
Skill learning and action recognition by arc-length
dynamic movement primitives

Timotej Gašpara,b,∗, Bojan Nemeca, Jun Morimotoa, Aleš Udea,b

aHumanoid and Cognitive Robotics Lab,
Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute

Jamova cesta 39, 1000 Ljubljana, Slovenia
bDepartment of Brain Robot Interface, ATR Computational Neuroscience Labs

2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
e-mail: {timotej.gaspar, bojan.nemec, ales.ude}@ijs.si, xmorimo@atr.jp

Abstract

Effective robot programming by demonstration requires the availability of multi-

ple demonstrations to learn about all relevant aspects of the demonstrated skill or

task. Typically, a human teacher must demonstrate several variants of the desired

task to generate a sufficient amount of data to reliably learn it. Here a problem

often arises that there is a large variability in the speed of execution across human

demonstrations. This can cause problems when multiple demonstrations are com-

pared to extract the relevant information for learning. In this paper we propose an

extension of dynamic movement primitives called arc-length dynamic movement

primitives, where spatial and temporal components of motion are well separated.

We show theoretically and experimentally that the proposed representation can be

effectively applied for robot skill learning and action recognition even when there

are large variations in the speed of demonstrated movements.

Keywords: programming by demonstration, skill learning, action recognition,

∗Corresponding author
Email address: timotej.gaspar@ijs.si (Timotej Gašpar)

Preprint submitted to Robotics and Autonomous Systems March 9, 2018

dynamic movement primitives

1. Introduction

A powerful movement representation is essential for a successful implementa-

tion of robot learning and action recognition algorithms. In recent years nonlinear

dynamic systems have become widely used in robotics due to the many bene-

fits they offer: ability to represent both point-to-point and periodic movements,

easy computation of open parameters for accurate trajectory representation, abil-

ity to incorporate coupling terms for interaction with the environment, robustness

against perturbations, ease of modulation of control parameters, etc. [1]. Dynamic

movement primitives (DMPs) developed by Ijspeert et al. [2, 1] were the first vari-

ant of nonlinear dynamic systems, i. e. systems of nonlinear differential equations,

proposed for robot trajectory representation and control. A number of methodolo-

gies based on DMPs have been proposed in the literature since then, e. g. meth-

ods for learning from multiple demonstrations [3, 4, 5], reinforcement learning

[6, 7], synchronization of dual-arm behaviors [8, 9], Cartesian space movement

generation [10, 11], human-robot interaction [12], adaptation to new start and goal

constraints [13], etc.

While it is possible to compute the appropriate DMPs on the fly when the

training data comprises multiple demonstrations [14], there exist also other types

of dynamic systems that can represent multiple variants of the desired behaviour

within a single equation system: dynamic systems with Gaussian mixture models

[15, 16, 17] and probabilistic movement primitives [18, 19]. These representations

require more data for learning and are computationally more expensive than one-

shot learning of DMPs, but they can represent variants of a given movement skill

2

within the same dynamical system. In this paper we focus on how to deal with

speed variability within the DMP framework, but our approach is applicable also

to other movement representation schemes based on dynamic systems.

The issue of how to time-align multiple human movements has been addressed

in the recent work on interaction primitives [20, 19]. While initially standard dy-

namic time warping [21] was applied to solve the time alignment problem [20],

a smooth and continuous warping function was developed in [19] to enhance

the performance of the approach. In another work, Ewerton et al. [22] applied

expectation-maximization algorithm to time-align multiple phase parameters.

The problem of time-scaling of robot movements has been addressed also in

our research [23, 24]. The main idea of our work was to introduce additional pa-

rameters to nonlinearly scale the DMP equations, which results in speeding up or

slowing down the movement represented by a DMP. We showed how reinforce-

ment learning and iterative learning control can be used to compute the optimal

scaling parameters for tasks that involve complex liquid dynamics, e.g. carry-

ing glass filled with liquid, pouring, etc. In this paper we further advance the

scaling of dynamic movement primitives and develop a new representation that

effectively separates the temporal and spatial aspects of motion. This is achieved

by formulating the DMP equations as derivatives of arc-length (natural parame-

ter) instead of time. The speed of movement, which carries information about

timing, is encoded separately. The resulting representation is called arc-length

dynamic movement primitive (AL-DMP). Unlike in [20, 22, 19], where the issue

of variability in the speed of execution of human demonstrations was addressed

by explicitly estimating the optimal time alignment, this is not necessary in our

approach because spatial and temporal aspects of motion are well separated in AL-

3

DMPs. Thus learning of the spatial course of movement can be made independent

of timing issues.

In the following we first explain how time and space can be separated in dy-

namic movement primitives, which leads to the concept of arc-length dynamic

movement primitives. Next we show how arc-length dynamic movement primi-

tives can be used for trajectory representation, robot control, action recognition,

and skill learning from multiple demonstrations. The paper concludes with a dis-

cussion of issues arising in the applications of AL-DMPs.

2. Arc-length dynamic movement primitives

A point-to-point motion yyy(t) ∈ Rd of a robot with d degrees of freedom can

be specified by a second-order system of nonlinear differential equations [1]

τ żzz = αz(βz(ggg− yyy)− zzz)+F(x), (1)

τ ẏyy = zzz, (2)

where zzz ∈Rd is equal to the scaled velocity of motion, ggg ∈Rd is the final value of

yyy on the trajectory, F is a nonlinear forcing term, and x ∈ R is the phase variable

defined as

τ ẋ =−αxx. (3)

Phase x has been introduced to avoid explicit time dependency. It is fully de-

fined by setting αx > 0 and x(0) = 1. Eq. system (1) – (3) constitutes a dynamic

movement primitive (DMP). By properly selecting constants τ,αz,βz ∈ R, e. g.

τ > 0 and αz = 4βz, the linear part of equation system (1) – (2) becomes critically

damped and yyy, zzz monotonically converge to a unique attractor point at yyy = ggg,

4

zzz = 0 [1]. The forcing term F(x) is usually defined by a linear combination of

radial basis functions

F(x) = diag(ggg− yyy0)
∑

N
i=1 wwwiΨi(x)

∑
N
i=1 Ψi(x)

x, Ψi(x) = exp
(
−hi (x− ci)

2
)
, (4)

where ci are the centers of Gaussians distributed along the phase of the movement,

hi their widths, and diag(ggg− yyy0) ∈ Rd×d denotes a diagonal matrix with compo-

nents of vector ggg− yyy0 on the diagonal. The role of F is to adapt the dynamics

of (1) – (2) to the desired trajectory, thus enabling the system to reproduce any

smooth movement from the initial position yyy0 ∈ Rd to the final configuration ggg.

This can be accomplished by computing the free parameters wwwi ∈ Rd so that the

desired behavior is achieved.

The DMP representation introduced above has been shown to possess many

advantageous properties for robot trajectory generation and control [1] because

DMPs can be learnt, modulated, and are robust against perturbations. While

DMPs can be used also to compare movements between each other, e. g. in action

classification tasks, this can be quite problematic because Eqs. (1) – (3) contain

time derivatives. Since time derivatives are dependent both on speed and shape

of movement, they cannot separate spatial and temporal aspects of motion. Thus

even if the motion changes only in speed, it is not possible to determine that the

spatial course of movement remained the same if DMPs are used to represent

the movements. In the following we therefore propose a new representation that

enables separation of spatial and temporal components of motion.

For this purpose we borrowed an idea from differential geometry of curves

[25], where the parametrization with arc-length, i e. the spatial length of a curve,

has turned out to be useful. The arc-length of a time-parametrized trajectory y(t)

5

is defined as [25]

s(t) =
∫ t

0
‖ẏ(u)‖du. (5)

Thus the spatial length L of the complete trajectory y(t) on time interval [0,T] can

be calculated as follows

L =
∫ T

0
‖ẏ(t)‖dt, (6)

where T is the duration. Related to arc-length is the speed of movement, which is

given as the time derivative of s

ṡ(t) = ‖ẏ(t)‖. (7)

Trajectories with speed greater than zero, i. e. ṡ > 0, are called regular curves and

can be parametrized by arc-length [25]. If this condition is not fulfilled, then the

trajectory needs to be segmented into constituent parts with nonzero speed, except

possibly at the two end points. The basic idea of our approach is to parametrize

the spatial course of movement with arc-length parameter s instead of time. As

shown in [25], the arc-length parametrized curve y(s) has unit speed, i. e.

‖y′(s)‖=
∥∥∥∥dy

ds

∥∥∥∥= 1. (8)

Hence
∫ s

0 ‖y′(s)‖ds=
∫ s

0 ds= s. Here and in the following we denote the derivative

with respect to arc-length by ′.

To obtain a speed-independent parametrization of the trajectory, we thus ex-

press Eqs. (1) – (3) with respect to arc-length instead of time. We obtain the

following dynamical system:

Lzzz′ = αz(βz(ggg− yyy)− zzz)+F(x), (9)

Lyyy′ = zzz, (10)

Lx′ = −αxx, (11)

6

where all derivatives are now taken with respect to arc-length instead of time. The

time constant τ, which is used in standard DMPs to speed-up or slow-down the

movement during its execution by the robot, was replaced by arc length L > 0,

which can be calculated by integration (6). We denote this new representation

as arc-length dynamic movement primitive, or with an acronym AL-DMP. As il-

lustrated in Figure 1, an AL-DMP effectively separates the spatial and temporal

component of motion. Given the initial condition x(0) = 1, Eq. (11) can be solved

analytically

x(s) = exp
(
−αx

s
L

)
. (12)

Thus regardless of the length L of the trajectory, the phase is always defined on the

0 0.2 0.4 0.6 0.8 1
time [sec]

-3

-2

-1

0

1

2

jo
in

t a
ng

le
 [r

ad
]

faster trajectory j1
faster trajectory j2
slower trajectory j1
slower trajectory j2

-3 -2.5 -2 -1.5 -1
joint angle 1 [rad]

0

0.5

1

1.5

2

jo
in

t a
ng

le
 2

 [r
ad

]

faster trajectory
slower trajectory

0 0.2 0.4 0.6 0.8 1
normalized arc length [unitless]

0

5

10

15

20

25

30

sp
ee

d
[ra

d/
se

c]
faster trajectory
slower trajectory

Figure 1: Trajectory representation with AL-DMPs. Left: trajectories of movement of a robot with

two degrees of freedom, executed at two different speeds. The result are spatially identical but

temporally different movements. The faster movement was generated by nonlinear scaling of the

slower movement (its speed was multiplied by a factor of 2(t+1)e(t+1)2−2, t ∈ [0,T], T = 0.5345,

T is the duration of the faster movement). The consequence of nonlinear scaling is that the spatial

parameters w in the DMP forcing term change. Middle: the reproduction of the spatial course of

movement by AL-DMP. Since arc-length derivatives are independent of speed, in AL-DMP the

weights w do not change and consequently the spatial courses of the two movements are identical.

Right: Speed ṡ of both movements as a function of normalized arc-length, i. e. s/L. As shown in

the graph, the speed change is nonlinear and cannot be reproduced by linear scaling of the standard

DMP, i. e. changing the parameter τ .

7

Figure 2: Teaching of humanoid reaching trajectories by kinesthetic guiding from the initial con-

figuration (left) to the final reaching position (right).

same interval: 1≥ x≥ exp(−αx), ∀s ∈ [0,L]. This is important when comparing

different trajectories.

3. Estimation of arc-length dynamic movement primitives

An important feature of dynamic movement primitives is that they can be esti-

mated from a single demonstration of the desired movement. An example demon-

stration of a reaching movement is shown in Fig. 2. The training data is usually

specified as follows

G = {yyyk, tk}K
k=1,yyyk ∈ Rd, (13)

where d is the number of the robot’s degrees of freedom, t1 = 0, tK = T .

To estimate the free parameters of an AL-DMP, i. e. weights wwwi associated

with radial basis functions in (4), we first rewrite the equation system (9) – (10)

as a single second-order system

F(x) = L2yyy′′−αz(βz(ggg− yyy)−Lyyy′). (14)

For every measurement time tk, k = 1, . . . ,K, we obtain the following equation

linear in wwwi

N

∑
i=1

Ψi(xk)

∑
N
j=1 Ψ j(xk)

wwwi =
1
xk

diag(ggg− yyy0)−1 (L2yyy′′k −αz(βz(ggg− yyyk)−Lyyy′k)
)
, (15)

8

The weights wwwi can be computed by solving these linear equations in a least

squares sense. But for this purpose we first need to compute the derivatives

yyy′k = yyy′(sk), yyy′′k = yyy′′(sk).

This is accomplished by sampling the trajectory along arc-length s. Assuming

that the time step is constant, i. e. ∆t = tk+1−tk, ∀k, we can estimate the arc-length

sk at every measurement time tk

sk =
∫ tk

0
‖ẏ(t)‖dt ≈ Trapzd(k), (16)

where Trapzd(k) denotes the trapezoidal rule for numerical quadrature [26]

Trapzd(k) =


∆t
(

1
2‖ẏyy1‖+∑

k−1
n=2 ‖ẏyyn‖+ 1

2‖ẏyyk‖
)
, k ≥ 2

0, k = 1
(17)

The assumption of constant time steps can be relaxed by applying a different

numerical quadrature formula. See [26] for the alternatives. The length of the

movement is given by the integral of speed along the trajectory. It can thus be

approximated by

L =
∫ T

0
‖ẏ(t)‖dt ≈ Trapzd(K). (18)

Eq. (17) requires the availability of time derivatives ‖ẏyyn‖. They can be estimated

using a standard numerical differentiation formula, e. g.

ṡn = ‖ẏyyn‖=
‖yyyn+1− yyyn‖

∆t
. (19)

Given sk, k = 1, . . . ,K, and input data G , we can finally calculate yyy′k and yyy′′k by

numerical differentiation

yyy′k =
yyyk+ik− yyyk

sk+ik− sk
, yyy′′k =

yyy′k+ik
− yyy′k

sk+ik− sk
. (20)

9

In practice we need to make certain that the arc-length step ∆sk = sk+ik − sk is

large enough to ensure numerically stable calculation of derivatives (20) because

unlike the time step, the arc-length step is not uniform in the sampled trajectory.

This can be done by choosing ik to be the smallest index |ik| (positive or negative)

so that |sk+ik − sk| ≥ δ , 1≤ k+ ik ≤ K, where 0 < δ < L is a constant specifying

the desired arc-length step. Otherwise the calculation of numerical derivatives can

become unstable at locations with low speed. This can happen for example with

point-to-point movements, which have zero speed at the beginning and the end

of motion. Note, however, that except at the end points we assume that ṡ > 0,

otherwise the trajectory needs to be segmented into constituent parts that from

regular curves.

Now finally all the data to compute the parameters of equation system (15)

has been made available. For every degree of freedom l, 1 ≤ l ≤ d, we solve the

following linear system of equations in a least squares sense

AAAbbbl = fff l, l = 1, . . . ,d, (21)

with

bbbl =


w1,l

...

wN,l

 , fff l =


f1,l
...

fK,l

 , AAA =


ψ1(x1)

∑
N
j=1 ψ j(x1)

· · · ψN(x1)

∑
N
j=1 ψ j(x1)

...
...

...
ψ1(xK)

∑
N
j=1 ψ j(xK)

· · · ψN(xK)

∑
N
j=1 ψ j(xK)

 ,
(22)

and

fk,l =
1

(gl− y0
l)xk

(
L2y′′k,l−αz(βz(gl− yk,l)−Ly′k,l)

)
, (23)

xk = exp
(
−αx

sk

L

)
. (24)

10

Here yl,gl,y0
l ∈R denote the components of yyy,ggg,yyy0 ∈Rd and wwwi =

[
w1

i , . . . ,w
d
i
]T .

For a given number N of basis functions Ψi in forcing term (4), we define their

parameters using the following formulae:

ci = exp
(
−αx

i−1
N−1

)
, i = 1, . . . ,N, (25)

hi =


2

(ci+1− ci)2 , i = 1, . . . ,N−1,

hi = hi−1, i = N.

(26)

An AL-DMP does not contain information about the speed of motion, which is

also needed to reproduce the demonstrated trajectory. To provide the information

about speed, or equivalently, the time derivative of arc-length, we approximate ṡ

with a linear combination of radial basis functions defined as a function of phase

x

ṡ(x) = 1+
∑

M
i=1 viΨi(x)

∑
M
i=1 Ψi(x)

x. (27)

The number of radial basis functions M for the estimation of speed is not neces-

sarily the same as the number of basis function N in the forcing term (4). The

centers ci and widths hi in basis functions Ψi are computed as in (25), (26), with

M replacing N. The time derivatives of s at times tk are estimated by numeri-

cal differentiation (19). For each measurement time tk, we obtain the following

equations linear in vi

ṡk−1
xk

=
∑

M
i=1 viΨi(xk)

∑
M
i=1 Ψi(xk)

, k = 1. . . . ,K. (28)

Just like (15), (28) is a standard overdetermined system of linear equations that can

be solved in a least squares sense. Note that beyond the demonstrated trajectory,

ṡ as defined by Eq. (27) converges to 1 as the phase x tends to zero. This property

ensures the convergence of AL-DMP to its desired final configuration ggg.

11

4. Trajectory reproduction and robot control with AL-DMPs

While AL-DMPs have many favourable properties for learning and recogni-

tion, they cannot be used directly for control because a robot is controlled at con-

stant time steps, not constant arc-length steps. To construct AL-DMP integration

at constant time steps, we first need to derive some relationships between time and

arc-length derivatives

ẏyy =
d
dt

yyy(s(t)) = yyy′ṡ, (29)

ÿyy =
d2

dt2 yyy(s(t)) = yyy′′ṡ2 + yyy′s̈. (30)

ẋ =
d
dt

x(s(t)) = x′ṡ. (31)

We can now express arc-length derivatives in terms of time derivatives

yyy′ =
1
ṡ

ẏyy, (32)

yyy′′ =
1
ṡ3 (ÿyyṡ− ẏyys̈) . (33)

From (32) – (33) and (9) - (10) we obtain

zzz = Lyyy′ =
L
ṡ

ẏyy (34)

żzz = L
ÿyyṡ− ẏyys̈

ṡ2 , (35)

zzz′ = Lyyy′′ =
1
ṡ

L
ÿyyṡ− ẏyys̈

ṡ2 =
1
ṡ

żzz. (36)

Using the above equations it is possible to integrate AL-DMP with a constant

time step as required by standard robot controllers. The details of the integration

process are explained in Algorithm 1. Note that if in this algorithm we set the

speed to ṡ = 1, which can easily be done by setting vi = 0 in (27), then ẏyyi =

yyy′i, żzzi = zzz′i, ẋi = x′i and ∆t = ∆s.

12

Often it is not necessary to continue integrating AL-DMP beyond the training

interval, i. e. for x < exp(−αx). If no movement modulations have been applied

and no perturbations have occurred, then the trajectory will be completely repro-

duced by integration on the interval 1 ≥ x ≥ exp(−αx). A point-to-point move-

ment should reach the desired final configuration yyy = ggg, ẏyy = 0 at x = exp(−αx),

provided the phase follows Eq. (11), or equivalently, (12).

An important point to make is that regardless of what approximation we take

Algorithm 1: Euler integration of AL-DMP with a constant time step
Input: Current AL-DMP state yyyi,zzzi,xi

AL-DMP constants L,ggg,αx,αz,βz, robot servo rate ∆t

parameters N, ci, hi, wwwi of forcing term (4)

parameters M,ci,hi,vi of speed estimate (27)

Output: Next AL-DMP state yyyi+1,zzzi+1,xi+1, robot velocity ẏyyi

begin

1 Compute arc-length derivatives yyy′i,zzz
′
i,x
′
i at current state yyyi,zzzi,xi using

equations (9) - (11)

2 Compute speed ṡi at current phase xi using approximation (27)

3 Compute time derivatives ẏyyi, żzzi, ẋi by respectively applying equations

(29), (36) and (31)

4 Euler integration:

yyyi+1 = yyyi + ẏyyi∆t

zzzi+1 = zzzi + żzzi∆t

xi+1 = xi + ẋi∆t

end

13

for ṡ, the spatial course of trajectory generated by AL-DMP will not change. This

becomes clear if we rewrite Eq. (9) and (10) by respectively replacing yyy′ and zzz′

with (32) and (36). This results in AL-DMP expressed with temporal derivatives

Lżzz = ṡ(αz(βz(ggg− yyy)− zzz)+F(x)) , (37)

Lẏyy = ṡzzz. (38)

Phase equation (11) can also be rewritten in a time-dependent form

Lẋ =−ṡαxx. (39)

Since all equations are multiplied by the same scaling factor ṡ, the spatial course of

movement does not change regardless of the definition of ṡ. This form of writing

is related to speed-scaled dynamic movement primitives introduced in [23, 24].

However, if we want to reproduce the demonstrated trajectory both spatially and

temporally, then ṡ must be equal to the demonstrated speed of motion.

5. Statistical skill learning with arc-length dynamic movement primitives

Statistical learning methods can be applied for generalization of trajectories

stemming from multiple demonstrations of variants of the same skill. For exam-

ple, if the robot is to reach from the same initial configuration to different positions

distributed on the surface of a table, the training data could consist of reaching

trajectories in robot joint space, supplemented with information about 2-D final

reaching positions in the Cartesian space. We obtain the following training data

G = {yyyn,k, tn,k; qqqn}
Kn,NumEx
k=1,n=1 , (40)

where yyyn,k are the measurements captured at time tn,k, qqqn ∈ Rm are the query

points describing the aim of the task, Kn is the number of measurements on the

14

n-th example trajectory, NumEx is the number of example trajectories, and m is

the dimension of the query point. In the reaching example described above, the

measurements yyyn,k ∈Rd would be the robot joint space configurations and qqqn ∈R2

the desired reaching positions on the table. Here d is the number of the robot’s

degrees of freedom.

We are interested in finding the optimal movement to accomplish the task for

any query point qqq ∈ Rm. For the above example this means that we want to com-

pute a reaching trajectory for any reaching position on the table. We represent

such a trajectory with an AL-DMP. Thus we need to estimate the following func-

tion G which, given the training data G , maps the desired query point qqq into the

parameters that define an AL-DMP:

GG : qqq 7→
[
L, gggT , wwwT , vvvT]T , (41)

where www = [wwwT
1 , . . . ,www

T
N]

T and vvv = [v1, . . . ,vM]T .

Locally weighted regression (LWR) [27] and related approaches, e. g. [28],

were created as nonparametric method that can approximate a wide range of func-

tions and are widely used in the context of programming by demonstration. For

example, in [3] LWR was applied to synthesize new trajectories based on a library

of demonstrated example trajectories. Applying this approach to AL-DMPs, the

weights www of the forcing term can be computed by solving the following optimiza-

tion problem for every dimension of yyy

min
bbbl

NumEx

∑
n=1
‖AAAbbbl− fff n,l‖2K(d(qqq,qqqn)), l = 1, . . . ,d, (42)

where bbbl contains the parameters of the forcing term for l-th dimension. AAA and

fff n,l are defined as in (22), with fff n,l changing across the training trajectories. K

15

is the weighting kernel that should put more emphasis on the data associated with

queries qqqn closer to the current query qqq. d is the metrics measuring the distance

between the queries. Euclidean distance was used in the examples in this paper,

but other choices are possible. We selected the tricube kernel K [27] for weighting

K(d) =

 (1−|d/h|3)3 if |d/h|< 1

0 otherwise
, (43)

where h is the scaling factor that influences the range on which K(d) > 0. The

tricube kernel has finite support and continuous first and second derivatives. Thus,

the first two derivatives of the generalization function GG are also continuous. The

computational complexity of the optimization problem (42) is reduced through

this choice of K because K vanishes for query points qqqn that are far from qqq and

therefore do not influence GG . This makes the system matrix associated with

objective function (42) banded.

To estimate the length L and final configuration ggg on the trajectory, we extract

the data directly from the training set

Ln =
∫ tn,Kn

tn,1
‖ẏyyn(t)‖dt ≈ Trapzd(Kn), gggn = yyyn,Kn

, n = 1, . . . ,NumEx. (44)

Given a new query point qqq and using LWR, the length and final configuration can

be generalized as follows

L =
NumEx

∑
n=1

K(qqq,qqqn)Ln

∑
NumEx
j=1 K(qqq,qqq j)

, ggg =
NumEx

∑
n=1

K(qqq,qqqn)gggn

∑
NumEx
j=1 K(qqq,qqq j)

. (45)

The weights of the generalized speed vvv are estimated by solving a least squares

problem similar to (42), which is used to estimate www. We omit the details here.

5.1. Evaluation of skill learning with AL-DMPs in simulation

First we evaluated the performance of statistical skill learning on simulated

data. For this purpose we synthetically generated a set of 100 reaching planar

16

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

y[m]

0.35

0.4

0.45

0.5

0.55

x
[m

]

Demonstrated query points
Trajectories used for generalization
Reference trajectory
AL-DMP generalization result
DMP generalization result

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

y[m]

0.35

0.4

0.45

0.5

0.55

x
[m

]

Demonstrated query points
Trajectories used for generalization
Reference trajectory
AL-DMP generalization result
DMP generalization result

Figure 3: Two example generalizations in 2-D plane using AL-DMPs and standard DMPs. The

original trajectories that were used for generalization are shown in blue and dashed. They all pass

through a unique via point at y = 0. The trajectories generalized using AL-DMPs (black) also pass

through this via point. The trajectories generalized using DMPs (green) do not approximate the

original trajectories well and do not pass through the via point.

trajectories that all passed through a via point located at half way, i. e. at s = L/2.

Using inverse kinematics of a humanoid robot (see Section 5.2), these planar tra-

jectories were converted into the upper arm shoulder and elbow movement of the

robot (four degrees of freedom). The training trajectories were then temporally

scaled with a nonlinear scaling factor, which caused the training trajectories to

reach the via point at different times, whereas their spatial course of movement

was unaffected. The 2-D position of the final point on the trajectory was used

as a query for LWR. The trajectories were generalized in the robot’s joint space,

but Fig. 3 shows their course in 2-D plane after the direct kinematics was ap-

17

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

x [m]
-0.3

-0.25

-0.2

y
[m

]

0.0000

0.0004

0.0008

0.0012

M
ea
n
sq
u
ar
ed

er
ro
r

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

x [m]
-0.3

-0.25

-0.2

y
[m

]
0.0000

0.0004

0.0008

0.0012

M
ea
n
sq
u
ar
ed

er
ro
r

Figure 4: Contour plots showing the accuracy of generalization with AL-DMPs (left) and DMPs

(right) in simulation. Generalization with AL-DMPs is clearly better.

plied. Only the trajectories that were generalized using AL-DMPs pass through

the via point, whereas the trajectories generalized using standard DMPs do not

approximate the original trajectories well enough to pass through the via point.

We used mean squared error criterion to evaluate the difference between the

generalized trajectory represented by AL-DMP yyyAL and the true trajectory yyy

MSE =
1
K

K

∑
k=1
‖yyyAL(sk)− yyy(sk)‖2, (46)

where K is the number of integration steps needed to integrate the AL-DMP to

reach the desired final position. MSE was estimated both for the generalized AL-

DMPs and generalized standard DMPs. Fig. 4 shows that generalization results

with AL-DMPs are significantly better than when standard DMPs are used. This

simulation experiment thus confirmed our intuition that generalization using AL-

DPMs should produce better results.

18

5.2. Evaluation of skill learning with AL-DMPs in real experiments

A skill learning experiment with real data was performed on a humanoid robot

CB-i [29]. Altogether we collected 99 reaching movements from the same initial

arm configuration, where the arm was extended below the table, to 99 final reach-

ing positions on the table. The human demonstrator intentionally performed some

demonstrations slower than the others. Snapshots from one of the training move-

ments are shown in Fig. 2. Four different final reaching positions are shown in

Fig. 5. 2-D position of the red peg on the table was used as query for generaliza-

tion.

For analysis we performed an experiment in which at each internal query point

qqqn, the training trajectory {yyyn
k}

tKn
k=1 was removed from the training set (40). 63 in-

ternal trajectories were used for testing, i. e. trajectories that are associated with

query points inside the training space (see Fig. 7). The generalization function

(41) was then computed for qqq = qqqn as input, with {yyyn
k}

Kn
k=1 removed from G . Gen-

eralization was performed both with standard DMPs and AL-DMPs. The gener-

alized DMPs and AL-DMPs were then compared to the trajectories that were left

out from the training set using mean squared error criterion (46). All trajectories

were represented as a function of arc-length.

Figure 5: Final reaching positions on four of the 99 training trajectories.

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

-0.4

-0.2

0

0.2

0.4

0.6

0.8

θ[
ra
d]

y1

Demonstrated trajectories
Reference trajectory
AL-DMP generalization result
DMP generalization result

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

θ[
ra
d]

y2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

-0.4

-0.2

0

0.2

0.4

0.6

0.8

θ[
ra
d]

y3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ[
ra
d]

y4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

θ[
ra
d]

y1

Demonstrated trajectories
Reference trajectory
AL-DMP generalization result
DMP generalization result

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

θ[
ra
d]

y2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ[
ra
d]

y3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s/L

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

θ[
ra
d]

y4

Figure 6: Accuracy of generalization for AL-DMPs (black) and DMPs (green) compared to the

demonstrated movements (magenta) for two example reaching movements (left and right column)

Fig. 6 shows the result of generalization using AL-DMPs and standard DMPs.

It is clear from these figures that the generalized AL-DMPs approximate the tra-

jectories that were left out much better than the generalized DMPs. The reason for

this difference in performance are the variations in speed profiles of the training

trajectories. Fig. 7 shows the MSE results as contour plots for all internal trajecto-

20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x [m]

0.25

0.3

0.35

0.4

0.45

y
[m

]

0.0

0.3

0.6

M
ea
n
sq
u
ar
ed

er
ro
r

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x [m]

0.25

0.3

0.35

0.4

0.45

y
[m

]
0.0

0.3

0.6

M
ea
n
sq
u
ar
ed

er
ro
r

Figure 7: Contour plots showing accuracy of generalization for AL-DMPs (left) and DMPs (right)

ries. These results again demonstrate that the generalized AL-DMPs approximate

the trajectories that were left out better than the generalized DMPs.

6. Action recognition with arc-length dynamic movement primitives

Action recognition from motion trajectories is a vast field and many different

approaches have been proposed in the literature [30]. In this section we show

that if motion trajectories are used for recognition, AL-DMPs outperform more

standard robot trajectory representations such as B-splines [31] or DMPs [1]. It

should be mentioned here that raw motion trajectories are not necessarily the best

input data for every classification problem. Other measures can be extracted form

motion capture data [32] to characterize the captured actions. The best represen-

tation for a specific classification problem cannot be selected without considering

the actual task.

For standard DMPs, Ijspeert et al. [2] showed that the weights of the forcing

21

x [m]
-1.5 -1 -0.5 0 0.5

y
[m

]

-1

-0.5

0

Figure 8: Cartesian paths of the reaching move-

ments that define 5 classes in the data set used

for testing classification with simulated data.

Reaching distance in the x direction defines one

class. For each class 161 example trajectories

were generated (only 9 of them are shown),

with uniformly distributed reaching distances

in y direction.

0 20 40 60 80 100
Percentage of correct classifications

class 1

class 2

class 3

class 4

class 5

Figure 9: Classification performance for sim-

ulated reaching movements. The grey, green

and blue bars show the classification perfor-

mance of AL-DMPs, DMPs, and B-splines us-

ing the original data, while the red, orange

and brown bars show the classification perfor-

mance of AL-DMPs, DMPs, and B-splines us-

ing temporally scaled data.

term can be used for classification of trajectories with “similar velocity profiles”.

Their approach was based on correlations between feature vectors consisting of

weights. They were able to show that correlation values are higher for trajectories

belonging to the same class compared to trajectories from different classes.

As explained in the introduction, the speed of movement can vary signifi-

cantly across human demonstrations, especially if they are performed by different

subjects. In such cases the velocity profiles are not “similar” and DMP weights

become a poor feature vector for classification. However since the weights of the

forcing term in AL-DMP do not depend on speed, we expect that recognition per-

formance can be significantly improved in such cases by applying the weights of

AL-DMPs instead of standard DMPs as feature vectors.

22

6.1. Simulated data

For testing we created a simulated set of 805 reaching trajectories in Cartesian

space for a simulated robot with two degrees of freedom. Some of the training tra-

jectories are shown in Fig. 8. They were assigned to five different classes, where

each class consisted of 161 reaching movements to a given distance in x direc-

tion, whereas the final destinations in y direction where different. We used inverse

kinematics to convert the Cartesian space trajectories into joint space trajectories.

Joint space trajectories were then approximated by AL-DMPs, standard DMPs,

and B-splines. The computed weights wwwi of the forcing terms and the parameters

of B-splines were used as feature vectors for classification. Feature vectors had

40 dimensions because the number of basis functions N was set to 20 in all cases

and the trajectories were two-dimensional.

Support vector machines (SVM, [33]) were applied for classification. We used

multiclass (one-vs-one) SVMs with linear kernels in this experiment. Matlab

Classification Learner App was used to train the classifiers. 20% of the whole

data set, i. e. 161 trajectories, were used to train the SVM. In this noiseless exper-

iment, all of the remaining 644 examples were classified by the SVM correctly,

regardless whether AL-DMPs, standard DMPs, or B-splines were used to com-

pute the feature vectors. These results are shown with green and blue bars in Fig.

9.

Next, we introduced non-linear temporal scaling into the 644 test examples.

This was done by multiplying the speed by 2(t +1)e(t+1)2−2, t ∈ [0,T], where T

was the duration of motion. This function was selected to make clear the benefits

of AL-DMPs compared to DMPs and B-splines. Again DMPs, B-splines and AL-

DMPs were used to compute the feature vectors for the temporally scaled example

23

trajectories and the classification performance was evaluated using SVMs trained

with feature vectors stemming from original examples that were not temporally

scaled. The results are shown in Figure 9. While the classification rate was perfect

with all three types of feature vectors when using the original data for testing, it is

clear from the bar graph that the classification rate with DMP based and B-splines

based feature vectors was severely affected when using temporally scaled data.

Significantly less than 50 % of the inputs were classified correctly. The cause for

this behavior is obvious; the values of the weights of the DMP forcing term and

B-spline parameters were significantly affected by temporal scaling. Therefore,

the resulting feature vectors were not representative of the classes trained with the

original data. On the other hand, the performance of classification with AL-DMP

based feature vectors was virtually unaffected. The reason for this is that vari-

ations in the speed profiles of the trajectories do not change the weights of the

forcing term in AL-DMP. Hence the speed-scaled trajectories were still classified

correctly. This experiment confirms our expectation that AL-DMP based classifi-

cation is much more robust compared to standard DMP features when the speed

of motion varies nonlinearly.

6.2. Real data

In this final experiment we evaluated the classification performance of DMPs

and AL-DMPs on a data set consisting of 5 motion classes, in total containing

225 hand trajectories performed by 4 different subjects. Of the 5 classes, 2 deal

with manipulation (placing a book on a shelf, placing an object into a drawer)

and 3 encompass sports actions (tennis swing, 2 versions of a ball throw). The

trajectories were recorded using motion capture system Optotrak.

The training trajectories were encoded with standard DMPs and AL-DMPs.

24

Size of the training set [%]
10 15 20 25 30 35 40 45 50

Te
st

 s
et

 r
ec

og
n
it
io

n
 p

er
fo

rm
an

ce
 [

%
]

30

40

50

60

70

80

90

100
AL-DMP + Gaussian SVM
AL-DMP + linear SVM
DMP + Gaussian SVM
DMP + linear SVM

Figure 10: Classification performance as a function of the training set size. Blue and red graphs

show the percentage of correctly classified examples using the Gaussian and linear SVM, respec-

tively, with AL-DMP weights used as features. Yellow and magenta show classification perfor-

mance when standard DMP weights were used as features.

The resulting weights wwwi of the forcing terms were used as feature vectors for

classification. Like in simulation experiments, the number of basis functions N

was set to 20. The trajectories of 3-D wrist positions were used to build the train-

ing data set, thus the feature vector dimension was 60.

The classification performance was evaluated using SVMs with linear and

Gaussian kernels. Compared to linear SVMs, Gaussian kernel SVMs offer better

support for non-linear class boundaries. For this reason, Gaussian kernel SVMs

are better suited to classify complex input data. The classification performance

was tested using different training and test set ratios; we tested the cases where 10,

25

20, 30, 40 and 50 percent of the example trajectories in each class were randomly

chosen to form the training set, while the corresponding test sets was composed

of the remaining example trajectories.

Figure 10 shows that SVMs with AL-DMP based feature vectors significantly

outperform the SVMs with standard DMP based feature vectors. This was true re-

gardless of the applied kernel type. Our simulation results were thus confirmed in

an experiment with real data. This graph also shows that the nonlinear Gaussian-

kernel SVMs improve the results obtained with conventional DMP based feature

vectors more than when AL-DMP based features are used. This is due to the fact

that the weights of the forcing term in AL-DMP better reflect the changes in the

shape of movement. Consequently, the demonstrated movements can be separated

even with simpler linear boundaries.

7. Discussion

In this paper we developed the concept of arc-length dynamic movement prim-

itives, where spatial and temporal aspects of motion are well separated. AL-DMPs

achieve this by describing motion with 1) a system of nonlinear differential equa-

tions that are solely dependent on the spatial course of movement (through arc

length derivatives) and 2) a feature vector that encodes the speed of movement,

which is dependent only on temporal aspects of motion. We confirmed these

properties in a number of skill learning and action recognition experiments, both

in simulation and in real word. Just like standard DMPs, AL-DMPs represent

kinematic aspects of motion and are not concerned with motion dynamics.

While we were able to effectively use AL-DMPs for skill learning and ac-

tion recognition, their application for robot control can sometimes be problematic.

26

Unlike standard DMP equations (1) – (2), which have a unique attractor point at

yyy = ggg, ẏyy = 0, an AL-DMP does not converge to such a point within the train-

ing interval because the arc-length derivative yyy′ is equal to the unit tangent of the

curve yyy [25], i. e. ‖yyy′‖= 1 everywhere on the training interval. Thus yyy′ 6= 0 at the

end of movement and an AL-DMP will deviate from the attractor point outside of

the training interval if numerical integration of Eq. (9) – (10) continues. Conse-

quently, the robot moves beyond the desired final configuration and slowly returns

unless the speed is set to zero at the end of movement. But if the speed is set to

zero, an AL-DMP cannot ensure convergence to the desired goal ggg if the goal is

not reached at the end of movement. Thus AL-DMPs are not the best choice to

control the robot, especially if the desired motion is modulated or in a feedback

loop because in such cases the robot does not reach its final destination ggg at the

end of the training interval, i. e. at x = exp(−αx). Thus for control it is better

to convert an AL-DMP to a standard DMP representation, which does not suffer

from this issue. The conversion is trivial as one can synthetically reproduce the

trajectory generated by an AL-DMP using Algorithm 1 at a high sampling rate

and sample the resulting robot configurations along the trajectory. Just like when

computing DMPs from real motion data, DMPs can also be computed from the

synthetically sampled data. The resulting DMP can then be used to control the

robot.

Acknowledgement

This work has received funding from the EU’s Horizon 2020 IA ReconCell

(GA no. 680431); GOSTOP programme C3330-16-529000 co-financed by Slove-

nia and EU under ERDF; JSPS KAKENHI JP16H06565; New Energy and Indus-

27

trial Technology Development Organization (NEDO); SRPBS from AME; Im-

PACT Program of Coun- cil for Science, Technology, and Innovation (Cabinet

Office, Govern- ment of Japan); and the Commissioned Research of NICT.

References

[1] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical

movement primitives: Learning attractor models for motor behaviors, Neural

Computations 25 (2) (2013) 328–373.

[2] A. J. Ijspeert, J. Nakanishi, T. Shibata, S. Schaal, Nonlinear dynamical sys-

tems for imitation with humanoid robots, in: IEEE-RAS International Con-

ference on Humanoid Robots (Humanoids), Tokyo, Japan, 2001, pp. 219–

226.

[3] A. Ude, A. Gams, T. Asfour, J. Morimoto, Task-specific generalization of

discrete and periodic dynamic movement primitives, IEEE Transactions on

Robotics 26 (5) (2010) 800–815.

[4] T. Matsubara, S.-H. Hyon, J. Morimoto, Learning parametric dynamic

movement primitives from multiple demonstrations, Neural Networks 24 (5)

(2011) 493–500.

[5] A. Kramberger, A. Gams, B. Nemec, D. Chrysostomou, O. Madsen,

A. Ude, Generalization of orientation trajectories and force-torque profiles

for robotic assembly, Robotics and Autonomous Systems 98 (2017) 333–

346.

28

[6] J. Kober, A. Wilhelm, E. Oztop, J. Peters, Reinforcement learning to adjust

parametrized motor primitives to new situations, Autonomous Robots 33 (4)

(2012) 361–379.

[7] F. Stulp, E. A. Theodorou, S. Schaal, Reinforcement Learning With Se-

quences of Motion Primitives for Robust Manipulation, IEEE Transactions

on Robotics 28 (6) (2012) 1360–1370.

[8] A. Gams, B. Nemec, A. J. Ijspeert, A. Ude, Coupling movement primitives:

Interaction with the environment and bimanual tasks, IEEE Transactions on

Robotics 30 (4) (2014) 816–830.

[9] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite, F. Wörgötter, Interac-

tion learning for dynamic movement primitives used in cooperative robotic

tasks, Robotics and Autonomous Systems 61 (12) (2013) 1450–1459.

[10] P. Pastor, L. Righetti, M. Kalakrishnan, S. Schaal, Online movement adapta-

tion based on previous sensor experiences, in: IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), San Francisco, CA, 2011,

pp. 365–371.

[11] A. Ude, B. Nemec, T. Petrič, J. Morimoto, Orientation in Cartesian space dy-

namic movement primitives, in: IEEE International Conference on Robotics

and Automation (ICRA), Hong Kong, 2014, pp. 2997–3004.

[12] M. Prada, A. Remazeilles, A. Koene, S. Endo, Dynamic Movement Primi-

tives for Human-Robot interaction: Comparison with human behavioral ob-

servation, in: IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Tokyo, Japan, 2013, pp. 1168–1175.

29

[13] A. D. Dragan, K. Muelling, J. A. Bagnell, S. S. Srinivasa, Movement prim-

itives via optimization, in: IEEE International Conference on Robotics and

Automation (ICRA), Seattle, WA, 2015, pp. 2339–2346.

[14] D. Forte, A. Gams, J. Morimoto, A. Ude, On-line motion synthesis and

adaptation using a trajectory database, Robotics and Autonomous Systems

60 (10) (2012) 1327–1339.

[15] S. M. Khansari-Zadeh, A. Billard, Learning control Lyapunov function to

ensure stability of dynamical system-based robot reaching motions, Robotics

and Autonomous Systems 62 (6) (2014) 752–765.

[16] S. Calinon, P. Kormushev, D. G. Caldwell, Compliant skills acquisition and

multi-optima policy search with EM-based reinforcement learning, Robotics

and Autonomous Systems 61 (4) (2013) 369–379.

[17] L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, C. Torras, Learning Phys-

ical Collaborative Robot Behaviors From Human Demonstrations, IEEE

Transactions on Robotics 32 (3) (2016) 513–527.

[18] A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic movement

primitives, in: Advances in Neural Information Processing Systems 26

(NIPS), Lake Tahoe, Nevada, 2013.

[19] G. J. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer, J. Peters,

Probabilistic movement primitives for coordination of multiple human–robot

collaborative tasks, Autonomous Robots 41 (3) (2017) 593–612.

[20] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, J. Peters, Interaction

30

primitives for human-robot cooperation tasks, in: IEEE International Con-

ference on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp.

2831–2837.

[21] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spo-

ken word recognition, IEEE Transactions on Acoustics, Speech and Signal

Processing 26 (1) (1978) 43–49.

[22] M. Ewerton, G. Maeda, J. Peters, G. Neumann, Learning motor skills from

partially observed movements executed at different speeds, in: IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), Hamburg,

Germany, 2015, pp. 456–463.

[23] B. Nemec, A. Gams, A. Ude, Velocity adaptation for self-improvement of

skills learned from user demonstrations, in: IEEE-RAS International Con-

ference on Humanoid Robots (Humanoids), Atlanta, GA, 2013, pp. 423–

428.

[24] R. Vuga, B. Nemec, A. Ude, Speed adaptation for self-improvement of skills

learned from user demonstrations, Robotica 34 (2016) 2806–2822.

[25] A. Gray, Modern Differential Geometry of Curves and Surfaces with Math-

ematica, CRC Press, Boca Raton, FL, 1999.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numeri-

cal Recipes; The Art of Scientific Computing, Cambridge University Press,

2007.

[27] C. G. Atkeson, A. W. Moore, S. Schaal, Locally Weighted Learning, Artifi-

cial Intelligence Review 11 (1997) 11–73.

31

[28] F. Meier, P. Hennig, S. Schaal, Incremental local Gaussian regression, in:

Advances in Neural Information Processing Systems 27 (NIPS), Montreal,

Canada, 2014, pp. 972–980.

[29] G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin,

W. Scroggin, S. C. Jacobsen, CB: a humanoid research platform for explor-

ing neuroscience, Advanced Robotics 21 (10) (2007) 1097–1114.

[30] J. K. Aggarwal, L. Xia, Human activity recognition from 3D data: A review,

Pattern Recognition Letters 48 (2014) 70–80.

[31] S. E. Thompson, R. V. Patel, Formulation of joint trajectories for indus-

trial robots using B-splines, IEEE Transactions on Industrial Electronics IE-

34 (2) (1987) 192–199.

[32] I. H. Suh, S. H. Lee, N. J. Cho, W. Y. Kwon, Measuring motion significance

and motion complexity, Information Sciences 388-389 (2017) 84–98.

[33] C. J. C. Burges, A tutorial on support vector machines for pattern recogni-

tion, Data Mining and Knowledge Discovery 2 (2) (1998) 121–167.

32

