sensor fusion in certainty grids for mobile
robots,” AI magazine, vol. 9, no. 2, pp. 61–74, 1988.

[23] F. Bourgault, A. Makarenko, S. Williams, B. Grocholsky,
and H. Durrant-Whyte, “Information Based Adaptive
Robotic Exploration,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS). Lausanne,
Switzerland: IEEE, Oct. 2002, pp. 540–545.

[24] G. Grisetti, C. Stachniss, and W. Burgard, “Improved
techniques for grid mapping with Rao-Blackwellized
particle filters,” IEEE Transactions on Robotics, vol. 23,
no. 1, pp. 34–46, Feb. 2007.

[25] J. Blanco, J. Fernandez-Madrigal, and J. Gonzalez, “A
Novel Measure of Uncertainty for Mobile Robot SLAM
with Rao Blackwellized Particle Filters,” The Interna-
tional Journal of Robotics Research, vol. 27, no. 1, pp.
73–89, Jan. 2008.

[26] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY: John
Wiley & Sons, Inc., 1994.

[27] M. H. DeGroot, Optimal Statistical Decisions. Hoboken,
New Jersey: John Wiley & Sons, Inc., 2004, Wiley
Classics Library edition.

[28] T. Cover and J. Thomas, Elements of Information Theory,
2nd ed. John Wiley & Sons, 2006.

[29] D. P. Bertsekas, Dynamic Programming and Optimal
Control. Belmont, MA: Athena Scientific, 1995, vol. 1.

[30] R. D. Smallwood and E. J. Sondik, “The optimal control
of partially observable Markov processes over a finite
horizon,” Operations Research, vol. 21, no. 5, pp. 1071–
1088, 1973.

[31] M. Hauskrecht, “Value-function approximations for par-
tially observable Markov decision processes,” Journal of
Artificial Intelligence Research, vol. 13, no. 1, pp. 33–94,
2000.

[32] M. T. Spaan and N. A. Vlassis, “Perseus: Randomized
point-based value iteration for POMDPs,” Journal of
Artificial Intelligence Research, vol. 24, pp. 195–220,
2005.

[33] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-
based approximations for large POMDPs,” Journal of
Artificial Intelligence Research, vol. 27, no. 1, pp. 335–
380, 2006.

[34] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Effi-
cient point-based POMDP planning by approximating
optimally reachable belief spaces,” in Proc. Robotics:
Science and Systems Conf. (RSS), Zürich, Switzerland,
Jun. 2008.

[35] M. Araya, O. Buffet, V. Thomas, and F. Charpillet, “A
POMDP Extension with Belief-dependent Rewards,” in
Advances in Neural Information Processing Systems 23,
Vancouver, Canada, Dec. 2010, pp. 64–72.

[36] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online
Planning Algorithms for POMDPs,” Journal of Artificial
Intelligence Research, vol. 32, pp. 663–704, 2008.

[37] D. Bertsekas, “Dynamic Programming and Suboptimal
Control: A Survey from ADP to MPC,” European Jour-
nal of Control, vol. 11, no. 4-5, pp. 310–334, Jan. 2005.

[38] C. Yu, B. Gerkey, J. Chuang, G. J. Gordon, and A. Ng,

19

“Open-loop plans in multi-robot POMDPs,” Stanford
University, CS Dept., Tech. Rep., 2005.

[39] E. Chong, R. Givan, and H. S. Chang, “A framework for
simulation-based network control via hindsight optimiza-
tion,” in Proc. 39th IEEE Conf. on Decision and Control,
vol. 2, Sydney, Australia, Dec. 2000, pp. 1433–1438.

[40] D. Silver and J. Veness, “Monte-Carlo Planning in Large
POMDPs,” in Advances in Neural Information Process-
ing Systems 23, Vancouver, Canada, Dec. 2010, pp.
2164–2172.

[41] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A Survey of Monte Carlo
Tree Search Methods,” IEEE Transactions on Computa-
tional Intelligence and AI in Games, vol. 4, no. 1, pp.
1–43, Mar. 2012.

[42] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time
Analysis of the Multiarmed Bandit Problem,” Machine
Learning, vol. 47, pp. 235–256, 2002.

[43] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo
planning,” in Machine Learning: ECML 2006, ser. Lec-
ture Notes in Computer Science, J. Frnkranz, T. Scheffer,
and M. Spiliopoulou, Eds. Springer Berlin Heidelberg,
2006, vol. 4212, pp. 282–293.

[44] N. Kantas, J. Maciejowski, and A. Lecchini-Visintini,
“Sequential Monte Carlo for Model Predictive Control,”
in Nonlinear Model Predictive Control, ser. Lecture
Notes in Control and Information Sciences, L. Magni,
D. Raimondo, and F. Allgöwer, Eds. Springer Berlin
Heidelberg, 2009, vol. 384, pp. 263–273.

[45] A. M. Johansen, A. Doucet, and M. Davy, “Particle
methods for maximum likelihood estimation in latent
variable models,” Statistics and Computing, vol. 18,
no. 1, pp. 47–57, Sep. 2008.

[46] P. Del Moral, A. Doucet, and A. Jasra, “Sequential Monte
Carlo Samplers,” Journal of the Royal Statistical Society.
Series B: Statistical Methodology, vol. 68, no. 3, pp. 411–
436, Jun. 2006.

[47] J. Liu and R. Chen, “Sequential Monte Carlo methods
for dynamic systems,” Journal of the American Statistical
Association, vol. 93, no. 443, pp. 1032–1044, 1998.

[48] C. P. Robert and G. Casella, Monte Carlo Statistical
Methods. New York, NY: Springer-Verlag, Inc., 1999.

[49] A. Howard and N. Roy, “The Robotics Data Set
Repository (Radish),” 2003. [Online]. Available: http:
//radish.sourceforge.net/

[50] S. Thrun, W. Burgard, and D. Fox, Probabilistic
Robotics. Cambridge, MA: The MIT Press, 2006.

[51] R. Vaughan, “Massively multi-robot simulation in stage,”
Swarm Intelligence, vol. 2, no. 2-4, pp. 189–208, 2008.

[52] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-
source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[53] C. Stachniss, Ó. Martı́nez Mozos, and W. Burgard,
“Efficient exploration of unknown indoor environments
using a team of mobile robots,” Annals of Mathematics
and Artificial Intelligence, vol. 52, no. 2, pp. 205–227,

2009.
[54] A. Quattrini Li, R. Cipolleschi, M. Giusto, and

F. Amigoni, “A semantically-informed multirobot system
for exploration of relevant areas in search and rescue
settings,” Autonomous Robots, vol. 40, no. 4, pp. 581–
597, 2015.

[55] D. P. Strom, F. Nenci, and C. Stachniss, “Predictive
Exploration Considering Previously Mapped Environ-
ments,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), Seattle, WA, USA,
May 2015, pp. 2761–2766.

[56] B. Nabbe and M. Hebert, “Extending the Path-Planning
Horizon,” The International Journal of Robotics Re-
search, vol. 26, no. 10, pp. 997–1024, Oct. 2007.

http://radish.sourceforge.net/
http://radish.sourceforge.net/

	I Introduction
	II Related work
	III Exploration as a POMDP
	III-A Reward functions for exploration
	III-B Optimal policies
	III-C Open-loop solution to a POMDP

	IV Forward simulation for open loop control
	IV-A Partially observable Monte Carlo planning
	IV-B Sequential Monte Carlo planning

	V Mutual information in mobile robotics
	V-A Approximation of mutual information
	V-B Observation sampling in occupancy grid maps

	VI Simulated exploration experiments
	VI-A An illustrative example
	VI-B Performance of POMDP based planning
	VI-B1 Experimental setup
	VI-B2 Results

	VI-C Combining POMDP based and frontier based exploration
	VI-C1 Experimental setup
	VI-C2 Results

	VII Real-world exploration
	VII-A Experimental setup
	VII-B Results

	VIII Conclusion

