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Abstract

In distance-based localization, estimating the position of a network of wire-

less sensors is not an easy task. The problem increases when dealing with moving

nodes and cluttered indoor environments. Many algorithms have been proposed

in the literature and, among them, the Multidimensional Scaling (MDS) tech-

nique gained a lot of interest due to its resilience to flips ambiguities and easiness

of use. Many variants of MDS have been proposed to overcome issues such as

partial connectivity or distributed computation. In this context, it is common

to place some anchors nodes to help in estimating the coordinates of the net-

work correctly. However, instead of using the anchor’s positions directly during

the minimization of the MDS cost function, most approaches act on the esti-

mated coordinates at the end of the MDS computation without fully utilizing

the knowledge about anchors. In this work, the classic MDS and Dynamic MDS

have been reformulated to utilize the anchor’s position inside the minimization

function. A set of real experiments in 3D with Ultrawide-band devices show that

our approach considerably improves the accuracy of localization with respect to

the usual MDS techniques.
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1. Introduction

In a wireless sensor network, estimating the positions of the nodes is of pri-

mary importance in many distributed systems. In indoor environments, where

the GPS is not available, distance-based localization is typically used to derive

the node coordinates by measuring inter-nodes distances. Node coordinates can5

be estimated from distance measurements using different techniques, such as

trilateration, multilateration, and Multidimensional Scaling (MDS). MDS [1, 2]

aims at visualizing a set of objects in an n-dimensional space. It takes as input

a Dissimilarity Matrix that expresses how much two objects are dissimilar along

one quality and finds a set of coordinates such that the distance between each10

couple of objects is proportional to the value of dissimilarity. MDS has been

used for plotting sets of data in many application fields, such as economics and

psychology. In the last decades, MDS has also been used for localization, where

the objects are the nodes, and the dissimilarity matrix contains the inter-node

distances.15

Using anchor nodes in wireless sensor networks significantly improved the

accuracy of localization [3]. However, in the MDS formulation the notion of

anchor nodes is missing since this technique was designed for plotting generic

objects with qualitative characteristics. Moreover, some limitations such as

partial connectivity [4, 5] and different type [6] of noise are peculiar for network20

localization. For this reason, many variants of MDS have been proposed in the

literature. To take anchors into account, some authors proposed solutions for

incorporating the known coordinates into the MDS algorithm [7]. Such variants

of MDS can be distinguished into distributed and centralized approaches. In

distributed solutions the computation of the algorithm is shared among the25

components of the network.

In centralized approaches, a common solution is to apply a roto-translation

transformation after the MDS computation and superimpose the estimated co-

ordinates over the anchors [4, 5, 8, 9]. Biaz and Ji [7] used a different method

consisting of updating the anchor’s positions during the minimization proce-30
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dure. However, contrarily to the current MDS versions, the positions of the

anchor nodes should not be modified during the minimization. For all these

cases, the coordinates of the anchors slightly changes due to the minimization

procedure, leading to a position error that reduces the overall accuracy of the

system. Also, in the case where the anchor coordinates are modified at the end35

of the minimization, the output is not exact since the anchor’s coordinates are

not entirely used for finding the best estimation.

Figure 1 shows a trivial example that highlights the drawbacks described

above. In this example, the network is composed of three anchors and two

nodes that are localized with the classical MDS and the use of a roto-translation40

applied to the output.
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Figure 1: Estimated coordinates computed with the classical MDS. The red dots represent

the coordinates during the algorithm iterations.

The figure exhibits that the classical MDS formulation does not benefit from

the anchor information. Although the anchors’ positions are known, their co-

ordinates are subject to a not required minimization. Moreover, the algorithm

introduces noise on the anchors’ coordinates. As shown in Figure 1, the anchors’45

locations are not precisely reconstructed, even if such information is known a-
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priori.

A distributed version of MDS, called distributed weighted Multidimensional

Scaling (dwMDS), was proposed by Costa et al. [10]. They successfully included

the notion of anchors and were able to consider them in the MDS formulation50

since they split the computation on each node without modifying the anchor’s

coordinates. However, a distributed approach takes a lot of time to converge

to a single agreed set of coordinates since all the network has to converge to a

unique solution through wireless communication messages. For this reason, such

approach is usually suited for large static sensor networks with low computa-55

tion capabilities. Instead, centralized approaches are usually preferred in small

networks and in applications which consider node mobility, e.g., in the case of

a small team of robots [11]. Another application case in which a centralized

approach is commonly used includes indoor people tracking [3].

A previous work [12] proposes a theoretical generalization of the classical60

MDS algorithm, named MDS with Anchors (MDS-A), which uses the coordi-

nates of some nodes (e.g., anchors) to improve the accuracy of the estimation.

The approach presented in this paper extends the one proposed in [12] to the

more general case of Dynamic Multidimensional Scaling (DMDS) - a technique

used for applications that include node mobility such as indoor people track-65

ing - by proposing Dynamic MDS with Anchors (DMDS-A) that, similarly to

MDS-A, incorporates the concept of anchors in the minimization. A set of real

experiments employing Ultra-wide Band (UWB) devices has been performed

to validate both MDS-A and DMDS-A. Moreover, is also proposed a modifi-

cation of MDS for 3D applications using the apriori knowledge of the height70

of the nodes. The development of such an approach has been encouraged by

those applications in which nodes are attached at a fixed height (e.g., the belt

of a walking person, shoes, a moving robot) and this knowledge can be used to

improve the overall accuracy.

The rest of the paper is structured as follow: Section 2 provides an overview75

of the state of the art in MDS-based localization. Then, in Section 3 the ad-

dressed problem will be formalized. Section 4 will review the MDS and DMDS
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mathematical formulations. In Section 5, MDS-A, DMDS-A, and the

MDS with heights constrains (MDS-Z) will be described. Experimental results

will be provided and discussed in Section 6. Finally, Section 7 will state the80

conclusions.

2. Related work

Multidimensional Scaling (MDS) is a technique that represents a set of el-

ements in an r-dimensional space using the similarities/dissimilarities between

pairs of elements as distance information. There exist several variants of MDS85

such as Classical MDS, Metric MDS, Non-Metric MDS, depending on the char-

acteristics of the distance information. The technique initially was meant for

visualizing a set of objects in a 2-D (or 3-D) space. Also, a particular formulation

for visualizing data with a correlation over time, called Dynamic Multidimen-

sional Scaling (DMDS) has been proposed by Ambrosi and Hansohm [13] in90

1987. In the last decade, it has been extensively used in distance-based local-

ization for its elegant formulation, resilience to flip ambiguities, and easiness of

use. However, in order to be used in practical scenarios, many variants have

been proposed to overcome issues such as partial connectivity and node mobil-

ity. These techniques usually do not modify the MDS formulation but change95

the algorithm input (distance measurements) or adjust its output.

Many variants have been introduced in literature, and some of them used

misleading acronyms that can be confused with the original approach. For exam-

ple, Garimella, in his master thesis [14], proposed a MDS variation that involves

the localization of “virtual” nodes apart from the original nodes. He named the100

proposed approach with the same name of the original DMDS. Cabero et al. [3]

proposed a variant of MDS and named their approach dynamic weighted MDS

(dwMDS), which is the same acronym of the well known distributed weighted

MDS (dwMDS) proposed by Costa [10]. For the sake of clarity, in the rest of

the paper, the name DMDS refers to the original approach proposed by Am-105

brosini and Hansohm [13]. All the other techniques will be defined as variants
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or modifications of MDS.

In Xu et al. [15], the authors use DMDS for visualizing the temporal evo-

lution of dynamic networks. Beck and Baxley [16] proposed to use DMDS as

a methodology to track nodes over time by exploiting odometry information.110

Among the other approaches that use MDS for tracking mobile nodes, Cabero

et al. [3] proposed an extension of MDS that finds the embedding of people’s tra-

jectories by using a set of connectivity matrices through time. For this reason,

they put particular attention in understanding how their approach behaves with

respect to varying connectivity. Moreover, they make an extensive use of an-115

chors conveniently fixed at the borders of a rectangle area to track the dynamic

of peoples inside the hull. In Jamâa et al. [17], the authors proposed a modi-

fied version of the classical MDS approach, i.e., coordinate are computed with

eigenvalues decompositions, to introduce a cooperative mobile network tracking

algorithm. They changed the matrices containing the orthonormal eigenvectors120

and proposed two different algorithms also considering partial connectivity. In

the particular context of mobile robot localization without anchors, Oliveira

and Almeida [18] proposed a technique that gives confidence values to position

estimates obtained by MDS at successive instants. In [19] the authors proposed

a modification to MDS, which includes the notion of nodes velocities to solve the125

ambiguities generated by two consecutive MDS outputs. However, the approach

doesn’t use the standard SMACOF minimization being more computationally

expensive.

The presented works from literature do not try to exploit the knowledge of

anchor positions in the minimization but apply some filtering techniques to the130

MDS output. Hence, most of such extensions suffer from two drawbacks: the

MDS minimization does not benefit from anchors information, and the algorithm

introduces noise on the coordinates.

The different approaches that have been used to fix the problem described

above can be divided into two main classes: those applying a roto-translation135

to the MDS coordinates, and those operating in the minimization process by

adding constraints or modifying the cost function. In the remaining of the
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section is explained why both approaches do not solve the problem efficiently.

This work refers only to centralized approaches; a distributed solution has been

proposed by Costa et al. [10].140

2.1. Applying a roto-translation transformation

The first class of works separates the localization algorithm in two step: first,

the relative coordinates are computed through MDS; then, a roto-translation

transformation is applied at the end of the minimization to align the estimated

coordinates of the anchors to their real positions.145

For example, Ji and Zha [8] align the relative positions of the nodes to their

real ones by computing a shift, rotation, and reflection of the coordinates. They

calculate the rotation and translation matrices by the aid of at least three nodes.

Similarly, in the MDS-MAP algorithm [4], the authors transform the global map

to an absolute map based on the absolute positions of the anchors. They state150

that the complexity of this step is O(m3 + n) for m anchors.

Latsoudas and Sidiropoulos [20] avoid the problem of aligning the relative

positions of the nodes to the real location of the anchors by carefully placing the

anchors to form an orthogonal triangle, and the orthogonal sides of this triangle

are chosen as coordinate basis vectors. Then, all the projections are computed155

directly onto the native coordinate basis, thus, avoiding the need of applying a

roto-translation. This approach has the drawback that the anchor nodes need

to be placed in the environment according to a specific pattern.

Cheung and So [21] proposed an approach that employs the anchor coordi-

nates to compute the rotation matrix. Their solution is initially similar to the160

one proposed in this paper. However, their MDS formulation is specific to the

case in which only one node has to be located through the use of m anchors.

2.2. Modifying the MDS minimization or adding constraints

Biaz and Ji [7] described a way of updating the anchor’s positions during

the minimization procedure. They first run the MDS step and then update the165

anchors’ location, after a check of communication constraints. Note that this

7



procedure is only a workaround since all nodes are treated as unknown, and the

MDS minimization is also performed on the anchors. After the minimization,

the position of the anchors is updated, but this also requires to adjust the

distances between the anchors and the nodes to maintain consistency.170

Another technique that exists in the literature on MDS consists in applying

generic restrictions to the variables [22]. In particular, information regarding

the anchors’ locations can be included as a constraint of MDS. However, such an

approach increases the space of the variables and leads to higher complexity and

computational cost. Conversely, reducing the space of the variables to only the175

unknown nodes and consider the anchors as a constant value, not only improves

the precision but also reduces the complexity of the algorithm. Such an intuition

is behind the approach proposed in this paper. With respect to the related work,

the proposed approach provides a mathematical formulation to estimate only

the nodes coordinates. Since the anchor’s coordinates are used to estimate the180

node positions, the two presented drawbacks do not subsist, leading to a higher

accuracy in the localization.

3. Problem formulation

Consider a collection of N = n+m nodes with position X = [x1, · · · ,xN ]
T ∈

RN×r where r = 2, 3 (2D or 3D). The first n nodes have unknown coordinates185

while the last m are anchors whose position is known a-priori. Each node i can

estimate the distance d̂ij from any other node j in the range of communication,

and the estimated distance is affected by noise. Also, dij(X) = ‖xi − xj‖ is the

Euclidean distance between node i and j.

Each node continuously estimates all the inter-node distances and exchanges

this information with the other nodes on the network. At time tk the network

performs the k-th step, and each node receives all the distance pairs and stores
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them in a Matrix, called Distance Matrix, that is defined as following:

D =


0 d̂12 · · · d̂1N

d̂21 0 · · · d̂2N
... · · ·

. . .
...

d̂N1 · · · · · · 0


During the interval ∆t between two consecutive iterations, each node may190

have traveled a certain distance ∆̂di ∈ R+. Nodes will measure their traveled

distance through dead reckoning techniques (e.g., pedestrian step detection,

odometry) and will exchange this information to the other nodes together with

collected distances.

Problem (distance based-localization with mobile and anchor nodes). At each195

time step k, given

(a) range measurements d̂ij(k), | i, j ∈ {1, . . . , N},

(b) odometry of the mobile nodes ∆̂di(k), | i ∈ {1, . . . , n},

(c) and anchor positions xi, | i ∈ {n+ 1, . . . , N},

or a subset of them, determine the coordinates of the uknown nodes X(k).200

4. Multidimensional Scaling overview

Given a network composed of N nodes in a r-dimensional space, whose

coordinates X = [x1, · · · ,xN ]T ∈ RN×r are unknown, the algorithm recovers

the coordinates of the elements by minimizing the mismatch of the following

function

min
X
S(X) = min

X

∑
i<j≤N

wij

(
d̂ij − dij(X)

)2
(1)

where wij is a weight defining the quality of the measurement d̂ij .

The objective function S, also called stress-function, can be minimized in

different ways, such as using the steepest descent approach. De Leeuw [23]

proposed an iterative method that at each step minimizes a simple convex func-205

tion which majorizes the complex function. This approach is called “Scaling by
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MAjorizing a COmplicated Function” (SMACOF) and it was proved to perform

significantly better with respect to other approaches [23], in terms of guarantees

and rate of convergence.

The non linear least squares problem in Equation (1) is solved minimizing210

iteratively a convex function T (X,Z) ≥ S(X). T bounds S from above and

touches the surface of S at point Z. The iterative procedure is summarized in

Algorithm 1.

Algorithm 1 Scaling by MAjorizing a COmplicated Function (SMACOF)

input: initial position estimate X(0)

stress function S

majorizing function T

repeat

Z = Xk−1

Xk ← min
X
T (X,Z)

until S(Xk−1)− S(Xk) < ε

4.1. The majorization function

The stress function S can be expanded as follows:

S(X) =
∑

i<j≤N

wij

(
d̂ij − dij(X)

)2
=

=
∑
i<j

wij d̂
2
ij +

∑
i<j

wijd
2
ij(X)− 2

∑
i<j

wij d̂ijdij(X).

Note that the first term is a constant and the second term is quadratic in

X and therefore relatively easily solved. The third term is bounded using the

Cauchy-Schwarz inequality using the fact that:

dij(X) = ‖xi − xj‖ = ‖xi − xj‖
‖zi − zj‖
‖zi − zj‖

≥

(xi − xj)
T (zi − zj)

‖zi − zj‖
(2)
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where Z = [z1, · · · , zN ]T ∈ RN×r. Hence, the third term can be bounded by:215

∑
i<j

wij d̂ijdij(X) ≥
∑
i<j

wij d̂ij
(xi − xj)

T (zi − zj)

||zi − zj ||
(3)

Thus, there is a simple quadratic function T (X,Z) that majorizes the stress:

S(X) ≤ T (X,Z) =
∑
i<j

wij d̂ij
2 +

∑
i<j

wijd
2
ij(X)

− 2
∑
i<j

wij d̂ij
2 (xi − xj)

T (zi − zj)

||zi − zj ||
(4)

T (X,Z) can be written in matrix form:

T (X,Z) =C + tr(XTVX)− 2 tr(XTB(Z)Z) (5)

where V and B(Z) are two matrices whose elements are defined as follow:

vij =



N∑
k=1,k 6=j

wkj if i 6= j,

N∑
k=1,k 6=j

vkj if i = j.

bij =



N∑
k=1,k 6=j

wkj
d̂ij

dij(Z)
if i 6= j,

N∑
k=1,k 6=j

bkj if i = j.

Thus, the minimum of the function can be computed as:

X = min
X
T (X,Z) = V−1B(Z)Z (6)

4.2. Dynamic Multidimensional Scaling

DMDS is a particular formulation of MDS that consider the problem of

estimating the positions not only for the current k-th step but also the p instants

before it. In order to maintain invariant the MDS formulation the coordinates220
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vector is redefined as X = [Xk−p, · · · ,Xk] variables to find having as an input a

“super-dissimilarity” matrix that contains the distances measurements as follow:

D =


Dk−p · · · Rk−p,k

...
. . .

...

Rk,k−p · · · Dk


where Rk−p,k contains the information of the displacement between node i at

the(k − p)-th step and node j at the k-th step. Note that, in the context of

localization, the only measurable information is the distance dk−p,kii that is, in

practice, the odometry of the node. Hence, Rk−p,k will be defined as follow:

Rk−p,k =


d̂11

k−p,k
0 · · · 0

0 d̂22
k−p,k

· · · 0

· · · · · ·
. . . 0

0 · · · · · · d̂nn
k−p,k

 .

Note that, in order to discard the zeros introduced in the matrices, the corre-

sponding weights wij
k−p,k must be set to zero.

The choice of the value of p varies according to the context of the applica-225

tions. For offline trajectory reconstruction, a high number of p steps (p = 10)

should improve the accuracy, but it inevitably increases the computational com-

plexity since it is linear with p. For online tracking, p should be set as a low

values such as p = 2, or p = 3, as suggested in [16].

5. Proposed approach230

This section describes the proposed extension to the MDS algorithm to in-

clude information on the anchors. First, is presented the improvement for the

classic MDS, then is described the extension for the DMDS algorithm.

5.1. MDS with anchors constraints (MDS-A)

Let us consider a set of N = n+m nodes where the first n nodes have un-235

known positions and the last m are the anchor nodes. Referring to the matrices

in Equation (6), X and Z can be partitioned as follows:

12



X =

Xu

Xa

 , Z =

Zu

Za

 , with

Xu = [x1, · · · ,xn]T ∈ Rn×r

Xa = [xn+1, · · · ,xn+m]T ∈ Rm×r

Zu = [z1, · · · , zn]T ∈ Rn×r

Za = [zn+1, · · · , zn+m]T ∈ Rm×r.

Similarly, V and B(Z) can be partitioned in blocks as follow:

V =

V11 V12

VT
12 V22

 ,B(Z) =

B11 B12

BT
12 B22

 , (7)

where matrices V11 and B11 are of size n × n, V12,B12 are n × m, and

V22,B22 are m×m.

The following theorem provides a way for computing Xu as a function of the240

anchors coordinates Xa.

Theorem 1. Given the stress function T (X,Z) of Equation (5), if is known

the exact value of the subset Xa ∈ Rm×r of X, it is possible to compute the

remaining unknown values Xu as a function of Xa:

Xu = V−111 (B11Zu + B12Za −V12Xa) , (8)

with V11, V12, B11, and B12 matrix block defined in (7).

Proof. See Appendix A.

The major practical benefit deriving from Theorem 1 is the possibility to

extend any variant of MDS that uses the SMACOF implementation to support245

the notion of anchors by merely modifying the computation of X. Note that,

Equation (8) reduces to Equation (6) in the absence of anchors (i.e., m = 0).

Hence, the approach is not limited to the a-priori knowledge on the anchors,

but can straightforwardly be used also when their number varies.
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By applying such an approach to the motivational example showed in Fig-250

ure 1, the node coordinates can be estimated exploiting the knowledge of the

anchor nodes, as shown in Figure 2. Moreover, as it can be seen, only the

unknown coordinates are computed during the minimization while the anchor

nodes are at their fixed position from the beginning.
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Figure 2: Estimated coordinates computed with the proposed formulation of MDS with an-

chors. Only the unknown node coordinates are estimated leading to a reduction of the overall

error.

5.2. DMDS with anchors constraints (DMS-A)255

This section extends the formulation of MDS with anchors to the more gen-

eral DMDS technique. Similarly to the previous approach, it splits the matrices

X, Z, V, and B(Z) as follow:

X =
[
Xk−p

u ,Xa, · · · ,Xk
u,Xa

]T
, Z =

[
Zk−p

u ,Za, · · · ,Zk
u,Za

]T
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V =



V11 V12 V13 V14 · · · · · ·

V21 V22 V23 V24 · · · · · ·

V31 V32 V33 V34 · · · · · ·

V41 V42 V43 V44 · · · · · ·
...

...
...

...
. . . · · ·

...
...

...
...

...
. . .


, B(Z) =



B11 B12 B13 B14 · · · · · ·

B21 B22 B23 B24 · · · · · ·

B31 B32 B33 B34 · · · · · ·

B41 B42 B43 B44 · · · · · ·
...

...
...

...
. . . · · ·

...
...

...
...

...
. . .


(9)

where the dimension of the matrix blocks are defined as in (7). The problem

can hence be extended to the general case. The following corollary provides a260

way for computing Xk
u at different time steps k as a function of the anchors

coordinates Xa.

Corollary 1 (of Theorem 1). Given the stress function T (X,Z) of Equa-

tion (5), if the exact values of the subset Xa ∈ Rm×r of X are known, it is

possible to compute the remaining unknown values Xk
u at different time steps k

as a function of Xa:

Xk
u = V−1k k

 p∑
j=1

Bi j Z
j
u +

p∑
j=1

(Bi 2j −Vi 2j)Za −
p∑

j 6=i

Vi jX
j
u

 , with i = 2k−1

(10)

with Vij and Bij matrix blocks defined in (9).

5.3. 3D localization with known heights

In indoor localization, anchor nodes are positioned in a 3D space, and they265

are usually placed in order to increase the coverage and accuracy of the localiza-

tion. Mobile nodes can be either robotic units or tracked persons. In both cases,

the height of the range sensor may be known. For example, the sensor may be

attached to the belt of a person or at a specific position of the robot. In these

cases, when localization is in 3D, the error in the resulting computed positions270

will also affect the height of the nodes that in this case are known. Hence, such
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information can be used to force the algorithm to provide the correct height

and reduce the final error. The following section proposes a modification of the

MDS algorithm that can be used when one (or more) partial coordinates are

known.275

Let’s consider a set of nodes X = [x1, · · · ,xN ]
T ∈ RN×r with x = [x y z]

whose 3th component z is known. It is possible to wite X as X = [Xxy Xz] and

rewrite the trace in Eq. (5) as follows:

tr(XTVX) = tr

Xxy

Xz

V
[
Xxy Xz

] =

= tr

XxyVXT
xy XT

xyVXz

XT
z VXxy XT

z VXr

 =

= tr(XxyVXT
xy) + tr(XT

z VXz).

Following the same decomposition on the second term, Eq. (5) can be rewriten

as:280

T (Xxy,Z) =C′ + tr(XT
xyVXxy)− 2 tr(XT

xyB(Z)Zxy) (11)

where C′ = C + tr(XT
z VXz)− 2 tr(XT

z B(Z)Zz) is constant.

The modification can be employed on any variant of MDS since it is directly

applied to the SMACOF approach. The solutions obtained extending the pre-

viously proposed approaches (i.e., MDS-A and DMDS-A) are called MDS with

Anchors and heights constraints (MDS-ZA) and Dynamic MDS with Anchors285

and heights constraints (DMDS-ZA), respectively.

6. Experimental evaluation

The two proposed formulations, MDS-A and DMDS-A, have been evaluated

in comparison with the generic MDS and DMDS approaches that apply a roto-

translation transformation to the coordinates estimated by the minimization.290
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It is worth noting that the different techniques presented in the related work

mainly differ in the way they compute the roto-translation matrix. Even if

different methods lead to different accuracy, the two drawbacks highlighted in

Section 2 are common to all those approaches despite the specific algorithm

used to align the coordinates.295

To evaluate the goodness of the approaches with respect to the real coordi-

nates the Root Mean Square Error (RMSE) between actual and estimated node

positions is used as a metric, defined as:

RMSE
(
X, X̂

)
:=

√√√√ 1

n

n∑
i=1

‖xi − x̂i‖2. (12)

Note that, the computation of the RMSE considers only mobile nodes and

explicitly excludes the anchors, even if anchors’ coordinates computed with stan-

dard approaches such as roto-translation are affected by an error.

The rest of the section will first describe the hardware used and the exper-

iment setup. Then, results for the proposed approaches (MDS-A, DMDS-A,300

MDS-ZA, and DMDS-A) will be provided.

6.1. Experimental platform and setup

The experiments are performed using a set of commercial devices developed

from Pozyx Labs[24]. The Pozyx system is a hardware solution that provides

accurate positioning and motion information, and its development kit is com-305

posed of 5 mobile devices, named tags, and 4 anchors. Each node (anchor or

tag) relies on a UWB transceiver for accurate distance estimation. The accuracy

is in the order of centimeters when two devices are in line of sight, or up to 2

meters with the presence of obstacles, walls or electronic interference. Tags also

have a 9-axis IMU sensor that can be used to acquire motion information and310

can work both attached to an Arduino board or remotely triggered by other

tags. In the first option, a tag can be handled through an open-source Arduino

library. Figure 3a shows the Pozyx tag used as a shield for an Arduino Uno.

The 4 anchors are placed at the borders of a room with size 20× 15 meters.

Three tags were located at a fixed static known position and can act as anchors315
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(a) (b)

Figure 3: a) Pozyx device on top of an Arduino Board. b) Laboratory in which the real

experiment has been performed. In green the Area of coverage of the the Vicon system.

(i.e., the 3D coordinates are known) or tags depending on the specific experi-

ment. The remaining two tags were attached to the belt of two walking persons.

In order to provide the ground truth for the evaluation, a Vicon System able of

tracking a portion of the room of 6× 4 meters has been used. Figure 3b shows

the laboratory highlighting (in green) the area tracked by the Vicon system.320

6.2. Experimental results

The results presented in this section are obtained from one of the experiments

in which two people walking inside the area covered by the Vicon System were

tracked. All the following results are computed by using the log collected in this

experiment by varying the anchors setup or changing the MDS algorithm.325

To better explain the trial, Figure 4 presents the snapshot of the entire ex-

periment, showing the setup together with the ground truth and the estimation

obtained with one of the approaches (i.e., DMDS-ZA) when all the seven static

nodes act as anchors. The black line represents the ground truth of the first

person walking along one direction back and forth, while the red line shows the330

ground truth of the second one performing circles around the area. The blue

and magenta dots shows the coordinates estimated by DMDS-ZA of the first

and second person, respectively. The black dots are the tag nodes, in this case,

all acting as anchors (known 3D location).
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Figure 4: Snapshot of the trial. The black and red lines represent the ground truth of two

walking persons and the blue and magenta dots their estimated coordinates with the proposed

approach. The black dots are the tag nodes that act as anchors.

6.2.1. MDS vs MDS-A335

The first experiment presents the advantages in term of accuracy obtained

through the inclusion of the knowledge about anchors, and in particular the

effects of the number of them. The network has N = 9 nodes and the number

of anchors m varied from 3 to 7, while the two moving nodes acquire distance

information with the enabled nodes and compute their position.340

The first experiment presents the advantages in term of accuracy obtained

through the inclusion of the knowledge about anchors, and in particular the

effects of the number of them. The network has N = 9 nodes and the number

of anchors m varied from 3 to 7, while the two moving nodes acquire distance

information with the enabled nodes and compute their position. Results are345

presented in Figure 5, which shows the Cumulative Distribution Function (CDF)
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of the RMSE error of MDS and MDS-A for m = 3 and m = 7, while the values

of the CDF are showed in Table 1).
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Figure 5: CDF of the RMSE error of MDS and MDS-A for m = 3 and m = 7.

As expected, MDS-A (blue lines) has a lower mean error than MDS (red

lines). The benefits of the anchors are more relevant when m = 3 (dashed350

lines), but MDS has significantly higher mean error even with m = 7 (solid

lines).

Table 1: Mean error and standard deviation of the CDFs showed in Figure 5

Approach µ σ

MDS with m = 3 2.8860 0.8258

MDS-A with m = 3 1.8847 0.5345

MDS with m = 7 1.4282 0.5406

MDS-A with m = 7 1.1350 0.4596

Among the reasons behind the quite high mean error, there is the presence

of possible flips around the Z-plane (i.e., some nodes may have a negative z-

coordinate). If the nodes heights are known, such a problem can be eliminated355

applying the MDS-Z extension proposed in Section 5.3.
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6.2.2. MDS vs MDS-Z

In the second experiment, the same scenario of the previous experiment was

repeated, but the nodes coordinates have been computed taking into account

with MDS-Z and MDS-ZA, which take into account the knowledge about nodes360

height. The elevation of the two nodes attached to the belt of the walking per-

sons are subjected to a variation of few centimeters and hence can be considered

as fixed and known apriori. Results are shown in Figure 6, while the values of

the CDF are showed in Table 2.
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Figure 6: CDF of the RMSE error of MDS-Z and MDS-ZA for m = 3 and m = 7.

Figure 6 clearly highlights the benefits of the knowledge of the height of the365

nodes. MDS-ZA (blue lines) presents similar performance with m = 3 (dashed

line) and with m = 7 (solid lines). Moreover, even without anchors constraints,

MDS − Z (red lines) shows great improvements with a number of anchors

m = 7. This effect is due to the zth constraints forcing the minimization to

align the nodes over a specific plane Z-plane. Then the roto-translation shifts370

the coordinates to the correct position nullifying the flips on the z-plane. Note

that, even if this result is significant, MDS-Z with m = 7 has a CDF that is

lower than MDS-ZA with m = 3, proving the necessity of using the anchor’s

constraints.
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Table 2: Mean error and standard deviation of the CDFs showed in Figure 6

Approach µ σ

MDS-Z with m = 3 2.0539 0.8193

MDS-Z with m = 3 0.5882 0.4152

MDS-ZA with m = 3 0.5705 0.4010

MDS-ZA with m = 7 0.5358 0.3780

Figure 7 shows the norm of the error on the z-coordinate of the mobile nodes375

computed with MDS-A (red line) and MDS-ZA (blue line), when the number

of anchors m is equal to 7.
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Figure 7: Norm of the error on the z-coordinate of the mobile nodes computed with MDS-A

and MDS-ZA, computed with m = 7.

Since the nodes are attached to the belt, considering a fixed height in the

approach leads to a minimal error. On the contrary, when the height is not

constrained, the error can reach high values (almost up to 2 meters).380

Similar results can be obtained by filtering the coordinates obtained as out-

put. However, similarly to the idea of using the anchors’ nodes directly in
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the minimization, to use the z-information inside the MDS algorithm reduces

the error at the minimization level, making the successive filtering even more

accurate.385

6.2.3. MDS-ZA vs DMDS-ZA

The last experiment analyzes the benefits of the anchors’ constraints on

DMDS. The nodes communicate using a TDMA mechanism with 9 slots of

0.1 seconds each. Thus, the value of ∆t is equal to the resulting TDMA wheel

period, that is 0.9 seconds. In order to measure the traveled distance needed390

to populate the Distance matrix for DMDS, a step counter algorithm has been

implemented by following the approach proposed in [25]. The sampling rate of

the IMU Hz is configured to 12 Hz.

Figure 8 shows the roll, pitch, and yaw measured with the Pozyx devices on

the node monitoring the person walking back and forth. Also, the last sub-figure395

shows the step detection algorithm, where the curve is computed from the sum

of all the accelerations, and the red dots are the detected steps. Implementation

details can be found in [25].

In order to provide a bound on the accuracy of the DMDS approach, we also

applied DMDS to the real traveled distance, measured with the Vicon System400

(i.e., the ground truth). The accuracy found with this approach not only can

be used as a bound but avoid that a bad dead-reckoning technique will impact

on the strategy lowering the performances. Figure 9 shows the results of the

comparison between MDS-ZA, DMDS-ZA, and DMDS-ZA (with ground truth)

and the values of the CDF are reported in Table 3.405

Table 3: Mean error and standard deviation of the CDFs showed in Figure 9

Approach µ σ

DMDS-ZA with Gth 0.45 0.104

DMDS-ZA 0.51 0.185

MDS-ZA 0.47 0.171
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Figure 8: (From top to bottom) Yaw, roll, pitch, and step detection algorithm. Roll, pitch,

and yaw are measured with the Pozyx devices at a frequency of 12 Hz. The step detection

algorithm uses the linear accelerations measured by the IMU for estimating the number of

steps and their frequency(red dots).

The DMDS approach with p = 2 has a limited impact on the minimization

since only two more data are added to the Distance Matrix (i.e., the traveled

distance of the two mobile nodes). However, despite the fact that the mean

error is only slightly lower than MDS-ZA, the primary benefit of DMDS can be

seen in the very low standard deviation. Our DMDS-ZA implementation with410

pedestrian step detection reaches the performance of MDS-ZA with a slightly
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Figure 9: CDFs of MDS-ZA, DMDS-ZA using the ground truth to measure the traveled

distance, and DMDS-ZA with a pedestrian step detection algorithm

higher mean error and standard deviation. Note that, the system used a low

acquisition rate (caused by the Pozyx APIs) and the parameters used in the

step detection were not optimal. The results of DMDS-ZA with the ground

truth, instead, are encouraging, since the low standard deviation suggest that415

the DMDS-ZA approach can be very efficient and further improve the already

accurate MDS-ZA.

7. Conclusion

This work proposes a generalized formulation of the standard MDS and

DMDS techniques that actively consider the knowledge of the anchors coor-420

dinates in the minimization. Furthermore, MDS has also been modified to

include the concept of heights constraints when this information is known. Real

experiments show that the anchored versions of the algorithms (MDS-A and

DMDS-A) outperform the respective MDS and DMDS approaches, showing ev-

ident improvements in the accuracy of estimation. Moreover, such improvements425

increase even more when also using the information of the node heights.
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The results on DMDS-ZA show that it can improve the already accurate

MDS-ZA if accurate odometry is given, making such approach promising in the

context of node mobility. Other future works concern a more in-depth analysis

and more experiments on the effect of a varying ∆t and the use of DMDS with430

o number of steps greater than two.
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Appendix A. Proof of Theorem 1

The trace of a matrix is defined as the sum of the elements along the diagonal.

Hence, the trace of the r × r matrix XTVX of (5) is equal to

tr(XTVX) =

r∑
k=1

XT
(k)VX(k)

with X(k) ∈ RN×1 being the k-th column vector of X. Hence, Equation (5) can

be rewrite as follows:

T (X,Z) = C + tr(XTVX)− 2 tr(XTB(Z)Z)

= C +

r∑
k=1

XT
(k)VX(k) − 2

r∑
k=1

XT
(k)B(Z)Z(k).

By partitioning in block the above expression, is possible to obtain

T (X,Z) = C +

r∑
k=1

XT
(k)VX(k) − 2

r∑
k=1

XT
(k)B(Z)Z(k)

= C +

r∑
k=1

(
XT

u(k)V11Xu(k) + 2XT
u(k)V12Xa(k) + XT

a(k)V22Xa(k)

)
− 2

r∑
k=1

(
XT

u(k)B11Zu(k) + 2XT
u(k)B12Za(k) + XT

a(k)B22Za(k)

)
.

(A.1)

By differentiating the expression of T (X,Z) of Equation (A.1) with respect

to the unknowns Xu(k) only, can be obtained that:

∂T (X,Z)

∂Xu(k)
= 2(V11Xu(k) + V12Xa(k) −B11Zu(k) −B12Za(k)), (A.2)

and by setting it equal to 0 it si possible to find the unknowns Xu(k), which are

Xu(k) = V−111

(
B11Zu(k) + B12Za(k) −V12Xa(k)

)
,

or, equivalently, in a matrix form

Xu = V−111 (B11Zu + B12Za −V12Xa) . (A.3)

510
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