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Abstract

Bimanual gestures are of the utmost importance for the study of motor

coordination in humans and in everyday activities. A reliable detection of bi-

manual gestures in unconstrained environments is fundamental for their clinical

study and to assess common activities of daily living. This paper investigates

techniques for a reliable, unconstrained detection and classification of bimanual

gestures. It assumes the availability of inertial data originating from the two

hands/arms, builds upon a previously developed technique for gesture modelling

based on Gaussian Mixture Modelling (GMM) and Gaussian Mixture Regres-

sion (GMR), and compares different modelling and classification techniques,

which are based on a number of assumptions inspired by literature about how

bimanual gestures are represented and modelled in the brain. Experiments show

results related to 5 everyday bimanual activities, which have been selected on

the basis of three main parameters: (not) constraining the two hands by a

physical tool, (not) requiring a specific sequence of single-hand gestures, being

recursive (or not). In the best performing combination of modelling approach

and classification technique, five out of five activities are recognised up to an

accuracy of 97%, a precision of 82% and a level of recall of 100%.
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Sensors, Inertial Sensors.

1. Introduction

Bimanual gestures are central to everyday life, and constitute a fundamen-

tal ground for the study of basic principles of human behaviour. Traditionally,

the study of bimanual gestures in humans focus on very simple motions in-

volving fingers and hands, and including coordination, symmetry, in-phase and

anti-phase behaviours. These studies are aimed at understanding the dynam-

ics associated with bimanual movements and target aspects of motor control,

as exemplified by the Haken-Kelso-Bunz (HKB) model for self-organisation in

human movement pattern formation [1][2].

In this paper, we are interested in determining how the study of bimanual

gestures can lead to automated systems for their detection and classification in

unconstrained, everyday environments. In the context of assistive systems for

fragile populations, including elderly, people with disabilities and other people

with special needs, the need arises to provide caregivers, medical staff or simply

relatives with a tool able to assess the ability of assisted people to perform bi-

manual gestures in their natural environment. Such approach is in line with the

ageing in place paradigm, a recent healthcare position which acknowledges and

focuses on the role that a person’s surroundings (the home, the neighbourhood)

play for his well-being in older ages [3]. A familiar environment brings about a

sense of security, independence and autonomy which has a positive impact on

routines and activities, and ultimately on quality of life.

There is a big gap between clinical studies involving the coordination of

finger movements and the recognition of such general-purpose bimanual gestures

as opening and closing curtains, sweeping the floor, or filling a cup with water.

However, the first step to take is to determine how current understanding of

bimanual movements and their representation in the brain can lead to better

detection and classification systems in real-world environments. Three factors

must be considered when designing such a system.
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Factor 1. It is debated whether bimanual gestures are controlled in intrinsic

or extrinsic coordinates, or rather multiple coordination strategies co-occur.

Bimanual movements tend to motion symmetry and stabilisation [1]. This

has been typically explained using co-activation of homologous muscles in neu-

ronal motor structures, due to bilateral cross-talk, suggesting that bimanual

coordination is mostly done using intrinsic (i.e., proprioceptive) coordinates.

Mechsner et al suggest that, instead, such a coordination is due to spatial,

perceptual symmetry only, i.e., using extrinsic (i.e., exteroceptive) visual coor-

dinates [4]. If this were true, there would be no need to map visual representa-

tions to motor representations (and viceversa), and voluntary movements could

be organised on the basis of perceptual goals. The role of different coordinates

and their interplay for bimanual coordination mechanisms has been studied by

Sakurada and colleagues [5]. Starting from studies relating temporal and spatial

couplings in bilateral motions, including the adaptation exhibited by two hands

having to perform motions of different speed (i.e., the fastest becoming slightly

slower and viceversa) [6], and the fact that the movement of a non-dominant

hand is likely to be assimilated by the dominant one [7], they demonstrate a

relatively stronger contribution of intrinsic components in bimanual coordina-

tion, although both components are flexibly regulated according to the specific

bimanual task. Furthermore, they argue that the central nervous system reg-

ulates bilateral coordination at different levels, as hypothesised by Swinnen

and Wenderoth [8]. The importance of both intrinsic and extrinsic coordinates

seems to be confirmed by recent studies in interpersonal coordination [9]. It is

suggested that coordinated motion is informed by a full perception-action cou-

pling, including visual and haptic sensorimotor loops, which propagates to the

neuromuscular system.

We derive two requirements for our analysis:

R1) we must consider models agnostic with respect to an explicit coordination

at the motor level between the two hands/arms;

R2) classification techniques must be robust to variation in speed, both for the
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bimanual gesture as a whole and for the single hand/arm.

Factor 2. Ageing affects the way we move, and therefore coordination in

bimanual gestures varies over time.

According to the dedifferentiation paradigm, ageing is now considered a par-

allel and distributed process occurring at various levels in the human’s body.

The dedifferentiation can be defined as “the process by which structures, mech-

anisms of behaviour that were specialised for a given function lose their special-

isation and become simplified, less distinct or common to different functions”

[10]. As a consequence, ageing affects not only individual body subsystems (i.e.,

the muscular system or the brain), but also their interactions. It is argued by

Sleimen-Malkoun and colleagues that such a process can lead to common and

intertwined causes for cognitive ageing, i.e., a general slowing down of informa-

tion processing, including the information related to procedural memory and –

therefore – movement and coordination [11]. It is posited that the ageing brain

undergoes anatomical and physiological changes, for the reorganising activation

patterns between neural circuits. As far as motor task complexity is concerned,

a generalised increased activation of brain areas is even more evident, which

reflects a greater involvement of processes related to executive control.

Also in this case, we derive an important requirement:

R3) we must consider models which can be adapted over time and which fol-

low the evolution of the musculoskeletal system, at least implicitly, thus

requiring the use of forms of machine learning techniques.

Factor 3. Different mental representations of sensorimotor loops and action,

involving discrete and continuous organisation principles, are under debate.

Beside the models aimed at representing bimanual gestures assuming a mo-

tor control framework, much work has been carried out in the past few years

to devise building blocks for mental action representation [1][2][4][8][5][9]. As-

suming a goal-directed cognitive perspective, it has been shown how movements

can be represented as a serial and functional combination of goal-related body

postures, or goal postures (i.e., key frames), as well as their transitional states.
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Furthermore, it has been posited that movements can be expressed as incremen-

tal changes between goal postures, which reduces the amount of effortful atten-

tion needed for their execution [12]. On these premises, Basic Action Concepts

(BACs) have been proposed as building blocks of mental action representations.

BACs represent chucked body postures related to common functions to realise

goal-directed actions. Schack and colleagues posit that complex (including bi-

manual) actions are mentally represented as a combination of executed action

and intended or observed effects [13]. Furthermore, they argue that the map

linking motion and perceptual effects is bi-directional and stored hierarchically

in long-term memory, in structures resembling dendograms [14]. This is a spe-

cific case of what has been defined by Bernstein as the degrees of freedom problem

[15]. The problem is related to how the various parts of the motor system can

become harnessed so as to generate coordinated behaviour when needed. As

Bernstein theorised, a key role is played by muscular-articular links (i.e., syner-

gies) in constraining how many degrees of freedom lead to dexterous behaviour.

Harrison and Stergiou argue that dexterity and motion robustness are enabled

by multi-functional (degenerate) body parts able to assume context-dependent

roles. As a consequence, task-specific human-environment interactions can flex-

ibly generate adaptable motor solutions.

We derive two requirements:

R4) although motion models are intrinsically continuous, we need to derive a

discrete representation able to provide action labels which, in principle,

can lead to more complex organisations;

R5) models must capture dexterity in everyday environments and robustness

to different executions of the same gesture, which leads to models obtained

by human demonstration.

On the basis of these requirements, we propose a bimanual wearable sys-

tem able to detect and classify bimanual gestures using the inertial informa-

tion provided by two wrist-mounted smartwatches. The system builds up and

significantly extends previous work [16], and adheres to the wearable sensing
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paradigm, which envisions the use of sensors located on a person’s body, either

with wearable devices such as smartwatches, or with purposely engineered ar-

ticles of clothing [17], to determine a number of important parameters, in our

case motion. Since sensors are physically carried around, the monitoring activ-

ity can virtually occur in any place and it is usually focused on the detection of

movements and gestures.

The contribution is four-fold: (i) an analysis of two procedures for modelling

bimanual gestures, respectively explicitly and implicitly taking the correlation

between the two hands/arms into account; (ii) an analysis of two procedures

for the classification of run-time data, respectively relying on the probability

measure and the Mahalanobis distance to compute the similarity between run-

time data and previously stored models of bimanual gestures; (iii) a performance

assessment of the developed techniques with the standard statistical metrics of

accuracy, precision and recall over the collected dataset, as well as under real-life

conditions; (iv) a dataset of 60 recordings of five bimanual gestures, performed

by ten volunteers, to support reproducible research.

The paper is structured as follows. Section 2 describes the theoretical back-

ground of the proposed modelling and recognition procedures, as well as related

work, in view of the requirements outlined above. Section 3 provides a thorough

description of the system’s architecture and insights on the five bimanual ges-

tures considered for the analysis; the performance of such system are presented

and discussed in Section 4. Conclusions follow.

2. Related Work

Wearable systems for the automatic recognition of human gestures and full-

body movements typically rely on inertial information. Accelerometers prove

to be the most informative sensor for the task [18]. To comply with end users’

constraints related to the impact of the monitoring system on their appearance

and freedom of motion, most solutions adopt a single sensing device, either

located at the waist [19] or, as it is becoming more and more common, at the
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wrist [20].

Due to the similarities in the input data and in the operating conditions,

most systems adopt a similar architecture [17], sketched in Figure 1. The archi-

tecture identifies two stages, namely a training phase (on the left hand side in

the Figure) and a testing phase (on the right hand side). The training phase,

typically executed off-line without strict computational constraints, is devoted

to the creation of a compact representation of a gesture/movement of inter-

est, on the basis of an informative set of examples. This also complies with

requirements R3 and R5 above. The testing phase, which may be subject to

real-time and computational constraints, is responsible for the analysis of an

input data stream to detect the gesture, among the modelled ones, which more

closely matches it, if any, and label it accordingly. Please note that the word

“testing” is used here with respect to the data stream to analyse, with no ref-

erence to the stage of development of the monitoring system. Specifically, we

denote with the term “validation” the development stage in which we assess the

performance of the system, and with the term “deployment” the stage in which

the system is actually adopted by end users. During validation, the testing

phase executes an off-line analysis of labelled gesture recordings, while during

deployment the testing phase executes an on-line analysis of a continuous data

stream, in unsupervised conditions.

During the training phase (see Figure 1 on the left hand side), it is first

necessary to acquire and build the training set of measured attributes for the

gestures of interest. Two approaches are possible. The specialised approach en-

visions the creation of a training set exclusively composed of gesture recordings

performed by the person to be monitored during the deployment stage. This

approach maximises the recognition accuracy at the expenses of a long setup

for each new installation. However, it enforces requirements R3 and R5, in that

it allows someone to periodically retrain the system if necessary. Conversely,

the generalised approach envisions the creation of a training set composed of a

large number of gesture recordings, performed by a number of volunteers (not

necessarily including the person to monitor). Using gestures provided by dif-
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Figure 1: The typical architecture of wearable sensing systems for the recognition of human

gestures. The left hand side lists the tasks of the training phase, while the right hand side

lists the tasks executed during the testing phase.
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ferent individuals maximises the likelihood that the model is able to capture

a much varied dexterity, as posited by R5. This approach, albeit more prone

to errors, greatly reduces the setup costs and is to be preferred in the case of

Ambient Assisted Living applications, in which the perceived system’s ease of

use is crucial for its success [16, 21].

Once the training set is available, it is typically filtered for noise reduction

and/or formatted for later processing (data pre-processing stage). Then, the

purpose of the feature extraction procedure is to determine relevant informa-

tion (in the form of features) from raw signals. Features are expected to (i)

enhance the differences between gestures while being invariant when extracted

from data patterns corresponding to the same gesture, (ii) lead to a compact

representation of the gesture and (iii) require limited computational time and

resources for the extraction and processing, since these operations are subject to

real-time constraints during deployment. Literature discriminates between sta-

tistical features, extracted using methods such as the Fourier and the Wavelet

transform on the basis of quantitative characteristics of the data, and struc-

tural features, aiming at enhancing the interrelationship among data [17]. Most

human activity recognition systems based on inertial measurements make use

of statistical features, usually defined in the time- or frequency-domain [22].

Alternative feature extraction methods include the use of Principal Compo-

nent Analysis [23] and autoregressive models [24]. With respect to time-domain

features exclusively, which minimise the computational load introduced by the

feature extraction procedure, gravity and body acceleration are among the most

commonly adopted [25, 22, 16]. Discriminating between gravity and body ac-

celeration is a non-trivial operation, for the two features overlap both in the

time and frequency domains. Two approaches are typically adopted to separate

them. The former exploits additional sensors, such as gyroscopes [26] or mag-

netometers [27], to compute the orientation or attitude of another body part,

usually the torso. The latter exploits the known features of gravity and uses ei-

ther low-pass filters to isolate the gravitational component [25, 16], or high-pass

filters to isolate the body acceleration components [28].
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Once gravity and body acceleration components are isolated, the need arises

to model them as features. Six different 1-dimensional sampled signals are avail-

able, i.e., the three gx, gy, gz gravity and the three bx, by, bz body acceleration

components along the x, y and z axes. Again, two possibilities are discussed in

the Literature. The first is to assume the signals to be pairwise uncorrelated,

which yields six separate 2-dimensional features, each feature being composed

of timing information and the corresponding signal value on a given axis, i.e.,

(t, gi) and (t, bi), where i ∈ {x, y, z}. The second is to assume the x, y and z

components of gravity and body acceleration to be correlated, which yields two

separate 4-dimensional features, i.e., (t, gx, gy, gz), (t, bx, by, bz), each feature be-

ing composed of timing information and the corresponding signal values on all

axes. The explicit use of correlation among tri-axial acceleration data has been

proved to lead to better results in terms of classification rate and computational

time [29, 22, 16]. It is noteworthy that, in case of bimanual gestures, it is possi-

ble to explicitly model the correlation among inertial data originating from the

two hands/arms, or to consider them as separate signals. In this way, we can

comply with requirements R1 and (in part) R2 above.

Finally, the modelling procedure is devoted to the creation of a compact

and informative representation of the considered gestures in terms of available

sensory data. Two classes of approaches have been traditionally pursued. In

logic-based solutions each gesture to monitor and recognise is encoded through

sound and well-defined rules, which are based on ranges of admissible values

for a set of relevant parameters. Recognition is carried out by analysing run-

time sensory values to progressively converge towards the encoded gesture more

closely matching run-time data. Decision trees, which allow for a fast and

simple classification procedure, are the most adopted solution in logic-based

approaches [30, 19, 25, 22]. Probability-based solutions assume instead each

gesture to be represented by a model encoding relevant moments of the training

set, and to be identified using non ambiguous labels. In this case, recognition is

typically performed by comparing run-time sensory data with the stored models

through probabilistic distance measures. Commonly adopted techniques include
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Neural Networks [22], Hidden Markov Models [31, 32, 33] and Gaussian Mixture

Models [16]. In our work, we exploit probability-based models to comply with

requirement R4.

During the testing phase (see Figure 1 on the right hand side), analogously to

what happens in the training phase, a number of steps are sequentially executed.

The feature extraction step executes the same algorithms of the training phase.

Once the testing stream has been processed (typically focusing on a time win-

dow), it is possible to evaluate its features against the previously trained models

(recognition), generating a predicted label. In the testing phase, we exploit spe-

cific distance metrics relating the stored models with the run-time data stream.

In this way, we can account for requirement R2.

Most wearable sensing systems based on a single sensing point (e.g., the

right wrist) focus on the recognition of gestures which are either one-handed,

e.g., bringing a cigarette to the lips to smoke [20], or, albeit involving both

hands, such as cutting meat with fork and knife [34] or even the full-body,

e.g., climbing stairs [16], correspond to a unique and generalised pattern at

the considered sensing point. The presented work relaxes this assumption, by

evaluating a wearable sensing system based on two sensing points (the left and

right wrists) which allows for the modelling and recognition of generic bimanual

gestures.

3. System Architecture

Figure 2 shows a schematic view of the training phase of the proposed system,

while Figure 5 details the operations performed during the testing phase. The

blocks devoted to data synchronisation and data pre-processing, as well as the

feature extraction block, are the same in the two phases. We consider two

approaches for the modelling stage: (i) explicit modelling of the correlation of

the two hands (2×7D approach, see Figure 2 on the left hand side), presupposing

the stress on intrinsic coordinates in motor control studies, and (ii) implicit

modelling of the correlation (4 × 4D approach, see Figure 2 on the right hand
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Figure 2: System architecture (training phase).

side), which assumes the importance of extrinsic coordinates. We also consider

two approaches for the comparison of testing data with the available models,

respectively based on the probability measure and the Mahalanobis distance.

The former takes into account the likelihood of a model as a whole, whereas

the second weights more the contribution of body degeneracy in robustness and

dexterity.

3.1. Pre-processing & Feature extraction

The proposed system relies on the inertial information collected by two tri-

axial accelerometers, respectively located at a person’s left and right wrists. To

properly manage the two data streams, they should be synchronised, and the

data synchronisation procedure heavily depends on the choices made related

to hardware solutions. As it will be described in Section 4, in the case of the

devices we adopt, the synchronisation is guaranteed by the manufacturer.
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All the trials of a gesture in the training set (i.e., all the couples of left- and

right-wrist data streams associated with a single execution of the gesture) are

initially synchronised with each other manually, so that the starting moment

of the gesture is the same across all recordings, and trimmed to have equal

length. Then, the data pre-processing stage filters each acceleration stream

with a median filter of size 3 to reduce noise.

Let us assume that we have M different bimanual gestures. For each gesture

m to learn, where m = 1, . . . ,M , let us assume that the training set includes

Sm trials and s is one of them. After the pre-processing stage, all the Sm trials

are synchronised and truncated as to be composed of the same number Km of

observations. A trial is defined as:

s = {gl,k, bl,k, gr,k, br,k} k = 1, . . . ,Km (1)

with:

gl,k = (tk, gl,x,k, gl,y,k, gl,z,k),

bl,k = (tk, bl,x,k, bl,y,k, bl,z,k),

gr,k = (tk, gr,x,k, gr,y,k, gr,z,k),

br,k = (tk, br,x,k, br,y,k, br,z,k),

(2)

where l and r denote, respectively, the acceleration streams provided by the

sensing device on the left and on the right wrist, gl,k includes the time and x, y

and z components of the gravity on the left acceleration stream, bl,k includes the

time and x, y and z components of the body acceleration on the left acceleration

stream, gr,k includes the time and x, y and z components of the gravity on the

right acceleration stream and br,k includes the time and x, y and z components

of the body acceleration on the right acceleration stream. The feature extraction

stage separates the l and r tri-axial acceleration streams provided by the sensing

devices into their gravity and body acceleration components [16], by applying a

low pass Chebyshev I 5◦ order filter (Fcut = 0.25Hz,Apass = 0.001dB,Astop =

−100dB, Fstop = 2Hz).
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3.2. Modelling

The goal of the modelling stage is to combine the Sm trials in the training set

to obtain a generalised version, i.e., a model, of gesture m, defined in terms of

the two features of gravity and body acceleration. Two approaches are possible.

In the explicit correlation modelling (2× 7D approach, see Figure 2 on the

left hand side), we merge the left and right components of each trial s to create

7-dimensional features, i.e.:

s = {Gk, Bk} k = 1, . . . ,Km (3)

with:

Gk = (tk, gl,x,k, gl,y,k, gl,z,k, gr,x,k, gr,y,k, gr,z,k),

Bk = (tk, bl,x,k, bl,y,k, bl,z,k, br,x,k, br,y,k, br,z,k),
(4)

and the model of gesture m is then defined in terms of G and B.

Conversely, in the implicit correlation modelling (4×4D approach, see Figure

2 on the right hand side), we keep the left and right hand streams independent,

thus considering the four features defined in (2). The model of gesture m is

then defined in terms of gl, bl, gr and br.

The first approach corresponds to assuming that the motion of the two

hands is fully constrained by the performed gesture, while the latter approach

leaves to later stages the responsibility of correlating the two data streams.

At the same time, in the first case we assume the contribution of the left and

right hands/arms as correlated, whereas in the second case we do not pose

such an assumption. Albeit introducing an additional step, the possibility of

tuning the correlation of the two data streams opens interesting scenarios for

the recognition stage. Consider the gesture of rotating a tap’s handle with the

left hand, which can occur in a number of situations (for example, when filling

a glass with tap water, or when washing a dish): by varying the importance

given to this hand we can either have a more flexible system, which is able to

recognise many situations in light of the common traits in the left hand stream,

or a more specialised one, which is focused on one situation only and is able to

filter out all the others in light of the differences in the right hand stream.
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The modelling procedure in itself is the same for both approaches and, in

particular, it relies on Gaussian Mixture Modelling (GMM) and Gaussian Mix-

ture Regression (GMR) for the retrieval of the expected curve and covariance

matrix of each considered feature, on the basis of a given training set. The pro-

cedure has been first introduced in the field of Human-Robot Interaction [35]

and later used for the purposes of Human Activity Recognition with a wrist-

placed inertial device for a single arm [16]. We point to the references for its

thorough description.

We denote with f the generic feature of interest, i.e., f can either correspond

to gravity G or body acceleration B in the 2 × 7D approach, or to one among

gl, bl, gr and br in the 4× 4D approach. We assume the following definitions.

• fs,k ∈ Rn is the data point k of feature f of trial s, defined as:

fs,k = {ft,k, fa,s,k}, (5)

where ft,k stores the time information and fa,s,k includes the acceleration

components. The dimension n depends on the modelling approach.

• F f ∈ Rn×Om , with Om = SmKm, is the ordered set of data points gener-

ating the feature curve f for all the Sm trials, defined as:

F f = {f1, . . . , fk, . . . , fOm
}, (6)

where

fk = {ft,k, fa,k} (7)

is a generic data point taken from the whole training set, i.e., by hiding

the information about the trial s to which it belongs.

The purpose of GMM+GMR is to build the expected version of all features

of gesture m, i.e.:

F̂ f = {f̂1, . . . , f̂k, . . . , f̂Km
}, (8)

with:

f̂k = {ft,k, f̂a,k, Σ̂a,k}, (9)
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where f̂a,k is the conditional expectation of fa,k given ft,k and Σ̂a,k is the condi-

tional covariance of fa,k given ft,k. The model F̂m of gesture m is then defined

as the set of the feature models F̂ f . Please note that the number of data points

in the expected curve may not be necessarily the same as the number Km of

data points in the trials of the training set. The equality is imposed here for

the clarity of the description.

Figure 3 shows the 2D projections of the model of the gesture open a

wardrobe, computed from the full dataset of 60 recordings with the 4 × 4D

approach. The four modelled features are gl (a)-left, bl (a)-right, gr (b)-left, br

(b)-right. Figure 4 shows the 2D projections of the model of the gesture open

and close curtains, computed from the full dataset of 60 recordings with the

2× 7D approach. The two modelled features are G (a,b)-left and B (a,b)-right.

In both cases, the solid red line represents the projection of the expected curve

f̂a on one time-acceleration space, while the pink area surrounding it represents

the conditional covariance Σ̂a.

The modelling procedure requires in input the number of Gaussian func-

tions to use, which varies both with the gestures and with the features. The

modelling parameters estimation stage implements a procedure based on the k-

means clustering algorithm and the silhouette clustering quality metric [36] for

the estimation of the number of Gaussian functions to use and their initialisa-

tion [16]. Other choices are equally legitimate. We again point to the references

for the details of the procedure.

3.3. Comparison

As it is shown in Figure 5, the testing phase executes the same procedures

for data synchronisation, data pre-processing (noise reduction) and feature ex-

traction of the training phase. Then, in accordance with the chosen modelling

approach, the features are either expressed in the form of (2) or (4).

The recognition procedure is composed of a comparison stage, devoted to

ranking the similarity between the testing data and each previously learned

model, and a classification stage, responsible for the final labelling of the testing
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(a) Left hand

(b) Right hand

Figure 3: Model of the gesture open a wardrobe in the implicit correlation approach (4×4D),

which is defined in terms of: (i) left hand gravity component (a)-left, (ii) left hand body

acceleration component (a)-right, (iii) right hand gravity component (b)-left, (iv) right hand

body acceleration component (b)-right.
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(a) lx, ly , lz axes

(b) rx, ry , rz axes

Figure 4: Model of the gesture open and close curtains in the explicit correlation approach

(2× 7D), which is defined in terms of: (i) gravity component (a,b)-left, (ii) body acceleration

component (a,b)-right.
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data on the basis of comparison results.

We propose two comparison procedures. The distance-based comparison

computes the Mahalanobis distance between the testing features and each model

features, while the probability-based comparison computes the likelihood of

the occurrence of the testing features given each model features. In both

cases, the classification stage identifies the model with most prominent dis-

tance/probability, if any, and labels the testing data accordingly. Both compar-

ison techniques are applied for the two considered modelling approaches, thus

yielding four combinations of training and testing procedures. The comparison

of their performance is the topic of the experimental evaluation presented in

Section 4.

Let us consider a moving horizon window of length Kw on the testing streams

and let us denote with Fw the set of features Fw,f extracted from the window

in accordance with the chosen modelling approach.
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In the distance-based approach, on the basis of the M available models, we

compute M distances d(F̂m, Fw). The Mahalanobis distance is a probabilistic

distance measure used to compute the similarity between sets of random vari-

ables whose means and variances are known [37]. The Mahalanobis distance

d between a generic element f̂k ∈ F̂ f defined by (9) and a generic element

fk ∈ Fw,f defined in accordance with (7), is computed as:

d(f̂k, fk) =

√
(f̂a,k − fa,k)T (Σ̂a,k)−1(f̂a,k − fa,k). (10)

The accumulated distance between F̂ f and Fw,f is computed as:

d(F̂ f , Fw,f ) =

Km∑
k=1

d(f̂k, fk), (11)

that is, by integrating the distance between each element in the run-time stream

and its corresponding element in the model. The overall distance d(F̂m, Fw)

is computed as a weighted sum of all feature distances. In our experiments we

choose the weights to be equal for all features. This approach weights more

the precision associated with gesture production, and emphasises dexterity and

robustness of bimanual motions.

In the probability-based approach, the probability of the window feature

Fw,f to be an occurrence of the model F̂ f is computed as:

p(F̂ f , Fw,f ) = N (fk, f̂a,k, Σ̂a,k) ∀k ∈ 1...Km

=
1√

2πn|Σ̂a,k|
e−

1
2 (fa,k−f̂a,k)T (Σ̂a,k)−1(fa,k−f̂a,k).

(12)

The overall probability p(F̂m, Fw) is computed as a weighted sum of all

feature probabilities, i.e., a mixture. We again choose the weights to be equal

for all features. When we use probabilities, we consider the gesture as a whole,

and therefore we account for small variations in the gesture execution speed.

4. Experimental Evaluation

4.1. Experimental Setup

In all the experiments, we adopt two smartwatches LG G watch R W110 as

sensing devices (Android Wear 1.0, CPU Quad-Core 1.2GHz Qualcomm Snap-
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Figure 6: Open and close curtains.

Figure 7: Sweep the floor.

dragon 400, 4GB/512MB RAM) equipped with a tri-axial accelerometer. The

sampling frequency is 40Hz. The smartwatches automatically sync on startup

with the smartphone they are paired with. By pairing the two smartwatches

with the same smartphone, we ensure that they are synchronised with each

other with a precision satisfying the requirements of our application.

We consider five bimanual gestures:

• Open and close curtains (OCC). Extend and retract lateral-sliding cur-

tains by pulling the connecting cords with an alternated up-and-down

movement of the hands. Keep pulling until the curtain is fully closed or

opened (see Figure 6).

• Sweep the floor (SWP). Pull a conventional broom from left to right, to
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Figure 8: Fill a cup with tap water.

Figure 9: Take a bottle from the fridge.

sweep the floor. Three strokes are required (see Figure 7).

• Fill a cup with tap water (FCOT). With the right hand, take a cup from

the sink and hold it below the tap, while rotating the tap’s handle with

the left hand to fill the cup with water (see Figure 8).

• Take a bottle from the fridge (RFF). With the right hand, open the door

of a small fridge, then, with the left one, take a bottle from it. Lastly,

close the fridge door with the right hand (see Figure 9).

• Open a wardrobe (WO). Open a two-doors small wardrobe moving the two

hands concurrently (see Figure 10).

Intuitively, the gestures open and close curtains, sweep the floor and open a
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Figure 10: Open a wardrobe.

wardrobe fully constrain the movement of the two hands, while the gestures fill

a cup with tap water and take a bottle from the fridge allow for more freedom

in their execution, as far as synchronisation between the arms is concerned.

Moreover, the gestures sweep the floor and open a wardrobe imply that the two

hands are moved concurrently, while the gestures open and close curtains, fill

a cup with tap water and take a bottle from the fridge mostly require the two

hands to be moved in sequence. Lastly, the gestures open and close curtains

and sweep the floor are recursive, i.e., composed of a number of repetitions of

simpler movements, while the gestures open a wardrobe, fill a cup with tap water

and take a bottle from the fridge are non-recursive.

Figures 6-10 show pictures of an execution of the gesture on the left hand

side and the acceleration measured at the two wrists during the execution of

the same gesture on the right hand side. The impact of the aforementioned

gesture characteristics (constrained/not constrained, concurrent/sequential, re-

cursive/not recursive) on the accelerations measured at the wrist, and therefore

on the considered modelling and comparison procedures, is not known: finding

it is one of the goals of the experiments we have conducted.

For each gesture, we collected a dataset of 60 recordings from 10 volunteers

with age ranging from 22 to 30 years old. The volunteers, wearing the smart-

watches, have been asked to autonomously start and stop the recordings and,

once an experimenter described the gesture, to perform it in a natural way. All

23



repetitions were supervised. In addition to this dataset, we asked a number of

volunteers to take some recordings in real-life conditions. They have been asked

to clean a room and, amidst the other activities, to perform the five bimanual

gestures of interest. Volunteers could freely choose the timing and sequence of

the gestures, and the choices have been annotated by an experimenter.

4.2. Performance Analysis

We tested the four combinations of modelling and comparison procedures in

terms of the standard statistical measures of accuracy, precision and recall by

using k-fold cross validation on the collected dataset. For all gestures, we split

the dataset in 6 groups of 10 recordings each and iteratively used 5 groups as

training dataset and the remaining group for validation.

The results of the k-fold cross validation on the four combinations of mod-

elling and comparison procedures are shown in Figures 11-14. In all figures,

the first five rows/columns refer to the gestures open and close curtains (OCC),

sweep the floor (SWP), fill a cup with tap water (FCOT), take a bottle from the

fridge (RFF) and open a wardrobe (WO). The yellow row/column collectively

represents all the gestures which are not among the modelled ones (N.A.). The

columns denote the true labels of all validation recordings (i.e., the gestures ac-

tually performed during each of them), while the rows denote the labels assigned

by the recognition system. Since, collectively, the validation dataset is composed

of 60 recordings per modelled gesture, a perfect recognition system would show

60 recordings in the first five green cells (i.e., with the predicted label matching

the true label) and none in the red cells (meaning that the recording of a gesture

has been classified as an occurrence of another gesture) or in the yellow cells

(meaning that the recording of a gesture has been classified as an occurrence of

an unknown gesture).

Column 1 of Figure 11 reports that, out of 60 validation recordings actually

referring to the gesture open and close curtains, 59 were correctly labelled as

occurrences of that gesture and one was labelled as an occurrence of the gesture

take a bottle from the fridge. This analysis allows for computing the recall
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Figure 11: Results of k-fold cross validation for the 4×4D modelling approach and probability-

based comparison. The bottom row reports the recall measures, while the rightmost column

reports the precision measures. The purple cell reports the overall accuracy of the system.
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Figure 12: Results of k-fold cross validation for the 4 × 4D modelling approach and distance-

based comparison. The bottom row reports the recall measures, while the rightmost column

reports the precision measures. The purple cell reports the overall accuracy of the system.
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Figure 13: Results of k-fold cross validation for the 2×7D modelling approach and probability-

based comparison. The bottom row reports the recall measures, while the rightmost column

reports the precision measures. The purple cell reports the overall accuracy of the system.

performance of the system, which corresponds to the ratio between the number

of recordings of gesture m correctly labelled as occurrences of gesture m and

the overall number of recordings of gesture m. The recall values for all gestures

are listed in the bottom row of the confusion matrix.

A similar analysis of the rows of the confusion matrix allows for assessing

the precision performance of the system. As an example, row 2 of Figure 11

reports that, out of 59 recordings labelled as occurrences of the gesture sweep

the floor, 58 were true recordings of that gesture, while one was a recording of

the gesture fill a cup with tap water. The precision metric measures the ratio
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Figure 14: Results of k-fold cross validation for the 2 × 7D modelling approach and distance-

based comparison. The bottom row reports the recall measures, while the rightmost column

reports the precision measures. The purple cell reports the overall accuracy of the system.

between number of recordings of gesture m correctly labelled as occurrences of

gesture m and the overall number of recordings labelled as occurrences of gesture

m. The precision values for all gestures are listed in the rightmost column of

the confusion matrix.

Lastly, the aggregated analysis of the number of correct labels over the total

number of recordings, i.e., the accuracy performance of the system, is reported

in the purple cell at the bottom-right corner. As an example, the recogni-

tion system adopting the implicit correlation modelling approach (4× 4D) and

probability-based comparison, whose confusion matrix in shown in Figure 11,
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Table 1: Experiment scripts for the real-life tests.

Scenario #1 Scenario #2

SWP
WO

RFF

SWP
FCOT

OCC

Figure 15: Acceleration streams registered during the execution of the real-life scenario 1.

Red circles denote the two executions of the gesture sweep the floor.

has an overall accuracy of 82%.

4.3. Real-life Conditions

As an additional test for assessing the system’s performance, we asked two

volunteers to wear the smartwatches at the wrists while carrying out cleaning

chores of their choice in a room. The first volunteer was instructed to perform

twice, amidst the other activities, the gesture sweep the floor, while the second

volunteer was instructed to perform each of the other gestures once, as sum-

marised in Table 1. Both tests were supervised by an experimenter, annotating

the time when each gesture of interest was performed.
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Figure 16: Acceleration streams registered during the execution of the real-life scenario 2.

Red circles denote, from left to right, the execution of the gestures open a wardrobe, take a

bottle from the fridge, fill a cup with tap water and open and close curtains.

Figure 15 shows the accelerations registered at the wrists of the first vol-

unteer, while performing the real-life scenario 1, while Figure 16 shows the

accelerations registered at the wrists of the second volunteer, while performing

the real-life scenario 2. The red circles denote all occurrences of the modelled

bimanual gestures. For these tests we used the whole dataset of 60 recordings

per gesture previously described as training set for the creation of the models.

Figures 17-20 show the output of the recognition system, for the first (Figures

17 and 18) and the second scenario (Figures 19 and 20), for the four combina-

tions of modelling and comparison procedures. In all figures, the x-axis denotes

time and the y-axis denotes the probability or inverse distance value of the mod-

els. The TP box marks the true positive recognitions, i.e., all the occurrences

of a modelled gesture which are correctly recognised. The FP box marks the

false positive recognitions, i.e., all the occurrences of gestures which have been

assigned the wrong label.
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Figure 17: Output of the system for the recording of scenario 1 shown in Figure 15. The left

hand graph refers to the 4× 4D modelling approach and probability-based comparison, while

the right hand side refers to the 4 × 4D modelling approach and distance-based comparison.

Figure 18: Output of the system for the recording of scenario 1 shown in Figure 15. The left

hand graph refers to the 2× 7D modelling approach and probability-based comparison, while

the right hand side refers to the 2 × 7D modelling approach and distance-based comparison.
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Figure 19: Output of the system for the recording of scenario 2 shown in Figure 16. The left

hand graph refers to the 4× 4D modelling approach and probability-based comparison, while

the right hand side refers to the 4 × 4D modelling approach and distance-based comparison.

Figure 20: Output of the system for the recording of scenario 2 shown in Figure 16. The left

hand graph refers to the 2× 7D modelling approach and probability-based comparison, while

the right hand side refers to the 2 × 7D modelling approach and distance-based comparison.
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4.4. Discussion

As Figures 11-14 show, the combination allowing for the best recognition per-

formance relies on the implicit correlation modelling approach and the probability-

based comparison: this system achieves an overall accuracy of 82% (see Figure

11) and it retains good recognition performance, especially in terms of precision,

for all modelled gestures (the gesture with worst recall is open a wardrobe, with

48.3%, while the gesture with worst precision is fill a cup with tap water, with

70.9%). Interestingly enough, the combination resulting in the worst recognition

performance (38.3% overall accuracy) relies on the explicit correlation modelling

approach and the same probability-based comparison (see Figure 13), thus con-

firming that there is a tight relation between the modelling and comparison

procedures. The same modelling approach, with the distance-based comparison

procedure, significantly improves its performance (69.7% overall accuracy, see

Figure 14).

For all four considered combinations, the gestures open and close curtains

and sweep the floor consistently achieve the highest precision and recall values,

which seems to suggest that recursive motions (i.e., composed of the repeated

execution of simple movements), regardless whether they involve the concurrent

or sequential motion of the two arms, are easier to model and recognise. In other

words, repeated gestures produce more stable patterns as far as the detection

and classification system is concerned. Conversely, the gestures open a wardrobe

and take a bottle from the fridge consistently achieve the lowest precision and

recall values, with the latter performing especially poorly with the implicit cor-

relation modelling approach. These results, albeit preliminary, seem to confirm

our intuition that the explicit modelling approach is much more sensitive to

small differences between run-time streams and the corresponding model than

the implicit correlation modelling approach.

In accordance with the k-fold validation analysis, also in the real-life tests

the combinations achieving the best performance are the implicit correlation

modelling approach with probability-based comparison and the explicit correla-

tion modelling approach with distance-based comparison, which, on the whole,
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successfully recognise respectively three and four of the six gestures of interest.

Real-life tests highlight a difference in the pattern of the recognition labels

between the probability-based and distance-based comparison procedures. As

Figures 17-20 show, in the second case the labels follow a smoother pattern,

which reduces the number of false positive recognition. The adoption of rea-

soning techniques analysing label patterns to increase the recognition accuracy,

has been proved effective in the case of a single stream [38] and may lead to

significant improvements also in the case of bimanual gestures.

What these results have to say about the way we currently understand bi-

manual gestures in humans? Not surprisingly, the best results we achieve involve

implicit correlation with probability-based comparison. Whilst with implicit

correlation we do not assume the motion of the two hands/arms to be corre-

lated explicitly, probability-based comparison is more robust with respect to

small variations in the phases of the two hands/arms. If we had assumed the

two limbs to be explicitly correlated in motor space, i.e., through intrinsic co-

ordinates, we would have constrained the phases of the two hands/arms to be

perfectly tuned. This is not what happens in practice, as it is exemplified in

the experiments by Heuer and colleagues [6] and Byblow et al [7]. Since, in

real-world gesture execution, perfect synchronisation seldom happens, a better

result is obtained – on average – when we allow for the maximum flexibility

in gesture execution. Probability-based measures enforce such flexibility even

more, because they do not constraint the distance metric to be tied to a specific

time instant of the gesture execution.

Finally, it is noteworthy that the use of Gaussian mixtures allows for deter-

mining what parts of the motion are more relevant, for those are characterised

by lower amplitudes of the covariance. As a consequence, the covariance matrix

associated with each element in the model assures to give a proper weight to

the sample itself. This allows to consider the differing importance of the various

gesture’s phases in the recognition phase, therefore taking into account motion

dexterity and robustness.

The combination of the two methods for modelling and recognition allows us
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to support the Bernstein’s intuition about motion constraints [15], i.e., (i) vari-

ations in degrees of freedom affecting motion performance are constrained (in

our case, by low covariance values in intra-arm correlation of inertial data); (ii)

variation in degrees of freedom that do not affect task performance can be un-

constrained (again, by larger values in the covariance in intra-arm correlation);

(iii) co-variations between gesture-relevant degrees of freedom not impacting on

performance are permitted (by considering implicit correlations among the two

hands/arms).

5. Conclusions

This paper discusses design choices involved in the detection and classifica-

tion of bimanual gestures in unconstrained environments. The assumption we

make is the availability of inertial data originating from two distinct sensing

points, conveniently located at the wrist, given the availability of such COTS

sensors as smartwatches. Our models are grounded with respect to Gaussian

Mixture Modelling (GMM) and Gaussian Mixture Regression (GMR), which

we use as basic modelling procedure. Starting from these two positions, we

compare different modelling (i.e., explicit and implicit correlations between

the two hands/arms) and classification techniques (i.e., based on distance and

probability-related considerations), which are inspired by literature about the

representation of bimanual gestures in the brain. Our architecture allows for

different combinations of modelling and classification techniques. Furthermore,

it can be extended as a framework to support reproducible research.

Experiments show results related to 5 generic bimanual activities, which

have been selected on the basis of three main parameters: (not) constraining

the two hands by a physical tool, (not) requiring a specific sequence of single-

hand gestures, being recursive (or not). The best results are obtained when

considering an implicit coordination among the two hands/arms (i.e., the two

motions are modelled separately) and using a probability-based distance for

classification (i.e., the specific timing characteristics of the trajectories are con-
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sidered only to a limited extent). This seems to confirm a few insights from the

literature related to motor control of bimanual gestures, and opens up a number

of interesting research questions for the upcoming future.
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