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• Reinforcement learning’s option switches are analogous to psychological insight.
• Insight and options reveal comparable capabilities for transformational creativity.
• Open problems remain: lifelong learning, switching when exploring, option discovery.
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a b s t r a c t

Although creativity is studied from philosophy to cognitive robotics, a definition has proven elusive.
We argue for emphasizing the creative process (the cognition of the creative agent), rather than the
creative product (the artifact or behavior). Owing to developments in experimental psychology, the
process approach has become an increasingly attractive way of characterizing creative problem solving.
In particular, the phenomenon of insight, in which an individual arrives at a solution through a sudden
change in perspective, is a crucial component of the process of creativity.

These developments resonate with advances in machine learning, in particular hierarchical and
modular approaches, as the field of artificial intelligence aims for general solutions to problems that
typically rely on creativity in humans or other animals. We draw a parallel between the properties of
insight according to psychology and the properties of Hierarchical Reinforcement Learning (HRL) systems
for embodied agents. Using the Creative Systems Framework developed by Wiggins and Ritchie, we
analyze both insight and HRL, establishing that they are creative in similar ways. We highlight the key
challenges to be met in order to call an artificial system ‘‘insightful’’.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

People achieving extraordinary creative breakthroughs are not
born creative; they require extensive hands-on experience to be-
come capable of brilliance in a particular domain. This is not a
straightforward result. Indeed, if creativity consists in the produc-
tion of novelty, one might expect that habits inherited from past
experience are a hindrance, and indeed past experience can cause
mismatched transfer to new tasks [1]. Nonetheless, there is wide
agreement that considerable domain experience is required for
people to discover solutions to so-called ‘‘insight problems’’ [1,2] —
problems considered difficult precisely because of negative trans-
fer. Animal insight seems no different: macaques with significant
laboratory experience are excellent at seeing right through novel
experiments in a moment of insight, including for problems in
which past experiments seem to discourage the successful behav-
ior [3].

* Corresponding author.
E-mail address: thomas.colin@plymouth.ac.uk (T.R. Colin).

Consider embodied agents, such as robots, situated in an un-
known environment, gathering experience from repeatedly in-
teracting with their environment. How can such agents cope
with a novel situation, one for which the learned response fails?
Their situation resembles that of naive human beings or animals
confronted with a previously unseen problem or environment.
While some animals, and specifically humans, show remarkable
adaptability by creatively developing novel and useful behaviors,
artificial agents typically fall short when faced with change. We
believe that discoveries from the cognitive sciences offer a way
forward, despite the methodological difficulties associated with
integrating contributions from multiple disciplines. Below, we in-
tegrate results from psychology andmachine learning, and suggest
a research program for giving artificial agents the capacity to be
creative in problem-solving.

Essential to our approach is the notion that creativity is a pro-
cess — that is, we assume that creativity is a specific manner in
which individuals reason and make decisions. We leave aside the
domain of artistic creativity which involves socially and culturally
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construed value; and we restrict our contribution to the domain of
creative problem-solving. In the last 30 years, significant develop-
ments have beenmade in our understanding of human creativity in
problem-solving, leading to gradual convergence towards a single
integrated theory combining analytic search and insight [2,4].

When tying creativity in with machine learning, it seems that
many properties of Hierarchical Reinforcement Learning (HRL)
techniques match the description of insight in human beings —
including both analytic progress and the ability to restructure
the search space. When we analyze HRL and insight as creative
systems, using the Creative Systems Framework (CSF) [5,6], these
similarities becomemore striking. This suggests howHRLmight be
used to produce insightful behavior in artificial agents.

Such an approach is especially relevant to robotic creativity
because it is based on control techniques: it manipulates policies
in a sensorimotor space, rather than features or parameters in a
conceptual space. This distinguishes it frommethods used for some
of themore abstract domains in computational creativity research,
such as e.g. joke invention or musical composition.

Our contribution is two-fold. First, we propose a process-
focused theoretical analysis of creativity in problem-solving. We
develop this analysis in two disciplines: psychology (insight) and
machine learning (HRL). Second, we use the CSF to unveil connec-
tions between psychological theories of insight and HRL methods.
This sheds light on a novel way to build an agent whose behavior
exhibits parallels with human creativity.

2. Assessing creativity

2.1. Concerns for computational creativity

Researchers involved in computational creativity often face two
concerns.

The first one is the difficulty of defining creativity. There is
widespread agreement on the following working definition: cre-
ativity is ‘‘the ability to generate novel, and valuable, ideas’’ [7].
This definition states that something merely novel1 (alternatively,
surprising, original, unusual) is not necessarily creative; otherwise
randombehaviorwould be considered highly creative [8]. This jus-
tifies the introduction of value or usefulness in the definition. But
creativity researchers are aware of the limitations of this working
definition; this is especially the case in computational creativity,
where precise criteria are needed to assess proposed algorithms.
What exactly constitutes sufficient novelty, and in relation towhat
do we measure value or usefulness?

The second concern is directed at the notion that a machine
could be creative. The skeptic’s arguments are similar to those
disputed by Turing as he ponders the question ‘‘Can machines
think?’’ [9]. Turing dismisses the initial question as uninteresting
(because it is dependent on the conventional usage of the terms
‘‘machine’’ and ‘‘to think’’ in English), and replaces it with the
eponymous test: can a digital computer do well in the imitation
game? The substitution clarifies the debate and grounds it in expe-
rience. In the same spirit, Boden proposed a version of the Turing
Test for computational artwork,whichwould be passed by creative
products ‘‘indistinguishable from one produced by a human being;
and/or, [seen] as having as much aesthetic value as one produced
by a human being’’ [10].

In an attempt to answer both concerns, Colton andWiggins [11]
shift the burden of finding criteria onto an unbiased observer. They
call computational creativity ‘‘the philosophy, science and engi-
neering of computational systems which, by taking on particular
responsibilities, exhibit behaviors that unbiased observers would
deem to be creative’’. Below, we discuss this concept of creativity
and challenge it in the context of creative problem-solving.

1 Novel to the creative agent, in what Boden calls ‘‘Psychological-creativity’’ (as
opposed to ‘‘Historical-creativity’’) [8].

2.2. Products and processes

Boden [8,10] and Colton and Wiggins [11] focus on the end
product (behavior or artifact) of creative agents or software. They
ask whether the output of the algorithm is creative — implicitly
excluding any reference to the inner workings of the agent. But
their Turing test of creativity, by concentrating on appearances,
rewards front-end improvements and variations on a given style
over genuine novelty [12]. Recognizing these limitations, theorists
of computational creativity have proposed increasingly sophisti-
cated assessment methods for creative outputs [13,14], while also
acknowledging the specificity of creative processes [5,15].

We take one step further in that direction. Assessmentmethods
for creativity that focus on end-products, such as those inspired by
the Turing test, imply the following:

• There is something special about creative products (i.e. nov-
elty and value).

• By extension, processes are creative when they result in
creative products.

We propose to turn this view around:

• There is something special about creative processes.
• By extension, products are creative when they result from

the successful use of creative processes.

This resolves some issues with the product view: rather than
assessing whether a product is novel, we can check whether it
is the result of a copying process; rather than determining the
value of a product, we can identify how it was produced, what
it was produced for, and how well it fulfills that function. This
approach also correctly classifies instances of mere chance as non-
creative, even when the end product is indistinguishable from
‘‘the real thing’’ (e.g. when made by the proverbial monkeys with
typewriters). And it implies that, should a computer achieve a
result that would be called creative if achieved by a human being,
but by using a non-creative process (such as exploiting its speed
advantage to compute every possibility), we still should not call
that computer creative. But this raises a question: what is special
about creative processes?

2.3. Creativity as search

Fortunately, the computational creativity community has
worked towards characterizing creative processes in a general
manner [5,6,16]. Wiggins’ Creative Systems Framework (CSF) [5]
proposes an analysis of creativity as search, focusing especially on
performing search in at least two levels: (1) the search in a problem
space, and (2) the (meta-)search of a problem space.

The first level of search achieves exploratory creativity, such as
the analytic discovery of new theorems fromaxioms, or of a control
policy to achieve a task. The second level achieves themore elusive
transformational creativity, which consists of a radical change of
the domain being investigated; this appears to occur when solving
insight problems.2

We will consider the simplified version of the framework pro-
posed by Richie [6]. Because the framework aims at clarifying the
nature of creative computation, it can be considered a definition of
creativity, and that will be our interpretation. That is, any cognitive
process that can be accurately described as performing the CSF’s
search and meta-search, without assistance from a human pro-
grammer, can be considered creative. If the framework is indeed

2 See [8] for a description of exploratory, combinatorial and transformational
creativity.
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a good characterization of creativity, it should capture natural
examples of creativity, such as evolution or human creativity.

Such a framework can be used to fairly distribute creative cred-
its between the developer and the algorithm: ‘‘Did the algorithm
explore a search space given to it by its human developer? Was
the algorithm capable of modifying that search space, and in what
ways?’’ This should help in the production of algorithms which,
perhaps, cannot yet compete with humans in terms of creativity;
but nonetheless are, in some sense, genuinely independent cre-
ators. We believe such algorithms – rather than those producing
Turing-passable outputs – are more promising stepping stones
towards computational creativity. In Section 5, we will use the
CFS to identify which aspects of the insight process and of HRL
algorithms contribute to their creativity.

3. Human creativity: problem solving and insight

3.1. Creative processes in humans

An exploration of creative processes should not be limited to
those occurring naturally; but such processes, because they have a
track record of success and are observable, constitute an important
starting point. There are at least two examples of creativity in
nature. One is evolution, which has beenwidely used to investigate
creativity in robots [17] and other domains [18]. The other is the
human and animal cognitive capacity for creation.

In contrast with the study of evolution in biology, the study of
human creativity in psychology has been multifaceted (see [19]
for a review). Strands of research have diverged towards issues
ranging from neuroaesthetics [19, pp. 305–306], to characterizing
entrepreneurial personalities [19, pp. 255–256]. In this profusion
of experimental literature, it has become difficult to distinguish
fundamental research on creativity as an information-based pro-
cess; furthermore, efforts at predicting and capturing creativity in
an experimental setting have proven difficult [20].

Despite these difficulties, one aspect of the study of human
creativity stands out: research on insight. Insight is the fast under-
standing of original, illuminating solutions to problems; it has re-
ceived increased interest in the last three decades, with a resulting
improvement in the scientific understanding of the phenomenon.
In the next section, we describe human problem-solving and the
role of insight.

3.2. Human problem-solving

Solving a problem is transforming a given situation into a de-
sired one. This canbedone in themind, or in interactionwith an en-
vironment [21]. The vast majority of problems can be understood
as consisting of smaller problems, themselves composite, and so
on until an atomic granularity is reached; such that any aspect of
problem-solving discussed below can be understood to occur for
an entire problem, as well as for a part of a complex problem.

Simon and Newell [22] analyze human problem-solving as a
search process. A problem-solver works in a problem space, char-
acterized by a set of knowledge states U , an initial state u0 ∈ U ,
which must be transformed into a state un such that un ∈ G, where
G ⊆ U is the set of goal states. This is done using operators from
a set Q [22, p. 810]. However this approach, which lends itself
to software implementation, suffers from a crucial limitation: the
problem-space (states and operators) must be defined by the pro-
grammer, andnoprovision is given for transforming it in the course
of problem-solving. Thus Simon and Newell’s approach accounts
for exploratory creativity, but not for transformational creativity.
If a problem-space makes use of inappropriate representations for
the problem at hand, perhaps grouping features in an improper

way, or excluding certain operators, no amount of heuristic search
can arrive at a solution.

The Gestalt tradition [23] analyzes human and animal problem-
solving according to a different paradigm. In this view, problem-
solving is not understood using the metaphor of sequential
movements in a problem-space. Instead, gestaltists emphasize
changes in the representation of the problem as a whole that
transform a problematic situation into a practically solved one. For
example, Köhler [24] had chimpanzees attempt to retrieve inac-
cessible bananas; in order to solve the problem, they had to realize
that tree branches in their enclosure could be broken off and used
as sticks, after which the solution was trivial. Insightful problem-
solving has since been observed in orangutans [25] and corvids
[26] –confirming the reality of a phenomenon that is difficult to
explain as Thorndikian trial-and-error [27]. However, although re-
structuring constitutes transformational creativity, Gestalt theory
gives little in the way of explanation of the cognitive mechanisms
responsible for it.

The phenomenon of insight in problem-solving is better under-
stood by considering its relation to both paradigms: Simon and
Newell’s search and Gestalt restructuring. Problem-solving with
insight follows the sequence [2,4]:

1. Search in a problem space
2. Consistent failure (impasse)
3. Restructuring, and solution or significant progress
4. Test of perceived solution.

The third step is known as insight, popularly known as the ‘‘Aha!’’-
moment, giving the problem-solver the impression that significant
progress has been suddenly achieved [28]; sometimes that impres-
sion is mistaken, hence the necessity to test it in the fourth step.

Insight is not necessary for exploratory or combinatorial cre-
ativity; for example, theorems can, in principle, be discovered
through pure heuristic deduction, progressing smoothly and with-
out restructuring the problem space. Yet insight is accepted as at
least one of the cognitive processes involved in human creativity,
at the stage of generating new ideas or behaviors [19]. Some have
called it the exclusive mark of creativity (e.g. [2,20]) on the basis of
its ability to transform the problem space.

3.3. Restructuring

The key to understanding insight is the restructuring process —
what causes it, andwhat it consists of. In Gestalt theory, restructur-
ing was thought to arrive at a new representation through viewing
the problem naively, rejecting the contribution of experience [23].
This view seems untenable due to the sheer computational com-
plexity of that task, and the speed at which it occurs in humans;
it fails to account for experimental evidence showing that insight
is more likely to occur with prior experience [1,3] and may even
be impossible to subjects lacking domain experience. For example,
[29] reports a success rate below 5% on the 9-dot problem (cf.
Fig. 1), evenwhen preventing fixation;whereas [30] demonstrated
success on the same problem following acquisition of relevant
experience.

So what is restructuring? It includes several modifications af-
fecting the problem space, often difficult to tell apart from one
another, each of which has been experimentally demonstrated:

1. The heuristics used to select operators [31];
2. The representation of the problem, e.g. the chunking of

perceptual elements into objects [32] (cf. Fig. 2);
3. Constraints on available operators [33].
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Fig. 1. Left, the 9-dots problem: subjects are instructed to draw four straight lines
connecting all dots, without lifting their pen. Right, the solution, which involves
drawing lines outside the square formed by the dots and turning on non-dot points.

Fig. 2. Two of the problems used in [32]. The objective is to transform an incorrect
equation into a correct one by moving a single matchstick, where forming the sign
‘‘̸=’’ is prohibited. The solution to the first problem consists in changing ‘‘IV’’ into
‘‘VI’’, and in the second problem, ‘‘XI’’ into ‘‘VI’’. The second problem proves to be
more difficult for human subjects. The authors argue that this is due to ‘‘chunking’’:
subjects make two chunks for ‘‘IV’’, whereas ‘‘X’’ is perceived as a single element,
thus inhibiting search on the latter.

Whatever its form, restructuring can be triggered either from new
information obtained in the course of problem-solving (in which
case problem-solving can still be described as analytical), or from
failure to succeed using the initial problem-space (this is insight
‘‘proper’’). Both are interesting in the context of creative problem-
solving.

3.4. A theory of restructuring

Froman informationprocessing perspective, themost elaborate
description of the restructuring process is given by Ohlsson [2,
p. 108–109], illustrated in Fig. 3. Below, we summarize Ohlsson’s
account:

• Architecture: Problem-solving is based on perception of a
current state (e.g. the ‘‘state’’ units in Fig. 3). Output from
this state perception is propagated in a series of selective
layers of processing units — where a processing unit could
itself be a neural network. Each of these processing units
receives weighted inputs from units in previous layers, and
forwards weighted outputs to units in further layers. Each
unit connects to units on the next layer, potentially acti-
vating them, while also providing relevant problem-related
information. All initialweights are learned prior to problem-
solving based on past successes and other factors, providing
the problem-solver with preferences based on experience.

• Within-layer dynamics: In the course of problem-solving,
units are activated (when the sum of inputs is above a cer-
tain threshold) and deactivated (when the sum of inputs is
below threshold).When an activated unit proves unsuccess-
ful (based on interactionwith the environment, planning, or
heuristic estimation), it receives negative feedback reducing

Fig. 3. A possible visualization of Ohlsson’s theory [2]. A series of Winner-Take-All
(WTA) layers of processing units serves tomake decisions based on a perceived state
and forward connections. Connection weights are determined by past experience.
Unsuccessful options cause negative feedback to backpropagate through the layers,
reducing activation. This can push a WTA layer to switch activation to a different
option, triggering a chain reaction of redistribution of activation in the units of
subsequent layers.

its level of activation. On top of exciting forward connec-
tions and inhibiting feedback, these layers have internal dy-
namics implementing Winner-Take-All behavior [34]. Thus
when aunit is de-activated,within-layer dynamics (in layers
WTA#1, . . .WTA#n in Fig. 3) cause an alternative unit to
activate instead.

• Between-layers dynamics: Negative feedback is also prop-
agated to previous layers. When the feedback propagated
to previous layers leads to deactivating one unit, all of the
dependent subsequent activation must be redistributed ac-
cordingly –this is restructuring understood as redistribution
of activation. Depending on the amount of affected sub-
sequent activation, such restructuring can have a large or
small impact. When the entire network is affected, this can
be interpreted as the cognitive basis of a strong ‘‘Aha!’’-
experience.

Because processing units can also manage representations, this
theory accounts for representational change — including sudden,
large-scale changes. Further, as the weights are learned from ex-
perience, each unit comes with bias corresponding to a search
heuristic. Finally, the theory also describes instances of systematic
search (since units of a given layer are activated sequentially unless
a change occurs in a previous layer or a solution is found), and, via
state changes, it accounts for cases of analytic thinking [4] inwhich
restructuring is triggered by the discovery of new information
during failed attempts.

3.5. Implementing insight

The information-processing account of insight by Ohlsson, de-
scribed above, is not backed up by neuroscientific evidence; it is
hard to see how any such evidence could be produced in the near
future, as insight is particularly difficult to experiment with: it
is individual-dependent, and can happen only once per insight-
problem3 [20]. Thus Ohlsson’s theory is best understood as spelling
out a hypothesis as to the sort of process that may account for
insight. The level of detail of the theory is roughly consistent
with the amount of evidence available; this leaves it lacking as
a blueprint for an algorithm. In the remainder of this article, we
discuss ways in which this sort of processing can be implemented,

3 There is however a growing body of work in neuroscience with respect to RL
[35], HRL [36], creativity and insight [37,38].
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starting with computational models explicitly designed to account
for insight phenomena.

Simon claims [39] that various extensions of the General Prob-
lem Solver [40] are sufficient to account for insight: these pro-
grams are capable of generating a representation from a suitably
constrained description, and of switching between heuristics and
levels of abstraction. However, Simon fails to show how these
various abilities can be integrated into a single program, or how
any of these solutions could scale to the problems that human
or animals tackle. More recently, C.J. MacLellan [41] proposed a
model of human insight, which he tested on the nine-dot problem;
however, the model does not account for learning or for represen-
tational restructuring (focusing instead on heuristics).

We argue below that the algorithms that provide the bestmatch
with the psychological insight process are not found in the fields
of computational creativity or cognitive modeling. Rather, they
emerged from research in machine learning, and more specifically
reinforcement learning. To our knowledge, only Vigorito and Barto
[42] and Smith and Garnett [43] have claimed that such algo-
rithms are creative in a manner resembling human creativity —
and neither have mentioned any link to insight (nor have insight
researchers in psychology made any explicit link to computational
reinforcement learning). Below, we introduce hierarchical rein-
forcement learning (HRL) andpresent theways inwhich it achieves
many of the properties of insightful problem-solving.

4. Reinforcement learning

4.1. Background

Reinforcement Learning (RL) is the problem of acting in an un-
knownworld tomaximize the sum of future (discounted) rewards,
or return. The RL problem is typically formalized as a Markov De-
cision Process (MDP) consisting of a tuple ⟨S,A,P,R, γ ⟩ where:

• S is a finite set of states,
• A is a finite set of actions,
• P is the state transition probability function, such that

P(s′|s, a) = Pr(St+1 = s′|St = s, At = a),
• R(s, a, s′) is the scalar reward,
• γ ∈ (0, 1] is a discount rate on future rewards.

The goal for the agent is to maximize the return Gt =∑
∞

k=0γ
kR(st+k, at+k, st+k+1) from its current state st . A strategy is

to attempt to discover and use the optimal policy π∗. By definition,
π∗ picks with probability 1 the action (assumed unique for clarity
of exposition) expected to yield the largest return when the agent
keeps on acting optimally thereafter:

π∗(st , at ) =

{
1 if at = argmax

a∈A
(Eπ∗ (Gt |st , a))

0 otherwise.

Popular techniques for discovering π∗ include direct policy
search and temporal difference (TD) algorithms. Note that in real-
world settings such as robotics, policies rarelymake use of discrete
state–action pairs (s, a), but instead approximate themusing linear
or non-linear supervised learning techniques, for instance neural
networks with backpropagation.4

In humans, creativity has an improvisational, interactive nature
[47,48]: humans do not wait for the finished result or product to
evaluate it (contrary to most optimization techniques, for instance
genetic programming [49]), but instead maintain an evaluation of

4 This often introduces complications, for instance because the sequence of
samples is not independent and identically distributed. Describing these algorithms
is beyond the scope of this article; see [44–46].

the future outcome, and use it to direct and adjust their behav-
ior. Likewise, most RL algorithms make explicit use of temporal
structure. For instance, in TD algorithms policies can be altered
on-line in the course of solving the problem at hand, rather than
at the end of an episode; and (biased) estimated return can be
used to ‘‘bootstrap’’ towards a promising solution. Thus the exe-
cution of any action immediately generates a novel experience for
the learner, and dynamically affects its way of behaving. This is
important to achieve good performance in large problem spaces
where experience is costly and episodes take considerable time to
complete, such as in robotics or in creative domains. But in order to
achieve creativity, another component is required: the generation
of novelty, which is discussed next.

4.2. Novelty, exploration, and curiosity

In psychology, the interplay between ‘‘divergent thinking’’ and
‘‘convergent thinking’’ is a widely recognized characteristic of cre-
ativity [50,51]. In particular, this interplay has been theorized as
‘‘blind variation’’ and ‘‘selective retention’’ [52,53]. This is strongly
reminiscent of another essential aspect of RL algorithms: the
dilemma between exploration and exploitation. Indeed, to gather
rewards, an RL agent must use the actions that have proven useful
in the past; but in order to improve its policy, it must try out new
actions and observe their consequences [45,54]. Thus, rather than
greedily using the estimated best policy π̂∗

t , the agent must take
the need for exploration into account, and decide to miss out on
predictable rewards in exchange for observing something new.
When and how to explore is one of the main open problems in RL;
we believe any answer to that question has important implications
for a theory of creativity. In this subsection, we briefly review some
approaches to exploration in Reinforcement Learning.

The most straightforward and still most commonly used tech-
nique is to employ a soft version of π̂∗; popular implementations
are ϵ-greedy and SoftMax action selection. For example, an ϵ-
greedy agent (0 < ϵ < 1) picks actions according to π̂∗ with
probability 1 − ϵ, and otherwise picks another action at random.
Since exploration occurs on a fraction of time-steps, these algo-
rithms tend to focus exploration around promising trajectories
[55]. This restricts the state space in amanner that can be beneficial
(ignoring seemingly irrelevant regions), but in the absence of other
mechanisms it can also be detrimental (intensifying exploration
around an alreadywell-known policy). Several methods have been
proposed to diversify exploration.

Many techniques are based on encouraging an exhaustive or
near-exhaustive exploration of the state space, typically by keep-
ing count of state visits, as in the popular R-MAX algorithm [56].
The sample complexity of these techniques grows linearlywith the
size of the state space [55], but by relaxing the exhaustiveness of
this approach (ceasing to explore when ‘‘good enough’’ behavior
has been discovered), it can produce good results even in robotics
domains [57]. Nonetheless, it seems insufficient to deal with cre-
ative domains characterized by very large problem spaces; in such
domains, systematic exploration – even in simulation – could last
a (robot’s) lifetime without discovering anything ‘‘good enough’’.
Further, exhaustiveness is (intuitively) antinomic with creativity:
surely an efficient search would explore only the most promising
states.

Exploration does not have to be random or exhaustive — it can
be guided by the expectation of learning. This has been done in two
ways, whichwewill label intrinsicmotivation [54,58] and artificial
curiosity [59]. The latter can be understood as a special case of the
former.5

5 According to our taxonomy; in the artificial intelligence literature, ‘‘intrinsic
motivation’’ and ‘‘artificial curiosity’’ are often used interchangeably.
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Table 1
Characteristics of insight and their HRL counterparts.

Insight HRL

Integrated with analytic processes [4] Based on the standard RL framework [70]
Apparently discontinuous progress [28] Explorative ‘‘jumps’’ [42]
Operator constraints changes [33] Operator constraints changes [67]
Heuristic change [31] Option-dependent initial value function [70]
Representational change [32] Option-dependent state abstraction [68]

Intrinsic motivation in RL, in the framework proposed by Singh
et al. [58], consists in modifying the reward function to improve
the performance of an agent. Whereas the traditional approach to
RL is to provide reward exclusively when the goal is achieved, in-
trinsically motivated agents also receive ‘‘shaping’’ rewards when-
ever they encounter a state associated with learning (sometimes
called ‘‘salient states’’). These shaping rewards can be provided
by the programmer, or, for example, learned via an evolutionary
algorithm over several generations of agents.

Artificial curiosity [59] is also based on rewarding learning.
An artificial agent is ‘‘curious’’ when it uses information-theoretic
measures to detect and predict learning or surprise, and receives
reward when that occurs. Implementations have used various
such measures. Examples include rewarding state prediction er-
ror (surprising events) [60,61], prediction improvement [62], or
competence improvement [63]. These systems typically include a
learningmechanism to compute the amount of surprise or learning
that the agent undergoes, whereas intrinsic motivation can often
rely on a static reward function. Some of that work investigates
optimal exploration from a Bayesian perspective [64], although
that remains unfeasible for the general RL problem [65, pp. 25–28].

Below, we consider a fourth kind of method to improve ex-
ploration, which consists of using the structure of the problem-
space to increase the efficiency of exploration. When the structure
is learned (rather than provided to the agent), these methods can
be said to allow an agent to learn to explore. This is achieved by
varying the temporal granularity and the type of exploratory ac-
tions using behavioral hierarchy. Thesemethods are often fruitfully
combined with curiosity or intrinsic motivation; as a result, their
contribution to exploration often goes unnoticed [66].

4.3. Modular exploration of structured environments

Behavioral hierarchy in reinforcement learning [67–69] is com-
monly formalized using Sutton’s options framework [70]. Options
are a generalization of primitive actions that include temporally
extended, closed-loop courses of action. They consist of three
components: a policy π : S×A → [0, 1], a termination condition
β : S → [0, 1], and an initiation set I ⊆ S . An option ⟨I, π, β⟩

is available in state st if and only if st ∈ I; if taken, its policy π is
executed until it stochastically terminates at st+n (this can occur
with probability β(s) at any visited state s). In HRL, an agent con-
sists of a hierarchy of at least two levels of options, the higher levels
delegating tasks to lower levels, until an atomic option (equivalent
to an action in ‘‘flat’’ RL) is executed. In the next paragraphs, we
detail the various benefits of options.

An important advantage of options is the possibility of using
different state abstractions depending on the option [71–73]. This
allows the policy of an option to decide on actions using only
relevant features — regardless of which features are useful within
other options. This means that exploration can make use of these
abstractions: depending on the currently running option, the agent
takes into account different perceived features of the environment
when learning from an exploratory move.

Options are also useful for their ability to re-use sub-policies
between different tasks [74] — a property much discussed in the
emerging research area of transfer learning in RL [75]. Because
options are closed-loop, can use approximate value functions and

learn on-line (depending on the learning algorithm), they can
adapt to being used in a slightly different context — such that a
new (but related) problem can be explored using an option learned
in earlier problems; furthermore, on-line learning can allow for
resolving minor differences in the new problem. Note that this re-
sembles analogy-making as described in work on neural-symbolic
integration [76] where a similar sequence of abstraction, transfer,
and repair is found.

Most importantly with respect to creativity, options provide
temporal abstraction, allowing for exploring the state space at
multiple granularity sizes. An obvious advantage is the reduction
of processing costs in planning. But this also makes it possible to
reach otherwise unattainable sections of the state space — espe-
cially in environments where undirected or unmotivated explo-
ration does not allow for reaching some states [42]. Many real life
tasks are of this form: for most robot models, the state ‘‘broken’’ is
absorbing and accessible from many other states, preventing both
random walks and exhaustive search from reaching far into the
state space.

4.4. Hierarchical reinforcement learning and insight

In Section 3, we introduced the psychological process of insight
in the context of problem solving;wehave nowalso introduced the
options framework in reinforcement learning. These two processes
are both used to solve problems, and they do so in remarkably
similar fashion.

Table 1 shows the correspondence between the properties of
insight, discussed in Section 3, and those of modular exploration
in HRL, discussed above. It appears that the conceptual framework
of HRL allows for the sort of restructuring observed in human be-
ings during insight problem-solving, including value functions and
state abstractions that are option-dependent, aswell as explorative
jumps. Single systems have exhibited many of these properties at
once — e.g. in theMAXQ framework [68] or the options framework
[77]. In this last case, the options were learned by the agent.

Besides apparent algorithmic similarities, there is a similarity
in the sort of problem-solving behavior that can emerge in in-
sightful agents and HRL agents. Table 2 draws analogies between
the insight sequence and the behavior of an exploring hierarchical
reinforcement learning algorithm.

In this subsection, we have presented an informal comparison
of insight and HRL as described by their respective specialists,
summarized in Tables 1 and 2. However, these similarities are
only relevant to our argument if they actually contribute to the
creativity of the underlying processes. It is possible to perform a
more principled analysis of these two problem-solving processes
based on a framework equipped to assess similarity in terms of
creativity: the Creative Systems Framework (CSF), introduced in
Section 2.3, and detailed below.

5. Analysis of insight and HRL using the CSF

5.1. The creative systems framework

The CSF formalism is inspired by Boden’s philosophical discus-
sion of creativity [8], and its aim is to describe and assess creative
software [5,6]. The CSF analyzes creativity as search; its main
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Table 2
The insight sequence and its HRL counterparts.

Stage Observed behavior HRL

Problem perception Read text; manipulate material; etc. Understand what the problem is
about

Pick high-level policy

Problem-solving Regular progress with occasional trial and error Transfer of high-level policy, resolve errors

Impasse None Encounter negative time-difference errors, re-evaluate high-level
policy

Restructuring Report change in strategy and perception Switch policies

Insight Exclaim ‘‘Aha!’’ etc. Transfer new policy, encounter positive errors

Post-insight Resume problem-solving, sometimes fail Finish transferring new policy, sometimes fail

contribution, in our view, is to formalize the distinction between
object-level search and meta-level search, corresponding respec-
tively to exploratory and transformational creativity. In doing so, it
reveals the characteristics of so-called ‘‘creative’’ systems that are
constitutive of their creativity. It is thus a useful tool for assessing
how two distinct systems relate to one-another with respect to
creativity. Below, we introduce the CSF and use it to analyze the
insight process on the one hand, and HRL on the other hand.

The CSF describes creative processes at two levels [5,6]. The first
is the object-level of exploratory creativity, and is defined as a
tuple ⟨P,N ,V,Q⟩, where:

• P is the set of possible products.
• N ∈ [0, 1]P is the acceptability mapping6 (specifying how

acceptable a product is).
• V ∈ [0, 1]P is the value mapping (specifying how valuable

a product is).
• A mapping Q from [0, 1]P×[0, 1]P to the set of mappings

from tuples(P) to tuples(P) is called the exploration scheme.
Intuitively, Q is the set of possible ways to generate a new
set of products based on the previous generation of prod-
ucts, taking into account their acceptability and value.

In addition to the object-level, the meta-level accounts for
transformational creativity: exploration between problem-spaces.
A meta-level creative system for P consists of:

• ECS(P), a set of triples ⟨N, V ,Q ⟩ where N , V and Q are
possible values forN , V andQ respectively. Wewill call this
Pmeta for coherence.

• Nmeta
: Pmeta

→ [0, 1], the acceptability mapping.
• Vmeta

: Pmeta
→ [0, 1], the value mapping.

• Qmeta, the structured search for elements p ∈ Pmeta, similar
to Q but operating on elements of Pmeta.

5.2. CSF and insight

As the theory of insight is not a formal theory,we can only relate
it loosely to the CSF. However, the roots of the CSF [8,16] in human
creativity on one hand, and in search on the other hand, make it
easier to establish links between the formal components of the CSF
and the components of human-problem solving.

The object-level of the CSF maps to search without restructur-
ing, that is, to human problem-solving as described by Simon and
Newell [22], in which previous experience provides the learner
with an appropriate problem-space.

The meta-level maps to search between problem spaces
achieved during insightmoments. Those are the cases inwhich the
initial approach fails, and redistribution of activation is required to
yield a novel strategy; these consist in switches between units at

6 For sets A and B, BA is the set of mappings from A to B — thus N ∈ [0, 1]P
assigns a real value x ∈ [0, 1] to each element in P .

more abstract layers and subsequent changes in Ohlsson’s model
of insight [2] as described in Section 3.4. The various forms of
restructuring found in human insight must thus be included in the
search operator Qmeta of the CSF.

The above analysis of insight can be misunderstood as follows:
if insight consists in restructuring the problem based on past ex-
perience, one might claim that novelty is missing [4]. In this view,
the problem-solver is merely making successive interpretations of
the problem in several already known problem-spaces. However,
insight is required precisely when a perceived problem fails to fit
the problem-space it is immediately associated with; that is, the
creativity of insight consists in associating an unlikely policy to a
novel problem. Furthermore, restructuring often does not succeed
at immediately providing a solution. Additional adaptations are
required to achieve an adequate fit between the perceived problem
and the tentative representation and policy. These further changes
constitute search within the new object-space obtained following
restructuring, and show that our description of insight accounts for
genuine novelty.

5.3. CSF and HRL

For HRL, we propose the following interpretation of what Wig-
gins [5] calls the object-level search, and which we might call the
policy-level search in the context of a creatively behaving robot:

• P is the set of possible policies.
• V is the discounted return Gt from executing a policy from

the current state st (squashed to (0, 1) for compatibility). In
non-artistic creative domains, it is not clear that two distinct
variables, value and acceptability, are required; therefore
we will simply assume that N ∈ N maps all policies to 1,
deeming them always ‘‘acceptable’’.

• Q is themethod bywhich a set of policies and their observed
discounted return are used to generate new policies. Most
time-difference algorithms make use of a critic which esti-
mates the value of intermediary states or state–action pairs,
and which can be used e.g. to modify a policy on-line and
bootstrap. To account for this in the CSF, we can consider
each policy change as a function of previous policies and
experience.

Thus an RL search method Q ∈ Q is characterized by all proper-
ties not obtained from experience. This includes any fixed hyper-
parameter (learning rate, exploration rate or temperature, initial
values of any parameter...), any modifications made to the sensory
system of the agent (e.g. hand-designed features) for the purpose
of assisting the algorithm, and so on.

Below we describe the meta-level, which searches through
pairs (V ,Q ) where V ,Q are possible values for V,Q respectively.
Surely a random trial-and-error exploration of all RL algorithms
is possible, but intractable even for easy problems. In the case of
insight, restructuring was a result of interacting with the prob-
lem, but was also based on alternative strategies provided by
experience on other problems. We suggest adopting the same
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Table 3
Overview of the CSF analysis of insight and HRL.

Insight HRL

Search Search in the current
problem-space as per
e.g. Simon and
Newell [22].

Exploitation,
exploration and
learning within the
current option.

Meta-search Restructuring based
on prior experience
as per Ohlsson [2].

Switch to a different
option and transfer.

interpretation in the case of reinforcement learning: considering
previously learned options as potential problem-spaces. Thus:

• Pmeta is a set of pairs ⟨V ,Q ⟩ provided by experience, where
Q does not vary along various (hyper)parameters, butmakes
use of a unique option ω = ⟨Iω, πω, βω⟩.

• Vmeta is the value of p ∈ Pmeta, applied to the current
problem.

• Qmeta is the method by which pairs ⟨V ,Q ⟩ are modified or
retrieved from experience.

Under this interpretation, HRL is creative when it learns op-
tions, uses them to set-up the initial characteristics of search, and
browses through themwhen the initial attempt fails. The extent to
which an HRL algorithm is creative thus depends on the variety of
options that the agent can learn anduse for transfer, and howmuch
those options can affect the object-level search. We have seen that
options can vary in terms of the initial policy and value function
and in terms of temporal and state abstraction. This coversmuch of
the restructuring observed in humans during the insight process.
This makes HRL a promising candidate for human-like embodied
artificial creativity.

In analyzing both the insight process and HRL using the CSF,
we have given a more detailed look at HRL as ‘‘search’’ and ‘‘meta-
search’’. This has shown that the analogy between HRL and insight
relies precisely on the aspects of each method that are relevant
with respect to creativity (according to the CSF). While this sec-
tion provided a more detailed analysis, Table 3 summarizes the
outcome succinctly.

5.4. Modular exploration as creative search

Fig. 4 demonstrates the analogy between insight and HRL on
a simple navigation task. At the top level is the option space, or
meta-level: when presented with a new problem, an RL agent can
select an option, in the same manner that it would normally select
an action, based on its expected return in the problem at hand.
Because RL allows for online updates to the policy, the option can,
in turn, be used as the starting point for exploration when the
known policy does not succeed right away (4a). This corresponds
to object-level search.

When a switch between options occurs on-line, in the course
of the search process, transformational creativity occurs — similar
to moments of insight in humans or animals. If the agent is per-
forming model-free trial-and-error, something resembling Fig. 5
can be observed; whereas if the agent makes use of planning, the
option change is not likely to have any observable behavioral effect
— except perhaps the utterance of an ‘‘Aha!’’.

6. Challenges

Architectures close to those discussed above have been imple-
mented, including on a navigation task similar to the one shown
in Fig. 4 [67], and on real robots [77]. However, there has not
been, so far, any simulated or embodied agent capable of displaying

Fig. 4. 1. Options can constitute a starting point for problem-solving. When faced
with a new problem, an agent may start its search in an ‘‘option space’’ containing
re-usable skills. Each skill corresponds to a representation of the environment
and policy. 2. The policy space is the space of all possible policies within an
environment. An option presents an initial solution, but also contains information
about the expected value of alternative behaviors, and is encoded using certain state
abstractions and temporal abstractions. Given an environment, and a time-horizon
(a limited lifetime for trial and error, or processing speed for planning), a different
subset of policies is reachable, depending onwhether the agent initially uses option
Aor option B - this is shownas two areas of the universal policy space corresponding
to A and B. 3. In this example, the agent is faced with a navigation problem: the
objective is to reach the black dot. The policy corresponding to option A (3a) is
based on the coordinates of the agent in the plane, as in a grid-world. The policy
corresponding to option B (3b) is based on following walls. 4. The representation
used for option A makes the obstacle essentially invisible as no perceived features
stand for walls — in the course of learning, the agent will repeatedly bump against
the wall while modifying its policy. In (4a), the agent does not succeed within the
time-horizon. In contrast, option B is immediately successful (4b).

Fig. 5. Switching options online, based on negative temporal difference errors,
could lead to behavior resembling human and animal insightful behavior: from
successful problem-solving, to impasse, to representational change and eventual
success.

insightful behavior resembling what is observed in primates or
corvids [25,26]. This section discusses the state of the art and the
remaining challenges to making creative robots that use modular
exploration.

• Lifelong learning: Comparatively little research within the
RL community is dedicated to systems capable of life-long
learning. While similar in some ways to transfer learning,
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life-long learning [78] differs in several crucialways because
agents are not told when a problem starts [75]: thus, if they
learn transferable skills, they must find how to organize
previous experience into discrete skills; and when applying
such skills, they must not only solve problems, but also
identify problems to solve. However, perhaps due to the re-
cent gain of interest for transfer learning and developmental
robotics, there have been renewedefforts in this domain, e.g.
[79,80].

• Option switching for exploration: We have presented the
moment of insight as similar to using a high-level ex-
ploratory action after an impasse; that is, the failure of an
option to achieve its goal despite repeated attempts. Some
hierarchical reinforcement learning algorithms (e.g. [81])
use continued failure as a terminal condition for options.
How to optimally explore with options, however, is to date
not fully understood: switching between options as soon
as a different option has higher expected return might lead
to back-and-forth switches, preventing the large jumps af-
forded byusing options in the first place.What is the optimal
amount of perseverance?

• Problem-solving speed: Reinforcement learning is used to
learn policies, not merely to solve problems. Learning fast can
lead to instability and catastrophic forgetting; but learning
slowly leads to performances hardly compatible with cre-
ativity. Is there a middle-ground? Work on transient learn-
ing and tracking hints that ‘‘learning’’ fast, and forgetting
most of it, might be a way to implement search [82,83];
however this assumes that the agent knowswhen problems
start and end.

• Option discovery: Although many methods are being pro-
posed and implemented [77,79,84], option discovery re-
mains an open problem for HRL, with no generally accepted
and widely successful solution to date; much progress can
still be made in this area. A promising new approach is
offered by Bacon [85].

7. Discussion and conclusion

We offered a novel perspective on computational creativity,
highlighting the process of creativity instead of the end product.
While a focus on the end product is common in artificial creativity,
approaching creativity as a process allows an entry into artificial
creativity which has been largely neglected. We focused on one
aspect of the creative process, that of insight. A number of striking
parallels can be drawn between the psychological creative pro-
cess and Reinforcement Learning, and Hierarchical Reinforcement
Learning in particular.

Reinforcement Learning distinguishes itself by making use of
techniques designed from the ground up for embodied, situated
agents, rather than for highly abstract domains. Its ontology con-
tains actions, states, and temporally-extended policies rather than
concepts; and its representations are directly tied to action. This
matches characteristics of humans or animals as situated creators
[25,26,47,48], and makes the approach especially relevant and
promising for robotic creativity. In RL, by introducing a hierarchy,
transfer becomes possible between situations that are analogous
at an abstract level. In this sense, our approach is closely related to
the research program proposed in [76,86,87]. It is a promisingway

to achieve the three key challenges on the road to computational
creativity identified by Buchanan [16], namely: accumulation of
experience, meta-level thinking, and transfer.

The promise of computational creativity in the context of ma-
chine learning is that creativity might be able to tackle problems
that are currently too big to learn: most real-world problems have
a prohibitively large search space and current exploration ap-
proaches are ill-equipped to sample non-trivial search spaces, such
as those found in even simple robotics problems. Creativity offers a
way forward: instead of random exploration or heuristic-based ex-
ploration, creativity has the potential to explore areas of the search
space at a timewhen classic approaches would still be exploring in
the neighborhood of failed earlier attempts. In addition, the reuse
of components (known as ‘‘options’’ in HRL terminology) has the
potential to use smaller solutions to tackle bigger problems, and
to switch between different exploration approaches, potentially
leading to an Aha Erlebnis in the search process.

Creativity, mainly through being still ill-defined and elusive,
is best studied using an interdisciplinary approach. The cognitive
sciences and ethology offer angles on the creative processes that
prove useful when considering computational creativity. In this,
Hierarchical Reinforcement Learning is a particularly promising
approach, as it matches the core characteristics of the insight
process. Insight results in a sudden increase in performance while
exploring a problem, while other optimization algorithms often
show a gradual improvement in performance, atypical for how
people arrive at solutions.

Finally, the advantage of a model is that it can be exercised —
research into creativity, both computational and psychological, can
only benefit from implementable models of the creative process,
built on explicit assumptions and producing predictions that can
be tested and falsified. Robots are the most natural platform for
these tests, as theymost closely resemble embodied, unsupervised
agents such as animal and human creators.
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